
MATHEMATICAL ANALYSIS OF A STOCHASTICDIFFERENTIAL EQUATION ARISING IN THEMICRO-MACRO MODELLING OF POLYMERIC FLUIDS.BENJAMIN JOURDAIN, TONY LELIÈVRECERMICS, E
ole Nationale des Ponts et Chaussées,6 & 8 Av. Blaise Pas
al, 77455 Champs-sur-Marne, Fran
e.E-mail: {jourdain, lelievre}�
ermi
s.enp
.frWe analyze the properties of a sto
hasti
 di�erential equation (SDE) arising inthe modeling of polymeri
 �uids. More pre
isely, we fo
us on the so-
alled FENE(Finite Extensible Nonlinear Elasti
) model, for whi
h the drift term in the SDEis singular.1. Introdu
tionThe rheology of non-newtonian �uids is a very lively �eld of modern �uidme
hani
s. The 
hallenge is to �nd a good relation linking within the �uidthe stress tensor to the velo
ity �eld in order to reprodu
e the behavior ofthe �uid in some 
lassi
al situations (shear �ow, elongational �ow) and tosimulate it in some more 
omplex 
ases. This relation may be 
ompli
atedsin
e the stress generally depends on the whole history of the velo
ity �eld.Many approa
hes 
onsist in deriving this relation from the mi
ros
opi
stru
ture of the �uid. In some 
ases, it is possible to dire
tly atta
k thefull system 
oupling the evolution of these mi
ros
opi
 stru
tures to thema
ros
opi
 quantities (su
h as velo
ity or pressure) : this is the so-
alledmi
ro-ma
ro approa
h.We are here interested in the modeling of polymeri
 �uids. More pre-
isely, we 
onsider dilute solutions of polymers, so that the 
hains of poly-mers (the �mi
ros
opi
 stru
tures�) do not intera
t with ea
h other. Inorder to des
ribe the mi
ros
opi
 stru
ture of this �uid, one 
an model apolymer by a 
hain of beads and rods (this is the Kramers model) or moresimply by some beads linked by springs (see Figure 1). We 
onsider herethe simplest model 
onsisting in two beads linked by one spring : this isthe dumbbell model. In this model, the evolution of the end-to-end ve
tor(whi
h joins the two beads) is des
ribed by a SDE. We refer the interested1



2reader to Refs 10,1,2,6 for the general physi
al ba
kground of these mod-els. This SDE is a
tually 
oupled to the Navier-Stokes equation throughthe expression of the stress tensor as an expe
tation value built from theend-to-end ve
tor.

Figure 1.: A hierar
hy of models : from Kramers 
hain (top) to dumbbell(bottom).The spring for
e 
an be linear (Hookean dumbbell model) or explosive(Finite Extensible Nonlinear Elasti
 dumbbell model).In the following, we 
onsider the start-up of a Couette �ow of a poly-meri
 �uid (see Figure 2) : the �uid is initially at rest, and for t > 0, theupper plate moves with a 
onstant velo
ity. For a 
omplete analysis (ex-isten
e, uniqueness, 
onvergen
e of a �nite element method 
oupled witha Monte Carlo method) of this model in the Hookean dumbbell 
ase, werefer to Ref. 8. This referen
e also 
ontains a more detailed introdu
tion tothese types of models and the way to dis
retize the 
orresponding systemof 
oupled PDE-SDE.We here 
omplement the mathemati
al analysis of the FENE modelpresented in Ref. 3 by fo
using on the SDE modeling the evolution of the
onformation of the polymers in the FENE 
ase. It is proven in Ref. 3that a solution to the 
oupled mi
ro-ma
ro system uniquely exists undernatural assumptions. Our 
on
ern in the present paper is in parti
ularto investigate the role played by the �nite extensibility 
oe�
ient b (seeformulas (2) and (3) below) in the existen
e and uniqueness of solution ofthe SDE itself, the �uid velo
ity being 
onsidered known.
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Figure 2.: Velo
ity pro�le in a shear �ow of a dilute solution of polymers.Let us now introdu
e the equations we deal with. They read, in a non-dimensional form :
∂tu − ∂yyu = ∂yτ + fext, (1)
τ = IE

(

Xy
t Y y

t

1 − (Xy
t )2+(Y y

t )2

b

)

, (2)











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





dXy
t =

(

−1

2

Xy
t

1 − (Xy
t )2+(Y y

t )2

b

+ ∂yu Y y
t

)

dt + dVt,

dY y
t =

(

−1

2

Y y
t

1 − (Xy
t )2+(Y y

t )2

b

)

dt + dWt.

(3)where the parameter b > 0 measures the �nite extensibility of the poly-mer. The spa
e variable y varies in O = (0, 1) and t varies in thewhole of IR+. The random variables are de�ned on a �ltered proba-bility spa
e (Ω,F ,Ft, IP). The random pro
ess (Vt, Wt) is a (Ft)-two-dimensional Brownian motion. We take Diri
hlet boundary 
onditions onthe velo
ity. The initial velo
ity is u(t = 0, .) = u0, and (X0, Y0) is a F0-measurable random variable. We will suppose that (X0, Y0) is either su
hthat IP
(

X2
0 + Y 2

0 > b
)

= 0 (Se
tion 2) or su
h that IP
(

X2
0 + Y 2

0 ≥ b
)

= 0(Se
tions 3 and 4).We �x y in O, set g(t) = ∂yu(y, t) and suppose throughout this paperthat we have at least the following regularity on g :
g ∈ L1lo
 (IR+) (4)where IR+ = [0, +∞). We are then interested in solving for t ≥ 0 thefollowing SDE, whi
h is a rewriting of the SDE (3) of the initial 
oupled



4system :





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





dXg
t =

(

− 1
2

Xg
t

1− (X
g
t
)2+(Y

g
t

)2

b

+ g(t)Y g
t

)

dt + dVt,

dY g
t =

(

− 1
2

Y g
t

1− (X
g
t
)2+(Y

g
t

)2

b

)

dt + dWt,
(5)with initial 
ondition (X0, Y0).Let us begin by re
alling from Ref. 3 the pre
ise mathemati
al meaningwe give to (5).De�nition 1.1. Let X0 = (X0, Y0) and W t = (Vt, Wt). We shall say thata (Ft)-adapted pro
ess X

g
t = (Xg

t , Y g
t ) is a solution to (5) when : for IP-a.e.

ω, ∀t ≥ 0,

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
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





∫ t

0

∣

∣

∣

∣

∣

1

1 − |Xg
s |2
b

∣

∣

∣

∣

∣

ds < ∞,with the 
onvention , ∀x = (x, y) ∈ IR2, 1

1− |x|2

b

= +∞ if |x|2 = b,

X
g
t = X0 −

1

2

∫ t

0

Xg
s

1 − |Xg
s |2
b

ds +

∫ t

0

(g(s)Y g
s , 0) ds + W t

(6)Remark 1.1. Be
ause of the 
onvention 1

1− |x|2

b

= +∞ if |x|2 = b, wededu
e that a solution to (6) is su
h that the subset of IR+ {0 ≤ u <

∞, |Xg
u|2 = b} has IP-a.s. zero Lebesgue measure.The paper is organized as follows : in Se
tion 2, we prove the existen
eand uniqueness of the solution to (6) with values in B, where

B = B(0,
√

b) =
{

(x, y), x2 + y2 < b
}

.The existen
e of su
h a solution is derived from results 
on
erning mul-tivalued SDEs (see Refs 4,5). We then fo
us on the probability for thissolution to rea
h the boundary of B (see Se
tion 3). When b < 2 and
IP(|X0|2 < b) = 1, this probability is equal to one. This enables usto 
onstru
t (for g = 0) a solution to (6) that leaves a.s. B. Hen
e, if
b < 2, uniqueness of solutions does not hold for solutions to (6) withoutthe additional requirement to take values in B. When b ≥ 2 and again
IP(|X0|2 < b) = 1, the probability to rea
h the boundary is equal to zeroand traje
torial uniqueness holds. We exhibit the unique invariant proba-bility measure of the SDE (6) with g = 0 (see Se
tion 4). All these resultson the SDE have an impa
t on the analysis and the understanding of the
oupled SDE-PDE system (for whi
h we refer to Ref. 3). They show thatthe assumption b ≥ 2 adopted in Ref. 3 to prove existen
e and uniquenessof solution to the 
oupled system is in some sense �optimal�.



52. Existen
e and uniquenessIn this se
tion, we suppose that (X0, Y0) is su
h that IP
(

X2
0 + Y 2

0 > b
)

= 0.Our aim is to prove the following :Proposition 2.1. Under assumption (4), for any b > 0 and for any initial
ondition (X0, Y0) su
h that IP
(

X2
0 + Y 2

0 > b
)

= 0, there exists a uniquesolution to (6) with values in B.We �rst prove the uniqueness statement (Se
tion 2.1), then turn to theexisten
e �rst when g ∈ L∞
t (Se
tion 2.2) and �nally when g ∈ L1lo
 (Se
tion2.3). In the following, the point is to noti
e that the singular term in thedrift derives from a 
onvex potential Π : IR2 →] −∞, +∞] :

Π(x, y) =

{

− b
4 ln

(

1 − x2+y2

b

) if x2 + y2 < b,

+∞ otherwise. . (7)We have : ∀x ∈ B, ∇Π(x) = 1
2

x

1− |x|2

b

. Moreover, the fun
tion Π is a
ontinuous 
onvex fun
tion with domain B.2.1. Traje
torial uniqueness for solutions with values in BLet us begin with the uniqueness.Proposition 2.2. Let us suppose we have two solutions X
g
t and X̃

g

t to (6)and su
h that IP-a.s., X
g
0 = X̃

g

0. Then these two solutions are indistiguish-able until one of the pro
esses leaves B. In addition, if IP(∃t ≥ 0|Xg
t |2 =

b) = 0, then X
g
t and X̃

g

t are indistiguishable.Proof : Let us 
onsider τ = inf{t ≥ 0, (|X̃g

t |2 ∨ |Xg
t |2) > b} and

Zt =
(

X
g
t − X̃

g

t

). By It�'s formula, we have :
d|Z|2t = 2Zt.dZt,

= −2(∇Π(Xg
t ) −∇Π(X̃

g

t )).Zt dt + 2g(t)(Xg
t − X̃g

t )(Y g
t − Ỹ g

t )dt,where x.y denotes the s
alar produ
t of x and y ∈ IR2.Using the fa
t that, sin
e Π is 
onvex, for any x and x̃ ∈ B, (∇Π(x)−
∇Π(x̃)).(x − x̃) ≥ 0, we obtain, for any t ≥ 0 :

|Zt∧τ |2 ≤ 2

∫ t∧τ

0

|g(s)|
∣

∣

∣
Xg

s − X̃g
s

∣

∣

∣

∣

∣

∣
Y g

s − Ỹ g
s

∣

∣

∣
ds,

≤
∫ t

0

|g(s)||Zs∧τ |2 ds.



6Using Gronwall Lemma and the fa
t that g ∈ L1lo
(IR+), we have thus shownthat IP-a.s, ∀t ≥ 0, X
g
t∧τ = X̃

g

t∧τ . Therefore, on {τ < ∞}, |Xg
τ |2 = b. Wededu
e that in 
ase IP(∃t ≥ 0, |Xg

t |2 = b) = 0, τ = ∞ IP-a.s. . ♦2.2. Existen
e in the 
ase g ∈ L∞

tIn this se
tion, we suppose :
g ∈ L∞ (IR+) . (8)In order to prove an existen
e result, we will use a multivalued sto
hasti
di�erential equation. In this se
tion, we use the results of E. Cépa4 andE. Cépa and D. Lépingle5.Sin
e the fun
tion Π is 
onvex on the open set B, its subdi�erential ∂Π isa simple-valued maximal monotone operator on IR2 with domain B :

∂Π(x) =

{ {∇Π(x)} if x ∈ B,

∅ if x /∈ B.Let us now 
onsider the two-dimensional pro
ess Xt solution of the follow-ing multivalued SDE :
{

dX
g
t + ∂Π(Xg

t ) dt ∋ (g(t)Y g
t , 0) dt + dW t,

X
g
0 = X0 = (X0, Y0),

(9)We �rst re
all the pre
ise meaning of a solution to (9).De�nition 2.1. We shall say that a 
ontinuous (Ft)-adapted pro
essX
g
t =

(Xg
t , Y g

t ) with values in B is a solution to (9) if and only if X
g
0 = X0 andthe pro
ess K

g
t = W t +

∫ t

0
(g(s)Y g

s , 0) ds − (Xg
t − X

g
0) is a 
ontinuouspro
ess with �nite variation su
h that : for any 
ontinuous (Ft)-adaptedpro
ess αt with values in IR2, for IP-a.e. ω, ∀ 0 ≤ s ≤ t < ∞,

∫ t

s

Π(Xg
u) du ≤

∫ t

s

Π(αu) du +

∫ t

s

(Xg
u − αu).dKg

u. (10)Remark 2.1. A 
ondition equivalent to (10) is the following : for any
ontinuous (Ft)-adapted pro
ess αt with values in B, the measure on IR+ :
(Xg

u − αu) . (dKg
u −∇Π(αu) du)is IP-a.s. nonnegative.Sin
e (8) ensures that x = (x, y) 7→ (g(t)y, 0) is (uniformly in time)Lips
hitz and with linear growth, a

ording to E. Cépa4, we have :Proposition 2.3. Under the assumption (8), for any b > 0, the multival-ued SDE (9) has a unique strong solution.



7We are now going to re
over a solution to (6) from the solution of (9).More pre
isely, we follow the method of E. Cépa and D. Lépingle5 (seeLemmas 3.3, 3.4 and 3.6) in order to identify the pro
ess K
g
t .We 
an thus show that for all 0 < t < ∞, we have :

IE

(
∫ t

0

|∂Π(Xg
u)| du

)

< ∞, with 
onvention |∂Π(x)| = +∞ if x /∈ B.As a 
onsequen
e, for any 0 < t < ∞, IP-a.s.,
∫ t

0

1

1 − |Xg
u|2
b

du < ∞ with 
onvention 1
1− b

b

= +∞. (11)Moreover, the pro
ess K
g
t is IP-a.s. absolutely 
ontinuous on {0 ≤ u <

∞, Xg
u ∈ B}, with density ∇Π(Xg

u) so that dKg
u has the following form :

dKg
u = ∇Π(Xg

u) du + dGg
u, (12)where Gg is a 
ontinuous boundary pro
ess with �nite variation |Gg| :

G
g
t =

∫ t

0

1{X
g
u∈∂B}dKg

u =

∫ t

0

1{X
g
u∈∂B}dGg

u. (13)Finally, one 
an identify this pro
ess G
g
t : for all t ≥ 0,

G
g
t =

∫ t

0

1{X
g
u∈∂B}n(Xg

u)d|Gg|u =

∫ t

0

Xg
u√
b

d|Gg|u,where, for any x ∈ ∂B, n(x) = x√
b
is the unitary outward normal to B atthe point x.Hen
e the pro
ess X

g
t is solution of the following SDE with normalre�exion at the boundary of B :

dX
g
t = −∇Π(Xg

t ) dt + (g(t)Y g
t , 0) dt + dW t − 1{X

g
t ∈∂B}n(Xg

t )d|Gg|t.It just remains to show that |Gg|u = 0, for u ≥ 0, in order to re
over (6).Noti
e in parti
ular that by (11), the property of integrability of the driftterm in (6) holds for the solution X
g
t of the multivalued SDE (9).Lemma 2.1. |Gg| = 0.Proof : We follow here again the ideas of E. Cépa and D. Lépingle5 (seeLemma 3.8 p. 438) to prove that |Gg| = 0. Let us 
onsider Rg

t = b−|Xg
t |2.By It�'s formula,

dRg
t = −2X

g
t .dX

g
t − 2 dt,

= −2∇Π(Xg
t ).X

g
t dt − 2g(t)Xg

t Y g
t dt − 2 dt − 2X

g
t .dW t + 2

|Xg
t |2√
b

d|Gg|t,

=
b2

Rg
t

dt − 2g(t)Xg
t Y g

t dt − (2 + b) dt − 2X
g
t .dW t + 2

√
b d|Gg|t, (14)



8the last equality using the fa
t that d|Gg|t = 1{X
g
t ∈∂B}d|Gg|t.We know that Rg

t is a 
ontinuous semimartingale with values in [0, b]. Wewant to prove that dRg
t = 1Rg

t >0dRg
t . Using Tanaka's formula (see11 p. 213),

Rg
t = (Rg

t )+ = (Rg
0)

+ +

∫ t

0

1Rg
s>0 dRg

s +
1

2
L0

t , (15)where, for any a ∈ [0, b], La
t denotes the lo
al time in a of Rg. Using nowthe o

upation times formula (see Ref. 11 p. 215), we know (using (11))that, for any �xed t > 0 :

∫ b

0

1

a
La

t da =

∫ t

0

1

Rg
s

d < Rg >s ≤ 4

∫ t

0

1

1 − |Xg
s |2
b

ds < ∞.Sin
e a 7→ La
t is a.s. 
adlag (see11 p. 216), we dedu
e that for any t > 0,

IP-a.s., L0
t = 0. Using this in (15), we obtain

dRg
t = 1Rg

t >0 dRg
t .Using this equality in (14), we have : ∀t ≥ 0,

∫ t

0

1Rg
s=0d|Gg|s =

1

2
√

b

∫ t

0

1Rg
s=0

(

− b2

Rg
s

ds + 2g(s)Xg
s Y g

s ds + (2 + b) ds + 2Xg
s .dW s

)

.Sin
e, a

ording to (11), IP-a.s., {0 ≤ t < ∞, Rg
t = 0} has zero Lebesguemeasure, the right hand side is nul. We 
on
lude by using d|Gg|t =

1Rg
t =0d|Gg|t. ♦We have thus shown the following properties on the pro
ess X

g
t :

• for any 0 < t < ∞, IP-a.s., ∫ t

0

1

1 − |Xg
u|2
b

du < ∞,
• dX

g
t = −∇Π(Xg

t ) dt + (g(t)Y g
t , 0) dt + dW t.We have thus built a solution X

g
t = (Xg

t , Y g
t ) to our initial problem (6)in 
ase g ∈ L∞(IR+). This result is not su�
ient in our 
ontext sin
e theenergy estimates on the 
oupled system (1-3) yields less regularity on g (seeRef. 8).2.3. Existen
e in the 
ase g ∈ L1lo
(IR+)We now want to build a solution to (6) using the multivalued SDE (9), butwith a weaker assumption on g, namely (4). In this 
ase, the general resultsof existen
e on multivalued SDE do not apply immediatly.



9Therefore, we 
onsider the following sequen
e of approximations of thisproblem :
{

dX
gn

t + ∂Π(Xgn

t ) dt ∋ (gn(t)Y gn

t , 0) dt + dW t,

X
gn

0 = X0,
(16)where n ∈ IN∗ and gn(t) = −n∨ (n∧g(t)). Sin
e gn is bounded, the resultsof the previous se
tion apply and we obtain a unique solution X

gn

t of themultivalued SDE (16). Moreover, these pro
esses X
gn

t are su
h that :
• for any 0 < t < ∞, IP-a.s., ∫ t

0

1

1 − |Xgn

u |2
b

du < ∞,
• X

gn

t = X0 −
∫ t

0

∇Π(Xgn

s ) ds +

∫ t

0

(gn(s)Y gn

s , 0) ds + W t. (17)We now want to let n go to ∞ in De�nition 2.1 (noti
e that by (17),
dK

gn

t = ∇Π(Xgn

t ) dt). In the following, we 
hoose T > 0 and we work onthe time interval [0, T ]. We know that for all n, supt≥0

∣

∣

∣
X

gn

t

∣

∣

∣

2

≤ b. Forany n ≥ m, we have, by It�'s formula,
d
∣

∣

∣
X

gn

t − X
gm

t

∣

∣

∣

2

= −
(

∇Π(Xgn

t ) −∇Π(Xgm

t )
)

.
(

X
gn

t − X
gm

t

)

dt

+
(

gn(t)Y gn

t − gm(t)Y gm

(t)
)(

Xgn

t − Xgm

t

)

dt.Using the fa
t that, sin
e Π is 
onvex, for any x and y ∈ B, (∇Π(x) −
∇Π(y)).(x − y) ≥ 0, we obtain : ∀t ∈ [0, T ],
∣

∣

∣
X

gn

t − X
gm

t

∣

∣

∣

2

≤
∫ t

0

(

gn(s)Y gn

(s) − gm(s)Y gm

(s)
)(

Xgn

s − Xgm

s

)

dsso that : ∀t ∈ [0, T ],
∣

∣

∣
X

gn

t − X
gm

t

∣

∣

∣

2

≤
∫ t

0

∣

∣

∣
gn(s)Y gn

s − gm(s)Y gm

s

∣

∣

∣

∣

∣

∣
Xgn

s − Xgm

s

∣

∣

∣
ds

≤
∫ t

0

(

|gn(s)|
∣

∣

∣
Y gn

s − Y gm

s

∣

∣

∣
+
∣

∣

∣
Y gm

s

∣

∣

∣
|gn(s) − gm(s)|

) ∣

∣

∣
Xgn

s − Xgm

s

∣

∣

∣
ds

≤ 1

2

∫ t

0

|g|(s)
∣

∣

∣
Xgn

s − Xgm

s

∣

∣

∣

2

ds + 2b

∫ t

0

|gn(s) − gm(s)| ds.Using Gronwall Lemma, we then obtain :
sup

t∈[0,T ]

∣

∣

∣
X

gn

t − X
gm

t

∣

∣

∣

2

≤ 2b

∫ T

0

exp

(

1

2

∫ T

s

|g(u)| du

)

|gn(s) − gm(s)| ds

≤ 2b exp

(

1

2
||g||L1

t ([0,T ])

)
∫ T

0

|gn(s) − gm(s)| ds.



10From this inequality and the fa
t that g ∈ L1
t ([0, T ]), we dedu
e that thereexists a 
ontinuous adapted pro
ess X

g
t with values in B su
h that X

gn

t →
X

g
t in L∞

ω (L∞
t ([0, T ])).One has the following estimate on the total variation of ∇Π(Xgn

u ) duon [0, T ] :
∫ T

0

∣

∣

∣
∇Π(Xgn

t )
∣

∣

∣
dt ≤

√
b

2

∫ T

0

1

1 − |Xgn

s |2
b

ds. (18)By It�'s formula, we know that : ∀t ∈ [0, T ],
|Xgn

t |2 = |X0|2−
∫ t

0

|Xgn

s |2

1 − |Xgn

s |2
b

ds+2

∫ t

0

gn(s)Xgn

s Y gn

s ds+2t+2

∫ t

0

Xgn

s .dW s,whi
h yields : ∀t ∈ [0, T ],
∫ t

0

1

1 − |Xgn

s |2
b

ds =
1

b

(

−|Xgn

t |2 + |X0|2 + (2 + b)t + 2

∫ t

0

gn(s)Xgn

s Y gn

s ds

+2

∫ t

0

Xgn

s .dW s

)

. (19)It is obvious that ∫ t

0
Xgn

s .dW s →
∫ t

0
Xs.dW s in L2

ω(L∞
t ([0, T ]))-norm. Upto the extra
tion of a subsequen
e, we 
an suppose that this 
onvergen
eholds for almost every ω. Using this property together with (18) and (19),we dedu
e that for a.e. ω, the measure ∇Π(Xgn

t ) dt on [0, T ] is su
h that
∫ T

0

∣

∣

∣
∇Π(Xgn

t )
∣

∣

∣
dt < C(T, ω) where C(T, ω) is a 
onstant only dependingon T and ω. One 
an thus extra
t a weakly 
onverging subsequen
e of

(

∇Π(Xgn

t ) dt
)

n≥1
. On the other hand, taking the limit n → ∞ in (17),we see that ∫ t

0
∇Π(Xgn

u ) du uniformly 
onverges on [0, T ] to K
g
t satisfying :

∀t ∈ [0, T ],
K

g
t =

∫ t

0

(g(u)Y g
u , 0) du + W t − (Xg

t − X0).By identi�
ation of the limit, we have ∇Π(Xgn

t ) dt ⇀ dK
g
t weakly.By De�nition 2.1, the pro
esses X

gn

t are su
h that for any 
ontinuous
(Ft)-adapted pro
ess αt with values in IR2, for IP-a.e. ω, ∀ 0 ≤ s ≤ t < ∞,

∫ t

s

Π(Xgn

u ) du ≤
∫ t

s

Π(αu) du +

∫ t

s

(Xgn

u − αu).∇Π(Xgn

u ) du. (20)One 
an pass to the limit n → ∞ in (20), using the fa
t that Π(Xgn

u ) →
Π(Xg

u) pointwise in u and that Π(Xgn

u ) is uniformly integrable. Indeed,



11for any A ≥ b
4 , if we set Mu =

(

1 − |Xgn

u |2
b

)−1, we have (sin
e x 7→ ln(x)
xis de
reasing on [e, +∞)) :

∫ T

0

1|Π(Xgn

u )|≥A
Π(Xgn

u ) du =
b

4

∫ T

0

1Mu≥exp(4A/b)
ln (Mu)

Mu
Mu du

≤ A

exp(4A/b)
C(T, ω),so that ∫ T

0

1|Π(Xgn

u )|≥AΠ(Xgn

u ) du → 0 uniformly in n when A → ∞. Wehave thus obtained a 
ontinuous pro
ess X
g
t on [0, T ] and a 
ontinuouspro
ess with �nite variation K

g
t =

∫ t

0 (g(u)Y g
u , 0) du + W t − (Xg

t −X0) on
[0, T ] su
h that for any 
ontinuous (Ft)-adapted pro
ess αt with values in
IR2, for IP-a.e. ω, ∀ 0 ≤ s ≤ t < T ,

∫ t

s

Π(Xg
u) du ≤

∫ t

s

Π(αu) du +

∫ t

s

(Xg
u − αu).dKg

u.This shows that we have built a solution to the multivalued SDE (9) onthe time interval [0, T ]. Sin
e T is arbitrary, using Proposition 2.2, we havebuilt a solution on IR+. Following again the arguments of the last se
tionit is easy to show that :
• for any 0 < t < ∞, IP-a.s., ∫ t

0

1

1 − |Xg
u|2
b

du < ∞,
• dX

g
t = −∇Π(Xg

t ) dt + (g(t)Y g
t , 0) dt + dW t.This shows that X

g
t is a solution to (6) and 
ompletes the proof of Propo-sition 2.1.3. Does the solution rea
h the boundary ?In this se
tion, we want to determine whether or not the pro
ess X

g
t wehave built in the previous se
tion rea
hes the boundary of B. Should theo

asion arise, we dedu
e that uniqueness does not hold for (6), at leastin the 
ase g = 0. Throughout this se
tion, we suppose that the initial
ondition is su
h that IP(|X0|2 < b) = 1.3.1. Ne
essary and su�
ient 
onditionsIn this se
tion, we want to analyze the event {∃t > 0, |Xg

t |2 = b}. We aregoing to prove :



12Proposition 3.1. Assume
g ∈ L2(IR+), (21)and that IP(|X0|2 < b) = 1. Let us 
onsider the pro
ess X

g
t solution to (6)built above. We have :

• if b ≥ 2, then IP
(

∃t > 0, |Xg
t |2 = b

)

= 0,

• if b < 2, then IP
(

∃t > 0, |Xg
t |2 = b

)

= 1.In view of Proposition 2.2, we dedu
e immediatly :Corollary 3.1. If b ≥ 2 and IP(|X0|2 < b) = 1, then traje
torial unique-ness holds for (6).Proof. First, by Girsanov Lemma, one 
an suppose g = 0. Indeed, let us
onsider the pro
ess X
g
t we have built in last se
tion. Under the probability

IPg de�ned by
dIPg

dIP
= exp

(

−
∫ ∞

0

g(s)Y g
s dVs −

1

2

∫ ∞

0

(g(s)Y g
s )2 ds

)

,the pro
ess (V g
t , W g

t ) = (Vt +
∫ t

0 g(s)Y g
s ds, Wt) is a Brownian motion andtherefore (Xg

t , Y g
t , V g

t , W g
t , IPg)t∈IR+ is a weak solution of the SDE (5) with

g = 0. Sin
e this solution is with values in B, it is also a weak solution ofthe multivalued SDE (9), with g = 0, for whi
h uniqueness in law holds.Sin
e IPg and IP are equivalent on F , we 
an then dedu
e the properties ofProposition 3.1 in 
ase g ∈ L2(IR+) from the properties of Proposition 3.1in 
ase g = 0.In the following, we fo
us on the solution to (9) with g = 0, whi
h wedenote by Xt = (Xt, Yt). We �x x ∈ B and the supers
ript x means thatwe 
onsider the solution to (9) with g = 0 su
h that X0 = x.Let us �rst suppose that |x| > 0. Let us 
onsider the pro
ess Rx
t =

b − |Xx
t |2. We know that :

dRx
t =

b2

Rx
t

dt − (2 + b) dt − 2Xx
t .dW t. (22)Let us introdu
e the stopping time

τx
n = inf

{

t ≥ 0, |Xx
t |2 ≥ b

(

1 − 1

n

)}

.Let �x t > 0. By Girsanov Lemma, one shows that IP-a.s., ∣∣
∣
Xx

t∧τx

n

∣

∣

∣
6= 0.Indeed, by de�nition of τx

n ,
IP(|Xx

t∧τx

n
| = 0) = IP(|Xx

t | = 0 and t < τx
n ).



13Let IPx
n be de�ned by :
dIPx

n

dIP
= exp

(
∫ t

0

∇Π(Xx
s∧τx

n
) .dW s −

1

2

∫ t

0

∣

∣

∣
∇Π(Xx

s∧τx

n
)
∣

∣

∣

2

ds

)and IEx
n denote the 
orresponding expe
tation. By Girsanov Theorem,

(

Bx
s = x + W s −

∫ s

0 ∇Π(Xx
u∧τx

n
) du

)

s≤t
is a IPx

n-Brownian motion start-ing from x. Sin
e on t ≤ τx
n , Xx

t = Bx
t ,

IP(|Xx
t | = 0 and t < τx

n ) ≤ IP(|Bx
t | = 0)

= IEx
n

(

1|Bx

t |=0
dIP

dIPx
n

)

= 0. (23)One 
an therefore show that |Xx
t | > 0 on [0, T x), where

T x = lim
n→∞

τx
n = inf

{

t ≥ 0, |Xx
t |2 = b

}

= inf {t ≥ 0, Rx
t = 0} .Thus, one 
an write, for t ∈ [0, T x) :

dRx
t =

b2

Rx
t

dt − (2 + b) dt + 2
√

b − Rx
t dβt, (24)where βt is a Ft-adapted 1-dimensional Brownian motion.Let us now introdu
e the stopping time

Sx = inf {t ≥ 0, Rx
t /∈ (0, b)} .We have, IP-a.s., Sx ≤ T x. We refer here to I. Karatzas and S.E. Shreve9(see Se
tion 5.5 p. 342-351).We introdu
e a s
ale fun
tion p su
h that :

(

b2

r
− (2 + b)

)

p′(r) + 2(b − r)p′′(r) = 0,whi
h leads to :
p′(r) = C(b − r)−1r−b/2,where C > 0. We have therefore p(b−) = +∞ and (b < 2 ⇐⇒ p(0+) >

−∞). Using this property of the s
ale fun
tion and the results of I. Karatzasand S.E. Shreve, one 
an 
on
lude that :
• if b ≥ 2, then IP (Sx = +∞) = IP (T x = +∞) = 1, (25)
• if b < 2, then IP

(

lim
t→Sx

|Xx
t |2 = b

)

= 1.



14In 
ase b < 2, we 
an dedu
e from the se
ond item that Sx = T x. We nowwant to know whether Sx = +∞ or not in this 
ase. Let us introdu
e thespeed measure m on (0, b) de�ned by
m(dr) =

2 dr

4(b − r)p′(r)
=

rb/2dr

2C
,and the fun
tion v su
h that, for any r ∈ (0, b),

v(r) =

∫ r

a

(p(r) − p(s))m(ds) =

∫ r

a

(p(r) − p(s))
sb/2

2C
ds.We have p(b−) = +∞ and therefore v(b−) = +∞. In 
ase b < 2, it iseasy to 
he
k that v(0+) < ∞. Using again the results of I. Karatzas andS.E. Shreve, we 
an dedu
e from this that in 
ase b < 2, we have

IP(Sx < ∞) = IP(T x < ∞) = 1. (26)In 
ase |x| = 0, the former results (25) and (26) still hold. Indeed,let us suppose that x = 0 and let us introdu
e the stopping time τ =

inf
{

t ≥ 0, |X0
t |2 ≥ b

2

}. Obvisouly, one has :
IP
(

∃t > 0, |X0
t |2 = b

)

= IP
(

∃t > 0, |X0
t |2 = b and τ < ∞

)

.In 
ase b ≥ 2, using the strong Markov property of X0
t (see E. Cépa4p. 86), one has :

IP
(

∃t > 0, |X0
t |2 = b

)

= IP
(

∃t > 0, |X0
t |2 = b and τ < ∞

)

,

= IE
(

1τ<∞IP
(

∃t > 0, |Xx
t |2 = b

)

|x=Xτ

)

,

= 0.In 
ase b < 2, we use the fa
t that, due to the proof of (23),
IP(|X0

1∧τ | = 0) = 0. By the strong Markov property andsin
e IP-a.s., supt∈[0,1∧τ ] |X0
t |2 < b, we have IP

(

∃t > 0, |X0
t |2 = b

)

=

IE
(

IP
(

∃t > 0, |Xx
t |2 = b

)

|x=X1∧τ

)

= 1.In 
ase of a non-deterministi
 initial 
ondition X0 with law µ0, we 
andedu
e the properties of Proposition 3.1 from the fa
t that (by uniquenessof the solution) :
IP
(

∃t > 0, |Xt|2 = b
)

=

∫

IP
(

∃t > 0, |Xx
t |2 = b

)

dµ0(x).Remark 3.1. In 
ase g ∈ L2lo
(IR+), what we 
an 
on
lude is the following :
• if b ≥ 2, then IP

(

∃t > 0, |Xg
t |2 = b

)

= 0,

• if b < 2, then IP
(

∃t > 0, |Xg
t |2 = b

)

> 0.



153.2. Non-uniqueness in 
ase b < 2In this se
tion, we suppose b < 2 and IP(|X0|2 < b) = 1. We restri
t ourattention to the 
ase g = 0. We are going to 
onstru
t another pro
ess X̃tweak solution to (6) and su
h that IP(∃t > 0, X̃t /∈ B) = 1. In other words,we will build a solution to (6) whi
h, unlike Xt, goes out of the ball B.This will show that (6) admits at least two di�erent solutions.Let us 
onsider the solution Xt to (6) we have built in Se
tion 2. Weknow that IP-a.s., the pro
ess Xt rea
hes the boundary of B in �nite time(see Proposition 3.1). Let us introdu
e the stopping time T = inf{t ≥
0, |Xt|2 ≥ b}. In polar 
oordinate, we write XT = (

√
b, θ0) : (XT , YT ) =

(
√

b cos(θ0),
√

b sin(θ0)), where θ0 ∈ [0, 2π) denotes the polar angle. Wenow want to 
onstru
t a solution to (6), whi
h takes (XT , YT ) as initialvalue, and lives outside of the ball B. Let us introdu
e a two-dimensionalstandard Brownian motion (βt, γt) independent of W t. We use a polarrepresentation (
√

rt, θt) of the pro
ess we want to build. We 
onsider thesolution rt to the following multivalued SDE :
{

drt + ∂f(rt) dt ∋ (2 + b) dt + 2
√

rtdβt,

r0 = b,
(27)where f : IR →] −∞, +∞] is the 
onvex fun
tion de�ned by :

f(r) =

{−b2 ln(r − b) if r > b,

+∞ otherwise. (28)so that ∂f is a simple-valued maximal monotone operator with domain
I = (b,∞) (for all r > b, ∂f(r) = {∇f(r)} = { b2

b−r}). By E. Cépa4, thereexists a unique pro
ess rt solution to (27). Following exa
tly the argumentsof Lemma 2.1, one 
an show that this pro
ess rt is su
h that :
• for any 0 < t < ∞, IP-a.s., ∫ t

0

∣

∣

∣

∣

1

ru − b

∣

∣

∣

∣

du < ∞, with 
onvention
1

b−b = +∞,
• drt = − b2

b−rt
dt + (2 + b) dt + 2

√
rtdβt.Let us now 
onsider the pro
ess θt de�ned by :

θt = θ0 +

∫ t

0

1√
rs

dγs, (29)and the random pro
ess X̄t in IR2 de�ned by :
X̄t = (

√
rt cos(θt),

√
rt sin(θt)) .



16By It�'s formula, we have :
dX̄t = −1

2

X̄t

1 − |X̄t|2
b

dt + (− sin(θt), cos(θt))dγt + (cos(θt), sin(θt))dβt.Using Paul Lévy 
hara
terisation, one
an show that (− sin(θt), cos(θt))dγt + (cos(θt), sin(θt))dβt = dBt where
Bt is a two-dimensional Brownian motion, independent of W t.Let us now 
onsider X̃t de�ned by X̃t = 10≤t≤T Xt + 1t>T X̄t−T andthe pro
ess W̃ t de�ned by W̃ t = W t∧T + 1t>T Bt−T . It is obvious (forexample by Paul Lévy 
hara
terisation) that W̃ t is a Brownian motion.In addition, the pro
ess X̃t is a solution to (6) with g = 0, su
h that
IP(∃t > 0, X̃t /∈ B) = 1. This shows that the problem (6) with g = 0 doesnot admit a unique solution.Remark 3.2. In 
ase g ∈ L∞lo
(IR+), using the solution (rt, θt) of the mul-tivalued SDE : (r0, θ0) = (b, θ0) and
d(rt, θt) + ∂h(rt, θt) dt ∋

(

(2 + b) + rt sin(θt)g(t),− sin2(θt)g(t)
)

dt + (2
√

rt,
1√
rt

)d(βt, γt),where h : IR2 →]−∞, +∞] is the 
onvex fun
tion de�ned by h(r, θ) = f(r)(see formula (28)), one 
an by the same arguments prove that there isnon-uniqueness in law for the solutions to (6).We have summarized in Table 1 some of the results we have obtainedin the last two se
tions.
b < 2. b ≥ 2.

IP(|X0|2 = b) = 0. Existen
e.
IP
(

∃t ≥ 0, |Xt|2 = b
)

= 1.Non-uniqueness. Existen
e.
IP
(

∃t ≥ 0, |Xt|2 = b
)

= 0.Uniqueness.
IP(|X0|2 = b) > 0. Existen
e.Non-uniqueness. Existen
e.Non-uniquenessTable 1.: Properties of solutions to (6) when g = 0. We suppose

IP(|X0|2 ≤ b) = 1. In any 
ase, uniqueness holds for solutions with valuesin B a

ording to Proposition 2.2. The terminology uniqueness and nonuniqueness relates to a solution that is not enfor
ed to take values in B.



174. Invariant probability measure in 
ase g = 0 and b ≥ 2In this se
tion we are interested in invariant probability measures for theSDE (6) with g = 0 in 
ase b ≥ 2.The motivation for this study is twofold. First, sin
e we 
onsider a�uid whi
h is initially at rest, it is natural from a physi
al point of view to
hoose an invariant probability for the SDE (6) with g = 0 as law for X0.Se
ond, in the analysis of the 
oupled system (1-3), we are interested in theregularity of the stress τ(t, y) = IE

(

Xy
t Y y

t

1− (X
y
t

)2+(Y
y
t

)2

b

) whi
h, by Girsanov,
an also be written in the following form :
IE

((

XtYt

1 − X2
t +Y 2

t

b

)

exp

(
∫ t

0

∂yu(s, y)Ys dVs −
1

2

∫ t

0

(∂yu(s, y)Ys)
2 ds

)

)

,where Xt = (Xt, Yt) denotes (as in last se
tion) the solution with valuesin B to (6) with g = 0 (see Ref. 3). This expression of the stress yields thefollowing estimate (using Hölder inequality) : for almost all y and t,
|τ(y, t)| ≤ IE

((

XtYt

1 − X2
t +Y 2

t

b

)p)1/p

exp

(

q − 1

2
b

∫ t

0

(∂yu(s, y))2 ds

)

,where p = q
q−1 .It is thus important to estimate the quantities IE

((

XtYt

1−X2
t
+Y 2

t
b

)p),whi
h is simple if we identify and start under an invariant probability mea-sure (see formula (31)).The density p0 de�ned by :
p0(x) =

exp(−2Π(x))
∫

exp(−2Π(x)) dx
=

b + 2

2πb

(

1 − |x|2
b

)b/2

1|x|2<b (30)obviously solves div x

(

−(∇xΠ)p0 + 1
2 (∇xp0)

)

= 0 and is therefore a natu-ral 
andidate to be invariant. This is indeed the 
ase as shown by :Proposition 4.1. For b ≥ 2, p0(x) dx is the unique invariant probabilitymeasure on B for the SDE (6) with g = 0.This proposition is a 
onsequen
e of the following lemma :Lemma 4.1. Let b ≥ 2. For any x ∈ B, t > 0, the solution Xx
t of theSDE (6) with g = 0 and X0 = x has a density p(t, x, y) with respe
t to theLebesgue measure on B. In addition, ∀t ≥ 0,(i) dx dy-a.e., exp(−2Π(x))p(t, x, y) = exp(−2Π(y))p(t, y, x),



18(ii) ∀x ∈ B, dy-a.e., p(t, x, y) > 0.Indeed, by (i), one easily 
he
ks that p0(x) dx is invariant. By (ii), anyinvariant probability measure is equivalent to the Lebesgue measure on Bwhi
h implies uniqueness (see Proposition 6.1.9 p. 188 of M. Du�o 7).With Proposition 4.1, it is then straightforward to prove that, if X0 hasthe density p0(x), then we have :
IE

((

XtYt

1 − X2
t +Y 2

t

b

)p)

< ∞ ⇐⇒ b > 2(p − 1). (31)Let us now prove Lemma 4.1.Proof. In order to prove (i), we regularize the potential Π so that theresults of L.C.G. Rogers 12 (see p. 161) apply. Let Πn be de�ned by :
Πn(x) = πn(|x|2), (32)

πn(r) =







− b

4
ln
(

1 − r

b

) if r ≤ b
(

1 − 1
n

)

,
√

r + b
4 ln(n) if r ≥ b ,

(33)and πn is in
reasing and C2(IR+, IR+), so that ∇Πn is bounded with 
on-tinuous derivatives of �rst order. Let t > 0 and x ∈ IR2. A

ording toL.C.G. Rogers, the solution Xn,x of the SDE :
X

n,x
t = x −

∫ t

0

∇Πn(Xn,x
s ) ds + W t, (34)has a density pn(t, x, y) with respe
t to the Lebesgue measure on IR2 whi
hsatis�es dx dy-a.e., exp(−2Πn(x))pn(t, x, y) = exp(−2Πn(y))pn(t, y, x).For x ∈ B, let τx

n = inf
{

t ≥ 0, |Xx
t |2 ≥ b

(

1 − 1
n

)}. Sin
e
IP (Xn,x

t 6= Xx
t ) ≤ IP(τx

n < t), a

ording to Proposition 3.1,
lim

n→∞
IP (Xn,x

t 6= Xx
t ) = 0. (35)We dedu
e that for a �xed x ∈ B, pn(t, x, y) 
onverges in L1

y(IR2) to
p(t, x, y), whi
h is the density of Xx

t .As the non-negative potential Πn 
onverges pointwise to Π in B, wededu
e that exp(−2Πn(x))pn(t, x, y) 
onverges to exp(−2Π(x))p(t, x, y)in L1
x,y(B × B) and 
on
lude that (i) holds.We are now going to 
he
k (ii) for a �xed x ∈ B and t > 0. Let A bea Borel subset of B su
h that ∫ 1A dx > 0. We 
hoose n ∈ IN∗ su
h that
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|x|2 < b

(

1 − 1
n

) and ∫ 1An
dx > 0 where An = A∩B

(

0,
√

b
(

1 − 1
n

)

). ByGirsanov Theorem, under IPx
n de�ned by :

dIPx
n

dIP
= exp

(
∫ t

0

∇Π(Xx
s∧τx

n
) .dW s −

1

2

∫ t

0

∣

∣

∣
∇Π(Xx

s∧τx

n
)
∣

∣

∣

2

ds

)

,where τx
n is as above, (Xx

s∧τx

n
)s≤t is a Brownian motion startingfrom x and stopped at the boundary of B

(

0,
√

b
(

1 − 1
n

)

) so that
IPx

n

(

Xx
t∧τx

n
∈ An

)

> 0. Therefore, IP (Xx
t ∈ A) ≥ IP

(

Xx
t∧τx

n
∈ An

)

=

IEx
n

(

1An

(

Xx
t∧τx

n

)

dIP
dIPx

n

)

> 0, whi
h 
on
ludes the proof.A
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