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Abstract

We investigate finite element discretizations using functions that are discontinuous in time and
continuous in space for European options with local volatility Black-Scholes models. We present an
a posteriori error estimate where a user-specified functional of the error is controlled by the inner
product of the finite element residual with the solution of a dual problem that involves the density
of the target functional as prescribed data. Examples of error functionals are discussed in the
context of either option pricing or volatility calibration from market data. The a posteriori error
estimator is then localized onto the space-time cells of the computational mesh and implemented in
the framework of an adaptive mesh refinement/derefinement algorithm which provides some form of
optimal compromise between accuracy requirements and computational costs. Numerical examples
illustrate the efficiency of the proposed methodology.

1 Introduction

Over the last few years, significant progress has been made in the understanding of adaptive finite
element approximation of partial differential equations (PDEs) based on a posteriori error estimation.
For a recent review including residual error estimators, error estimators based on the solution of local
problems and hierarchical basis error estimators, we refer to [13]. Among a posteriori error estimators,
a promising approach appears to be the dual weighted residual (DWR) method. Its key advantage
is that it allows to control the error by means of a user-specified functional output that may target
quantities of interest. In the context of finance problems, this is particularly appealing for pricing
problems where the practitioner needs to compute highly accurate option prices for specific values of
the stock. Targeting quantities of interest may also be extremely useful in calibration problems where
the volatility map is reconstructed from market prices. Another advantage of the DWR method is
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that error propagation through the computational domain is accounted for via the solution of a dual
problem whose data is the density of the prescribed functional. From a financial viewpoint, this is
particularly important for low volatility problems where the hyperbolic part of the PDE may dominate
the elliptic terms.

The main concept in the DWR method is to introduce an auxiliary PDE problem, usually called
the dual problem and written in terms of the formal adjoint of the PDE under consideration. The a
posteriori error estimator may then be expressed in terms of various inner products involving the finite
element residual of the numerical solution and quantities depending on the dual solution. Theoretical
results concerning the DWR method are presented in [5, 6, 2] for steady and unsteady problems.
The DWR method may be conveniently implemented in the framework of an adaptive mesh refine-
ment/derefinement procedure. To this purpose, the inner products in the error estimator are first
localized into the space-time cells of the computational mesh. Local element bounds are then used
to decide whether to refine (or derefine) the mesh locally. The efficiency of the DWR method for an
extensive range of engineering problems is highlighted in [2].

The aim of this paper is to investigate the effectiveness of the DWR method in order to solve the
partial differential equations associated with European option pricing in local volatility Black-Scholes
models. In the Black-Scholes model, the price of a dividend-paying stock St follows the stochastic
differential equation

dSt
St

= (r − δ)dt+ σdBt, (1)

where the constant σ is the volatility of the stock. It is well-known that the price of a European
call option has a closed-form solution. Nevertheless, since the volatility of the stock is not directly
observable, practitioners often invert the closed-form solution in order to find the volatility σ (usually
called implied volatility) that yields the best agreement with the market option price. It is well-known
that the implied volatility varies with the strike and the time - the smile effect. Therefore, the model
has to be extended in order to take this phenomenon into account. A type of model called local
volatility considers that the volatility is a deterministic function of time and the underlying asset.

In this paper, we consider a market model of local volatility where the evolution of the stock-price
is governed by the stochastic differential equation

dSt
St

= (r − δ)dt + σ(t, St)dBt, (2)

where the interest rate r and the dividend rate δ are nonnegative constants and (Bt)0≤t≤T is a standard
Brownian motion. The volatility σ is a C1,2([0, T ] × R+) function and is assumed to be uniformly
bounded, i.e. there exist two positive constants σ, σ such that σ ≥ σ(t, x) ≥ σ > 0 for every (t, x) ∈
[0, T ] × R+.

Consider a derivative security with terminal payoff ψ(ST ), where ψ is some continuous real function.
In the absence of arbitrage, the price of the derivative is given by P (t, St) where P solves the partial
differential equation {

Pt + AP = 0 on (0, T ] × R+,

P (T, ·) = ψ on R+,
(3)

with
AP (t, x) = σ̂(t, x)Pxx(t, x) + (r − δ)xPx(t, x) − rP (t, x), (4)

and σ̂(t, x) = x2 σ
2(t,x)

2 . In the context of PDEs, subscripts t and x refer to partial derivatives with
respect to time and space respectively.
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There are two problems in practice. One is the pricing problem which consists in computing option
prices with reliable accuracy. Such problems are known to be difficult, especially near maturity. The
second one is the calibration problem which focuses on the reconstruction of the volatility map from
market prices. This paper will mainly focus on option pricing problems. For calibration problems, we
refer to a recent paper [3] and references therein.

The paper is organized as follows. In Section 2, the finite element discretization with discontinuous
in time and continuous in space functions is made concrete for European option problems with local
volatility Black-Scholes models. The a posteriori error estimates are derived in Section 3. The adaptive
mesh refinement algorithm including practical implementation is discussed in Section 4. Finally,
numerical results are presented in Section 5.

2 Discretization by space-time finite elements

We are interested in the numerical computation of the price function P . The numerical procedure
consists in the following three steps:

• the parabolic problem (3) is localized to a bounded domain in space;

• the localized problem is written in weak form;

• an approximate solution is sought by means of a non-conforming Galerkin method involving
discrete functions that are discontinuous in time and continuous in space.

In the sequel, it will be convenient to reverse the time variable and consider u(t, ·) = P (T − t, ·).

2.1 Localization to a bounded domain

Consider the following approximation problem







(ua)t −Aua = 0 on (0, T ] × Ωa,

ua(t, 1/a) = 0 and ua(t, a) = Ca(t),

ua(0, ·) = ψ on Ωa,

(5)

where Ωa = (1/a, a) and Ca(t) is an artificial boundary value imposed at x = a and that may depend
on time. The choice of a must answer two main purposes. First, the most probable values of ST
have to be contained in (1/a, a). Second, a must be high enough to ensure the convergence of the
approximated value ua to the option value u. In order to impose relevant boundary conditions, it
is necessary to understand the behavior of the solution at infinity and near zero. It is well-known
that the convergence when we let the domain tend to (0,+∞) is governed by a phenomenon of large
deviation type [1] and therefore the choice of Dirichlet boundary conditions leads to an exponential
error. More precisely, we have the following lemma.

Lemma 1. Suppose there exist constants c1 and c2 such that ψ(x) ≤ c1 x for x ∈ R+, and Ca(t) ≤ c2 a
for t ∈ (0, T ). Then for every a > 0 and every (t, x) ∈ (0, T ) × Ωa, we have

|u(t, x) − ua(t, x)| ≤ c3 a exp

(

−(log(ax) − (σ
2

2 + (r − δ))(T − t))2

2σ2(T − t)

)

,

with c3 = max(c1, c2).
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Proof. We give a short proof for t = T . Feynman-Kac formula yields

|u(T, x) − ua(T, x)| ≤ c3

(

E(e−rTSxT1{∃t∈[0,T ] |Sx
t /∈]1/a,a[}) + aP(∃t ∈ [0, T ] |Sxt /∈]1/a, a[)

)

.

Since the function σ is bounded, we will define the probability

dQ

dP
|Ft = exp

(∫ T

0
σ(s,Xs) dBs −

1

2

∫ T

0
σ2(s,Xs) ds

)

.

Setting Xt = logSt and λ = log a, we get

|u(T, x) − ua(T, x)| ≤ c3a

(

P( sup
0≤t≤T

|X log x
t | ≥ λ) +Q( sup

0≤t≤T
|X log x

t | ≥ λ)

)

.

We only prove the exponential estimate for P(sup0≤t≤T |X log x
t | ≥ λ) since the same techniques apply

for Q(sup0≤t≤T |X log x
t | ≥ λ) with the Q− Brownian motion

Wt := Bt −
∫ T

0
σ2(s,Xs) ds.

For ρ > 0, let us introduce the martingale

Mρ
t = exp

(

ρ

(

X log x
t − log x−

∫ T

0
b(s,Xs) ds

)

− ρ2

2

∫ T

0
σ2(s,Xs) ds

)

.

Thus, using standard martingale inequalities,

P( sup
0≤t≤T

|X log x
t | ≥ λ) ≤ P

(

sup
0≤t≤T

|Mρ
t | ≥ exp

(

ρ

(

λ− log x− (
σ2

2
+ (r − δ))T

)

− ρ2

2

∫ T

0
σ2(s,Xs) ds

))

≤ P

(

sup
0≤t≤T

|Mρ
t | ≥ exp

(

ρ

(

λ− log x− (
σ2

2
+ (r − δ))T

)

− ρ2σ2

2
T

))

≤ exp

(

−ρ
(

λ− log x− (
σ2

2
+ (r − δ))T

)

+
ρ2σ2

2
T

)

We close the proof by choosing ρ =
λ− log x− (σ

2

2 + (r − δ))T

σT
.

It is worthwhile to point out that a high value for a induces substantial numerical costs. This
drawback is in part circumvented by the adaptive method as we will see later. In our numerical
experiments, we shall consider European call options with ψ(x) = (x − K)+ and therefore take
Ca(t) = ae−δt −Ke−rt.

2.2 Weak formulation

In order to write the localized problem (5) in weak form, we introduce the functional space

W (0, T ;H1
0 (Ωa)) =

{
u ∈ L2(0, T ;H1

0 (Ωa)); ut ∈ L2(0, T ;H−1(Ωa))
}
.
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Owing to the trace property W (0, T ;H1
0 (Ωa)) ⊂ C0(0, T ;L2(Ωa)) with continuous injection (see [11]),

we have u(t, ·) ∈ L2(Ωa) for all t ∈ [0, T ]. The weak formulation of (5) reads







find u ∈W (0, T ;H1
0 (Ωa)) such that

∫ T

0
〈ut, v〉−1,1 dt+

∫ T

0
a(u, v) dt =

∫ T

0
(f, v)Ωa dt, ∀v ∈W (0, T ;H1

0 (Ωa)),

u(0, ·) = ψ in L2(Ωa),

(6)

where 〈·, ·〉−1,1 denotes the duality pairing between H−1(Ωa) and H1
0 (Ωa) and (·, ·)Ωa the inner product

of L2(Ωa). Furthermore, the bilinear form a(·, ·) is given by

a(u, v) = (ux, (σ̂v)x)Ωa
− (r − δ)(xux, v)Ωa + r(u, v)Ωa .

Non-homogeneous Dirichlet boundary conditions at x = a have been treated by introducing an ap-
propriate right-hand side f in (6). f depends on t and x and without any loss of generality, one may
choose f ∈ C∞((0, T ) × Ωa).

The assumptions on σ ensure that the bilinear form a is strongly elliptic. Therefore, since the
initial data ψ is in H1(Ωa) and the right-hand side f is smooth, problem (6) has a unique solution u
which belongs to C1(0, T ;H1

0 (Ωa)) [11]. In the sequel, the duality pairing 〈·, ·〉−1,1 will thus be replaced
by the L2(Ωa) inner product.

2.3 The non-conforming Galerkin method

A first approach that might be considered to discretize (6) is to combine finite difference schemes
in time with a conforming finite element method in space. For a numerical analysis of associated
schemes, we refer for instance to [7]. In this paper, we consider a different approach involving space-
time finite elements [9, 5, 6]. More specifically, an approximate solution of (6) is sought by means
of a non-conforming Galerkin method involving discrete functions that are discontinuous in time
and continuous in space. The time interval [0, T ] is split into subintervals In = (tn−1, tn] of length
kn = tn−tn−1, where 0 = t0 < . . . < tN = T . We denote by Sn = In×Ωa the time slab associated with
In. In each time slab Sn, we consider a mesh Mn of the domain Ωa consisting of Mn + 1 subintervals
Kn
i = (xni , x

n
i+1) of length hni = xni − xni−1 where 1/a = xn0 < . . . < xnMn+1 = a. The space-time mesh

is illustrated in figure 1.
For an integer p ≥ 1, we denote by P p

c (Mn) the space of continuous functions in space that are
polynomials of degree ≤ p on each subinterval Kn

i . In particular, we shall consider the space P 1
c (Mn)

spanned by the functions (φni )1≤i≤Mn given by

φni (x) =







x−xn
i−1

hn
i

if xni−1 ≤ x ≤ xni ,

xn
i+1−x
hn

i+1
if xni ≤ x ≤ xni+1,

0 otherwise.

For an integer q ≥ 0, we define the space-time finite element space P q,p
d/c by

P q,pd/c =

{

v(t, x) =
N∑

n=1

(
q
∑

l=0

vnl (x)

(
t− tn−1

kn

)l
)

1In(t) with vnl ∈ P pc (Mn)

}

.
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Figure 1: Space-time finite element mesh

Thus, on each cell In × Kn
i , v ∈ P q,pd/c is a polynomial of degree ≤ q in time whose coefficients

are polynomials of degree ≤ p in space. Note that functions in P q,p
d/c are continuous in space but

discontinuous in time. Therefore, P q,p
d/c is a non-conforming approximation space for W (0, T ;H 1

0 (Ωa)).

For functions in P q,pd/c, the jumps occurring at each discrete time tn (n ≥ 1) are functions depending
on the spatial variable x denoted by

∀x ∈ Ωa, [v]n(x) = v+
n (x) − v−n (x) = lim

s→0+
v(tn + s, x) − v(tn, x),

and for n = 0, we adopt the convention that [v]0 = v+
0 .

We may now write the discretization of (6) as follows

{
find U ∈ P q,pd/c such that

B(U, V ) = F (V ), ∀V ∈ P q,pd/c,
(7)

with the bilinear form B(·, ·)

B(v,w) =
N∑

n=1

∫

In

{
(∂v∂t , w)Ωa + a(v,w)

}
dt+

N∑

n=1

([v]n−1, w
+
n−1)Ωa , (8)

and the linear form F (·)

F (w) =

∫ T

0
(f,w)Ωa dt+ (i0ψ,w

+
0 )Ωa . (9)

Here, i0ψ is (for instance) the L2-projection of the terminal payoff function ψ onto the discrete space
P pc (M1). Since in general ψ is piecewise linear on the initial mesh M1, we simply have i0ψ = ψ, an
assumption that will be kept in the rest of this work. Notice that the initial condition U(0, ·) = i0ψ
is readily recovered from (7). We also point out that in the case i0ψ = ψ, the discrete problem (7) is
consistent, i.e. the exact solution u of (6) also satisfies (7).

From a computational viewpoint, we shall focus on linear interpolation in space (p = 1) and either
constant or linear interpolation in time (q = 0 or q = 1). For 1 ≤ n ≤ N , let An be the discrete
operator acting on P 1

c (Mn) such that (AnU, V )Ωa = a(U, V ) for (U, V ) ∈ P 1
c (Mn) and let πn be the

L2-projection operator onto P 1
c (Mn).
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• for q = 0, set Un = U |In ∈ P 1
c (Mn) for n ≥ 1. System (7) may then be recast into the form

Un − πnUn−1 + knAnUn =

∫

In

πnf dt, n ≥ 1, (10)

with initial condition U0 = i0ψ. For each time step, (10) is thus equivalent to the resolution of
a backward Euler scheme.

• for q = 1, set Un = U0
n +

(
t− tn−1

kn

)

U1
n for n ≥ 1 with U 0

n and U1
n ∈ P 1

c (Mn). System (7) then

reduces to the following system of equations







(I + knAn)U
0
n + (I +

kn
2
An)U

1
n = πnU

−
n−1 +

∫

In

πnf dt,

kn
2
AnU

0
n + (

I

2
+
kn
3
An)U

1
n =

∫

In

(t− tn−1)πnf dt,
n ≥ 1, (11)

with initial condition U−
0 = i0ψ.

Let u be the solution of the continuous problem (6) and U be the solution of the discrete problem (7)
for p = 1 and q = 0 or 1. Then, under reasonable assumptions on the time steps and the regularity of
the exact solution u, a priori error estimates show that the error maxt∈[0,T ] ‖u− U‖L2(Ωa) is of order
2 in space and q + 1 in time (see [5] for details). In the sequel, method (10) will be termed the dG(0)
method and method (11) the dG(1) method.

3 A posteriori error analysis

In this section we briefly present the mathematical analysis of the a posteriori error estimator that
will serve as the basis for the adaptive mesh refinement algorithm described in Section 4.

3.1 Output functionals of financial interest

Let e = u−U be the error. Given two functionals θ1 := θ1(t, x) for (t, x) ∈ (0, T )×Ωa and θ2 := θ2(x)
for x ∈ Ωa, our goal is to control the θ-error measure given by

Θ(e) :=

∫ T

0
(θ1, e)Ωa

dt+ (θ2, e(T, ·))Ωa
. (12)

The functionals θ1 and θ2 are user-specified functionals designed to target quantities of financial
interest.

For instance, in the rather simple situation of an option pricing problem at a given strike value
K, high demands on accuracy do not concern e(t, x) for (t, x) ∈ (0, T )×Ωa but only e(T, x) for x ∈ ω
where ω is a small neighborhood of K. Therefore, an appropriate θ-error measure may be obtained
by taking θ1 = 0 and

θ2(x) = 1
‖
√
ψe(T,·)‖

L2(Ωa)
ψ(x) e(T, x),

where ψ := ψ(x) is a function chosen by the user with support in ω. The θ-error measure simply reads

Θ(e) = ‖
√

ψe(T, ·)‖L2(Ωa).
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Possible choices for ψ are a Gaussian with narrow band centered at x = K or ψ = 1ω, in which case
Θ(e) = ‖e(T, ·)‖L2(ω).

As a second example, consider a calibration problem where a volatility map is recovered from
market data assimilation by minimizing some appropriate difference between model predictions and
observed market prices. Assume for instance that we can observe market put option prices for three
dates of maturity t1 < t2 < T and strike prices living in an open set ω ⊂ Ωa. The symmetry between
call option and put option prices implies that it is equivalent to observe call option prices with fixed
strike price K for initial value varying in ω. In order to recover the parameter of the model (such as
volatility) from market data, we need to compute very accurately the implied option prices only in
the neighborhood of the relevant strike price and dates of maturity. Hence, we may choose a control
of the following L2 norms of e

Θ(e) = ‖e‖L2((t1,t2)×ω) + ‖e(T, ·)‖L2(ω),

which corresponds to

θ1(t, x) = 1
||e||

L2((t1,t2)×ω)
e(t, x)1(t1 ,t2)×ω and θ2(x) = 1

||e(T,·)||
L2(ω)

e(T, x)1ω .

We bring this short discussion on output functionals to a close by noticing that the functionals
θ1 and θ2 must depend on e in order to control the error in some norm. As a result, they are not
known a priori and in a numerical implementation, this dependence must be relaxed by means of an
iterative technique. More details shall be given in Section 4. An alternative approach is to consider
functionals θ1 and θ2 independent of e. For example, in the calibration problem, one may choose
θ1(t, x) = 1(t1,t2)×ω and θ2(x) = 1ω yielding

Θ(e) =

∫ t2

t1

∫

ω
e(t, x) dtdx +

∫

ω
e(T, x) dx.

In this case, the method controls the error in a semi-norm only. It may still be accurate for problems
where the error e does not change sign.

3.2 Error representation by duality

The a posteriori error estimator with respect to the θ-error measure given by (12) is obtained by using
duality arguments. The dual problem associated with (θ1, θ2) reads







find z ∈W (0, T ;H1
0 (Ωa)) such that

−
∫ T

0
〈zt, v〉−1,1 dt+

∫ T

0
a(v, z) dt =

∫ T

0
(θ1, v)Ωa dt, ∀v ∈W (0, T ;H1

0 (Ωa)),

z(T, ·) = θ2 in L2(Ωa).

(13)

The a posteriori error analysis will be performed under the assumptions that θ1 ∈ H1(0, T ;H2(Ωa))
and θ2 ∈ H2(Ωa). In this case, Lp regularity results for evolution problems (see for instance [11, 4])
imply that the dual problem (13) has a unique solution z which belongs to H 2(0, T ;H2(Ωa)∩H1

0 (Ωa)).
As before, duality pairing will be remplaced by L2(Ωa) inner product.

Proposition 1. The θ-error measure satisfies Θ(e) = B(e, z).
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Proof. Since by definition,

B(e, z) =

N∑

n=1

∫

In

{(et, z)Ωa + a(e, z)} +

N∑

n=1

([e]n−1, z
+
n−1)Ωa ,

we get after integrating the component (et, z)Ωa by parts,

B(e, z) =

N∑

n=1

{

([e]n−1, z
+
n−1)Ωa + [(e, z)]tntn−1

}

+
N∑

n=1

∫

In

{(−zt, e)Ωa + a(e, z)} dt.

Since z solves the dual problem (13), the first term in the right-hand side of the previous equality

reduces to (θ2, e(T, ·))Ωa while the second term yields
∫ T
0 (θ1, e)Ωa

dt.

Using the consistency of the variational problem (7) and Galerkin orthogonality property, we
eliminate the exact solution u from the above error representation.

Proposition 2. Let U be the discrete solution satisfying (7), let z be the unique solution of (13)
and let Z be an arbitrary test function in P q,p

d/c such that (z − Z)+0 = 0. Then, we have the error
representation

Θ(e) =

N∑

n=1

{∫

In

(f − Ut, z − Z)Ωa dt−
∫

In

a(U, z − Z) dt− ([U ]n−1, (z − Z)+n−1)Ωa

}

. (14)

Proof. Since the solution u of (6) also satisfies the variational formulation (7), we have the Galerkin
orthogonality property B(e, Z) = 0 for an arbitrary function Z in P q,p

d/c. Therefore, we get

Θ(e) = B(e, z) = B(u− U, z − Z)

= B(u, z − Z) −B(U, z − Z) = F (z − Z) −B(U, z − Z).

We conclude using definitions (8) and (9).

3.3 Localization of the error estimator

Our goal is to localize the θ-error measure given by (14) to the space-time cells In × Kn
i . The

contribution associated with each space-time cell may then be used for the purpose of refinement or
derefinement as discussed in Section 4.

Let us first introduce some notation. For functions f depending on time and/or space, we denote
by ||f ||In×Kn

i
, ||f ||Kn

i
and ||f ||In the L2 norms taken over the corresponding subscript and we use a

similar notation for L2 scalar products. For x ∈ ∂Kn
i and t ∈ In, let

[Ux] (t) := lim
s→0+

{Ux(t, xi + s) − Ux(t, xi − s)},

be the jump at x of the first derivative of U . We also introduce the computable residual R(U) =
f −AU − Ut where A is the differential operator given by (4).
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Proposition 3. Keeping the assumptions of proposition 2, we have

Θ(e) =

N∑

n=1

Mn∑

i=0

{
(R(U), z − Z)In×Kn

i
− 1

2([σ̂Ux], z − Z)In×∂Kn
i
− ([U ]n−1, (z − Z)+n−1)Kn

i

}
. (15)

Proof. It directly results from (14) upon integrating by parts and elementary reordering of terms.

In order to use numerically the a posteriori estimate for the θ-error measure derived in proposition 3,
we have to approximate the interpolation error z −Z by higher order derivatives of the dual solution
z. The numerical approximation of these derivatives is discussed in Section 4.

Proposition 4. Assume θ1 ∈ H1(0, T ;H2(Ωa)) and θ2 ∈ H2(Ωa). There exists a constant c > 0
independent of the space-time mesh such that: (i) For the dG(0) finite element method applied to the
generalized Black-Scholes problem (5), we have the a posteriori estimate

|Θ(e)| ≤ c

N∑

n=1

Mn∑

i=0

{

ρi,n1 (ωi,n1,k + ωi,n1,h) + ρi,n2 ωi,n2,k + ρi,n3 (ωi,n3,k + ωi,n3,h)
}

,

with
ρi,n1 = ||R(U)||In×Kn

i
, ωi,n1,k = kn||zt||In×Kn

i
, ωi,n1,h = (hni )

2||zxx||In×Kn
i
,

ρi,n2 = (hni )
− 1

2 ||σ̂[Ux]||In×∂Kn
i
, ωi,n2,k = kn

(
||zt||In×Kn

i
+ hni ||ztx||In×Kn

i

)
,

ρi,n3 = k
− 1

2
n ||[U ]n−1||Kn

i
, ωi,n3,k = kn||zt||In×Kn

i
, ωi,n3,h = (hni )

2||zxx||In×Kn
i
.

(ii) For the dG(1) finite element method applied to the generalized Black-Scholes problem (5), we have
the a posteriori estimate

|Θ(e)| ≤ c
N∑

n=1

Mn∑

i=0

{

ρi,n1 (ωi,n1,k + ωi,n1,h) + ρi,n2 ωi,n2,k + ρ3,n
1 (ωi,n3,k + ωi,n3,h)

}

,

with
ρi,n1 = ||R(U)||In×Kn

i
, ωi,n1,k = k2

n||ztt||In×Kn
i
, ωi,n1,h = (hni )

2||zxx||In×Kn
i
,

ρi,n2 = (hni )
− 1

2 ||σ̂[Ux]||In×∂Kn
i
, ωi,n2,k = k2

n

(
||ztt||In×Kn

i
+ hni ||zttx||In×Kn

i

)
,

ρi,n3 = k
− 1

2
n ||[U ]n−1||Kn

i
, ωi,n3,k = k2

n||ztt||In×Kn
i
, ωi,n3,h = (hni )

2{||zxx(tn−1)||In×Kn
i

+ kn||ztxx||In×Kn
i
}.

Remark 1. The quantities ρ are residuals depending on the finite element solution U and the quan-
tities ω are weights depending on the dual solution z. The dual solution brings information where the
numerical error is generated. Thus, it enables to account for error propagation in space and time. For
instance, a small residual but a large weight at a given cell In×Kn

i indicate that this cell may actually
contribute significantly to error generation.

Remark 2. The assumptions on the error control functions θ1 and θ2 ensure that all the weights
are well defined. From a theoretical viewpoint, these assumptions may be slightly relaxed. From a
practical viewpoint, it is interesting to consider error control functions that are proportional to the
error e = u− U . In this case, the best regularity for θ1 and θ2 can only be θ1 ∈ L2(0, T ;H1(Ωa)) and
θ2 ∈ H1(Ωa). This approach will be illustrated numerically in Section 5.
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Proof. The proof directly follows the techniques derived in [5, 8]. For completeness, we detail the
proof in the dG(0) case and only sketch it in the dG(1) case.
(i) The key point is the choice of the interpolant Z in P 0,1

d/c. For a function w ∈ L2(Sn), its orthogonal

L2-projection on the subspace spanned by the functions that are constant in time is given by

(Pnw)(x) =
1

kn

∫

In

w(s, x) ds.

Moreover, for a function w ∈ C0(Ωa), its Lagrange interpolant on mesh Mn is given by

(Ĩnw)(x) =

Mn∑

i=1

w(xi)φ
n
i (x).

Following Eriksson and Johnson [5], we take Z(t, x) =
∑N

n=1(Ĩn ◦ Pnz)(x)1{t∈In}, i.e. for (t, x) ∈ Sn,
we have

Z(t, x) =

Mn∑

i=1

(
1

kn

∫

In

z(s, xi) ds

)

φni (x).

We write z −Z = z − Pnz + (id− Ĩn) ◦ Pnz so that the control of any norm ||z − Z|| will be achieved
by a control of both the time contribution ||z − Pnz|| and the space contribution ||(id− Ĩn) ◦ Pnz||.
(ii) Consider the time contribution. For (t, x) ∈ Sn, we have

z(t, x) = z(tn−1, x) +

∫ t

tn−1

zt(s, x) ds.

Therefore, for every x ∈ Ωa, the characteristic property of the L2-projection yields

||z − Pnz||In ≤ ||z − z(tn−1, .)||In =

(
∫

In

(∫

In

|zt(s, x)| ds
)2
) 1

2

≤ kn||zt||In . (16)

Thus, the quantities ρi,n1 and ωi,n1,k result from the estimates

(R(U), z − Pnz)In×Kn
i

≤
∫ xn

i+1

xn
i

||R(U)||In ||z − Pnz||In dx

≤ kn

∫ xn
i+1

xn
i

||R(U)||In ||zt||In dx ≤ ||R(U)||In×Kn
i

︸ ︷︷ ︸

ρi,n
1

kn ||zt||In×Kn
i

︸ ︷︷ ︸

ωi,n

1,k

.

Next, owing to the standard trace inequality (for a proof, see [14])

∀w ∈ H1(Kn
i ), ||w||∂Kn

i
≤ c1

{

1
√
hni

||w||Kn
i

+
√

hni ||wx||Kn
i

}

where c1 is independent of Kn
i and w, we deduce that for every w ∈ L2(In,H

1(Kn
i )) holds

||w||In×∂Kn
i

=

(∫

In

||w||2∂Kn
i
dt

) 1
2

≤ c1

{

1
√
hni

||w||In×Kn
i

+
√

hni ||wx||In×Kn
i

}

. (17)

11



Since zt ∈ L2(In,H
1(Kn

i )), we obtain using (16) and (17) that

1
2([σ̂Ux], z − Pnz)In×∂Kn

i
≤ 1

2 ||[σ̂Ux]||In×∂Kn
i

(
∫

∂Kn
i

||z − Pnz||2In dx
)1/2

≤ 1
2 ||[σ̂Ux]||In×∂Kn

i
kn||zt||In×∂Kn

i

≤ c1
2 (hni )

−1/2||[σ̂Ux]||In×∂Kn
i

︸ ︷︷ ︸

ρi,n
2

kn
(
||zt||In×Kn

i
+ hni ||ztx||In×Kn

i

)

︸ ︷︷ ︸

ωi,n

2,k

.

Finally, for every x ∈ Kn
i , integration by parts in time yields

(z − Pnz)
+
n−1(x) = (z − Pnz)(tn−1, x) = − 1

kn

∫

In

(tn − s)(z − Pnz)t(s, x) ds

= − 1

kn

∫

In

(tn − s)zt(s, x) ds ≤
1√
3

√

kn||zt||In .

Therefore,

([U ]n−1, (z − Pnz)
+
n−1)Kn

i
≤ 1√

3
k
− 1

2
n ||[U ]n−1||Kn

i
︸ ︷︷ ︸

ρi,n
3

kn||zt||In×Kn
i

︸ ︷︷ ︸

ωi,n

3,k

.

(iii) Consider now the space contribution. Recalling the standard finite element interpolation estimate
valid in 1D

∀w ∈ H2(Ωa) ∩H1
0 (Ωa), ||(id− Ĩn)w||Kn

i
≤ c2 (hni )

2 ||wxx||Kn
i
,

with c2 = 1
π2 and keeping in mind that Pnz belongs to H2(Ωa) ∩H1

0 (Ωa) with

||(Pnz)xx||In×Kn
i

= ||Pn(zxx)||In×Kn
i

=

(
∫

Kn
i

||Pn(zxx)||2In dx
) 1

2

≤
(
∫

Kn
i

||zxx||2In dx
) 1

2

= ||zxx||In×Kn
i
,

we get

(R(U), (id − Ĩn) ◦ Pnz)In×Kn
i

≤
∫

In

||R(U)||Kn
i
||(id − Ĩn) ◦ Pnz||Kn

i
dt

≤ c2 ||R(U)||In×Kn
i

︸ ︷︷ ︸

ρi,n
1

(hni )
2||zxx||In×Kn

i
︸ ︷︷ ︸

ωi,n

1,h

.

We notice next that in one space dimension, Pnz − Z = 0 on ∂Kn
i × In by construction. Therefore,

([σ̂Ux], Pnz − Z)In×∂Kn
i

= 0 and the weight ωi,n2,h vanishes. For higher space dimension, this is no

longer the case (see [8] for the value of ωi,n2,h in the case of the heat equation). Finally, we have

([U ]n−1, ((id − Ĩn) ◦ Pnz)+n−1)Kn
i

≤ ||[U ]n−1||Kn
i
||((id − Ĩn) ◦ Pnz)+n−1||Kn

i

= (kn)
− 1

2 ||[U ]n−1||Kn
i
||((id − Ĩn) ◦ Pnz)+n−1||In×Kn

i

≤ c2 (kn)
− 1

2 ||[U ]n−1||Kn
i

︸ ︷︷ ︸

ρi,n
3

(hni )
2||zxx||In×Kn

i
︸ ︷︷ ︸

ωi,n

3,h

.
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This completes the proof in the dG(0) case.
(iv) In the dG(1) case, Pn is the orthogonal L2-projection on the subspace spanned by the functions
that are affine in time. We then have the estimate ||z − Pnz||In ≤ k2

n||ztt||In . Two integrations by
parts in time are performed to estimate ωi,n3,k. Finally, when estimating ωi,n3,h, a trace inequality in time
is used in order to control the norm over Kn

i by norms over In ×Kn
i .

Remark 3. When σ is constant in time, we have ([σ̂Ux], z − Pnz)In×∂Kn
i

= 0 by definition of the

orthogonal L2-projection operator. Therefore, we may take ρi,n2 = 0. This remark applies to both
dG(0) and dG(1) cases.

Remark 4. The exact value of the interpolation constant c arising in the estimates of proposition 4
is given in the proof above and one generally has c ≤ 1. In our numerical experiments, we will simply
take c = 1.

4 Adaptive mesh refinement

In this section we present an adaptive mesh refinement/derefinement algorithm based on the a pos-
teriori error estimate derived in the previous section. Particular emphasis is laid upon practical
implementation aspects.

4.1 The algorithm

Given a tolerance tol, our goal is to contruct adaptively a computational mesh on which the discrete
solution U achieves the accuracy requirement

|Θ(u− U)| ≤ tol.

To this purpose, we first notice that the a posteriori error estimator obtained in proposition 4
allows to separate the contribution due to space and time discretization. More precisely, for a time
slab Sn, let us define

ηnk =

Mn∑

i=0

ηi,nk where ηi,nk =
3∑

j=1

ρi,nj ωi,nj,k ,

and

ηnh =

Mn∑

i=0

ηi,nh where ηi,nh = ρi,n1 ωi,n1,h + ρi,n3 ωi,n3,h.

The global time and space contribution are respectively defined as

ηk =
N∑

n=1

ηnk , ηh =
N∑

n=1

ηnh .

Error control will be achieved by imposing that both ηh and ηk be lower than tol

2 . Other choices
modifying the balance between space and time contributions might be considered as well.

The iterative algorithm by which the space-time mesh is adaptively modified reads as follows.
We use the notation Γ = ∪Nn=1In × Mn for a given space-time mesh and denote by Γi the mesh at
iteration i of the adaptive algorithm. In addition, the parameter ε denotes a derefinement threshold
with 0 < ε < 1.
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1. Construct an initial space-time mesh Γ0. Γ0 may typically be a rather coarse, uniform, tensor-
product mesh. Set j = 0;

2. Compute discrete solution Uj of primal problem (5) on space-time mesh Γj. Compute residuals

ρi,nj for j = 1, 2, 3;

3. Compute error ej = u− Uj and evaluate error control functions θ1 and θ2;

4. Solve dual problem (13) and compute weights ωi,nj,k and ωi,nj,h for j = 1, 2, 3;

5. Compute error estimators ηnh and ηnk . If |Θ(ej)| ≤ tol then STOP, else construct a new mesh
Γj+1 using the following refinement/derefinement procedure:

5.a Space loop: let M =
∑N

n=1Mn be the total numbers of elements. If ηi,nh ≥ tol

2M , we refine

by halving the cell Kn
i while if ηi,nh ≤ (1− ε) tol2M for two consecutive indices i and i+ 1, we

derefine by assembling the cells Kn
i and Kn

i+1;

5.b Time loop: if ηnk ≥ tol

2N , we refine by halving the time interval In while if ηnk ≤ (1 − ε)tol2N
for two consecutive indices n and n+1, we derefine by assembling the time intervals In and
In+1;

Set j := j + 1 and return to step 2.

The above algorithm thus consists in a sequence of forward/backward sweeps where a primal
problem and a dual problem are sequentially solved on a given space-time mesh which is then adap-
tively modified. An alternative approach developed for instance in [10] is based on L∞ estimates in
time and cubic Hermite polynomial interpolation in space and allows to implement a single forward
time-marching algorithm where slabs are iteratively refined one after the other.

4.2 Practical implementation

The adaptive algorithm described in the previous section needs several modifications to be useful in
practice.

4.2.1 Approximate data for dual problem

For European options with constant volatility, closed formulas are available to evaluate the exact
solution u and therefore the error ej = u − Uj. However, in the financially interesting case where
local volatility is considered, closed formulas are no longer available and the data for the dual problem
needs to be estimated.

A simple procedure is to use a relaxation method in which e ≃ Uj − Uj−1. This approximation
may be partly justified under a saturation assumption of the form

‖ej‖ ≤ β ‖ej−1‖,

for some 0 < β < 1 independent of j. This assumption yields

1−β
β ‖ej‖ ≤ ‖Uj − Uj−1‖ ≤ (1 + β)‖ej−1‖,

showing that the estimate ‖Uj − Uj−1‖ is asymptotically equivalent to the error.
With this modification, the first three steps of the adaptive algorithm are modified as follows:
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1. Construct an initial space-time mesh Γ0 and a second space-time mesh Γ1 by global refinement of
Γ0 in space and time. Compute discrete solution U0 of primal problem (5) on initial space-time
mesh Γ0. Set j = 1;

2. Compute discrete solution Uj of primal problem (5) on space-time mesh Γj. Compute residuals

ρi,nj for j = 1, 2, 3;

3. Approximate error ej ≃ Uj − Uj−1 and evaluate error control functions θ1 and θ2.

4.2.2 Discrete dual problem

Several approaches have been investigated in the literature to solve approximately the dual problem.
One of such approaches consists in using higher-order interpolation to estimate the dual solution z
(see for instance [12] and [2]). This approach usually yields sharp bounds for the θ-error measure
but is not straightforward to implement since it generally needs some restrictions on the used meshes.
For instance, it is convenient to utilize meshes that are organized patch-wise with local hierarchical
refinement. An alternative approach, which yields looser bounds for the θ-error measure but is easier
to implement, is to discretize the dual problem on the same mesh and with the same polynomial
interpolation as the primal problem. This second approach has been selected hereafter. Our numerical
experiments show that for the finance problems under consideration, this choice yields nearly optimal
convergence rates.

The discrete dual problem reads

{
find Z ∈ P q,pd/c such that

B(V,Z) = Θ(V ), ∀V ∈ P q,pd/c,
(18)

with Θ defined in (12).

4.2.3 Computing the weights

Whenever possible, integrals are evaluated analytically or are approximated by 4-point Gaussian
quadrature. In order to estimate the weights involving high order derivatives (zxx, ztt, ztxx and zttx)
from the discrete dual solution Z, we use the following approximations:

• the second order derivative in space is approximated by

(
1

2
((Z2

xx(tn, xi) + Z2
xx(tn, xi−1)) × mes(In × kni )

) 1
2

,

with Zxx(tn, xi) computed from

2

hi + hi+1

(
Z(tn, xi+1) − Z(tn, xi)

hi+1
− Z(tn, xi) − Z(tn, xi−1)

hi

)

.

• the second order derivative in time is approximated by

(
1

2
(Z2

tt(tn, xi) + Z2
tt(tn, xi−1)) × mes(In ×Kn

i )

) 1
2

,
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with Ztt(tn, xi) computed from

2

kn + kn+1
(PnZt(tn+1, xi) − Zt(tn, xi)) ,

and Zt(tn, xi) is directly recovered from the local, linear-in-time expression for Z.

• for the third order derivatives ztxx and zttx, the previous quadratures are used with Z replaced
by Zt and Zx respectively.

5 Numerical Results

In this section we illustrate numerically the adaptive finite element method on two test problems. We
first study a standard Black-Scholes model with constant volatility in order to assess the numerical
behavior of our algorithms. As a more realistic model for finance applications, we then investigate a
Black-Scholes model with local volatility.

All the computations have been performed in double precision on a PC Athlon 1.2 GHz with
256 Mb of RAM. In the dG(0) case, linear systems were solved using Crout factorization whereas in
the dG(1) case, SOR algorithm was employed.

5.1 Standard Black-Scholes Model

We consider a standard Black-Scholes model for pricing European call options with payoff ψ = (S −
K)+, exercise price K = 100, volatility σ = 0.2, maturity T = 1 year, instantaneous interest rate
r = log(1.1) and dividend yield rate δ = 0. We compute the solution on the localized domain
[10, 1000].

We first verify numerically the convergence rate of the dG(1) method. Numerical results obtained
by simply doubling both the number of time steps and spatial cells from one mesh to the next finer
one are reported in table 1. Nad is the index for adaptive mesh iteration, Ncell the total number of
space-time cells, N the number of time steps, ηh and ηk the space and time contribution to the a
posteriori error indicator η, Ieff = η/||e−N ||Ωa the efficiency index and CPU the computation time. For
standard Black-Scholes models, CPU times will be normalized by the one corresponding to the initial
mesh for the first test case described in table 1.

Nad Ncell N ηh ηk η order ||e−N ||Ωa order Ieff CPU
0 1024 16 10.29 9.9e-04 10.29 — 2.72 — 3.77 1
1 4096 32 3.38 6.7e-05 3.38 1.60 0.92 1.56 3.64 13
2 16384 64 0.93 5.0e-06 0.93 1.75 0.20 2.20 4.46 213
3 65536 128 0.22 1.0e-07 0.22 2.07 6.1e-0.2 1.71 3.73 1077
4 262144 256 0.06 1.0e-07 0.06 1.85 8.3e-0.3 2.87 7.44 4686
5 1048576 512 0.02 1.0e-07 0.02 1.88 2.7e-0.3 1.62 6.51 5445

Table 1: Standard Black-Scholes model, dG(1) method; meshes are obtained by simply doubling both
the number of time steps and spatial cells from one mesh to the next finer one.

On all meshes, the spatial error dominates the time error. Both the a posteriori error bound η
and the actual error ||e−N ||Ωa are theoretically second order in space and time. In practice, we observe
convergence orders fluctuating between 1.6 and 2.1. The efficiency index takes values between 3 and
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8 approximately. The fact that Ieff ≥ 1 confirms the reliability of the method, i.e. η less than a
given tolerance actually implies that ||e−N ||Ωa lies below the same threshold. Values of the efficiency
index closer to 1 can be achieved by incorporating an appropriate interpolation constant in the error
indicator η. Indeed, in our calculations, we have simply set this constant to one, whereas common
numerical practice suggests taking values ranging from 0.1 to 0.5 (see for instance [8]).

We next control the error ||e−N ||Ωa at maturity using the adaptive mesh strategy. To this purpose,
we choose the control functions θ1 = 0 and θ2(x) = e−N (x)/||e−N ||Ωa . We take tol = 0.002 and ε = 0.2.
Numerical results are presented in table 2. After 6 steps, the error ||e−N ||Ωa has been brought below
the prescribed tolerance. The fifth mesh yields the same accuracy as the uniformly refined mesh but
contains approximately 100 times less space-time cells, resulting in substantial CPU savings. The
efficiency Ieff again ranges between 3 and 7 confirming the reliability of the method and the fact that
looser interpolation constants may be used. Although the function θ2 is not smooth enough to satisfy
the assumptions of Proposition 4, the above numerical results confirm that it may be used in practice.
Regularized versions of θ2 might be considered as well but would not yield any significant improvement
from a financial viewpoint.

Nad Ncell N ηh ηk η ||e−N ||Ωa Ieff CPU
0 1024 16 10.29 9.9e-04 10.29 2.72 3.77 1.0
1 1155 21 3.11 1.4e-03 3.12 0.92 3.36 1.6
2 1325 17 0.85 9.8e-04 0.85 0.20 4.10 3.1
3 2309 21 0.20 3.4e-03 0.21 6.1-02 3.45 7.3
4 3339 18 5.8e-02 1.7e-03 5.9e-02 8.5e-03 6.98 17.6
5 10177 31 1.3e-02 5.9e-04 1.4e-02 3.0e-03 4.55 62.7
6 12989 28 3.8e-03 2.0e-03 5.8e-03 1.9e-03 3.01 168.5

Table 2: Standard Black-Scholes model, dG(1) method; adaptive mesh refinement designed to control
the error at maturity over the whole price range.

Figure 2: Standard Black-Scholes model, dG(1) method; final mesh controling the error over whole
interval Ωa (left) and only at vicinity of exercise price (right).

Figure 2 (left) presents the final mesh that was adaptively generated in order to reach the prescribed
accuracy goal. The finest space-time cells concentrate in two zones of the computational domain: in
a region situated around the exercise price K and also near the boundary corresponding to high
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Figure 3: Standard Black-Scholes model, dG(1) method; spatial distribution of the error at maturity
for the seven meshes considered in table 2; left: 4 coarser ones; right: 3 finer ones.

values of the dividend paying stock St. While the first region is certainly desirable for accurate option
pricing, the second arises from the fact that by controlling the maturity error over the whole interval
Ωa, a significant part of the computational effort is devoted to the reduction of the error for high
values of St. Figure 3 presents the spatial distribution of the error at maturity obtained on the seven
meshes considered in table 2. Although error control is achieved in the L2(Ωa) norm, we also observe
convergence in the L∞ norm in the vicinity of the exercise price.

In order to avoid unnecessary refinements in the vicinity of the right border of Ωa, we consider the
control function

θ2(x) =
e−N (x)

||e−N ||[50,150]
1{x∈[50,150]},

yielding a posteriori control of the error at maturity in the vicinity of the exercise price. Numerical
results are reported in table 3. Figure 2 (right) presents the finest mesh considered in table 3. Mesh
refinement only occurs in the vicinity of the exercise price, resulting in additional CPU savings.

Nad Ncell N ηh ηk η ||e−N ||[50,150] Ieff CPU

0 1024 16 10.29 1.0e-03 10.29 2.72 3.77 1.0
1 1266 23 3.18 1.0e-03 3.18 0.92 3.43 2.2
2 995 17 0.85 1.2e-04 0.85 0.20 4.10 3.5
3 1607 20 0.20 1.5e-03 0.20 6.1e-02 3.40 11.1
4 2330 19 5.8e-02 1.7e-03 5.9e-02 8.3e-03 7.20 25.0
5 6488 30 1.4e-02 9.0e-04 1.5e-02 2.7e-03 5.56 67.4
6 9994 29 5.7e-03 4.3e-03 1.0e-02 1.1e-03 8.87 151.8

Table 3: Standard Black-Scholes model, dG(1) method; adaptive mesh refinement designed to control
the error at maturity in the vicinity of the exercise price.

Because of the simplicity of the standard Black-Scholes model, all the preceding results have been
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obtained with the data for the dual problem evaluated from a closed formula for the exact solution.
When considering more complex models, closed formulas are no longer available and the data for
the dual problem needs to be estimated using the relaxation procedure outlined in Section 4.2.1.
Numerical results are presented in table 4. Overall accuracy degradation remains marginal. Indeed,
the approximate dual problem still provides enough information to decrease the error significantly and
to maintain reliability for the error indicator.

Nad Ncell N ηh ηk η ||e−N ||Ωa Ieff CPU
0 1024 16 3.31 1.1e-03 3.32 2.72 1.21 1.1
1 1398 23 5.38 1.3e-03 5.39 0.92 5.81 2.7
2 3133 38 1.87 1.6e-03 1.88 0.20 9.00 7.2
3 3029 27 0.51 9.5e-04 0.51 6.1e-02 8.57 2.5
4 4646 27 0.10 1.9e-03 0.10 8.5e-03 12.71 11.5
5 7588 28 1.8e-02 6.9e-04 1.9e-02 3.0e-03 6.12 57.2
6 10381 24 8.2e-03 2.2e-03 1.0e-02 2.4e-03 4.26 140.9

Table 4: Standard Black-Scholes model, dG(1) method; adaptive mesh refinement designed to control
the error at maturity over whole price range; approximate data for dual problem.

To conclude the numerical experiments with the standard Black-Scholes model, we compare the
dG(0) and dG(1) methods. For both methods, we control the error at maturity over the whole price
range. Data for the dual problems is evaluated analytically. Numerical results for the dG(0) method
are reported in table 5 and should be compared to those of table 2. The superiority of the dG(1)
method appears clearly in terms of both accuracy and computational efficiency.

Nad Ncell N ηh ηk η ||e−N ||Ωa Ieff CPU
0 1024 16 13.30 2.33 15.64 2.70 5.78 0.4
1 4076 32 4.22 1.68 5.91 0.92 6.41 1.4
2 15338 64 0.85 1.22 2.07 0.25 8.16 5.4
3 59248 128 0.37 0.79 1.16 0.10 11.33 22.5
4 227206 256 0.15 0.42 0.57 5.0e-02 11.17 95.0
5 842740 512 4.8e-02 0.21 0.26 2.0e-02 10.28 459.6

Table 5: Standard Black-Scholes model, dG(0) method; adaptive mesh refinement designed to control
the error at maturity over the whole price range.

5.2 Local Volatility Models

This section reports numerical results obtained with the adaptive dG(1) finite element method for
pricing European call options. Option parameters are taken as in the previous section except for the
volatility which is now a deterministic function of t and x

σ(t, x) =
15

x
1{t∈[0,0.25)} +

40

x
1{t∈[0.25,0.5)} +

20

x
1{t∈(0.5,1.0]}.

We are interested in computing the solution very accurately over the price interval [90, 110] and for
the discrete times t = 0.25, 0.5 and 1.0. To achieve this goal using the adaptive procedure, we take
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for the error control functions

θ1(t, x) =
e(t, x)

||e||[0.2,0.6]×[80,120]
1{(t,x)∈[0.2,0.6]×[80,120]},

and

θ2(x) =
e−N (x)

||e−N ||[80,120]
1{x∈[80,120]},

yielding a posteriori control of the error at maturity and in the time interval [0.2, 0.6] and for prices
lying in the interval [80, 120]. Sharper bracketing of the targeted price and time intervals might be
considered as well.

Nad Ncell N ηh ηk η CPU
0 2048 32 11.66 0.30 11.88 1.0
1 3814 64 15.22 0.47 15.69 2.5
2 9268 128 4.70 0.10 4.81 6.2
3 17904 168 2.52 0.05 2.58 17.0
4 54031 289 0.91 0.01 0.93 10.9
5 159504 478 0.32 6.9e-03 0.33 60.3
6 508646 834 0.11 2.3e-03 0.11 924.4
7 1464810 1306 3.8e-02 8.1e-04 3.8e-02 4195.6

Table 6: Local volatility Black-Scholes model, dG(1) method; adaptive mesh refinement designed to
control the error in the vicinity of the exercise price and calibration dates.

Figure 4: Local volatility Black-Scholes model, dG(1) method; third, adaptively generated mesh
designed to control the error in the vicinity of the exercise price and calibration dates.

Numerical results are presented in table 6. The computational domain is set to [10, 500] and
the tolerance for the adaptive algorithm to tol = 0.001. CPU times are normalized by the one
corresponding to the initial mesh. After seven adaptive mesh refinements, the error indicator yields
η = 0.038. Based on the estimates for the interpolation constants derived for the standard Black-
Scholes model, we infer that this value is reasonably compatible with the preset accuracy threshold.
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Figure 4 presents the third adaptively generated mesh, showing that the finest computational cells are
concentrated in the regions of financial interet for calibration purposes.

Because our space-time meshes are constructed from spatially refined time slabs, the present
methodology incurs an additional cost due to excessively refined cells for high price ranges in the time
interval for calibration. However, it is worthwhile to point out that if a naive procedure (doubling the
number of time and spatial steps at each mesh refinement) was used instead of the adaptive algorithm,
the fifth mesh would yield the same accuracy (η = 0.34) but would require 15 times the amount of
CPU.

6 Conclusions

In this paper, we have investigated a relatively novel numerical method, adaptive space-time finite
elements, to approximate PDEs arising in finance applications. The main appeal of the proposed
methodology is that it allows the user to specify an error control function targeting its own accu-
racy requirements. This may be computationally effective for option pricing as well as for calibration
problems where numerical errors must only be controlled in some specific areas of the whole compu-
tational domain. The method is also reliable since sharp estimates based on a posteriori estimates
are available to decide whether the computational error satisfies acceptable accuracy requirements for
finance applications. Compared with simple finite difference or finite element schemes based on hand
taylored mesh refinement, the present methodology delivers similar or better CPU times, but offers
the advantage of reliability through a posteriori error control. With current computer technology,
overall wall clock times for option pricing are of the order of a few minutes.
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