
MATHEMATICAL ANALYSIS OF A STOCHASTICDIFFERENTIAL EQUATION ARISING IN THEMICRO-MACRO MODELLING OF POLYMERIC FLUIDS.BENJAMIN JOURDAIN, TONY LELIÈVRECERMICS, Eole Nationale des Ponts et Chaussées,6 & 8 Av. Blaise Pasal, 77455 Champs-sur-Marne, Frane.E-mail: {jourdain, lelievre}�ermis.enp.frWe analyze the properties of a stohasti di�erential equation (SDE) arising inthe modeling of polymeri �uids. More preisely, we fous on the so-alled FENE(Finite Extensible Nonlinear Elasti) model, for whih the drift term in the SDEis singular.1. IntrodutionThe rheology of non-newtonian �uids is a very lively �eld of modern �uidmehanis. The hallenge is to �nd a good relation linking within the �uidthe stress tensor to the veloity �eld in order to reprodue the behavior ofthe �uid in some lassial situations (shear �ow, elongational �ow) and tosimulate it in some more omplex ases. This relation may be ompliatedsine the stress generally depends on the whole history of the veloity �eld.Many approahes onsist in deriving this relation from the mirosopistruture of the �uid. In some ases, it is possible to diretly attak thefull system oupling the evolution of these mirosopi strutures to themarosopi quantities (suh as veloity or pressure) : this is the so-alledmiro-maro approah.We are here interested in the modeling of polymeri �uids. More pre-isely, we onsider dilute solutions of polymers, so that the hains of poly-mers (the �mirosopi strutures�) do not interat with eah other. Inorder to desribe the mirosopi struture of this �uid, one an model apolymer by a hain of beads and rods (this is the Kramers model) or moresimply by some beads linked by springs (see Figure 1). We onsider herethe simplest model onsisting in two beads linked by one spring : this isthe dumbbell model. In this model, the evolution of the end-to-end vetor(whih joins the two beads) is desribed by a SDE. We refer the interested1



2reader to Refs 10,1,2,6 for the general physial bakground of these mod-els. This SDE is atually oupled to the Navier-Stokes equation throughthe expression of the stress tensor as an expetation value built from theend-to-end vetor.

Figure 1.: A hierarhy of models : from Kramers hain (top) to dumbbell(bottom).The spring fore an be linear (Hookean dumbbell model) or explosive(Finite Extensible Nonlinear Elasti dumbbell model).In the following, we onsider the start-up of a Couette �ow of a poly-meri �uid (see Figure 2) : the �uid is initially at rest, and for t > 0, theupper plate moves with a onstant veloity. For a omplete analysis (ex-istene, uniqueness, onvergene of a �nite element method oupled witha Monte Carlo method) of this model in the Hookean dumbbell ase, werefer to Ref. 8. This referene also ontains a more detailed introdution tothese types of models and the way to disretize the orresponding systemof oupled PDE-SDE.We here omplement the mathematial analysis of the FENE modelpresented in Ref. 3 by fousing on the SDE modeling the evolution of theonformation of the polymers in the FENE ase. It is proven in Ref. 3that a solution to the oupled miro-maro system uniquely exists undernatural assumptions. Our onern in the present paper is in partiularto investigate the role played by the �nite extensibility oe�ient b (seeformulas (2) and (3) below) in the existene and uniqueness of solution ofthe SDE itself, the �uid veloity being onsidered known.
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Figure 2.: Veloity pro�le in a shear �ow of a dilute solution of polymers.Let us now introdue the equations we deal with. They read, in a non-dimensional form :
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(3)where the parameter b > 0 measures the �nite extensibility of the poly-mer. The spae variable y varies in O = (0, 1) and t varies in thewhole of IR+. The random variables are de�ned on a �ltered proba-bility spae (Ω,F ,Ft, IP). The random proess (Vt, Wt) is a (Ft)-two-dimensional Brownian motion. We take Dirihlet boundary onditions onthe veloity. The initial veloity is u(t = 0, .) = u0, and (X0, Y0) is a F0-measurable random variable. We will suppose that (X0, Y0) is either suhthat IP
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= 0(Setions 3 and 4).We �x y in O, set g(t) = ∂yu(y, t) and suppose throughout this paperthat we have at least the following regularity on g :
g ∈ L1lo (IR+) (4)where IR+ = [0, +∞). We are then interested in solving for t ≥ 0 thefollowing SDE, whih is a rewriting of the SDE (3) of the initial oupled
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(5)with initial ondition (X0, Y0).Let us begin by realling from Ref. 3 the preise mathematial meaningwe give to (5).De�nition 1.1. Let X0 = (X0, Y0) and W t = (Vt, Wt). We shall say thata (Ft)-adapted proess X
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(6)Remark 1.1. Beause of the onvention 1
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b

= +∞ if |x|2 = b, wededue that a solution to (6) is suh that the subset of IR+ {0 ≤ u <

∞, |Xg
u|2 = b} has IP-a.s. zero Lebesgue measure.The paper is organized as follows : in Setion 2, we prove the existeneand uniqueness of the solution to (6) with values in B, where
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.The existene of suh a solution is derived from results onerning mul-tivalued SDEs (see Refs 4,5). We then fous on the probability for thissolution to reah the boundary of B (see Setion 3). When b < 2 and
IP(|X0|2 < b) = 1, this probability is equal to one. This enables usto onstrut (for g = 0) a solution to (6) that leaves a.s. B. Hene, if
b < 2, uniqueness of solutions does not hold for solutions to (6) withoutthe additional requirement to take values in B. When b ≥ 2 and again
IP(|X0|2 < b) = 1, the probability to reah the boundary is equal to zeroand trajetorial uniqueness holds. We exhibit the unique invariant proba-bility measure of the SDE (6) with g = 0 (see Setion 4). All these resultson the SDE have an impat on the analysis and the understanding of theoupled SDE-PDE system (for whih we refer to Ref. 3). They show thatthe assumption b ≥ 2 adopted in Ref. 3 to prove existene and uniquenessof solution to the oupled system is in some sense �optimal�.



52. Existene and uniquenessIn this setion, we suppose that (X0, Y0) is suh that IP
(

X2
0 + Y 2

0 > b
)
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6Using Gronwall Lemma and the fat that g ∈ L1lo(IR+), we have thus shownthat IP-a.s, ∀t ≥ 0, X
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tIn this setion, we suppose :
g ∈ L∞ (IR+) . (8)In order to prove an existene result, we will use a multivalued stohastidi�erential equation. In this setion, we use the results of E. Cépa4 andE. Cépa and D. Lépingle5.Sine the funtion Π is onvex on the open set B, its subdi�erential ∂Π isa simple-valued maximal monotone operator on IR2 with domain B :

∂Π(x) =

{ {∇Π(x)} if x ∈ B,
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7We are now going to reover a solution to (6) from the solution of (9).More preisely, we follow the method of E. Cépa and D. Lépingle5 (seeLemmas 3.3, 3.4 and 3.6) in order to identify the proess K
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8the last equality using the fat that d|Gg|t = 1{X
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t ) to our initial problem (6)in ase g ∈ L∞(IR+). This result is not su�ient in our ontext sine theenergy estimates on the oupled system (1-3) yields less regularity on g (seeRef. 8).2.3. Existene in the ase g ∈ L1lo(IR+)We now want to build a solution to (6) using the multivalued SDE (9), butwith a weaker assumption on g, namely (4). In this ase, the general resultsof existene on multivalued SDE do not apply immediatly.



9Therefore, we onsider the following sequene of approximations of thisproblem :
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10From this inequality and the fat that g ∈ L1
t ([0, T ]), we dedue that thereexists a ontinuous adapted proess X
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t ) dt ⇀ dK
g
t weakly.By De�nition 2.1, the proesses X

gn

t are suh that for any ontinuous
(Ft)-adapted proess αt with values in IR2, for IP-a.e. ω, ∀ 0 ≤ s ≤ t < ∞,

∫ t

s

Π(Xgn

u ) du ≤
∫ t

s

Π(αu) du +

∫ t

s

(Xgn

u − αu).∇Π(Xgn

u ) du. (20)One an pass to the limit n → ∞ in (20), using the fat that Π(Xgn

u ) →
Π(Xg

u) pointwise in u and that Π(Xgn

u ) is uniformly integrable. Indeed,



11for any A ≥ b
4 , if we set Mu =

(

1 − |Xgn

u |2
b

)−1, we have (sine x 7→ ln(x)
xis dereasing on [e, +∞)) :

∫ T

0

1|Π(Xgn

u )|≥A
Π(Xgn

u ) du =
b

4

∫ T

0

1Mu≥exp(4A/b)
ln (Mu)

Mu
Mu du

≤ A

exp(4A/b)
C(T, ω),so that ∫ T

0

1|Π(Xgn

u )|≥AΠ(Xgn

u ) du → 0 uniformly in n when A → ∞. Wehave thus obtained a ontinuous proess X
g
t on [0, T ] and a ontinuousproess with �nite variation K

g
t =

∫ t

0 (g(u)Y g
u , 0) du + W t − (Xg

t −X0) on
[0, T ] suh that for any ontinuous (Ft)-adapted proess αt with values in
IR2, for IP-a.e. ω, ∀ 0 ≤ s ≤ t < T ,

∫ t

s

Π(Xg
u) du ≤

∫ t

s

Π(αu) du +

∫ t

s

(Xg
u − αu).dKg

u.This shows that we have built a solution to the multivalued SDE (9) onthe time interval [0, T ]. Sine T is arbitrary, using Proposition 2.2, we havebuilt a solution on IR+. Following again the arguments of the last setionit is easy to show that :
• for any 0 < t < ∞, IP-a.s., ∫ t

0

1

1 − |Xg
u|2
b

du < ∞,
• dX

g
t = −∇Π(Xg

t ) dt + (g(t)Y g
t , 0) dt + dW t.This shows that X

g
t is a solution to (6) and ompletes the proof of Propo-sition 2.1.3. Does the solution reah the boundary ?In this setion, we want to determine whether or not the proess X

g
t wehave built in the previous setion reahes the boundary of B. Should theoasion arise, we dedue that uniqueness does not hold for (6), at leastin the ase g = 0. Throughout this setion, we suppose that the initialondition is suh that IP(|X0|2 < b) = 1.3.1. Neessary and su�ient onditionsIn this setion, we want to analyze the event {∃t > 0, |Xg

t |2 = b}. We aregoing to prove :



12Proposition 3.1. Assume
g ∈ L2(IR+), (21)and that IP(|X0|2 < b) = 1. Let us onsider the proess X

g
t solution to (6)built above. We have :

• if b ≥ 2, then IP
(

∃t > 0, |Xg
t |2 = b

)

= 0,

• if b < 2, then IP
(

∃t > 0, |Xg
t |2 = b

)

= 1.In view of Proposition 2.2, we dedue immediatly :Corollary 3.1. If b ≥ 2 and IP(|X0|2 < b) = 1, then trajetorial unique-ness holds for (6).Proof. First, by Girsanov Lemma, one an suppose g = 0. Indeed, let usonsider the proess X
g
t we have built in last setion. Under the probability

IPg de�ned by
dIPg

dIP
= exp

(

−
∫ ∞

0

g(s)Y g
s dVs −

1

2

∫ ∞

0

(g(s)Y g
s )2 ds

)

,the proess (V g
t , W g

t ) = (Vt +
∫ t

0 g(s)Y g
s ds, Wt) is a Brownian motion andtherefore (Xg

t , Y g
t , V g

t , W g
t , IPg)t∈IR+ is a weak solution of the SDE (5) with

g = 0. Sine this solution is with values in B, it is also a weak solution ofthe multivalued SDE (9), with g = 0, for whih uniqueness in law holds.Sine IPg and IP are equivalent on F , we an then dedue the properties ofProposition 3.1 in ase g ∈ L2(IR+) from the properties of Proposition 3.1in ase g = 0.In the following, we fous on the solution to (9) with g = 0, whih wedenote by Xt = (Xt, Yt). We �x x ∈ B and the supersript x means thatwe onsider the solution to (9) with g = 0 suh that X0 = x.Let us �rst suppose that |x| > 0. Let us onsider the proess Rx
t =

b − |Xx
t |2. We know that :

dRx
t =

b2

Rx
t

dt − (2 + b) dt − 2Xx
t .dW t. (22)Let us introdue the stopping time

τx
n = inf

{

t ≥ 0, |Xx
t |2 ≥ b

(

1 − 1

n

)}

.Let �x t > 0. By Girsanov Lemma, one shows that IP-a.s., ∣∣
∣
Xx

t∧τx

n

∣

∣

∣
6= 0.Indeed, by de�nition of τx

n ,
IP(|Xx

t∧τx

n
| = 0) = IP(|Xx

t | = 0 and t < τx
n ).



13Let IPx
n be de�ned by :
dIPx

n

dIP
= exp

(
∫ t

0

∇Π(Xx
s∧τx

n
) .dW s −

1

2

∫ t

0

∣

∣

∣
∇Π(Xx

s∧τx

n
)
∣

∣

∣

2

ds

)and IEx
n denote the orresponding expetation. By Girsanov Theorem,

(

Bx
s = x + W s −

∫ s

0 ∇Π(Xx
u∧τx

n
) du

)

s≤t
is a IPx

n-Brownian motion start-ing from x. Sine on t ≤ τx
n , Xx

t = Bx
t ,

IP(|Xx
t | = 0 and t < τx

n ) ≤ IP(|Bx
t | = 0)

= IEx
n

(

1|Bx

t |=0
dIP

dIPx
n

)

= 0. (23)One an therefore show that |Xx
t | > 0 on [0, T x), where

T x = lim
n→∞

τx
n = inf

{

t ≥ 0, |Xx
t |2 = b

}

= inf {t ≥ 0, Rx
t = 0} .Thus, one an write, for t ∈ [0, T x) :

dRx
t =

b2

Rx
t

dt − (2 + b) dt + 2
√

b − Rx
t dβt, (24)where βt is a Ft-adapted 1-dimensional Brownian motion.Let us now introdue the stopping time

Sx = inf {t ≥ 0, Rx
t /∈ (0, b)} .We have, IP-a.s., Sx ≤ T x. We refer here to I. Karatzas and S.E. Shreve9(see Setion 5.5 p. 342-351).We introdue a sale funtion p suh that :

(

b2

r
− (2 + b)

)

p′(r) + 2(b − r)p′′(r) = 0,whih leads to :
p′(r) = C(b − r)−1r−b/2,where C > 0. We have therefore p(b−) = +∞ and (b < 2 ⇐⇒ p(0+) >

−∞). Using this property of the sale funtion and the results of I. Karatzasand S.E. Shreve, one an onlude that :
• if b ≥ 2, then IP (Sx = +∞) = IP (T x = +∞) = 1, (25)
• if b < 2, then IP

(

lim
t→Sx

|Xx
t |2 = b

)

= 1.



14In ase b < 2, we an dedue from the seond item that Sx = T x. We nowwant to know whether Sx = +∞ or not in this ase. Let us introdue thespeed measure m on (0, b) de�ned by
m(dr) =

2 dr

4(b − r)p′(r)
=

rb/2dr

2C
,and the funtion v suh that, for any r ∈ (0, b),

v(r) =

∫ r

a

(p(r) − p(s))m(ds) =

∫ r

a

(p(r) − p(s))
sb/2

2C
ds.We have p(b−) = +∞ and therefore v(b−) = +∞. In ase b < 2, it iseasy to hek that v(0+) < ∞. Using again the results of I. Karatzas andS.E. Shreve, we an dedue from this that in ase b < 2, we have

IP(Sx < ∞) = IP(T x < ∞) = 1. (26)In ase |x| = 0, the former results (25) and (26) still hold. Indeed,let us suppose that x = 0 and let us introdue the stopping time τ =

inf
{

t ≥ 0, |X0
t |2 ≥ b

2

}. Obvisouly, one has :
IP
(

∃t > 0, |X0
t |2 = b

)

= IP
(

∃t > 0, |X0
t |2 = b and τ < ∞

)

.In ase b ≥ 2, using the strong Markov property of X0
t (see E. Cépa4p. 86), one has :

IP
(

∃t > 0, |X0
t |2 = b

)

= IP
(

∃t > 0, |X0
t |2 = b and τ < ∞

)

,

= IE
(

1τ<∞IP
(

∃t > 0, |Xx
t |2 = b

)

|x=Xτ

)

,

= 0.In ase b < 2, we use the fat that, due to the proof of (23),
IP(|X0

1∧τ | = 0) = 0. By the strong Markov property andsine IP-a.s., supt∈[0,1∧τ ] |X0
t |2 < b, we have IP

(

∃t > 0, |X0
t |2 = b

)

=

IE
(

IP
(

∃t > 0, |Xx
t |2 = b

)

|x=X1∧τ

)

= 1.In ase of a non-deterministi initial ondition X0 with law µ0, we andedue the properties of Proposition 3.1 from the fat that (by uniquenessof the solution) :
IP
(

∃t > 0, |Xt|2 = b
)

=

∫

IP
(

∃t > 0, |Xx
t |2 = b

)

dµ0(x).Remark 3.1. In ase g ∈ L2lo(IR+), what we an onlude is the following :
• if b ≥ 2, then IP

(

∃t > 0, |Xg
t |2 = b

)

= 0,

• if b < 2, then IP
(

∃t > 0, |Xg
t |2 = b

)

> 0.



153.2. Non-uniqueness in ase b < 2In this setion, we suppose b < 2 and IP(|X0|2 < b) = 1. We restrit ourattention to the ase g = 0. We are going to onstrut another proess X̃tweak solution to (6) and suh that IP(∃t > 0, X̃t /∈ B) = 1. In other words,we will build a solution to (6) whih, unlike Xt, goes out of the ball B.This will show that (6) admits at least two di�erent solutions.Let us onsider the solution Xt to (6) we have built in Setion 2. Weknow that IP-a.s., the proess Xt reahes the boundary of B in �nite time(see Proposition 3.1). Let us introdue the stopping time T = inf{t ≥
0, |Xt|2 ≥ b}. In polar oordinate, we write XT = (

√
b, θ0) : (XT , YT ) =

(
√

b cos(θ0),
√

b sin(θ0)), where θ0 ∈ [0, 2π) denotes the polar angle. Wenow want to onstrut a solution to (6), whih takes (XT , YT ) as initialvalue, and lives outside of the ball B. Let us introdue a two-dimensionalstandard Brownian motion (βt, γt) independent of W t. We use a polarrepresentation (
√

rt, θt) of the proess we want to build. We onsider thesolution rt to the following multivalued SDE :
{

drt + ∂f(rt) dt ∋ (2 + b) dt + 2
√

rtdβt,

r0 = b,
(27)where f : IR →] −∞, +∞] is the onvex funtion de�ned by :

f(r) =

{−b2 ln(r − b) if r > b,

+∞ otherwise. (28)so that ∂f is a simple-valued maximal monotone operator with domain
I = (b,∞) (for all r > b, ∂f(r) = {∇f(r)} = { b2

b−r}). By E. Cépa4, thereexists a unique proess rt solution to (27). Following exatly the argumentsof Lemma 2.1, one an show that this proess rt is suh that :
• for any 0 < t < ∞, IP-a.s., ∫ t

0

∣

∣

∣

∣

1

ru − b

∣

∣

∣

∣

du < ∞, with onvention
1

b−b = +∞,
• drt = − b2

b−rt
dt + (2 + b) dt + 2

√
rtdβt.Let us now onsider the proess θt de�ned by :

θt = θ0 +

∫ t

0

1√
rs

dγs, (29)and the random proess X̄t in IR2 de�ned by :
X̄t = (

√
rt cos(θt),

√
rt sin(θt)) .



16By It�'s formula, we have :
dX̄t = −1

2

X̄t

1 − |X̄t|2
b

dt + (− sin(θt), cos(θt))dγt + (cos(θt), sin(θt))dβt.Using Paul Lévy haraterisation, onean show that (− sin(θt), cos(θt))dγt + (cos(θt), sin(θt))dβt = dBt where
Bt is a two-dimensional Brownian motion, independent of W t.Let us now onsider X̃t de�ned by X̃t = 10≤t≤T Xt + 1t>T X̄t−T andthe proess W̃ t de�ned by W̃ t = W t∧T + 1t>T Bt−T . It is obvious (forexample by Paul Lévy haraterisation) that W̃ t is a Brownian motion.In addition, the proess X̃t is a solution to (6) with g = 0, suh that
IP(∃t > 0, X̃t /∈ B) = 1. This shows that the problem (6) with g = 0 doesnot admit a unique solution.Remark 3.2. In ase g ∈ L∞lo(IR+), using the solution (rt, θt) of the mul-tivalued SDE : (r0, θ0) = (b, θ0) and
d(rt, θt) + ∂h(rt, θt) dt ∋

(

(2 + b) + rt sin(θt)g(t),− sin2(θt)g(t)
)

dt + (2
√

rt,
1√
rt

)d(βt, γt),where h : IR2 →]−∞, +∞] is the onvex funtion de�ned by h(r, θ) = f(r)(see formula (28)), one an by the same arguments prove that there isnon-uniqueness in law for the solutions to (6).We have summarized in Table 1 some of the results we have obtainedin the last two setions.
b < 2. b ≥ 2.

IP(|X0|2 = b) = 0. Existene.
IP
(

∃t ≥ 0, |Xt|2 = b
)

= 1.Non-uniqueness. Existene.
IP
(

∃t ≥ 0, |Xt|2 = b
)

= 0.Uniqueness.
IP(|X0|2 = b) > 0. Existene.Non-uniqueness. Existene.Non-uniquenessTable 1.: Properties of solutions to (6) when g = 0. We suppose

IP(|X0|2 ≤ b) = 1. In any ase, uniqueness holds for solutions with valuesin B aording to Proposition 2.2. The terminology uniqueness and nonuniqueness relates to a solution that is not enfored to take values in B.



174. Invariant probability measure in ase g = 0 and b ≥ 2In this setion we are interested in invariant probability measures for theSDE (6) with g = 0 in ase b ≥ 2.The motivation for this study is twofold. First, sine we onsider a�uid whih is initially at rest, it is natural from a physial point of view tohoose an invariant probability for the SDE (6) with g = 0 as law for X0.Seond, in the analysis of the oupled system (1-3), we are interested in theregularity of the stress τ(t, y) = IE

(

Xy
t Y y

t

1− (X
y
t

)2+(Y
y
t

)2

b

) whih, by Girsanov,an also be written in the following form :
IE

((

XtYt

1 − X2
t +Y 2

t

b

)

exp

(
∫ t

0

∂yu(s, y)Ys dVs −
1

2

∫ t

0

(∂yu(s, y)Ys)
2 ds

)

)

,where Xt = (Xt, Yt) denotes (as in last setion) the solution with valuesin B to (6) with g = 0 (see Ref. 3). This expression of the stress yields thefollowing estimate (using Hölder inequality) : for almost all y and t,
|τ(y, t)| ≤ IE

((

XtYt

1 − X2
t +Y 2

t

b

)p)1/p

exp

(

q − 1

2
b

∫ t

0

(∂yu(s, y))2 ds

)

,where p = q
q−1 .It is thus important to estimate the quantities IE

((

XtYt

1−X2
t
+Y 2

t
b

)p),whih is simple if we identify and start under an invariant probability mea-sure (see formula (31)).The density p0 de�ned by :
p0(x) =

exp(−2Π(x))
∫

exp(−2Π(x)) dx
=

b + 2

2πb

(

1 − |x|2
b

)b/2

1|x|2<b (30)obviously solves div x

(

−(∇xΠ)p0 + 1
2 (∇xp0)

)

= 0 and is therefore a natu-ral andidate to be invariant. This is indeed the ase as shown by :Proposition 4.1. For b ≥ 2, p0(x) dx is the unique invariant probabilitymeasure on B for the SDE (6) with g = 0.This proposition is a onsequene of the following lemma :Lemma 4.1. Let b ≥ 2. For any x ∈ B, t > 0, the solution Xx
t of theSDE (6) with g = 0 and X0 = x has a density p(t, x, y) with respet to theLebesgue measure on B. In addition, ∀t ≥ 0,(i) dx dy-a.e., exp(−2Π(x))p(t, x, y) = exp(−2Π(y))p(t, y, x),



18(ii) ∀x ∈ B, dy-a.e., p(t, x, y) > 0.Indeed, by (i), one easily heks that p0(x) dx is invariant. By (ii), anyinvariant probability measure is equivalent to the Lebesgue measure on Bwhih implies uniqueness (see Proposition 6.1.9 p. 188 of M. Du�o 7).With Proposition 4.1, it is then straightforward to prove that, if X0 hasthe density p0(x), then we have :
IE

((

XtYt

1 − X2
t +Y 2

t

b

)p)

< ∞ ⇐⇒ b > 2(p − 1). (31)Let us now prove Lemma 4.1.Proof. In order to prove (i), we regularize the potential Π so that theresults of L.C.G. Rogers 12 (see p. 161) apply. Let Πn be de�ned by :
Πn(x) = πn(|x|2), (32)

πn(r) =







− b

4
ln
(

1 − r

b

) if r ≤ b
(

1 − 1
n

)

,
√

r + b
4 ln(n) if r ≥ b ,

(33)and πn is inreasing and C2(IR+, IR+), so that ∇Πn is bounded with on-tinuous derivatives of �rst order. Let t > 0 and x ∈ IR2. Aording toL.C.G. Rogers, the solution Xn,x of the SDE :
X

n,x
t = x −

∫ t

0

∇Πn(Xn,x
s ) ds + W t, (34)has a density pn(t, x, y) with respet to the Lebesgue measure on IR2 whihsatis�es dx dy-a.e., exp(−2Πn(x))pn(t, x, y) = exp(−2Πn(y))pn(t, y, x).For x ∈ B, let τx

n = inf
{

t ≥ 0, |Xx
t |2 ≥ b

(

1 − 1
n

)}. Sine
IP (Xn,x

t 6= Xx
t ) ≤ IP(τx

n < t), aording to Proposition 3.1,
lim

n→∞
IP (Xn,x

t 6= Xx
t ) = 0. (35)We dedue that for a �xed x ∈ B, pn(t, x, y) onverges in L1

y(IR2) to
p(t, x, y), whih is the density of Xx

t .As the non-negative potential Πn onverges pointwise to Π in B, wededue that exp(−2Πn(x))pn(t, x, y) onverges to exp(−2Π(x))p(t, x, y)in L1
x,y(B × B) and onlude that (i) holds.We are now going to hek (ii) for a �xed x ∈ B and t > 0. Let A bea Borel subset of B suh that ∫ 1A dx > 0. We hoose n ∈ IN∗ suh that
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|x|2 < b

(

1 − 1
n

) and ∫ 1An
dx > 0 where An = A∩B

(

0,
√

b
(

1 − 1
n

)

). ByGirsanov Theorem, under IPx
n de�ned by :

dIPx
n

dIP
= exp

(
∫ t

0

∇Π(Xx
s∧τx

n
) .dW s −

1

2

∫ t

0

∣

∣

∣
∇Π(Xx

s∧τx

n
)
∣

∣

∣

2

ds

)

,where τx
n is as above, (Xx

s∧τx

n
)s≤t is a Brownian motion startingfrom x and stopped at the boundary of B

(

0,
√

b
(

1 − 1
n

)

) so that
IPx

n

(

Xx
t∧τx

n
∈ An

)

> 0. Therefore, IP (Xx
t ∈ A) ≥ IP

(

Xx
t∧τx

n
∈ An

)

=

IEx
n

(

1An

(

Xx
t∧τx

n

)

dIP
dIPx

n

)
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