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We analyze the properties of a stochastic differential equation (SDE) arising in
the modeling of polymeric fluids. More precisely, we focus on the so-called FENE
(Finite Extensible Nonlinear Elastic) model, for which the drift term in the SDE
is singular.

1. Introduction

The rheology of non-newtonian fluids is a very lively field of modern fluid
mechanics. The challenge is to find a good relation linking within the fluid
the stress tensor to the velocity field in order to reproduce the behavior of
the fluid in some classical situations (shear flow, elongational flow) and to
simulate it in some more complex cases. This relation may be complicated
since the stress generally depends on the whole history of the velocity field.
Many approaches consist in deriving this relation from the microscopic
structure of the fluid. In some cases, it is possible to directly attack the
full system coupling the evolution of these microscopic structures to the
macroscopic quantities (such as velocity or pressure) : this is the so-called
micro-macro approach.

We are here interested in the modeling of polymeric fluids. More pre-
cisely, we consider dilute solutions of polymers, so that the chains of poly-
mers (the “microscopic structures”) do not interact with each other. In
order to describe the microscopic structure of this fluid, one can model a
polymer by a chain of beads and rods (this is the Kramers model) or more
simply by some beads linked by springs (see Figure 1). We consider here
the simplest model consisting in two beads linked by one spring : this is
the dumbbell model. In this model, the evolution of the end-to-end vector
(which joins the two beads) is described by a SDE. We refer the interested
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reader to Refs 101,26 for the general physical background of these mod-
els. This SDE is actually coupled to the Navier-Stokes equation through
the expression of the stress tensor as an expectation value built from the
end-to-end vector.

o W\@

Figure 1.: A hierarchy of models : from Kramers chain (top) to dumbbell
(bottom).

The spring force can be linear (Hookean dumbbell model) or explosive
(Finite Extensible Nonlinear Elastic dumbbell model).

In the following, we consider the start-up of a Couette flow of a poly-
meric fluid (see Figure 2) : the fluid is initially at rest, and for ¢ > 0, the
upper plate moves with a constant velocity. For a complete analysis (ex-
istence, uniqueness, convergence of a finite element method coupled with
a Monte Carlo method) of this model in the Hookean dumbbell case, we
refer to Ref. 8. This reference also contains a more detailed introduction to
these types of models and the way to discretize the corresponding system
of coupled PDE-SDE.

We here complement the mathematical analysis of the FENE model
presented in Ref. 2 by focusing on the SDE modeling the evolution of the
conformation of the polymers in the FENE case. It is proven in Ref. 3
that a solution to the coupled micro-macro system uniquely exists under
natural assumptions. Our concern in the present paper is in particular
to investigate the role played by the finite extensibility coefficient b (see
formulas (2) and (3) below) in the existence and uniqueness of solution of
the SDE itself, the fluid velocity being considered known.
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Figure 2.: Velocity profile in a shear flow of a dilute solution of polymers.

Let us now introduce the equations we deal with. They read, in a non-
dimensional form :

815@(: - ayyu - 8yT + ferta (1)
Xy
T <1 INCEIENC 7N ®
b
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4x7 = (‘iw + @ﬂYt‘”) dt+ dvi,
S 3)
o 1w
dyy = _51 ) dt + dWy.
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where the parameter b > 0 measures the finite extensibility of the poly-
mer. The space variable y varies in @ = (0,1) and ¢ varies in the
whole of R;. The random variables are defined on a filtered proba-
bility space (2, F,F:, IP). The random process (Vi, W;) is a (Fi)-two-
dimensional Brownian motion. We take Dirichlet boundary conditions on
the velocity. The initial velocity is u(t = 0,.) = ug, and (Xo,Yp) is a Fo-
measurable random variable. We will suppose that (Xo,Yy) is either such
that P (X2 + Y@ > b) = 0 (Section 2) or such that IP (X¢ + Y# > b) =0
(Sections 3 and 4).

We fix y in O, set g(t) = dyu(y,t) and suppose throughout this paper
that we have at least the following regularity on g :

g€ Llloc (R+) (4)

where R4 = [0,400). We are then interested in solving for ¢ > 0 the
following SDE, which is a rewriting of the SDE (3) of the initial coupled



system :

g

axy = <_%ﬁ +g(t) Yf) dt + dV;,
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with initial condition (Xo, Yp).
Let us begin by recalling from Ref. 2 the precise mathematical meaning
we give to (5).

(5)

D=

Yy ) dt + dW,

t
1Dz h?
b

Definition 1.1. Let Xy = (Xy,Yy) and W = (V;, W;). We shall say that
a (Fi)-adapted process X{ = (X7,Y/?) is a solution to (5) when : for IP-a.e.

w, Vt >0,
t
/

with the convention ,Vz = (z,y) € R?, - ‘12‘2 = +4ooif x> =b, (6)
b

ds < 00,
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Remark 1.1. Because of the convention —» = +ooif |z|?> = b, we

T
deduce that a solution to (6) is such that the subset of Ry {0 < u <
00, | X9|? = b} has IP-a.s. zero Lebesgue measure.

The paper is organized as follows : in Section 2, we prove the existence
and uniqueness of the solution to (6) with values in B, where

B = B(0,vVb) = {(x,y),2% + y* < b} .

The existence of such a solution is derived from results concerning mul-
tivalued SDEs (see Refs %°). We then focus on the probability for this
solution to reach the boundary of B (see Section 3). When b < 2 and
P(|Xo|> < b) = 1, this probability is equal to one. This enables us
to construct (for g = 0) a solution to (6) that leaves a.s. B. Hence, if
b < 2, uniqueness of solutions does not hold for solutions to (6) without
the additional requirement to take values in B. When b > 2 and again
P(]Xo|?> < b) = 1, the probability to reach the boundary is equal to zero
and trajectorial uniqueness holds. We exhibit the unique invariant proba-
bility measure of the SDE (6) with g = 0 (see Section 4). All these results
on the SDE have an impact on the analysis and the understanding of the
coupled SDE-PDE system (for which we refer to Ref. 3). They show that
the assumption b > 2 adopted in Ref. 2 to prove existence and uniqueness
of solution to the coupled system is in some sense “optimal”.



2. Existence and uniqueness

In this section, we suppose that (Xo, Yp) is such that P (X3 + Y > b) = 0.
Our aim is to prove the following :

Proposition 2.1. Under assumption (4), for any b > 0 and for any initial
condition (Xo,Yo) such that P (XO2 +YE > b) = 0, there exists a unique
solution to (6) with values in B.

We first prove the uniqueness statement (Section 2.1), then turn to the
existence first when g € L{® (Section 2.2) and finally when g € L (Section
2.3). In the following, the point is to notice that the singular term in the

drift derives from a convex potential I : R* —] — 0o, +00] :

~im (1- ) ifa? 4 y? < b,

+00 otherwise.

Iz, y) = { (7)

We have : Vo € B, VII(xz) = ;—25. Moreover, the function II is a

1— \1\2

continuous convex function with domain B.

2.1. Trajectorial uniqueness for solutions with values in B

Let us begin with the uniqueness.

Proposition 2.2. Let us suppose we have two solutions X{ and th to (6)
and such that P-a.s., X{ = Xg. Then these two solutions are indistiguish-
able until one of the processes leaves B. In addition, if P(3t > 0| X{|? =
b) =0, then X7{ and Xf are indistiguishable.

Proof :  Let us consider 7 = inf{t > 0,(|X}|2 v |X?|?) > b} and
Z; = (th - Xf) By Ito’s formula, we have :

d|Z|? =2Z.dZy,
= —2(VIN(XY) — VII(X})).Z; dt + 29(t)(X7 — XI)(Y? — Y)dt,

where z.y denotes the scalar product of  and y € R*.
Using the fact that, since II is convex, for any = and & € B, (VII(x) —
VII(&)).(x — &) > 0, we obtain, for any ¢ > 0 :

‘ysg _}789

tAT
Zuof <2 [ loto)l X2 - X2 ds.
0

t
< [ 1)1 Zenef? s
0



Using Gronwall Lemma and the fact that g € L{, (IR ), we have thus shown

that P-a.s, V¢ > 0, XJ,. = X{,,. Therefore, on {r < oo}, | X9[> = b. We
deduce that in case P(3t > 0, | X{|? =b) =0, 7 = oo P-a.s. . &

2.2. Egzistence in the case g € Lg°

In this section, we suppose :
g€ L (Ry). (®)

In order to prove an existence result, we will use a multivalued stochastic
differential equation. In this section, we use the results of E. Cépa* and
E. Cépa and D. Lépingle®.

Since the function II is convex on the open set B, its subdifferential JII is
a simple-valued maximal monotone operator on R? with domain B :

_ [{VI(z)} if © € B,
oll(x) = { 0 if x ¢ B.

Let us now consider the two-dimensional process X ; solution of the follow-
ing multivalued SDE :

{de + OI(X{)dt > (g(t)Y?,0) dt + dWy, 9)
X =Xy = (Xo,Y0),
We first recall the precise meaning of a solution to (9).

Definition 2.1. We shall say that a continuous (F;)-adapted process X{ =
(X7,Y?) with values in B is a solution to (9) if and only if X§ = X, and
the process K{ = W, + fg(g(s)Ysg,O) ds — (XY — X¥) is a continuous
process with finite variation such that : for any continuous (F;)-adapted
process a; with values in R?, for P-a.e. w, Y0 < s < t < 00,

/: T(X9) du < /: T(cv) du + /:(Xﬁ — ).dK7. (10)

Remark 2.1. A condition equivalent to (10) is the following : for any
continuous (F;)-adapted process ai; with values in B, the measure on R :
(X9 — ). (dKI — V(o) du)

is IP-a.s. nonnegative.

Since (8) ensures that x = (x,y) — (¢(t)y,0) is (uniformly in time)
Lipschitz and with linear growth, according to E. Cépa?, we have :

Proposition 2.3. Under the assumption (8), for any b > 0, the multival-
ued SDE (9) has a unique strong solution.



We are now going to recover a solution to (6) from the solution of (9).
More precisely, we follow the method of E. Cépa and D. Lépingle® (see
Lemmas 3.3, 3.4 and 3.6) in order to identify the process K7.

We can thus show that for all 0 < ¢ < oo, we have :

t
E </ |OT1(X9)] du) < 00, with convention |0ll(x)| = +oo if ¢ ¢ B.
0
As a consequence, for any 0 < t < oo, IP-a.s.,

—b =
1-3

t
1
/ —xi du < oo with convention — —+00. (11)
0o 1 — =l

Moreover, the process K{ is P-a.s. absolutely continuous on {0 < u <
00, X¥ € B}, with density VII(X?) so that dK? has the following form :

dKY = VII(X?) du + dG?Y, (12)
where GY is a continuous boundary process with finite variation |G| :
t t
Gi = / lixycondK7 = / lixycondGy. (13)
0 0

Finally, one can identify this process G : for all ¢ > 0,

t t X9
G = / Lixseomn(X9)d|G), = / Luggal,,
0 0 \/E

where, for any « € 0B, n(x) = % is the unitary outward normal to B at

the point x.
Hence the process X7{ is solution of the following SDE with normal
reflexion at the boundary of B :
dX{ = —VIIX{)dt + (9(t)Y,0) dt + AW — 1 xscopyn(X{)d|GY:.

It just remains to show that |GY|,, = 0, for v > 0, in order to recover (6).
Notice in particular that by (11), the property of integrability of the drift
term in (6) holds for the solution X7{ of the multivalued SDE (9).

Lemma 2.1. |G?| =0.

Proof :  We follow here again the ideas of E. Cépa and D. Lépingle® (see
Lemma 3.8 p. 438) to prove that |GY| = 0. Let us consider RY = b— |X7|2.
By Ito’s formula,
dR] = —2X{.dX{ — 2dt,

| X7

= QVII(XY). XY dt — 29(4)XJY7 dt — 2dt — 2X9.dW, + 222 4|GY),

Vb
2

b
= g7 dt = 29O XYY dt = (2+ b) dt — 2X].dW, + 2Vbd|GY|;,
t

(14)



the last equality using the fact that d|G’|; = 1;x9copyd|G?|t.
We know that R is a continuous semimartingale with values in [0, b]. We
want to prove that dR{ = 1gs~odR{. Using Tanaka’s formula (see'' p. 213),

t
1
RY = (RD)" = (B + [ LrsodRI+ 5L (15)
0

where, for any a € [0,b], L denotes the local time in a of RY. Using now
the occupation times formula (see Ref. ! p. 215), we know (using (11))
that, for any fixed ¢t > 0 :

b1 t1 t 1
/—Lgda:/ —gd<R9>S§4/ — . —ds < .
0o a ORS 0 1_@

Since a — L¢ is a.s. cadlag (see'! p. 216), we deduce that for any ¢t > 0,
P-a.s., LY = 0. Using this in (15), we obtain

Using this equality in (14), we have : V¢ > 0,

t
/ s —od| G =
1
2

I b
——= [ lpog| ——=5ds+2¢9(s)XY7ds+ (2+b)d +2X§.dWS>.
o5 [ o (g ot 2 X0 ds 1 2 0)

Since, according to (11), IP-a.s., {0 <t < oo, R = 0} has zero Lebesgue

measure, the right hand side is nul. We conclude by using d|G?|; =
Lgy—od|G?l:. &

We have thus shown the following properties on the process X7 :

t
1
e for any 0 < t < 00, P-a.s., / —— du < oo,
0 1 _ IXuI
o dXJ =—VIIXY{)dt+ (9(t)Y7,0)dt + dW .

We have thus built a solution X7 = (X/,Y?) to our initial problem (6)
in case g € L°°(IR4). This result is not sufficient in our context since the
energy estimates on the coupled system (1-3) yields less regularity on g (see

Ref. ®).

2.3. Existence in the case g € L] ,(IR})

We now want to build a solution to (6) using the multivalued SDE (9), but
with a weaker assumption on g, namely (4). In this case, the general results
of existence on multivalued SDE do not apply immediatly.



Therefore, we consider the following sequence of approximations of this
problem :

{ dX{" +oT(XY ) dt > (g" ()Y, 0) dt + AW,

" 16
X] = Xo, (16)

where n € IN* and ¢"(t) = —nV (nAg(t)). Since g" is bounded, the results
of the previous section apply and we obtain a unique solution X{ of the
multivalued SDE (16). Moreover, these processes X{ are such that :

t
1
e for any 0 < ¢ < o0, ]P—a.s.,/ ﬁdu<oo,
0 1 |‘Xu |

b
t t
o X} =Xo- / VII(XY") ds + / (9" ()Y, 0)ds + Wy (17)
0 0

We now want to let n go to oo in Definition 2.1 (notice that by (17),
dK{ = VII(X{ )dt). In the following, we choose T' > 0 and we work on

(2
the time interval [0,7]. We know that for all n, sup,s, ‘X? ‘ < b. For
any n > m, we have, by It6’s formula,

d|x9" - Xg"’f S (VH(X,?") . VH(X{")) : (Xf" - Xfm) dt
+ (" Y — gy ) (X7 - X" dt.

Using the fact that, since II is convex, for any x and y € B, (VII(x) —
VII(y)).(x — y) > 0, we obtain : V¢ € [0,T],

n m (2 ¢
X0 - xt"| < [ (g r 6 - oy ) (X7 - x27) ds

0
so that : Vt € [0,T7,
n m (2 ¢
‘Xf — XY ‘ < /
0

< [ eifve —ve [+ g - o )\Xg - x¢"| ds

gV~ g )Y | | XS - X ds

S

/|g| }Xg _x9" ds+2b/ 1g7(s) — g™ (s)| ds.

Using Gronwall Lemma, we then obtain :

2 T 1 (T
sup |x7" - x¢"[ <2 / exp | 2 / lg(w)| du ) g7(s) — g™ ()| ds
tGOT 0 2 s

1 r n m
< 2o (lallyomy ) [ 1o - am ()] ds.
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From this inequality and the fact that g € L}([0,7]), we deduce that there
exists a continuous adapted process X¢ with values in B such that X9 —
X in L2(L32([0, TI)).

One has the following estimate on the total variation of VII(X?") du
on [0,77] :

T
/ ‘vn(xg dt < —/ ds. (18)
0 IXq ‘2
By Ito’s formula, we know that : Vt € [0, T],

t =) t t
X7 |” =|Xo*~ XL T |n ds+2 [ g"(s) X9 V9" ds+2t+2 | X9".dW,,
t IXQ ‘2 S S S
01— 1= 0 0

which yields : V¢ € 0,77,

t 1 1 " . ) o
/O mds - B <_|th |2 + |)(0|2 + (2+b)t+2/0 g (S)Xg }/Sg ds
— =L

t
+2/ Xg".dws> : (19)
0

It is obvious that [} X¢".dW, — [ X.dW, in L2 (L¢*([0, T]))-norm. Up
to the extraction of a subsequence, we can suppose that this convergence
holds for almost every w. Using this property together with (18) and (19),
we deduce that for a.e. w, the measure VH(X?H) dt on [0,T] is such that

fOT ‘VH(X?H)‘ dt < C(T,w) where C(T,w) is a constant only depending
on T and w. One can thus extract a weakly converging subsequence of
(VH(X?H) dt) o1 On the other hand, taking the limit n — oo in (17),

we see that fg VII(X?") du uniformly converges on [0, 7] to K¢ satisfying :
vt € 0,77,

t
Kf = [ (Y7.0)du+ Wi~ (X7 - Xo),
0
By identification of the limit, we have VII(XY" ) dt — dK? weakly.

By Definition 2.1, the processes X tgn are such that for any continuous
(F;)-adapted process oy with values in R?, for P-a.e. w, V0 < s <t < 00,

/Stn(xi’Udu < / tH(au)dw / t(Xi" — ). VI(XY )du.  (20)

One can pass to the limit n — oo in (20), using the fact that II(X9 ) —
II(X?Y) pointwise in u and that II(X?Y ) is uniformly integrable. Indeed,



n
g
|x9" |

2\ —1
. 1
T) , we have (since z — ng(f)

for any A > %, if we set M, = <1
is decreasing on [e, +00)) :

T T
n b In (M,,)
/0 1|H(Xﬁn)|2A (XY, ) du = 1/0 11, >exp(aa/b) M, M, du

<4
~ exp(44/b)

C(T,w),

T
so that / 1|H(Xin)|>AH(Xﬁn) du — 0 uniformly in n when A — co. We
0 >

have thus obtained a continuous process X7 on [0,7] and a continuous
process with finite variation K{ = fg (g(w)Y2,0)du+W;—(X{— Xo) on
[0,T] such that for any continuous (F;)-adapted process a; with values in
R?, for P-ae. w,V0<s<t<T,

t t t
/H(Xﬁ)duﬁ/ H(au)du—F/(Xﬁ—au).dKﬂ.

This shows that we have built a solution to the multivalued SDE (9) on
the time interval [0, T]. Since T is arbitrary, using Proposition 2.2, we have
built a solution on R4. Following again the arguments of the last section
it is easy to show that :

t
1
e for any 0 < ¢ < o0, ]P—a.s.,/ ——= du < o0,
01— Xl

e dXJ =-VIIXY])dt+ (9(t)Y7,0)dt + dW .

This shows that X7 is a solution to (6) and completes the proof of Propo-
sition 2.1.

3. Does the solution reach the boundary ?

In this section, we want to determine whether or not the process XJ we
have built in the previous section reaches the boundary of B. Should the
occasion arise, we deduce that uniqueness does not hold for (6), at least
in the case ¢ = 0. Throughout this section, we suppose that the initial
condition is such that IP(|X¢|? < b) = 1.

3.1. Necessary and sufficient conditions

In this section, we want to analyze the event {3t > 0,|X{|> = b}. We are
going to prove :
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Proposition 3.1. Assume
g€ L*(Ry), (21)

and that P(| X o|> < b) = 1. Let us consider the process X solution to (6)
built above. We have :

e ifb>2, then P (3t > 0,|X{|* =b) =0,
o ifb<2, then P (3t > 0,|X{|* =b) = 1.

In view of Proposition 2.2, we deduce immediatly :

Corollary 3.1. If b > 2 and P(| Xo|? < b) = 1, then trajectorial unique-
ness holds for (6).

Proof. First, by Girsanov Lemma, one can suppose g = 0. Indeed, let us
consider the process X{ we have built in last section. Under the probability
P9 defined by

dP9 e 1 oo 9
- = — g _ = g
TP eXp< /0 g(s)YI dVs 5 /0 (9(s)YY) ds),

the process (V;7, W7) = (V; + fot g(s)Y?g ds, W) is a Brownian motion and
therefore (X7, Y7, V7 W/ P?);cr, is a weak solution of the SDE (5) with
g = 0. Since this solution is with values in B, it is also a weak solution of
the multivalued SDE (9), with g = 0, for which uniqueness in law holds.
Since PY and P are equivalent on F, we can then deduce the properties of
Proposition 3.1 in case g € L?(IR,) from the properties of Proposition 3.1
in case g = 0.

In the following, we focus on the solution to (9) with ¢ = 0, which we
denote by X, = (X;,Y;). We fix & € B and the superscript  means that
we consider the solution to (9) with ¢ = 0 such that X, = «.

Let us first suppose that || > 0. Let us consider the process R¥ =
b— | X7¥|?. We know that :

b2
AR} = 2 dt — (24 b) dt —2X7.AW . (22)
t

Let us introduce the stopping time

1
r,?f:inf{tzo,|xf|2zb<1——>}.
n

Let fix ¢ > 0. By Girsanov Lemma, one shows that P-a.s.,
Indeed, by definition of 7,7,

P(IX%, 0| =0) = P(X?|=0and t < 72).

x
Xt/\TT?

£0.
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Let IP¥ be defined by :

d]Pw (/t 1 t 2
—n = exp VI X%, e) dW s — —/ ds

and IEY denote the corresponding expectation. By Girsanov Theorem,

(Bf =z+W,—[) VI X nre) du)s<t is a IP}-Brownian motion start-
ing from . Since on t < 7%, X¥ = BY,

VI(X?, )

P(X?|=0and t < 77) <IP(|BY| =0)

dlp
* (1o

= 0. (23)
One can therefore show that | X¥| > 0 on [0,77), where

T* = lim 7% =inf {t > 0,|X7> = b} =inf {t > 0, RY = 0}.

n—oo

Thus, one can write, for ¢ € [0,7%) :

2
dR® = %dt—(2+b)dt+2\/b—R§” dp, (24)
t

where 3; is a Fi-adapted 1-dimensional Brownian motion.
Let us now introduce the stopping time

S® = inf {t > 0,R® ¢ (0,b)}.

We have, P-a.s., S® < T®. We refer here to I. Karatzas and S.E. Shreve’
(see Section 5.5 p. 342-351).
We introduce a scale function p such that :

(£-@40)po)+20- ) =0,

which leads to :
p'(r)=C(b—r)"tr 2

where C' > 0. We have therefore p(b—) = 400 and (b < 2 <= p(0+) >
—00). Using this property of the scale function and the results of I. Karatzas
and S.E. Shreve, one can conclude that :

. if b> 2, then P (S% = +00) =P (T® = +00) =1, (25)
. if b < 2, then P (tli%lm X2 =b) = 1.
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In case b < 2, we can deduce from the second item that S* = T*. We now
want to know whether S* = +00 or not in this case. Let us introduce the
speed measure m on (0,b) defined by

2dr _ ro/2dy

md) = o) 20

and the function v such that, for any r € (0,b),

$b/2

o) = / (p(r) — pls))mlds) = / () —(s) 5 ds.

We have p(b—) = +oo and therefore v(b—) = +o00. In case b < 2, it is
easy to check that v(04) < co. Using again the results of I. Karatzas and
S.E. Shreve, we can deduce from this that in case b < 2, we have

P(5% < o0) = P(T® < o0) = 1. (26)

In case |x| = 0, the former results (25) and (26) still hold. Indeed,
let us suppose that = 0 and let us introduce the stopping time 7 =
inf {t > 0,|X7|? > £}. Obvisouly, one has :

P (3t>0,|X)>=0b)=P (3t >0,|X{|*=band 7 < c0).

In case b > 2, using the strong Markov property of X? (see E. Cépa’
p. 86), one has :

P(3t>0,|X)P=0)=P (3t>0,|X?*=band 7 < c0),
- E (17'<00]P (Elt > 0, |X:tn|2 = b) |m:X—,—) 9
= 0.

In case b < 2, we use the fact that, due to the proof of (23),
P(x?..] = 0 = o. By the strong Markov property and
since P-a.s., sup;cio,1a-] |X?2 < b, we have P (3t >0,|X7)?=0) =
E (P (3t>0,|X?>=b)|a=x,.,) = 1.

In case of a non-deterministic initial condition Xy with law pg, we can
deduce the properties of Proposition 3.1 from the fact that (by uniqueness
of the solution) :

P (3> 0,|X,2=b) = /]P (3t > 0,|X%[2 = b) duo(). 5

2
loc

Remark 3.1. Incase g € L;; (R4 ), what we can conclude is the following :

e if b>2, then IP (3t > 0,|X{|> =b) =0,
e if b <2, then IP (3t > 0,|X{|> =b) > 0.
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3.2. Non-uniqueness in case b < 2

In this section, we suppose b < 2 and IP(|X|? < b) = 1. We restrict our
attention to the case g = 0. We are going to construct another process X,
weak solution to (6) and such that P(3t > 0, X, ¢ B) = 1. In other words,
we will build a solution to (6) which, unlike X, goes out of the ball B.
This will show that (6) admits at least two different solutions.

Let us consider the solution X; to (6) we have built in Section 2. We
know that IP-a.s., the process X; reaches the boundary of B in finite time
(see Proposition 3.1). Let us introduce the stopping time 7" = inf{t >
0,|X,|> > b}. In polar coordinate, we write X7 = (Vb,6) : (X7, Yr) =
(v/bcos(6p), Vbsin(fy)), where 6y € [0,27) denotes the polar angle. We
now want to construct a solution to (6), which takes (Xr,Yr) as initial
value, and lives outside of the ball B. Let us introduce a two-dimensional
standard Brownian motion (3¢,~:) independent of W,;. We use a polar
representation (,/77,6;) of the process we want to build. We consider the
solution r; to the following multivalued SDE :

dry + 0f(re) dt 5 (24 b)dt + 2./redfs, (27)
To = b,
where f: R —] — 00, 4+00] is the convex function defined by :
[ =v*In(r —b)if r > b,
fr) = { +o0 otherwise. (28)

so that df is a simple-valued maximal monotone operator with domain
I = (b,00) (for all r > b, df(r) = {Vf(r)} = {££}). By E. Cépa*, there
exists a unique process r; solution to (27). Following exactly the arguments
of Lemma 2.1, one can show that this process r; is such that :

t
e for any 0 < t < oo, P-a.s., /
0

du < oo, with convention
ry —b

s =+,
o dry = —Z-dt + (2+b) dt + 2,/7edf;.

Let us now consider the process 6; defined by :

t

1
0:0+/—d75, 29
=t [ (29)

and the random process X, in IR? defined by :

X = (/11 cos(8y), /rs sin(6;)) .
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By Ito’s formula, we have :

. 1 X
X = _§ﬁ dt + (— sin(6y), cos(6y))dy: + (cos(8y), sin(6y))dp;.
_ X

Using Paul Lévy characterisation, one
can show that (—sin(6;),cos(6:))dv: + (cos(6:),sin(;))dS; = dB; where
B, is a two-dimensional Brownian motion, independent of W.

Let us now consider Xt defined by Xt = lo<i<7 X + 17X —7 and
the process W, defined by W, = Wiar + lis7Bi_p. It is obvious (for
example by Paul Lévy characterisation) that W, is a Brownian motion.
In addition, the process X; is a solution to (6) with ¢ = 0, such that
P(3t > 0, X; ¢ B) = 1. This shows that the problem (6) with g = 0 does
not admit a unique solution.

Remark 3.2. In case g € L (R, ), using the solution (r¢, ;) of the mul-

loc

tivalued SDE : (rg,600) = (b,6y) and

d(’l"t, Ht) + 8/7,(7“,5, 9,5) dt >
((2+0) +resin(Be)g(t), —sin® (0:)g(t)) dt + (2y/re, 7=)d(Be. ),

where h : R? —] — 00, +-00] is the convex function defined by h(r,8) = f(r)
(see formula (28)), one can by the same arguments prove that there is
non-uniqueness in law for the solutions to (6).

We have summarized in Table 1 some of the results we have obtained
in the last two sections.

b<2. b>2.
Existence. Existence.
P(| X2 =b) =0. ]P(3t20,|Xt|2:b):1. ]P(3t20,|Xt|2:b):0.
Non-uniqueness. Uniqueness.
]P(|X0|2 —b) >0, Exis‘Fence. Exist‘ence.
Non-uniqueness. Non-uniqueness

Table 1.: Properties of solutions to (6) when ¢ = 0. We suppose
P(|Xo|?> < b) = 1. In any case, uniqueness holds for solutions with values
in B according to Proposition 2.2. The terminology uniqueness and non
uniqueness relates to a solution that is not enforced to take values in B.
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4, Invariant probability measure in case g = 0 and b > 2

In this section we are interested in invariant probability measures for the
SDE (6) with g = 0 in case b > 2.

The motivation for this study is twofold. First, since we consider a
fluid which is initially at rest, it is natural from a physical point of view to
choose an invariant probability for the SDE (6) with g = 0 as law for X.
Second, in the analysis of the coupled system (1-3), we are interested in the

X'y
1O o?
b

regularity of the stress 7(t,y) = E which, by Girsanov,

can also be written in the following form :

t t
" ((1#) oo ([ oo, L [ <ayu(8,ym>zds)> ,
T

where X, = (X;,Y;) denotes (as in last section) the solution with values
in B to (6) with g = 0 (see Ref. ). This expression of the stress yields the
following estimate (using Holder inequality) : for almost all y and ¢,

p\ 1/p
XY -1 [t
m(y: 1) < <<1Xtiiy> ) exp (q?b/o (3yu(s,y))2ds) ,
_ Xerv?

9
q—1"
P
It is thus important to estimate the quantities IE <(%> > ,
- XEEe
which is simple if we identify and start under an invariant probability mea-

sure (see formula (31)).

where p =

The density py defined by :

b
exp(~211(z))  b+2 (1 - |w|2> /2 e cs
xT

- [exp(—2Il(z))dz  27b b

po(x) (30)

obviously solves div 4 (—(Vmﬂ)po + %(Vmpo)) = 0 and is therefore a natu-
ral candidate to be invariant. This is indeed the case as shown by :

Proposition 4.1. For b > 2, po(x) dx is the unique invariant probability
measure on B for the SDE (6) with g = 0.

This proposition is a consequence of the following lemma :

Lemma 4.1. Let b > 2. For any x € B, t > 0, the solution X% of the
SDE (6) with g =0 and Xo = x has a density p(t, x,y) with respect to the
Lebesgue measure on B. In addition, ¥t > 0,

(i) dwdy-a.e., exp(=211(z))p(t, 2, y) = exp(=211(y))p(t, y, ),
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(i) Ve € B, dy-a.e., p(t,xz,y) > 0.

Indeed, by (i), one easily checks that po(x)dx is invariant. By (ii), any
invariant probability measure is equivalent to the Lebesgue measure on B
which implies uniqueness (see Proposition 6.1.9 p. 188 of M. Duflo 7).

With Proposition 4.1, it is then straightforward to prove that, if X has
the density po(x), then we have :

P
XY,
E((ﬁ) ><oo<:>b>2(p—1). (31)
_ X

Let us now prove Lemma 4.1.

Proof. In order to prove (i), we regularize the potential II so that the
results of L.C.G. Rogers '? (see p. 161) apply. Let II,, be defined by :

I, () = m(2]?), (32)

b T\ .
—Zln(l—g) 1fr§b(1—%),
Vr+2inm) ifr>b,

Tn(r) =

(33)

and 7, is increasing and C%(IR, R, ), so that VII,, is bounded with con-
tinuous derivatives of first order. Let ¢t > 0 and = € R?. According to
L.C.G. Rogers, the solution X™?® of the SDE :

t
X1 =g / VIL,(X"®)ds + W, (34)
0

has a density p,(t, z,y) with respect to the Lebesgue measure on R? which
satisfies dx dy-a.e., exp(—2IL,(x))p,(t,x,y) = exp(—2IL,(y))pn(t,y,x).
For # € B, let 72 = inf{t>0,[X72>0b(1-1)}. Since
P (X" # X7) <P(r* < t), according to Proposition 3.1,

nan;oP (X" £ XT) =0. (35)
We deduce that for a fixed € B, p,(t,«,y) converges in L%I(]Rz) to
p(t, x,y), which is the density of X7.

As the non-negative potential II,, converges pointwise to II in B, we
deduce that exp(—2IL,(x))p,(t, ¢, y) converges to exp(—2I1(x))p(t, x,y)
in L, (B x B) and conclude that (i) holds.

We are now going to check (ii) for a fixed @ € B and ¢ > 0. Let A be
a Borel subset of B such that f 14dx > 0. We choose n € IN* such that
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lz|> <b(1—2)and [14,dx >0 where 4, = ANB (0, b(1— %)) By
Girsanov Theorem, under IP¥ defined by :
2
ds) ,

d]Pm t 1 t
n = VI(XZ, ). dWg— —
dIP exp <‘/0 ( S/\Tn) 2 ‘/0
is as above, (X7,.s)s<¢ is a Brownian motion starting

VI(XZ,,)

where 77

from « and stopped at the boundary of B (O, b (1 — %)) so that
P® (Xfw € An) > 0. Therefore, P (X € A) > P (Xfmg c An) -
E% (1An (Xf/\fg) %) > 0, which concludes the proof. O
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