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Abstract. We investigate the concept of dual-weighted residuals for measuring model errors
in the numerical solution of nonlinear partial differential equations. The method is first derived
in the case where only model errors arise and then extended to handle simultaneously model and
discretization errors. We next present an adaptive model/mesh refinement procedure where both
sources of errors are equilibrated. Various test cases involving Poisson equations and convection-
diffusion-reaction equations with complex diffusion models (highly oscillatory diffusion coefficient,
nonlinear turbulent viscosity, multicomponent diffusion matrix) confirm the reliability of the analysis
and the efficiency of the proposed methodology.

1. Introduction. In many fields of scientific computing, the underlying equa-
tions are well-known but may involve models of different complexity, scales and ac-
curacy. In various cases, the most accurate and validated model can not be chosen
in numerical simulations because of the large amount of computational costs. For
instance, in the field of combustion and reactive flows, the choice of diffusion models
in gas mixtures is not straightforward. Although multicomponent diffusion models
are accepted to be accurate [6], simpler and less accurate models, e.g. Fick’s law,
are widely used in practical two- and three-dimensional simulations. Therefore, it is
desirable to apply the complex model just in those regions where necessary; for in-
stance in the flame front where a complex balance of reaction, convection and diffusion
phenomena takes place. Another field is the computation of Darcy flows in porous
media, where fluctuations on multiple scales of phenomenological parameters such as
the hydraulic conductivity lead to hetereogeneous diffusion. The arising question is
whether to resolve all characteristic scales or not.

An appealing strategy to achieve a compromise between accuracy of the model
and computational costs is to increase adaptively the complexity of the underlying
model only whenever useful. To this purpose, it is necessary to derive estimates for
the model error and then to implement them in the framework of an adaptive method.
Earlier work on model error estimation has been done by Stein [11], Schwab [1] and
the group of Oden [9, 10]. Fatone et. al. [7] analyzed recently a method for coupling
Ossen and Navier-Stokes equations on the basis of a given domain decomposition. In
this work, we propose a mathematical based algorithm to obtain a posteriori model
error control for such kinds of model adaptation. Our method is based on the solution
of an associated dual problem in order to measure the influence of the model on a
user-defined output functional of the numerical solution. The approach is an extension
to modeling errors of a posteriori discretization error control by dual weighted residu-
als [2]. Such an approach is indeed very general, so that different sources of errors with
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respect to an arbitrary functional output can be estimated, not only discretization
€errors.

A second issue addressed in this work is how to balance local model modification
with mesh refinement techniques. To this purpose, we propose an error estimator for
measuring model and discretization errors at the same time and discuss its imple-
mentation in the framework of an adaptive algorithm that achieves an appropriate
equilibrium between model and discretization error. For instance, instead of over-
refining the mesh and using a crude model, it is possible to control both sources
of error simultaneously, and refine the mesh or change the model locally to higher
accuracy.

To start with, we consider a linear equation with linear model and linear output
functional. The weak solution u for an accurate model is determined by the partial
differential equation in variational formulation in a Hilbert space V:

(1.1) weV: a(u,¢)+du,é) = (f,¢) VoeV.

Here, a(u, ¢) represents the considered equation and includes a certain (simple) model
while d(u, ¢) stands for the part of the model which is expensive to compute, or which
may be neglected due to other reasons. Given a functional output j(u), we ask for
the influence of neglecting the part d(u, ) on j(u). We assume in this section that
the functional j is a linear mapping j : V — IR and that the forms a(-,-) and d(-,-)
are bilinear.

The reduced system is the equation for an approximate solution u.,:

(1.2) Um €V a(um,d) = (f,¢) VoeV.

For the model error e,, = u—u,, obviously holds a “perturbed Galerkin orthogonality”

a(eua ¢) = _d(ua ¢) VoeV.

In order to get control about the error respect to the functional j, we introduce the
dual problem

(1.3) z€V: a(d,z)+d(g,2) =37(p) VoeV.
Using the dual solution z gives the error identity
](eu) = a’(euv Z) + d(eua Z) = _d(ua Z) + d(eua Z) = _d(umv Z) .

Our main implicit assumption concerning computational costs is that the overhead
for solving the full variational problem (1.1) rather than the reduced one (1.2) is
much higher than a single evaluation of the bilinear form d(-,-). This assumption
is reasonable since the variational problems (1.1) and (1.2) are generally solved by
iterative methods that involve a substantial number of residual evaluations. We may
thus consider that solving the dual problem (1.3) is not pratical, since it involves the
(expensive) model d(¢, z) which was omitted in the primal problem. Therefore, we
approximate z by the dual solution z,, of the reduced dual problem:

2m €V a(d,zm)=3j(p) VoeV.
This leads to the representation
jlew) = —d(um, z) = —d(Um, 2m) — Ad(Um, 2 — 2m)
= —d(Um, 2m) — %{d(um, Z—zm) + AU — Um, 2m) },
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since d(um, z) = d(u, zm, ). Denoting by ||-|| the norm of V' and using a similar notation
for linear and bilinear forms on V' and V' X V respectively, the first term in the error
representation may be estimated as

d(ums zm) < [|d|| [[um]| l|zm]l -

Furthermore, assuming that the bilinear form a(-,-) satisfies a stability property in
the form Jda > 0, Yu € V, ||u|]| < alla(u,-)||, we deduce from the “dual perturbed
Galerkin orthogonality” a(z — zm, ) = —d(¢, z), V¢ € V, the estimate

Iz = zm|l < e ld]|||2]| -
Therefore, the second term in the error representation may be estimated as
d(um, 2 = zm) < a[|d]* lum]| [|2]] -
As a result, at first order in ||d||, the error j(e,) may be approximated as
jlew) = —d(tm, 2m) -

The outline of the paper is as follows: In Section 2 we derive an a posteriori
estimate for the model error in the more general case where a(-,-) and d(-,-) are
allowed to be semi-linear and the functional j(-) can be nonlinear. In Section 3 we
combine the discretization error and model error. A strategy for balancing local
model modification with mesh-size adaptation on the basis of the a posteriori error
estimates is presented in Section 4. The numerical results in Section 5 contain three
model problems with different diffusion models.

2. Nonlinear model error. In this section, we use the technique introduced in
[2] for a posteriori error estimation of the discretization error. This will be presented
for measuring model errors.

The nonlinear primal problem we are interested in is given by

(2.1) weV: a(u)(g)+d(u)(¢) = (f,4) VoeV.

The semi-linear forms a(u)(-) and d(u)(-) are linear in the second argument but may
be nonlinear in u. The directional derivatives of a(u)(-) and d(u)(-) will be denoted
by a'(u)(-,-) and d'(u)(-,-), respectively. The semi-linear form

& (w)(v,8) = lim ~ {a(u + ev)(8) — a(u)(6)}

e—0 €

is linear in v and ¢. The second and third directional derivatives are denoted by
a’(uw)(-,-,-) and a""(u)(-,-,-,"), respectively. In the general case of a nonlinear output
functional j(u), the corresponding dual problem we will use in the analysis is the
following:

(2.2) zeV: dw)(y,2)+d(w)(y,2) =5 (u)(¢) VYpeV.

The primal solution u,, € V and dual solution z,, € V of the reduced problems are
given by:

(2.3) Um €V 1 alun)(p) = (f,9) VoeV,

(2.4) 2m €V i d' (um)(®, 2m) = ' (um)(¥) Y €V.
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These variational problems will be formulated as optimization problems. The primal
and dual solutions will be expressed by the variables z = (u,2) € X :=V x V and
Zm = (Um, 2m) € X. In the variational space X we consider the functionals

(2.5) L(z) = Ly, (z) + 0L(x),
(2.6) L (2) = j(u) + (f, 2) = a(u)(2),
(2.7) 0L(z) = —d(u)(z) .

The derivative of L applied to a test function y = (p,%) € X is:

L'(z)(y) = 3" (u)(p) — a'(u) (¢, 2) — d'(u)(¢, 2)
+(f,9) — a(w) () — d(u)(¥) .-
Obviously the original primal and dual problems (2.1) and (2.2) and the reduced
primal and dual problems (2.3) and (2.4) consist in finding the stationary points
z = (u,2) and z, = (U, 2m) of L and L,,, respectively:
(2.8) zeX: L(z)(y)=0 VyeX,
(2.9) Tm €X: L (zm)(y)=0 VyeX.

Furthermore, the target quantities are given by evaluation of L and L,, at these
stationary points:

j(u) = L(z),
J(um) = Lin(Tm) -

We get the following error representation:
THEOREM 2.1. If the semi-linear forms a(u)(-) and d(u)(-), and the functional
j(u) are sufficiently differentiable with respect to u, then it holds

1
J(w) = j(um) = =d(um)(zm) = 5{d(um)(ez) + d'(um)(eus zm) — R},
where R is cubic in the error e = {ey,e,} := {u — um, 2z — z2;m }:
(2.10) Ri= / L@ 4 ) (erere) - A(L— A)dA.
0
Proof.

3(u) = j(um) = L(z) — L(zm) + 0 L(xm)
— —d(um)(2m) + /0 L' (2 + Ae)(e) dA.

Applying the trapezoidal rule, we get

/0 L@ + Ae)(e) A = {1/ ()(€) + I (m)(e) + B},
with remainder term R given by (2.10). Because of (2.8) and (2.9), we have
L'(z)(e) + L'(zm)(e) = L'(zm)(e)
= Ly (zm)(e)
= 0L (zm)(e)
= —d(um)(ez) — d' (um)(eu, 2m) -

+ 0L (zm)(e)
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This completes the proof. O

From a numerical viewpoint, it is useful to obtain some a priori estimates of the
various terms arising in the error representation obtained in Theorem 2.1. Assuming
that the functional L’ satisfies a stability property of the form

|21 — @2llx < a||L(21) — L' (22)llx
with a > 0, we obtain
lellx = llz = Zmllx < |l (zm)lx = al|6L (zm)l|x,

thanks to the relations (2.8) and (2.9). Assuming that the perturbation d(-)(-) and
its derivatives are sufficiently small, we may write ||0L'(z.,)|x < ¢(d) ||zm||x with
a constant ¢(d) < 1. Therefore, the error e is first order in ¢(d) and the contribu-
tions in R are thus of third order in ¢(d). Furthermore, the terms d(u.,)(e,) and
d'(um)(ey, 2m) are quadratic in c(d) since they involve the semi-linear form d(-)(-)
and the error e. As a result, the error representation of Theorem 2.1 will be used
numerically by neglecting these terms, yielding the simple error estimator 7,,:

3() = §(um) N = —d(tm)(2m) -

In Section 5, we show by numerical experiments that this estimator is reliable and
efficient for several test problems. However, if more numerical effort in the error esti-
mate is feasible, in addition one may solve local dual problems involving the accurate
model d(-,-).

3. Combining discretization error and model error. In order to balance
model and discretization error, we have to derive also an a posteriori estimator of the
discretization error. For this, let V;, C V a finite dimensional subspace and up,, € Vi
the discrete solution involving both types of error:

Unm € Vit a(unm)(9) = (f,0) Vo € Va.

By 75 we denote the corresponding triangulation of the computational domain £ C
IR?, with d = 2,3. Possible homogeneous Dirichlet conditions are already included
in the choice of the spaces V;, and V. The operators L and L,, are chosen as
above in (2.5)-(2.7). The difference is the definition of the discrete solution zp., =
{uhm, th} eEXp =V, xV:

Thm € Xp: Ll (Thm)(y) =0 Yy e Xp,
which corresponds to

(3.1) upm € Vo i a(unm)(9) = (f,9) Vo € Vi,
Zhm € Vi : a'(uhm)(w,zhm) = j’(uhm)('(ﬁ) \V/’l/) e Wn.

For the formulation of the error representation, we use the following notation for the
primal and dual residual with respect to the reduced model and for test functions

(p,9) € X:

p(urm) (@) := (f, ¢) — a(unm)(¥),
P* (Uhms 2hm ) (¥) := §' (unm) (%) — @' (Whm) (¥; 2hm) -
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THEOREM 3.1. Under the same conditions as for Theorem 2.1, we have

30) = §(unm) = ~dCatm) ()
5 {0 unm) (2 = i82) + " (s ) (1 — i)}

—%{d(uhm)(ez) + d' (uhm) (€u, Zhm) } + %R,

where € = {ey,e.} = {U — Upm, 2 — Zam}, tn : V — Vi is an arbitrary interpolation
operator and R is given by (2.10).
Proof. Similar to the previous proof, one gets

() = §unm) = ~d(unm) (zm) + 5 (E' (2m)(e) + B)

Because in the discrete case L), (Zhm)(y) does not vanish for arbitrary test functions
y € X, we get

L'(zhm)(€) = L (xhm)(€) + SL' (znm)(e)
= P(uhm)(z - zhm) +p* (uhma th)(u - uth)
_d(uhm)(eZ) - d’(uhm)(eua th) .

Due to (3.1) and (3.2) we may substract arbitrary discrete test functions in the residual
terms. Especially, we may use an arbitrary interpolation i of u and %,z of z:

0 = p(unm)(2am) = p(unm)(inz),
0= ,0* (uhma th)(uhm) = P* (uh‘ITH th)(ihu) .

This gives the assertion. O

In order to use numerically the error representation derived in Theorem 3.1, we
have to approximate various terms. As in the linear case, we will neglect the higher-
order terms in e with respect to the model d(-)(+). Furthermore, we have to approx-
imate the interpolation errors u — ipu and z — ip2. An efficient possibility to do
this, is the recovery process of the computed quantities by higher-order polynomials,
see [2, 4]. For instance, in the case of triangles (d = 2) or tetraedrons (d = 3) and
when V}, consists of piecewise linear elements, quadratic interpolation may be used.
For quadrilaterals and piecewise d-linear elements, the interpolation can be done on
d-quadratic elements. To this purpose, we need certain restrictions on the meshes
used. We assume that the triangulation 7}, is organized patch-wise: 7 results from a
global refinement of a mesh 735,. Note that 7, contains in 2D twice as much hanging
nodes as T3p. For illustration in the two-dimensional case using quadrilaterals with
hanging nodes, see Figure 3.1. The same construction is possible in three dimensions.
Let

i) Vi = V)

be the quadratic interpolation of piecewise bilinears on 7, onto biquadratic finite
elements on 7T3p,. The interpolation errors will be numerically approximated by

— ~ '(2) —
z ThZ = lop Zhm Zhm s

. ~ (2)
U—1pUu = ’L2h Uhm — Uhm -
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Fi1G. 3.1. Possible triangulation for approzimation of the interpolation error on gquadrilaterals
with hanging nodes Tap (left), Tn (right).

Without modeling error, this approximation is usually observed to be accurate enough.

Taking into account that the residuals p(upm)(¢) and p*(Uhm, 2hm ) (@) with re-
spect to a discrete test function ¢ € Vj vanish, leads to the following estimator
consisting of two parts

J(u) = j(urm) = Mh + m,
1 .(2) * .(2)
(33) Mh 2= 5 {P(thm)(izh 2hm) + P (Unm, Zhm ) (izy, Unm )}
Tm = _d(uhm)(zhm) .

The part 7, of the estimator can be considered as contributions of the discretization
and the part 7, measures the influence of the model. For complex models, the
evaluation of 7,, may be expensive. However, the gain of an adaptive algorithm with
local model modification becomes substantial for nonlinear problems, since we do not
need to include the (global) detailed model neither in each residual evaluation nor in
the Jacobian.

4. Adaptivity. In order to use the information (3.3) for changing the model
locally or to change the mesh size, we have to localize the estimator. Then we design
an adaptive process in order to balance the two sources of errors.

4.1. Localization of the estimator. We look at the nodal contributions of
Nh + Nm- By n we denote the number of nodes of the triangulation 73 for the finite
element space Vj. Let U,Z € IR™ be the vector of nodal values of up.,, and zpm,
respectively. The estimator of the modeling error 7,, can be expressed as a scalar
product of Z and the vector A = {A;} built by the model residuals with respect to
the Lagrangian nodal basis {¢;} C Vj:

A = d(upm)(4i)
Tm = <A’ Z> .

Here, we use the notation (-,-) for the Iy scalar product in IR™. We localize the
modeling error by the upper bound

n
7| < Z |AiZ;i] .
i=1
For the part of the estimator corresponding to the discretization error, we consider

(d—) linear finite elements. For each node N of the triangulation of 75, we have the
bilinear nodal function ¢; € V; and a quadratic nodal function qﬁf) = zgi) i € Vh(Z).
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Let U € IR™ the vector of nodal values of upm. Let ¥; and ¥} be the primal and dual
residual contributions with respect to the quadratic basis {¢l(.2)}:
2
i = plunm)(6(7),
U} = " (unm, 71m) (917
1 *

Direct localization of the terms (¥, Z) and (¥*,U) results in general in a large over-
estimation of the error due to the oscillatory behaviour of the residual terms. This
can be reduced by a filter as described now.

We introduce the nodal interpolation operator th Vi, — Vap and the filtering
operator 7y, : Vi, = V4, defined by

The = ¢ — igp 9,

giving the small-scale linear fluctuations. We denote the nodal vectors of the filtered
primal solution 7 up and dual solution 7z, by U™ and Z7, respectively,

n n
ThUhm = E &U, Thapm = E G 27 .
i—1 im1

The error estimator may be localized on the basis of the following Proposition.
PROPOSITION 4.1. The estimator for the discretization error np, in (3.3) can be
computed by the filtered discrete solutions:

m= (w27 + (o7}

(2

Proof. The quadratic interpolation operator i ) is obviously the identity on Vap.

This implies
2 .

iSitnd = ibg Vo € Vi.

Therefore, it holds for all ¢ € V4,
iS5 mnd — mnd —12 19— isn g — (6 — i59)
—il)e—¢.

This implies for the functions of the nodal basis {¢;} of V4, that

6P — ¢ = iS5 Thds — i -
Therefore, the statement is a direct consequence of the following identities:

Unm) (858 Zhm — Zhm)

p(unm) (@) — ¢:) - Z

—~

P(tthm) (355 2hm) = p

[
M:

s
Il
—

p(unm) (5 Thi — Thbs) - Zi

|

,,
Il
-
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p(uhm) (l2h i —¢i) Z,

@
Il
-

I

p(unm) (@) ZF

Z7y .

I
-
i M:
I,

Il
=

This gives us the following localized estimator:
PROPOSITION 4.2. With the computable quantities on each node

1
Mhyi i= §|‘I’z’Ziﬂ + iU,
= |AiZi|a

we have the following upper bound for the estimator

n
|77h+77m| <Z nhz+77mz

To sum up, the computational extra work for evaluating the estimator and getting
the nodal contributions consists of the following steps:

e Solving the (linear) dual problem for getting zh,,. There is no need to assem-
ble a new Jacobian. Instead, the matrix corresponding to the primal problem
can be simply transposed.

e Evaluation of the model with respect to the linear nodal basis d(up.m,)(¢;) for
getting A. This can be an expensive step for complex models. Taking the
scalar product with the vector Z gives the model estimator 7,,.

e Evaluation of the primal and dual residuals & and ®* with respect to the
quadratic test functions and taking the scalar product with Z™ and U™, re-
spectively, for getting 7.

4.2. Balancing model and mesh size adaptation. On the basis of the local
indicators {nh,i,Mm,}, an adaptive process can be designed. For refining the mesh,
standard algorithms can be used. We refer to [] for an overwiev of standard procedures.
Since the values are nodal-based, the information has to be shifted to the cells. This
can be done in a straightforward way or by applying more sophisticated algorithms
such that more smoothing is achieved.

The strategy for “refining the model” strongly depends on the problem. The
considered semi-linear forms a(-)(-) and d(-)(-) may change in each adaptive step, so
that portions of d(-)(-) are successively (and locally) shifted to a(-)(-). In step 4, the
equations to be solved are of the form:

u; € Vit ai(ui)(@) = (f,¢) VoeVi,
zi€Vi: ai(u)(d,zi) = j(¢) VoeV;.

The discrete subspace V; C V depends on ¢ because of mesh refinement, whereas the
semi-linear form a;(-)(-) depends on i because of model modification. The neglected
part of the model in iteration i is

di(ui)(9) = a(ui)(¢) — ai(wi)(9) + d(wi)(¢) -
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In order to balance both sources of errors, it seems reasonable to work with modified
error indicators for the refinement of the mesh and the model:

~ ) mi U m > o
i 0 otherwise

~ g inng > omm
Mh.i 0 otherwise

The parameter « is set to 0.2 in the numerical results presented in the next section.
The mesh adaptation strategy we used is based on an optimization strategy, see [3, 5]
for details. The change from the crude to the detailed model is done using an “error
balancing” technique. Cells are marked whenever

~ 1
NMms > —TOL,
n

with a tolerance based on the /;—norm of the indicators, TOL = 0.5||7}||1. The
detailed model is then used on marked cells in step ¢ + 1.

5. Numerical results. We consider two examples of Poisson-type problems
and one convection-diffusion-reaction problem. The diffusion coefficients may depend
in different ways on the solution. In order to decouple the error contributions of
the model and the discretization, the first example includes only the modeling error.
Examples 2 and 3 include both sources of errors. These examples do not really involve
very complex models, because they are not chosen for illustration of CPU time savings
when model adaptivity is used. The scope of the present work is to validate the
accuracy of the estimator and to illustrate the mechanism of error balancing. The
application to large-scale problems including very complicated and expensive models
will be addressed in a forthcoming work.

5.1. Highly oscillatory diffusion coefficient. As a first example, we consider
the (discrete) Poisson problem in a L-shaped domain Q = [(-1,1) x (0,1))]U[(0,1) x
(-1,1)] c R

(5.1) —div(pVu) = f,

with homogeneous Dirichlet conditions, v = 0 on I'; C 0% (vertical boundaries of ),
homogeneous Neumann conditions on I'y = 8Q\T'; (horizontal boundaries of ), and
constant right-hand side, f = 1. The diffusion coefficient u oscillates in space,

ulz,y) =1+ pBe *", + =min{cos(rkz),cos(rky)},

whereas for the simplest model, the diffusion coefficient is constant, 4 = 1. The
parameter § is the amplification factor, a localizes the perturbation to a narrow
stripe and k is the frequency in x and y direction. The parameters are set to a = 700,
B =100 and k = 0.5. Physically, this problem may be viewed as a model for a Darcy
flow in a porous medium with cracks located along the lines {z = +1} and {y = +1}
where the diffusion coefficient (the hydraulic conductivity) is very high. The crude
model consists in neglecting the presence of the cracks.

For this first test problem, we focus on the model error on a fixed mesh with
12,545 nodes, so that we compare up,, with the numerical solution u; computed with
the exact model. This latter solution is presented in Figure 5.1. The perturbation in
the diffusion coefficient results in small oscillations in £— and y—direction.
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F1G. 5.1. Solution of the model problem with highly oscillatory diffusion coefficient.

The output functionals we investigate are the mean value over Q2 and a point
value at zp = (0,0.5):

ji(u) = /Quda:,

J2(u) = u(zo) -

We start with the constant diffusion model over the whole domain. After computing
the solution upm,, we evaluate the estimator 1, for j(un) — j(unm), and decide on the
basis of that information which cells we have to mark. In the next iteration, we apply
the exact model u(z) only on the marked cells. Because of the sharp variations in the
diffusion coefficient, we use an expensive quadrature rule on the marked cells: 100-
point Gauss (10 x 10). On the unmarked cells, a composite lower-order quadrature
rule (4-point Gauss) is sufficient because of constant diffusion.

iter fraction of exact model Nm J1(un — Uhm)  ITegf

1 0. -5.369e-02 -3.787e-02 1.41

2 0.1112 -1.601e-02 -9.364e-03 1.71

3 0.1163 -1.599e-10 -1.596e-10 1.00

4 0.6762 -9.574e-11 -9.573e-11 1.00
TABLE 5.1

Model error estimator and efficiencies for mean value functional ji.

iter fraction of exact model Tm Jo(un — upm) Iesy

1 0. -4.0498e-02  -2.5927e-02  1.56

2 0.0806 -7.6145e-03  -5.1713e-03  1.47

3 0.1180 -7.3481e-04  -4.2331e-04 1.73

4 0.1187 -9.4160e-11  -9.4028e-11  1.00

5 0.4887 -4.5844e-11  -4.5712e-11 1.00
TABLE 5.2

Model error estimator and efficiencies for point functional ja.

Tables 5.1 and 5.2 display our numerical results. The second column contains
the fraction of marked cells. For both functionals, with less than 12% cells using the
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exact diffusion model, the solution wup,, is equal to up up to machine accuracy. The
effectivity index

o m
il J(up — Uhm)

is asymptotically exact. The estimator gives us the true prediction: using the exact
model on more cells than in the third iteration for j; (and fourth iteration for j5) does
not pay off. We need to use the exact model and the expensive quadrature rule only
on a small fraction of all cells. The areas where the exact model is used are shown in
Figure 5.2 by the white parts. As expected, they are mainly localized at the cracks.

)
"1l

F1G. 5.2. Areas with ezxact model p(xz) (light area) and crude model with constant diffusion
(black area). Top line: iteration 2 and 4 of adaptive process for the mean functional ji. Bottom:
iteration 2 and 4 for the point functional jo.

5.2. Nonlinear perturbation of the diffusion coefficient. We consider the
Poisson problem (5.1) posed on the unit 2D square Q = (0,1)? with homogeneous
Neumann condition at 'y = ({0} x [0,1)) U ([0,1) x {0}), homogeneous Dirichlet
conditions at N\ T'y , the right-hand side f = 10® and with y depending nonlinearly
on u:

p(@) =1+ afVu(z)| -

This type of nonlinear diffusion coefficient arises in turbulence modeling (Smagorinsky
model). While the laminar viscosity is equal to 1, the additional nonlinear part is a
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turbulent viscosity. The part we want to neglect in a controlled way is exactly this
part:

d(u)(¢) = (al|Vul|Vu, V9).

During the refinement of the model, we split the cells of the triangulation in those
where only the laminar viscosity is used, 715, and those where the sum of laminar
and turbulent viscosity is used. In iteration ¢ we solve the Poisson problem with
approximate diffusion coefficient p; given by

1, if z € Tin,
pi(z) =

u(z), otherwise.

The adaptive procedure is started with the laminar viscosity over the whole domain.
The output functional we choose is the mean value over a rectangular subdomain
Qo =[0,0.5] x [0.5,1] C

j(u):/ﬂoud:c.

We investigate two test cases: one with small turbulent viscosity (o = 0.001) and one
with large (o = 0.1).

#mnodes exact model Th Tm n Ju—umn) ey
81 0.000 2.258e-01 -1.459e-02 2.112e¢-01 2.118e-01 1.00

289 0.000 5.662e-02 -1.476e-02 4.186e-02 4.187e-02 1.00
1,005 0.084 1.422e-02 -1.294e-02  1.282e-03 1.335e-03  0.96
3,321 0.348 3.522e-03 -8.801e-03 -5.279e-03 -5.253e-03  1.00
11,085 0.703 8.612e-04 -3.808e-03 -2.947e-03 -2.941e-03  1.00
32,703 0.954 2.347e-04 -1.115e-03 -8.807e-04 -8.787e-04 1.00

125,861 0.995 5.897e-05 -5.477e-05 4.206e-06 4.299e-06  0.98
495,031 0.999 1.474e-05 -4.053e-06 1.069e-05 1.069e-05 1.00
TABLE 5.3

Error estimators and efficiencies for nonlinear turbulent viscosity, a = 0.001.

#nodes exact model Th Tm n Ju—umn) Tegs

81 0.000 2.259e-01  -1.459e-00 -1.233e-00 -1.125e-00 1.10

81 0.609 1.989e-01 -3.675e-01 -1.686e-01 -1.281e-01 1.32

201 0.855 4.862e-02 -4.247e-01 -3.761e-01  -3.330e-01  1.13

745 0.903 -1.506e-03  -3.319e-01 -3.334e-01 -2.851e-01 1.17

2,793 0.997 3.291e-03  -5.794e-04 2.712e-03 2.639e-03 1.03

10,669 0.998 8.187e-04 -1.542e-04 6.645e-04 6.454e-04 1.03

41,375 0.992 -9.095e-04 -3.728e-02 -3.819e-02 -3.317e-02 1.15

162,663 0.999 5.028e-05 -7.708e-05 -2.680e-05 -2.278e-05 1.18
TABLE 5.4

Error estimators and efficiencies for nonlinear turbulent viscosity, o = 0.1.

The results for o = 0.001 are listed in Table 5.3. Each line corresponds to a step
in the adaptive model/mesh refinement procedure. The number of nodes is given in
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the first column while the percentage of cells where the accurate model is used is
given in the second column. The adaptive algorithm achieves a very good balance of
error contributions from the discretization and the model. Although the two parts of
the error cancel in part, the estimator is a very good approximation of the true error.
This can be seen by looking at the efficiency index

T8 = 50 = )

in the last column. We also notice that the discretization error is dominant on coarse
meshes so that the turbulent viscosity model starts being used only when local mesh
refinement has brought the discretization error to levels comparable with the model
error.

The results for & = 0.1 shown in Table 5.4 confirm that our error estimator yields
a very accurate prediction of the overall error. In the case a = 0.1 however, even
on very coarse meshes, the influence of the turbulent viscosity is larger. This results
in a large modeling error compared to the discretization error. The first step in the
adaptive model/mesh refinement procedure only refines the model. As a result, most
of the cells involve the exact model even on relatively coarse meshes.

Some obtained meshes and the corresponding areas of crude and exact models
are shown in Figure 5.3 for the case @ = 0.001. The black areas indicate the regions
where the laminar viscosity is used. The mesh is locally refined in the neighbourhood
of . Similar results are obtained in the case o = 0.1.

VisuSimple VisuSimple

k. |.

Fi1g. 5.3. Obtained meshes (upper part) for o = 0.1 with 81, 745 and 41,375 points; and
corresponding models (lower part): ezact model p(x) (light area), laminar viscosity only (black
area).

5.3. System of convection-diffusion-reaction equations. The considered
equations describe a reacting mixing layer of three species S;, i = 1, 2,3, diluted in
an inert carrier gas

B - Vu —div(DVu) = f(u),
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where u = (u1, u2,u3)T are their concentrations, and D = (D;;) is the flux diffusion
matrix taken in the form

d 0 0 duur  digur disug
D=X| 0 do 0 |+X| doaus dous dogus |,
0 0 dj dsius dspus dszus

with A = (2 — u; — up — u3)™' and fixed parameters d;; = /d;d;, dy = 10~* and
dy = d3 = 107%. Note that D’ = (Dj;) with Dj; = D;;/u; is the diffusion matrix
and is symmetric positive definite. The advection is constant and divergence free,
B = (1,0)T. The notation - Vu stands for the vector with components 3 - Vu;,
i = 1,2,3. The reaction term reads f(u) = (0,—10%,10%)Tu;us and describes the
reaction

S1+82 =+ 81+ Ss.

The species S; is consumed, S3 is produced and S; is a so-called third-body. The com-
putational domain is Q = [0,1] x [0,0.2]. The boundary conditions are homogeneous
Neumann for all components on all parts of 9, except for z = 0, where Dirichlet
conditions are imposed:

_{ (0.1,0,0)T ify>0.5,
u(0, )_{ (0,0.1,0)T ify < 0.5.

This model problem describes the mixing of two diluted species S; and S5 with equal
molecular weight and with a realistic diffusion matrix. The diffusion coefficients d;
represent the diffusion of species ¢ in the mixture. The non-diagonal diffusion of this
model introduces a coupling between gradients of the species. In practice, this yields
additional couplings in the Jacobian matrix. For large reaction systems with many
chemical species involved, this may become prohibitive. Moreover, multicomponent
diffusion matrices are usually given only implicitly from the solution of a constrained
singular system and their computation is numerically expensive, see [6, 8]. Therefore,
instead of using the flux diffusion matrix D, we prefer to use a simpler model consisting
of a diagonal flux diffusion matrix

D = \-diag(d;) .

This matrix is slightly nonlinear due to the u—dependence of A. The corresponding
semi-linear forms read for test functions ¢:

a(w)(9) = (B Vu, 6) + (DVu, Vo) - (f(v), ),
d(u)(@) = (D = D)Vu, V9).

The quantity of interest is chosen as the mean value of the product

J(u) :/ngda:.

The species concentrations u; are shown in Figure 5.4. The third-body S; diffuses
very slowly, So diffuses faster and is consumed, S3 is produced in the reaction layer
and diffuses fast.

Table 5.5 presents the discretization and model errors. Because on coarse meshes
the discretization error dominates, the mesh is refined in the mixing layer keeping the
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YisuSimple

YisuSimple

VisuSimple

Fi1g. 5.4. Solution of the reacting mizing layer problem, species S1 (top), S2 (middle), S3
(bottom,).

#cells  exact model Th Tm n Ju—umn)  Teps
289 0 9.470e-04 -5.199e-05 8.950e-04 6.121e-04  1.46
537 0 3.479e-04 -5.756e-05 2.904e-04  2.591e-04 1.12

1001 0 1.452e-04 -5.942e-05 8.584e-05  1.029e-04  0.83

1425 0.344 6.940e-05 -1.369e-05 5.570e-05  7.741e-05  0.72
2863 0.303 3.269e-05 -1.585e-05 1.683e-05  2.772e-05 0.61

3615 0.369 1.690e-05 -1.455e-06 1.545e-05  2.231e-05  0.69

7855 0.361 8.087e-06 -2.677e-06 5.409e-06  5.047e-06 1.07

9217 0.434 4.609e-06  3.889e-06 8.499e-06  4.905e-06 1.73
TABLE 5.5

Error estimators and efficiencies for simplified diffusion matriz

crude model in the whole domain. When both types of error are balanced, the model
is adapted locally to the full flux diffusion matrix on up to 43.4% of the cells. The
error j(u — uny,p) is still well represented by the estimator 7.

Some meshes and the areas where both types of flux diffusion matrices are used
are presented in Figure 5.5. The detailed model is only used in the lower part of Q
where gradients in ug arise (light area).

6. Conclusions and perspectives. We derived an estimator for measuring
simultaneously two types of errors, modeling and discretization errors, with respect
to nearly arbitrary output functionals. The approach is formulated for stationary
nonlinear partial differential equations involving complex models. By localization of
the estimator, we derived local error indicators which allow for local mesh refinement
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F1G. 5.5. Meshes (left) and corresponding model zones (right) for the reacting mizing-layer
problem. Light areas indicate regions where the detailed model is used.

and local model modification. The extra costs for measuring the model error are
basically the evaluation of residuals with respect to the detailed model.

We analyzed three numerical examples involving linear and nonlinear problems,
scalar equations and systems, and where always two types of diffusion models entered:
a cheap but inaccurate and a more complex diffusion model. In all cases, the estimator
is reliable and efficient. By local modification of the model and the mesh size, both
sources of errors are balanced. In future work, the present framework will be the
basis for handling large-scale complex models where substantial CPU time savings
are expected. A typical setting is the application to Soret- and Dufour effects which
are important on small scales (e.g., in flame fronts).
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