
SUPER BROWNIAN MOTION WITH INTERACTION

JEAN-FRANÇOIS DELMAS AND JEAN-STÉPHANE DHERSIN

Abstract. Using an approximating scheme with the Brownian snake, we prove the
existence of solution to a martingale problem for super Brownian motion with interaction.

1. Introduction

Let B(Rd) be the set of real valued measurable functions defined on Rd. Let Mf be

the set of finite measures on Rd, endowed with the topology of the weak convergence. For
µ ∈Mf and ϕ ∈ B(Rd), bounded, we denote (µ, ϕ) =

∫

ϕ(x) µ(dx).
Consider a super Brownian motion X = (Xt, t ≥ 0) started at X0 = µ0 ∈Mf . It is the

unique solution of the martingale problem on Mf : for any bounded C2 function, ϕ, with
bounded derivatives,

X0 = µ0

(Xt, ϕ) = (X0, ϕ) +

∫ t

0
(Xs,

∆

2
ϕ) ds+M(ϕ)t,

where M(ϕ) is a continuous martingale (with respect to the filtration generated by X)
with quadratic variation

〈M(ϕ)〉t = 4

∫ t

0
(Xs, ϕ

2) ds.

Let φ be a C1 function defined on R+, s.t. φ(0) = 0 and φ′(t) > 0 for all t ≥ 0. If
we consider the changed time process Yt = Xφ(t), for t ≥ 0, then it is easy to check that

Y = (Yt, t ≥ 0) is a solution to the martingale problem on Mf : for any bounded C2

function, ϕ, with bounded derivatives,

Y0 = µ0

(Yt, ϕ) = (Y0, ϕ) +

∫ t

0
(Ys, φ

′(s)
∆

2
ϕ) ds+M(ϕ)t,

where M(ϕ) is a continuous martingale with quadratic variation

〈M(ϕ)〉t = 4

∫ t

0
(Ys, φ

′(s)ϕ2) ds.

By using the inverse of the time change φ, in order to recover X from Y , it is clear that
the solution of this martingale problem is unique.

The aim of this paper is to use a random time change procedure to transform the
martingale problem (see [3] chapter 6). We prove in Theorem 1 the existence of solutions
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to the following martingale problem (MP) on Mf : for any bounded C2 function, ϕ, with
bounded derivatives,

Y0 = µ0

(Yt, ϕ) = (Y0, ϕ) +

∫ t

0
(Ys, θ(Ys)A(Ys)ϕ) ds+M(ϕ)t,

where A(µ) is the infinitesimal generator of a diffusion, with diffusion coefficient σ(µ, x)
and drift b(µ, x), and M(ϕ) is a continuous martingale with quadratic variation

〈M(ϕ)〉t = 4

∫ t

0
(Ys, θ(Ys)ϕ

2) ds.

The functions θ, b and σ are bounded continuous functions defined on Mf × Rd taking

values respectively in R,Rd and Rd×d. And the functions θ and σ are positive.
The existence of solutions will be proved by using approximating schemes of the mar-

tingale problem. In fact we prove the tightness of the approximating scheme and that
the limit points are solution to the above martingale problem. Except in very particular
case, we were unable to prove the uniqueness of the limit, as well as the uniqueness of the
solutions to the martingale problem (see [8] p.7 on this last question).

Our approach relies on the Brownian snake representation of the super Brownian mo-
tion.

Roughly speaking, the super Brownian motion, Xt, can be described as the integral
with respect to the local time of the snake lifetime process at level t of terminal points of
underlying paths. Now, using a random time change for each path, we integrate the ter-
minal points of diffusions with respect to the local time of the snake lifetime process along
a random curve instead of a deterministic line. This procedure modifies the underlying
branching tree of the life time process.

The approach differs from Perkins [8, 7], where the interactions was introduced through
a stochastic integral along the paths as well as a different weighting for each path. In
particular, the structure of the underlying branching tree (that is the lifetime process for
the Brownian snake representation) was the same for the superprocess and the interacting
superprocess.

On the other side, Dhersin and Serlet [1], see also Watanabe [11], introduced a change in
the underlying branching tree of the Brownian snake through a killing rate which depends
on the path of the particle. This approach was a first step to introduce interaction in the
underlying branching tree.

2. The approximating scheme

2.1. The Brownian snake. We first recall the Brownian snake representation of the
super Brownian motion.

Let C = C(R+,Rd) be the set of continuous function defined on R+ with values in
Rd. We shall denote by Nx,A[dW ] the excursion measure on C of the Brownian snake

W = (Ws, s ≥ 0) started at x ∈ Rd with underlying process a diffusion with infinitesimal
generator A. We refer to [5] for the definition and properties of the Brownian snake. We
recall that under Nx,A, the law of the lifetime process ζ = (ζs, s ≥ 0) is the law of a positive

excursion of linear Brownian motion. We take the normalization Nx,A[sups≥0 ζs > ε] = 1
2ε .
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Under Nx,A, conditionally on the lifetime process, W is a continuous C-valued Markov

process started at the constant path equal to x ∈ Rd. Conditionally, on the lifetime
process and on (Wu, u ∈ [0, s]), the law of Ws′ , with s

′ ≥ s is as follow: the two paths Ws

and Ws′ coincide up to time m = infu∈[s,s′] ζu, and (Ws′(t+m), t ≥ 0) is a diffusion with
infinitesimal generator A, constant after ζs′ −m, which depends of (Wu, u ∈ [0, s]) only
through its starting point Ws′(m) =Ws(m).

Starting from the Brownian snake W , we can construct a continuous measure valued

process (Xs(W ), s ≥ 0) defined by Xt(W ) =

∫

s≥0
δWs(ζs)dL

t
s, where δy is the Dirac mass

at point y, and Lts is the local time of the lifetime process at level t up to time s. Notice
the integration over s is up to time σ, which is the duration of the excursion ζ under Nx,A.

Let x ∈ Rd and µ0 ∈Mf . And consider the Poisson point measure on C,
∑

i∈I δW i , with

intensity measure

∫

µ0(dx)Nx,A[dW ]. It is well known that the process X = (Xt, t ≥ 0)

defined by X0 = µ0, and

Xt =
∑

i∈I

Xt(W
i)(1)

is the usual superdiffusion started at µ0 with underlying process a diffusion with infinites-
imal generator A and branching mechanism ψ(z) = 2z2.

We intend to replace the local time of the lifetime process at level t, by the local time
along a random curve φ = (φis, s ≥ 0, i ∈ I), where φis ∈ [0,∞]. This curve φ needs to
have particular properties (see also [10] for the definition of the local time along a random
curve). This was already done for φis = φ(W i

s) defined as the first exit time of a domain
D. The random measure associated to this curve is the so called exit measure of D (see
[5]). From this example we expect the following “tree property” to be in force:

If ζis > φis, where ζ
i
s is the lifetime of W i

s, then for all s′ such that infu∈[s,s′] ζ
i
u > φis, we

have φis′ = φis.
It is a natural condition when one deals with the excursion filtration (see also the

definition of identifiable curve in [10]). Furthermore, in order to get the so called special
Markov property, we need that conditionally on what is “below” the curve φ, the excursions
of the snake above the curve φ are distributed according to

∫

Xφ(dx)Nx,A[dW ], where Xφ

is the exit measure of the superdiffusion above level φ. This will be stated precisely in
property (B).

Eventually we will define for each t a random curve φ(t) and the corresponding exit

measure Xφ
t in such a way that Xφ

t solves the martingale problem (MP).
The random time change will formally be given by the following equations:

• Stochastic differential equation and time change for the path W i
s of the Brownian

snake W i:

dtV
i
s (t) = σ(Yt, V

i
s (t))dtW

i
s(φ

i
s(t)) + b(Yt, V

i
s (t))dtφ

i
s(t).(2)

• Differential equation for the time change at time t:

dtφ
i
s(t) = θ(Yt, V

i
s (t))dt for φis(t) ≤ ζis.(3)
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• Definition of the random measure Yt:

Yt =
∑

i∈I

∫ ∞

0
δV i

s (t)
dsL

φis(t),i
s ,(4)

where Lφ·,i
· is the “local time” of the lifetime of process of W i on the random curve

φ.

Notice that in general, the function s 7→ φis(t) is not adapted to the filtration (F i
s =

σ(W i
u, u ≤ s), s ≥ 0) generated by the snake, because the measure Yt take into account

path W i
s′ for s

′ ≥ s.
We will present a discrete version of those equations and prove that X ε, the discrete

versions of Y , are tight and that any limit is solution to the martingale problem (MP).
We are now ready to present our approximating scheme.

2.2. The approximating scheme. Let θ, b and σ be bounded continuous functions de-
fined on Mf × Rd taking values respectively in R,Rd and Rd×d. We also assume the

functions θ and σ are positive. Let µ′ ∈Mf and x′ ∈ Rd. We will denote by A(µ′, x′) the
infinitesimal generator of the d-dimensional Brownian motion with constant drift b(µ′, x′)
and constant diffusion coefficient σ(µ′, x′).

Let µ0 ∈ Mf . We consider the Poisson point measure on Rd × C,
∑

i∈I δ(xi,W i), with

intensity measure µ0(dx)N0,∆
2

[dW ]. For i ∈ I, let σi be the duration of the lifetime process

of the snake W i. Recall W i
s is the path at time s of the snake W i.

Let ε > 0. We define by induction at time kε with k ∈ N, the random time change

φε = ((φi,εs (kε), s ≥ 0, i ∈ I), k ∈ N), the starting point V = ((V i
s (kε), s ≥ 0, i ∈ I), k ∈ N),

the random measure Xε = (Xε
kε, k ∈ N) and the filtration Gε = (Gεkε, k ∈ N) such that the

following hypothesis (A) and (B) are in force.

(A) φi,ε(kε) enjoys the “tree property”. And for all i ∈ I, the sets {s ∈ [0, σi] ; φi,εs (kε) <
ζis} are open.

The sets {s ∈ [0, σi] ; φi,εs (kε) < ζis} can be described as the union of the open non
overlapping intervals (ai,jk , bi,jk) for jk ∈ J ik, where the set J ik is possibly empty. We
assume the family of indices J il are non overlapping for i ∈ I, 0 ≤ l ≤ k. Notice that
from property (A), φi,ε(kε) is constant over each interval (ai,jk , bi,jk). For i ∈ I, jk ∈ Jk,
s ∈ [ai,jk , bi,jk ], we consider the increments of the paths of the Brownian snake after time
φi,ε(kε):

W̄ i,jk
s (u) =W i

s(u+ φi,εs (kε))−W i
s(φ

i,ε
s (kε)).(5)

And for i ∈ I, jk ∈ J ik, we define the snake excursions W̄ i,jk = (W̄ i,jk
s , s ∈ [ai,jk , bi,jk ]).

Let κik(s) = inf{r ≥ 0;
∫ r
0 du 1

{φi,εu (kε)≥ζiu}
> s}, the inverse of the time spent under

φi,ε(kε) by the life time of the snake W i. We define the snake W i;κi
k = (W i

κi
k
(s)
, s ≥ 0)

and the σ-field Gεkε generated by (W i;κik , i ∈ I). Roughly speaking, Gεkε represent all the
information available on the Brownian snake up to level φi,ε(kε).

(B) The random measure Xε
kε is Gεkε-measurable. The function V i

· (kε) is constant over
each excursion interval (ai,jk , bi,jk), and let V i,jk(kε) be its value. Conditionally
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on Gεkε, the measure
∑

i∈I,jk∈J
i
k

δ(V i,jk ,W̄ i,jk ) is a Poisson point measure with intensity

Xε
kε(dx) N0,∆

2

[dW ].

For k = 0, we set for i ∈ I, s ∈ [0, σi]:

• the time change: φi,εs (0) = 0,
• the measure: Xε

0 = µ0,
• the starting point: V i

s (0) = xi,
• the tribe: Gε0 = σ(Xε

0 , V
i
s (0); s ≥ 0, i ∈ I),

• the excursion intervals: (ai,j0 , bi,j0) = (0, σi), where j0 ∈ J i0 = {i},
• the transformed snake above level φi,εs (0): for i ∈ I, j0 ∈ J i0, we set U i,j0 = (U i,j0

s , s ∈
[ai,j0 , bi,j0 ]), where for s ∈ [ai,j0 , bi,j0 ], u ≥ 0,

U i,j0
s (u) = V i

s (0) + σ(Xε
0 , V

i
s (0))W

i
s(u) + b(Xε

0 , V
i
s (0))u.

Notice that conditionally on Gε0,
∑

i∈I,j0∈Ji0
δU i,j0 is a Poisson point measure with inten-

sity
∫

µ0(dx) Nx,A(µ0,x)[dW ], with µ0 = Xε
0 . Notice also that properties (A) and (B) are

in force for k = 0.

Let k ≥ 0. Assume φi,ε(kε), Xφ
kε, V

i(kε) are built in such a way that properties

(A) and (B) are satisfied. Let us now built φi,ε((k + 1)ε), Xφ
(k+1)ε, V

i((k + 1)ε) and

check the properties (A) and (B) are in force if k is replaced by k + 1. We set for
s ∈ [ai,jk , bi,jk ], i ∈ I, jk ∈ J ik,

φi,εs ((k + 1)ε) = φi,εs (kε) + θ(Xε
kε, V

i
s (kε)) ε,

and φi,εs ((k + 1)ε) = +∞ if s 6∈ [ai,jk , bi,jk ] for any i ∈ I, jk ∈ J ik. This equation is the
discrete version of (3).

Notice that on each interval [ai,jk , bi,jk ], φi,ε((k+1)ε) is constant, and that outside those

intervals φi,εs ((k+1)ε) = +∞ > ζ is. Therefore property (A) is true for k replaced by k+1.
We then describe the transformed snake U i,jk and built the random measure X(k+1)ε.

We set for i ∈ I, jk ∈ Jk, s ∈ [ai,jk , bi,jk ], u ≥ 0,

U i,jk
s (u) = V i

s (kε) + σ(Xε
kε, V

i
s (kε))W̄

i,jk
s (u) + b(Xε

kε, V
i
s (kε))u.(6)

And for i ∈ I, j ∈ J ik, we define the snake excursions U i,jk = (U i,jk
s , s ∈ [ai,jk , bi,jk ]). From

property (B), we deduce that the measure
∑

i∈I,jk∈J
i
k
δU i,jk is a Poisson point measure

with intensity
∫

Nx,A(µ,x)[dW ] µ(dx), where µ = Xε
kε.

Considering the snake excursion U i,jk , we define using (1) for u > 0, the random
measures

X̃i,jk
u = Xu(U

i,jk).(7)

For jk ∈ J ik, (X̃
i,jk
u , u ≥ 0) is distributed, conditionally on Gεkε, according to (Xs(W ), s ≥ 0)

under Nx,A(µ,x)[dW ], with x = V i
ai,jk

(kε) and µ = Xε
kε.
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Recall that on each interval [ai,jk , bi,jk ], φi,ε· ((k+ 1)ε), φi,ε· (kε) and V i
· (kε) are constant

and Gεkε-measurable. In particular the random measure

Xi,jk
(k+1)ε = X̃i,jk

uk
= Xuk(U

i,jk),(8)

where

uk = φi,ε· ((k + 1)ε)− φi,ε· (kε) = εθ(Xε
kε, V

i
· (kε)),(9)

is well define.
From the special Markov property of the Brownian snake (see for example [6]), we get

that X i,jk
(k+1)ε is measurable with respect to the σ-field generated by Gεkε and by (W̄ i,jk

κ(s), s ≥
0), where κ(s) = inf{r ∈ [ai,jk , bi,jk ];

∫ r
ai,jk du 1

{φi,εu ((k+1)ε)≥ζiu}
> s} (the inverse of the

time spent under φi,ε((k + 1)ε) by the snake W̄ i,jk). In particular it is measurable with
respect to Gε(k+1)ε which is defined as Gεkε with k replaced by (k + 1). If we define

Xε
(k+1)ε =

∑

i∈I,jk∈Jk

Xi,jk
(k+1)ε,(10)

it is clear that the first sentence of property (B) is true for k replaced by k + 1. Notice
the above definition is the discrete version of (4).

To prove the second part, we have to define the functions V i((k+1)ε). Let us consider
the excursions of the Brownian snake above level φ·,ε· ((k + 1)ε). We focus on the snake

W̄ i,jk . The set {s ∈ (ai,jk , bi,jk) ; φi,εs ((k + 1)ε) < ζ is} is open. It is the union of the

open non overlapping intervals (ai,jk+1 , bi,jk+1) for jk+1 ∈ J i,jkk+1, where the set of indices

J i,jkk+1 is possibly empty. Recall φi,εs ((k + 1)ε) and φi,εs (kε) are constant functions over

(ai,jk+1 , bi,jk+1). Using uk defined in (9), we define for s ∈ [ai,jk+1 , bi,jk+1 ], u ≥ 0,

W̄
i,jk+1
s (u) = W̄ i,jk

s (u+ uk)− W̄ i,jk
s (uk)

=W i
s(u+ φi,εs ((k + 1)ε))−W i

s(φ
i,ε
s ((k + 1)ε)).

Define for jk+1 ∈ J i,jkk+1 the snakes W̄ i,jk+1 = (W̄
i,jk+1
s , s ∈ [ai,jk+1 , bi,jk+1 ]). This last

formula coincides with definition (5), with k replaced by k + 1. And we set using (6)

V i
s ((k + 1)ε) = U i,jk

s (uk)

= V i
s (kε) + σ(Xε

kε, V
i
s (kε))[W

i
s(φ

i,ε
s ((k + 1)ε))−W i

s(φ
i,ε
s (kε))]

+ b(Xε
kε, V

i
s (kε))[φ

i,ε
s ((k + 1)ε)− φi,εs (kε)].

The above definition is the discrete version of (2).
Notice the function V i

· ((k+1)ε) is constant over each excursion interval [ai,jk+1 , bi,jk+1 ],
and let V i,jk+1((k + 1)ε) be its value. This proves the second sentence of property (B),
with k replaced by k + 1.

Again from the special Markov property of the Brownian snake, the random measure
∑

jk+1∈J
i,jk
k+1

δ(V i,jk+1 ((k+1)ε),W̄ i,jk+1 ) is, conditionally on the σ-field Gε(k+1)ε, distributed accord-

ing to a Poisson point measure with intensity X i,jk
(k+1)ε(dx) N0,∆

2

[dW ].
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Let J ik+1 =
⋃

jk∈J
i
k
J i,jkk+1. Since Xε

(k+1)ε =
∑

i∈I,jk∈Jk
Xi,jk

(k+1)ε, we then deduce that the

random measure
∑

i∈I

∑

jk+1∈J
i
k+1

δ(V i,jk+1 ((k+1)ε),W̄ i,jk+1 )

is, conditionally on the σ-field Gε(k+1)ε, distributed according to a Poisson point measure

with intensity Xε
(k+1)ε(dx) N0,∆

2

[dW ]. Hence property (B) is fulfilled for k replaced by

k + 1.

2.3. Results. Let Xε = (Xε
t , t ≥ 0) be the right continuous step function which is the

extension of (Xε
kε, k ∈ N). Let D = D(R+,Mf ) be the Polish space of càdlàg paths

from R+ to Mf , with the Skorokhod topology. Let θ, b and σ be bounded continuous

functions defined on Mf × Rd taking values respectively in R,Rd and Rd×d. We also
assume the functions θ and σ are positive. We write A(µ) for the infinitesimal generator
of the d-dimensional diffusion with drift b(µ, ·) and diffusion coefficient σ(µ, ·) (µ ∈Mf ).

Theorem 1. The family of law of Xε, for ε ∈ (0, 1] is C-tight in D as ε decreases to
0. Any limiting measure valued process Y = (Yt, t ≥ 0) satisfies the martingale problem
(MP): for any bounded C2 function, ϕ, with bounded derivatives,

Y0 = µ0

(Yt, ϕ) = (Y0, ϕ) +

∫ t

0
(Ys, θ(Ys)A(Ys)ϕ) ds+M(ϕ)t,(11)

where M(ϕ) is a continuous martingale with quadratic variation

〈M(ϕ)〉t =
∫ t

0
(Ys, θ(Ys)ϕ

2) ds.

Furthermore any limiting measure valued process Y has a continuous version.

We will follow an idea due to Perkins [9] to prove this theorem.
Unfortunately, we were unable to prove the uniqueness of the martingale problem, even

for the historical process (see in [8] why it is more convenient to look at the historical
processes for uniqueness to martingale problem). Uniqueness is trivially proved in the
very particular cases of the next two remarks, where in fact the interaction disappears.

Remark. The particular case σ = σ(x), b = b(x) and θ = θ(x) with the additional
condition θ(x) ≥ θ0 > 0 correspond to the usual super process with underlying process a
diffusion with diffusion coefficient σ(x) and drift b(x), and branching mechanism 2θ(x)z2

(see [2]). In this case the martingale problem (MP) has a unique solution.

Remark. One can also consider the other particular case σ = σ(x), b = b(x) and θ = θ(µ)
with the additional condition θ(µ) ≥ θ0 > 0. Then we consider the super process X with
underlying process a diffusion coefficient σ(x) and drift b(x) and branching mechanism 2z2.

We define the continuous additive functional of X by : Qt =

∫ t

0

du

θ(Xu)
and its continuous

inverse Rt = Q−1
t . It is the easy to check that the process Y = (Yt = XRt , t ≥ 0)

is solution to the martingale problem (MP). To prove the solution of (MP) is unique,

consider Ỹ an other solution to (MP). Set Rt =
∫ t
0 θ(Ỹu) du and consider its continuous
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inverse Q̃t = R̃−1
t . It is then easy to check that the process X̃ = (X̃t = ỸQ̃t

, t ≥ 0) is

solution to the martingale problem (MP) with θ = 1. Since this martingale problem has

a unique solution, we get that X and X̃ are equally distributed. And so Y and Ỹ have
the same law. In this case the martingale problem has also a unique solution in law.

3. Intermediate results

Before giving the proof of Theorem 1, we set 5 lemmas. Let c denote a constant which
may vary from line to line. For t ∈ [0,+∞) we set [t] the unique integer such that [t] ≤
t < [t] + 1. For f ∈ B(Rd) we will consider the following norms: ‖f ‖∞ = supx∈Rd |f(x)|,

‖f ‖Lip = sup
x,y∈Rd;x6=y

|f(x)− f(y)|
|x− y| ,

as well as for ϕ ∈ C2,

‖ϕ‖∗ = ‖ϕ‖Lip +
d
∑

l=1

(

‖ ∂ϕ
∂xl

‖
∞
+ ‖ ∂ϕ

∂xl
‖
Lip

+
d
∑

k=1

(

‖ ∂2ϕ

∂xl∂xk
‖
∞
+ ‖ ∂2ϕ

∂xl∂xk
‖
Lip

)

)

.

Let ϕ be a C2 real function defined on Rd, bounded with bounded Lipschitz derivatives.
Let T > 0 be fixed.

We want to use the structure of the snake excursion U i,jk (see (6)) to express (X i,jk
kε , ϕ)

as a sum of martingales and a process of finite variation. Recall the functions φi,ε· (kε),

φi,ε· ((k+1)ε) as well as V i
· (kε) are constant on the time indices where the excursion U i,jk

is defined. We set for i ∈ I, jk ∈ J ik,

∆M i,jk(ϕ) = (X i,jk
(k+1)ε, ϕ)−

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , A(Xε
kε, V

i
· (kε))ϕ) du,

where X̃i,jk has been defined in (7). And now we define what will be a Gε-martingale:
M(ϕ)0 = 0 and for k ≥ 0,

M(ϕ)(k+1)ε =M(ϕ)kε − (Xε
kε, ϕ) +

∑

i∈I,jk∈J
i
k

∆M i,jk(ϕ).

In particular we have

(12) (Xε
(k+1)ε, ϕ)−M(ϕ)(k+1)ε = (Xε

kε, ϕ)−M(ϕ)kε

+
∑

i∈I,jk∈J
i
k

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , A(Xε
kε, V

i
· (kε))ϕ) du.

We rewrite this as

(Xε
(k+1)ε, ϕ) = (Xε

kε, ϕ) +M(ϕ)(k+1)ε −M(ϕ)kε + ε(Xε
kε, θ(X

ε
kε)A(X

ε
kε)ϕ) + ηεk+1,(13)

where

ηεk+1 =
∑

i∈I,jk∈J
i
k

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , A(Xε
kε, V

i
· (kε))ϕ) du− ε(Xε

kε, θ(X
ε
kε)A(X

ε
kε)ϕ).(14)
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From (9), and property (B), we get that uk is Gεkε-measurable. Since
∑

i∈I,jk∈J
i
k
δU i,jk

is conditionally on Gεkε distributed according to a Poisson point measure with intensity
∫

Xε
kε(dx)Nx,A(Xε

kε
,x)[dW ], we get from the definition of Xε

(k+1)ε, formula (8) and (10),

that

E[(Xε
(k+1)ε, ϕ)|Gεkε] =

∫

µ(dx)Nx,A(µ,x)[(Xεθ(µ,x), ϕ)],(15)

with µ = Xε
kε.

Lemma 2. The process ((Xε
kε,1), k ∈ N) is an L2 Gεkε-martingale. Moreover, we have :

E[ sup
k≤T/ε

(Xε
kε,1)

2] ≤ 4T ‖θ‖∞(µ0,1) + 4 (µ0,1)
2.(16)

Proof. We use the notation µ = Xε
kε. From (15), we get

E[(Xε
(k+1)ε,1)|Gεkε] =

∫

µ(dx) Nx,A(µ,x)[(Xεθ(µ,x),1)] = (µ,1).

Hence the process ((Xε
kε,1), k ∈ N) is a nonnegative Gεkε-martingale. Using the second

moment formula for Poisson point measure and (35), we get

E[(Xε
(k+1)ε,1)

2|Gεkε] = (µ,1)2 +

∫

µ(dx) Nx,A(µ,x)[(Xεθ(µ,x),1)
2]

= (µ,1)2 + 4

∫

µ(dx) εθ(µ, x).

We set Mk = (Xε
kε,1). We deduce from the previous equality that

〈M〉k+1 − 〈M〉k = E[(Xε
(k+1)ε,1)

2 − (Xε
kε,1)

2|Gεkε]

= 4

∫

µ(dx) εθ(µ, x)

≤ 4 ε ‖θ‖∞(Xε
kε,1).

Hence, we have

E[〈M〉k] ≤ 4 ε ‖θ‖∞
k−1
∑

l=0

E[(Xε
lε,1)] ≤ 4 kε ‖θ‖∞(µ0,1).

Using Doob’s inequality for N ∈ N, we get

E[ sup
k≤T/ε

(Xε
kε,1)

2] ≤ 4E[(Xε
[T/ε]ε,1)

2]

= 4E[〈M〉[T/ε]ε] + 4(µ0, 1)
2

≤ 4T ‖θ‖∞(µ0,1) + 4 (µ0,1)
2.

Lemma 3. The process (M(ϕ)kε, k ∈ N) is an L2 Gεkε-martingale. We also have:

1. For k ≤ T/ε,

E[(M(ϕ)(k+1)ε −M(ϕ)kε)
2|Gεkε] ≤ c ε ‖ϕ‖2∞ sup

l≤T/ε
(Xε

lε,1),(17)
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and

E[(M(ϕ)(k+1)ε −M(ϕ)kε)
4|Gεkε] ≤ c ε2 ‖ϕ‖4∞(1 + sup

l≤T/ε
(Xε

lε,1)
2),(18)

where the constant c is independent of ϕ, k and ε.
2. For t = kε, s = lε, where l, k ∈ N, and 0 ≤ s ≤ t ≤ T ,

〈M(ϕ)〉t − 〈M(ϕ)〉s ≤ c(t− s) ‖ϕ‖2∞ sup
k′≤T/ε

(Xε
k′ε,1),(19)

where the constant c is independent of ϕ, t, s and ε.
3. We have

E[〈M(ϕ)〉2[T/ε]ε] ≤ c T 2 ‖ϕ‖4∞,(20)

where the constant c is independent of ϕ and ε.

Proof. We still use the notation µ = Xε
kε.

From (13), it is easy to prove by induction that M(ϕ)kε is integrable. Let us now prove

that (M(ϕ)k, k ∈ N) is a martingale. From (12), using (7) the definition of X̃i,jk , the
fact that

∑

i∈I,jk∈J
i
k
δU i,jk is conditionally on Gεkε distributed according to a Poisson point

measure with intensity
∫

µ(dx)Nx,A(µ,x)[dW ] and eventually (15) we get

E[M(ϕ)(k+1)ε −M(ϕ)kε|Gεkε]

= E[(Xε
(k+1)ε, ϕ)|Gεkε]− (µ, ϕ)− E[

∑

i∈I,jk∈J
i
k

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , A(Xε
kε, V

i
· (kε))ϕ) du|Gεkε]

=

∫

µ(dx) Nx,A(µ,x)[(Xεθ(µ,x), ϕ)]− (µ, ϕ)−
∫

µ(dx) Nx,A(µ,x)[

∫ εθ(x,µ)

0
du (Xu, A(µ, x)ϕ)]

=

∫

µ(dx)

(

Ex[ϕ(Zεθ(x,µ))− ϕ(x)−
∫ εθ(x,µ)

0
du A(µ, x)ϕ(Zu)]

)

= 0.

For the third equality, we introduced the process (Zs, s ≥ 0) which is under Ex a diffusion
with infinitesimal generator A(µ, x) started at point x, and we used the first moment
formula (33) for the Brownian snake.

Hence (M(ϕ)kε, k ∈ N) is a martingale.
1. Let us now compute E[(M(ϕ)(k+1)ε −M(ϕ)kε)

p|Gεkε] for p = 2, 4. We have

E[(M(ϕ)(k+1)ε−M(ϕ)kε)
p|Gεkε](21)

= E[((µ, ϕ)−
∑

i∈I,jk∈J
i
k

∆M i,jk(ϕ))p|Gεkε]

=

p
∑

m=0

(−1)mCm
p (µ, ϕ)p−mE[(

∑

i∈I,jk∈J
i
k

∆M i,jk(ϕ))m|Gεkε],

with

∆M i,jk(ϕ) = (X i,jk
(k+1)ε, ϕ)−

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , A(Xε
kε, V

i
· (kε))ϕ) du.
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First of all, let us compute the Laplace transform

A = E



exp−







λ
∑

i∈I,jk∈J
i
k

(

(X i,jk
(k+1)ε, ϕ) +

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
du (X̃i,jk

u , ψ(V i
· (kε), ·))

)







∣

∣

∣

∣

∣

Gεkε





(22)

where ϕ and ψ are non negative bounded measurable functions defined respectively on Rd

and Rd×Rd, and λ ≥ 0. Using the Laplace transform for Poisson point measure, we have

A = exp−
∫

µ(dx) Nx,A(µ,x)[1− exp−λ((Xεθ(µ,x), ϕ) +

∫ εθ(µ,x)

0
du (Xu, ψ(x, ·)))].

Let us introduce (Pt, t ≥ 0) the transition kernel of the diffusion with infinitesimal
generator A(µ, x0) for x0 ∈ Rd fixed. If we define

vλ,x0(t, x) = Nx,A(µ,x0)[1− exp−λ((Xt, ϕ) +

∫ t

0
du (Xu, ψ(x0, ·)))],

then vλ,x0 solves the equation

vλ,x0(t, x) + 2

∫ t

0
Pt−s(vλ,x0(s)

2)(x) ds = λNx,A(µ,x0)[(Xt, ϕ) +

∫ t

0
du (Xu, ψ(x0, ·))].

For λ small enough, the function vλ,x0 can be developed as a power series in λ. In particular

vλ,x0(t, x) = λα1,x0(t, x) + λ2α2,x0(t, x) + λ3α3,x0(t, x) + λ4α4,x0(t, x) + λ5gλ,x0(t, x),

where g is uniformly bounded in (t, x, x0, λ) ∈ [0, T ]×Rd×Rd× [0, 1]. Using the previous
integral equation, we have

α1,x0(t, x) = Nx,A(µ,x0)[(Xt, ϕ) +

∫ t

0
du(Xu, ψ(x0, ·))],

α2,x0(t, x) = −2
∫ t

0
Pt−s(α1,x0(s)

2)(x) ds,

α3,x0(t, x) = −4
∫ t

0
Pt−s(α1,x0(s)α2,x0(s))(x) ds,

α4,x0(t, x) = −2
∫ t

0
Pt−s(α2,x0(s)

2 + 2α1,x0(s)α3,x0(s))(x) ds.

So we have, with the notation αi = αi,·(εθ(µ, ·), ·),

A =exp−
∫

µ(dx) Nx,A(µ,x)

[

1− exp[−λ((Xt, ϕ) +

∫ t

0
du(Xu, ψ(x, ·)))]

]

=1− λ(µ, α1) + λ2
[

−(µ, α2) +
1

2
(µ, α1)

2

]

+ λ3
[

−(µ, α3) + (µ, α2)(µ, α1)−
1

6
(µ, α1)

3

]

+ λ4
[

−(µ, α4) + (µ, α3)(µ, α1) +
1

2
(µ, α2)

2 − 1

2
(µ, α2)(µ, α1)

2 +
1

24
(µ, α1)

4

]

+ o(λ4).
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We deduce from (22) that

E[(
∑

i∈I,jk∈J
i
k

Xi,jk
(k+1)ε, ϕ) +

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , ψ(V i
· (kε), ·)) du|Gεkε] = (µ, α1),

E[(
∑

i∈I,jk∈J
i
k

Xi,jk
(k+1)ε, ϕ) +

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , ψ(V i
· (kε), ·)) du)2|Gεkε](23)

= (µ, α1)
2 − 2(µ, α2),

E[(
∑

i∈I,jk∈J
i
k

Xi,jk
(k+1)ε, ϕ) +

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , ψ(V i
· (kε), ·)) du)3|Gεkε]

= (µ, α1)
3 − 6(µ, α1)(µ, α2) + 6(µ, α3),

E[(
∑

i∈I,jk∈J
i
k

Xi,jk
(k+1)ε, ϕ) +

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , ψ(V i
· (kε), ·)) du)4|Gεkε]

= (µ, α1)
4 − 12(µ, α1)

2(µ, α2) + 12(µ, α2)
2 + 24(µ, α1)(µ, α3)− 24(µ, α4).

Using a polarization argument, we have the same result for any bounded measurable
function ϕ and ψ. In particular, we can take ψ(x0, ·) = A(µ, x0)ϕ. Moreover, in that case,

α1,x0(t, x) = Nx,A(µ,x0)[(Xt, ϕ) +

∫ t

0
du (Xu, ψ(x0, ·))]

= Ex[ϕ(Zt)−
∫ t

0
A(µ, x0)ϕ(Zs) ds]

= ϕ(x),

where (Zt, t ≥ 0) is a diffusion with infinitesimal generator A(µ, x0) started at x.
We also have upper bounds for the others αi :

|α2,x0(t, x)| =
∣

∣

∣

∣

−2
∫ t

0
Pt−s(α1,x0(s)

2)(x) ds

∣

∣

∣

∣

≤ 2t ‖ϕ‖2∞

|α3,x0(t, x)| =
∣

∣

∣

∣

−4
∫ t

0
Pt−s(α1,x0(s)α2,x0(s))(x) ds

∣

∣

∣

∣

≤ 4t2 ‖ϕ‖3∞

|α4,x0(t, x)| =
∣

∣

∣

∣

−2
∫ t

0
Pt−s(α2,x0(s)

2 + 2α1,x0(s)α3,x0(s))(x) ds

∣

∣

∣

∣

≤ 8t3 ‖ϕ‖4∞ .

Since θ is bounded from above, we get using the previous computations and formula (21)

E[(M(ϕ)(k+1)ε −M(ϕ)kε)
2|Gεkε] = −2(µ, α2)(24)

≤ cε(µ, 1) ‖ϕ‖2∞
≤ c ε ‖ϕ‖2∞ sup

l≤T/ε
(Xε

lε,1),
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and

E[(M(ϕ)(k+1)ε −M(ϕ)kε)
4|Gεkε] = 12(µ, α2)

2 − 24(µ, α4)

≤ c ε2 ‖ϕ‖4∞( sup
l≤T/ε

(Xε
lε,1)

2 + sup
l≤T/ε

(Xε
lε,1))

≤ c ε2 ‖ϕ‖4∞(1 + sup
l≤T/ε

(Xε
lε,1)

2).

2. It is a direct consequence of (17).
3. Recall c denotes a constant which value may vary from line to line. From (19), we
deduce that

E[〈M(ϕ)〉2kε] ≤ cε2k2 ‖ϕ‖4∞ E[ sup
k≤T/ε

(Xε
kε,1)

2]

≤ cε2k2 ‖ϕ‖4∞(T (µ0,1) + (µ0,1)
2),

where we used (16). We deduce (20).

Recall the definition of ηεk:

ηεk+1 =
∑

i∈I,jk∈J
i
k

∫ φi,ε· ((k+1)ε)

φi,ε· (kε)
(X̃i,jk

u , A(Xε
kε, V

i
· (kε))ϕ) du− ε(Xε

kε, θ(X
ε
kε)A(X

ε
kε)ϕ).

Lemma 4. We have the convergence of sup0≤l≤[T/ε]

∣

∣

∣

∑l
k=1 η

ε
k

∣

∣

∣
to 0 in L1 as ε decreases

to 0.

Proof. We still use the notation µ = Xε
kε. We first prove that E[(ηεk+1)

2|Gεkε] can be

bounded from above by cε3(1+ (µ,1)2). Using (23) with ϕ = 0 and ψ(x, ·) = A(µ, x)ϕ(·),
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we have

E[(ηεk+1)
2|Gεkε]

=(µ, α1)
2 − 2(µ, α2) + ε2

(
∫

µ(dx) θ(µ, x)A(µ, x)ϕ(x)

)2

− 2ε(µ, α1)

∫

µ(dx) θ(µ, x)A(µ, x)ϕ(x)

=

∫

µ(dx) Nx,A(µ,x)[(

∫ εθ(µ,x)

0
du (Xu, A(µ, x)ϕ))

2]

+

(

∫

µ(dx) Nx,A(µ,x)[

∫ εθ(µ,x)

0
du (Xu, A(µ, x)ϕ)]

)2

+ ε2
(
∫

µ(dx) θ(µ, x)A(µ, x)ϕ(x)

)2

− 2ε

∫

µ(dx) θ(µ, x)A(µ, x)ϕ(x)

∫

µ(dx′) Nx′,A(µ,x′)[

∫ εθ(µ,x′)

0
du (Xu, A(µ, x

′)ϕ)]

=2

∫

µ(dx)

∫ εθ(µ,x)

0
du

∫ u

0
dv Nx,A(µ,x)[(Xv, A(µ, x)ϕ)(Xv,Pu−v(A(µ, x)ϕ))]

+

(

∫

µ(dx)

∫ εθ(µ,x)

0
du [Pu(A(µ, x)ϕ)−A(µ, x)ϕ]

)2

,

where we used (33) and (34) to compute the first and second moment of the super diffusion
under N, with the notation (Pu, u ≥ 0) for the transition semi-group with infinitesimal
generator A(µ, x). We deduce from (35) that

Nx,A(µ,x)[(Xv, A(µ, x)ϕ)(Xv,Pu−v(A(µ, x)ϕ))] ≤ c ‖ϕ‖2∗ v,
where c depends on θ, b and σ. Since the coefficients of A(µ, x) are uniformly bounded,
we deduce that for 0 ≤ u ≤ ‖θ‖∞,

‖Pu(A(µ, x)ϕ)−A(µ, x)ϕ‖∞ ≤ c ‖ϕ‖∗
√
u.

We get that for ε ∈ (0, 1],

E[(ηεk+1)
2|Gεkε] ≤ cε3(µ,1) ‖ϕ‖2∗+cε3(µ,1)2 ‖ϕ‖

2
∗ .

In particular we have for ε ∈ (0, 1],

E[
∣

∣ηεk+1

∣

∣ |Gεkε] ≤ E[(ηεk+1)
2|Gεkε]1/2 ≤ cε3/2 ‖ϕ‖∗((Xε

kε,1) + 1),

where the constant c depends only on the bounds of θ, b and σ. Therefore we deduce that
for T > 0,

E[
[T/ε]
∑

k=1

|ηk|] ≤ c
√
εT ‖ϕ‖∗(1 + E[ sup

0≤k≤[T/ε]
(Xε

kε,1)]).
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From Lemma 2, we deduce that

E[
[T/ε]
∑

k=1

|ηk|] ≤ c
√
εT (1 + T ) ‖ϕ‖∗,(25)

where c depends only on the bounds of θ, b and σ. Therefore we have the convergence of

sup0≤l≤[T/ε]

∣

∣

∣

∑l
k=1 ηk

∣

∣

∣
to 0 in L1 as ε decreases to 0.

Lemma 5. We have

〈M(ϕ)〉(k+1)ε = 〈M(ϕ)〉kε + 4ε(Xε
kε, θ(X

ε
kε)ϕ

2) + κk,

where
∑[T/ε]

k=0 κk converge in L2 to 0 as ε decreases to 0.

Proof. We still write µ for Xε
kε. Recall from (24) that

〈M(ϕ)〉(k+1)ε − 〈M(ϕ)〉kε = 4

∫

µ(dx)

∫ εθ(µ,x)

0
ds Ex[ϕ(Zs)

2],

where (Zs, s ≥ 0) is under Ex a diffusion with infinitesimal generator A(µ, x) started at
point x. In particular, for s ∈ [0, ‖θ‖∞],

Ex[
∣

∣ϕ(Zs)
2 − ϕ(Z0)

2
∣

∣] ≤ 2 ‖ϕ‖∞ ‖ϕ‖Lip Ex[|Zs − Z0|]
≤ c ‖ϕ‖∞ ‖ϕ‖∗

√
s,

where the constant c depends only on θ, b, σ and T . Therefore, we have for ε ∈ (0, 1],

|κk| ≤ 4

∫

µ(dx)

∫ εθ(µ,x)

0
ds Ex[

∣

∣ϕ(Zs)
2 − ϕ(Z0)

2
∣

∣]

≤ cε3/2 ‖ϕ‖∞ ‖ϕ‖∗(µ,1),
We deduce that for T ≥ 0, ε ∈ (0, 1],

[T/ε]
∑

k=0

|κk| ≤ c
√
εT ‖ϕ‖∞ ‖ϕ‖∗ sup

0≤k≤[T/ε]
(Xε

kε,1).(26)

We deduce from Lemma 2, that
∑[T/ε]

k=0 κk converges to 0 in L2 as ε decreases to 0.

Lemma 6. For every ρ, T > 0, there is a compact set Kρ,T in Rd such that

sup
0<ε≤1

P( sup
0≤k≤T/ε

(Xε
kε,1Kc

ρ,T
) > ρ) < ρ.

Proof. Let BR denote the centered ball of Rd with radius R. Let g be a non negative
function of class C2 with bounded Lipschitz derivatives, defined on Rd such that g = 0
on B1, and g = 1 outside B2. Set gR(x) = g(x/R), with R ≥ 1. We want to check that
E[sup0≤k≤[T/ε](X

ε
kε, gR)] converges to 0 as R increases to ∞ uniformly in ε ∈ (0, 1]. From

(Xε
kε, gR) =M(gR)kε +

k
∑

l=1

ηl + ε
k
∑

l=1

(Xε
lε, θ(X

ε
lε)A(X

ε
lε)gR),
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we deduce that

sup
0≤k≤[T/ε]

(Xε
kε, gR) ≤ sup

0≤k≤[T/ε]
M(gR)kε +

[T/ε]
∑

k=1

|ηk|+c
T

R
sup

0≤k≤[T/ε]
(Xε

kε,1),(27)

where c depends only on θ, b and σ. We used that

‖gR ‖∗ ≤
1

R
‖g‖∗ ≤ c/R.

Using this inequality again, we deduce from (25), with ϕ replaced by gR, and (16) respec-
tively that the second and third terms of the right hand member converge to 0 in L1 as R
increases to +∞ uniformly in ε ∈ (0, 1].

From Doob’s inequality and the definition of κ (in Lemma 5), we get

E[ sup
0≤k≤[T/ε]

M(gR)
2
kε] ≤ 4E[M(gR)

2
[T/ε]ε]

≤ 4(µ0, gR)
2 + 4E[〈M(gR)〉[T/ε]ε]

≤ 4(µ0, gR)
2 + 4E[

[T/ε]
∑

l=1

κl] + 4ε

[T/ε]
∑

k=0

E[(Xε
kε, θ(X

ε
kε)g

2
R)].(28)

We have lim
R→∞

(µ0, gR) = 0. We deduce from (26) with ϕ replaced by gR, and (16),

that E[
∑[T/ε]

l=1 κl] converges to 0 as R increases to +∞ uniformly in ε ∈ (0, 1]. Since θ is
bounded from above, we deduce from (13) and then (25) that, for k ≤ [T/ε],

E[(Xε
kε, θ(X

ε
kε)g

2
R)] ≤ cE[(Xε

kε, g
2
R)]

≤ cE[
k
∑

l=1

|ηεl |] + cε
k−1
∑

l=0

E[(Xε
lε, θ(X

ε
lε)A(X

ε
lε)g

2
R)] + c(µ0, g

2
R)

≤ c
√
ε ‖g2R ‖∗+cε

1

R

k−1
∑

l=0

E[(Xε
lε,1)] + c(µ0, g

2
R)

≤ c
√
ε
1

R
+cε

1

R
kE[ sup

0≤l≤[T/ε]
(Xε

lε,1)] + c(µ0, g
2
R),

where the constant c depends only on θ, b, σ and T . We deduce that E[(Xε
kε, θ(X

ε
kε)g

2
R)]

converges to 0 as R increases to +∞ uniformly in ε ∈ (0, 1].
We deduce from those results and the upper bound in (28), that E[ sup

0≤k≤[T/ε]
M(gR)

2
kε]

decreases to 0 as R increases to +∞ uniformly in ε ∈ (0, 1]. This implies thanks to (27)
that E[sup0≤k≤T/ε(X

ε
kε,1Bc

2R
)] decreases to 0 as R increases to ∞. In particular, for every

ρ, T > 0, there exist R > 1 such that

sup
0<ε≤1

P( sup
0≤k≤T/ε

(Xε
kε,1Bc

2R
) > ρ) < ρ.
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4. Proof of Theorem 1

The proof will be done in 5 lemmas and follows [9]. Theorem 1 is a direct consequence
of Lemma 10 and 12. Let ϕ ∈ C2 be such that ‖ϕ‖∗ < ∞. To remember that M(ϕ)
depends on ε, we will write now M ε(ϕ) instead of M(ϕ). Let M ε(ϕ) = (M ε(ϕ)t, t ≥ 0)
be the right continuous step function which is the extension of (M ε(ϕ)kε, k ∈ N).

Lemma 7. The process (〈M ε(ϕ)〉, ε ∈ (0, 1]) is C-tight as ε decreases to 0.

Proof. Thanks to proposition VI.3.26 of [4], it is enough to check that for all T > 0, α > 0
and η > 0, there exist K > 0 and h > 0, ε0 > 0 such that for any ε ∈ (0, ε0],

P(sup
t≤T
〈M ε(ϕ)〉t ≥ K) ≤ α,(29)

P( sup
s≤t≤T,|t−s|≤h

〈M ε(ϕ)〉t − 〈M ε(ϕ)〉s ≥ η) ≤ α.(30)

Using (19) in Lemma 3 with s = 0 and t = T , we have

P(sup
t≤T
〈M ε(ϕ)〉t ≥ K) ≤ 1

K
E[〈M ε(ϕ)〉T ]

≤ 1

K
cTE[ sup

k≤T/ε
(Xε

kε, 1)]

≤ 1

K
cTE[ sup

k≤T/ε
(Xε

kε, 1)
2]1/2.

Then (29) can be deduced from Lemma 2.
Notice that if |t− s| ≤ h, then |[t/ε]ε− [s/ε]ε| ≤ h+ ε. Using again (19) in Lemma 3,

we have

P( sup
s≤t≤T,|t−s|≤h

〈M ε(ϕ)〉t − 〈M ε(ϕ)〉s ≥ η) ≤ P(c(h+ ε) ‖ϕ‖2∞ sup
k≤T/ε

(Xε
kε,1) ≥ η)

≤ c2(h+ ε)2 ‖ϕ‖4∞
η2

E[ sup
k≤T/ε

(Xε
kε,1)

2].

And (30) can be deduced from Lemma 2.

Lemma 8. The process (M ε(ϕ), ε ∈ (0, 1]) is C-tight as ε decreases to 0.

Proof. We have already proved the C-tightness of (〈M ε(ϕ)〉, ε ∈ (0, 1]). From theorem
VI.4.13 of [4], we get that (M ε(ϕ), ε ∈ (0, 1]) is tight. To get the C-tightness, it is enough
to check (see proposition VI.3.26 of [4]) that for all T > 0 and all η > 0,

lim
ε→0

P( sup
k≤T/ε

|M ε(ϕ)(k+1)ε −M ε(ϕ)kε| ≥ η) = 0.
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We have:

P( sup
k≤T/ε

|M ε(ϕ)(k+1)ε −M ε(ϕ)kε| ≥ η) ≤ 1

η4
E[ sup

k≤T/ε
(M ε(ϕ)(k+1)ε −M ε(ϕ)kε)

4]

≤ 1

η4
E[
∑

k≤T/ε

(M ε(ϕ)(k+1)ε −M ε(ϕ)kε)
4]

≤ 1

η4
c ‖ϕ‖4∞ ε2

T

ε
E[1 + sup

k≤T/ε
(Xε

kε,1)
2],

where we used (18) of Lemma 3 for the last inequality. We conclude using Lemma 2.

Lemma 9. The process (Xε(ϕ), ε ∈ (0, 1]) is C-tight as ε decreases to 0.

Proof. From (13) we get, for kε ≤ t < (k + 1)ε,

(Xε
t , ϕ) = (Xε

kε, ϕ)

= (µ0, ϕ) +M ε(ϕ)kε + ε
∑

l<k

(Xε
lε, θ(X

ε
lε)A(X

ε
lε)ϕ) +

∑

l≤k

ηεk

= (µ0, ϕ) +M ε(ϕ)kε + Λεt + Zε
t ,

where

Λεt =

∫ [t/ε]ε

0
(Xε

u, θ(X
ε
u)A(X

ε
u)ϕ) du and Zε

t =
∑

l≤k

ηεk.

Let us check that (Λε, ε ∈ (0, 1]) is C-tight as ε decreases to 0. Since Λε
0 = 0, we have

P( sup
0≤s≤T

|Λεs| ≥ K) ≤ 1

K2
E[ sup

0≤s≤T
(

∫ [s/ε]ε

0
(Xε

u, θ(X
ε
u)A(X

ε
u)ϕ) du)

2]

≤ c

K2
E[(
∫ [T/ε]ε

0
(Xε

u,1) du)
2]

≤ c

K2
,

thanks to Lemma 2. We also have for 0 ≤ s ≤ t ≤ T , h ≥ 0,

P( sup
0≤s≤t≤T,|t−s|≤h

|Λεt − Λεs| ≥ η) = P( sup
0≤s≤t≤T,|t−s|≤h

|
∫ [t/ε]ε

[s/ε]ε
(Xε

u, θ(X
ε
u)A(X

ε
u)ϕ) du| ≥ η)

≤ c

η2
‖ϕ‖2∗(h+ ε)2E[ sup

k≤T/ε
(Xε

kε, 1)
2]

≤ c

η2
‖ϕ‖2∗(h+ ε)2,

thanks to Lemma 2. Thanks to proposition VI.3.26 of [4], those two inequalities imply
that (Λε, ε ∈ (0, 1]) is C-tight. From lemma 4, we get that supt≤T Z

ε
t converges to 0 in L1

as ε decreases to 0. In particular it is C-tight. As a sum of C-tight processes, the family
(Xε(ϕ), ε ∈ (0, 1]) is C-tight as ε decreases to 0.
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Lemma 10. The process family of process (Xε, ε ∈ (0, 1]) is C-tight as ε decreases to 0.

This result is a consequence of the next theorem which is stated in [9], Lemma 9 and
Lemma 6.

Let Cb(Rd) =
{

f : Rd → R, f bounded and continuous
}

. Let D0 be a separating class
in Cb inMf (that is if µ and ν belongs toMf , if µ(f) = ν(f) for all ϕ ∈ D0, then µ = ν)
containing 1 and which is closed under addition.

Theorem 11. A sequence of càdlàg Mf -valued process (Xε, ε ∈ (0, 1]) is C-tight as ε
decreases to 0, in D(R+,Mf ) if and only if the following conditions hold:

1. ∀ϕ ∈ D0, the process (Xε(ϕ), ε ∈ (0, 1]) is C-tight in D(R+,R) as ε decreases to 0.
2. For every ρ, T > 0, there is a compact set Kρ,T in Rd such that

sup
ε∈(0,1]

P( sup
0≤t≤T

(Xε
t ,1Kc

ρ,T
) > ρ) < ρ.

Lemma 12. Any limiting measure valued process Y = (Yt, t ≥ 0) of (Xε, ε ∈ (0, 1]) as ε
decreases to 0 , satisfies the martingale problem (MP) and has a continuous version.

Proof. Let (εn, n ∈ N) be a sequence decreasing to 0 such that (Xεn , n ∈ N) converges in
law to Y . Using Skorokhod’s representation theorem, we may suppose that we have an
a.s. convergence. Recall from (13) that

(Xεn
t , ϕ) = (µ0, ϕ) +M εn(ϕ)t +

∫ [t/εn]εn

0
(Xεn

u , θ(Xεn
u )A(Xεn

u )ϕ) du+
∑

l≤t/εn

ηεnl ,(31)

for any ϕ such that ‖ϕ‖∗ <∞.
Using (25) as well as (26), and Lemma 2, we deduce that supt≤T

∑

l≤t/εn
ηεnl (resp.

supt≤T
∑

l≤t/εn
κεnl ) converges to 0 in L1 (resp. L2) as n→∞. There exists a subsequence

of (εn, n ≥ 0) such that those two convergences hold a.s. We still write (εn, n ≥ 0) for
this subsequence. Since Xεn is C-tight, we get that Y is continuous and that a.s. for all
t ≥ 0, Xεn

t converges to Yt. In particular, since ‖ϕ‖∗ is finite, this implies that a.s. for

all t ≥ 0, (Xεn
t , ϕ) converges to (Yt, ϕ) and

∫ [t/εn]εn

0
(Xεn

u , θ(Xεn
u )A(Xεn

u )ϕ) du converges

to

∫ t

0
(Yu, θ(Yu)A(Yu)ϕ) du. From (31) we deduce that (M εn(ϕ)t, t ≥ 0) converge a.s. to

a continuous process say (M(ϕ)t, t ≥ 0). And we have

(Yt, ϕ) = (µ0, ϕ) +M(ϕ)t +

∫ t

0
(Yu, θ(Yu)A(Yu)ϕ) du.(32)

From Lemma 5, we have

〈M εn(ϕ)〉t = 4

∫ [t/εn]εn

0
(Xεn

u , θ(Xεn
u )ϕ2) du+

∑

k<[t/εn]εn

κεnk .

In particular, (〈M εn(ϕ)〉t, t ≥ 0) converge a.s. to

Q = (4

∫ t

0
(Yu, θ(Yu)ϕ

2) du, t ≥ 0).
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From (20) we deduce the martingale M εn(ϕ) (resp. M εn(ϕ)2−〈M εn(ϕ)〉) is uniformly L2

(resp. L1). This implies thatM(ϕ) is an L2 martingale andM(ϕ)2−Q is an L1 martingale
(with respect to the filtration generated by M(ϕ) and Q). Since M(ϕ) and Q are contin-
uous, we also get that 〈M(ϕ)〉 = Q. To end the proof, we need to check that M(ϕ) is a
martingale with respect to the filtration generated by Y . Let m ≥ 1, f be a bounded con-
tinuous function defined on Mm

f . Let 0 ≤ t1 ≤ . . . ≤ tm ≤ t ≤ s. Because of the uniform

integrability of M εn(ϕ), we have that E[f(Xεn
t1
, . . . , Xεn

tm)(M
εn(ϕ)s−M εn(ϕ)t)] converges

to E[f(Yt1 , . . . , Ytm)(M(ϕ)s −M(ϕ)t)] as n → ∞. Since E[f(Xεn
t1
, . . . , Xεn

tm)(M
εn(ϕ)s −

M εn(ϕ)t)] = 0, we deduce that E[f(Yt1 , . . . , Ytm)(M(ϕ)s −M(ϕ)t)] = 0. As this equality
holds for any m, 0 ≤ t1 ≤ . . . ≤ tm ≤ t ≤ s and any bounded continuous function f ,
and since M(ϕ) is adapted to the filtration generated by Y (thanks to formula (32)), we
deduce that M(ϕ) is a martingale with respect to the filtration generated by Y and that
Q is its quadratic variation.

5. Appendix

We recall some moment formula for superprocesses under the excursion measure N.
Recall notations from section 2.1. Let ϕ and ψ be bounded measurable functions defined
on Rd.

Let Z be a diffusion with infinitesimal generator A started at point x under Ex. Let
(Pv, v ≥ 0) denote the transition kernel of the diffusion Z. We have for u > 0,

Nx,A[(Xu, ϕ)] = Ex[ϕ(Zu)] = Pu(ϕ)(x).(33)

We have for u ≥ v > 0,

Nx,A[(Xu, ϕ)(Xv, ψ)] = Nx,A[(Xv, ϕ)(Xv,Pu−vψ)],(34)

and

Nx,A[(Xu, ϕ)(Xv, ψ)] = 4

∫ v

0
dr E[Pu−rϕ(Zr)Pv−rψ(Zr)].(35)

References

[1] J.-S. DHERSIN and L. SERLET. A stochastic calculus approach for the brownian snake. Canad. J.
of Math., 52(1):92–118, 2000.

[2] E. DYNKIN. Branching particle systems and superprocesses. Ann. Probab., 19:1157–1194, 1991.
[3] S. N. ETHIER and T. G. KURTZ. Markov processes. Wiley, 1986.
[4] J. JACOD and A. N. SHIRYAEV. Limit theorems for stochastic processes. Springer-Verlag, 1987.
[5] J.-F. LE GALL. A path-valued Markov process and its connections with partial differential equations.

In Proceedings in First European Congress of Mathematics, volume II, pages 185–212. Birkhäuser,
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