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Abstract

We report on the numerical simulation of the industrial production
of aluminium. The motion of the two non miscible conducting fluids is
modeled through the incompressible Navier-Stokes equations coupled with
the (parabolic) Maxwell equations. Stabilized finite elements techniques
and an Arbitrary Lagrangian Eulerian formulation (for the motion of the
interface separating the two fuids) are used in the numerical simulation.
The industrial problem and the modeling strategy are presented in de-
tails. An outline of the numerical analysis of the problem, with a special
emphasis on conservation and stability properties is provided. Examples
of numerical simulations of the industrial case are eventually presented.
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1 Introduction

We report here on a long-term work on the modeling and the numerical sim-
ulation of an electrolysis cell used for the industrial production of aluminium.
We shall first present the challenging issues raised by this problem. Next, we
isolate some modelling difficulties, which are of general interest. We show how
we solved or circumvented them. In one sentence, our approach can be summa-
rized as follows: we conduct a deep mathematical analysis of the models, then
we focus on the nonlinearities on the problem, and simulate their consequences
on the behaviour of the system, thereby complementing linear approaches that
are more commonly developed in the literature.

For the sake of brevity, we shall not go here into the details neither on
the mathematical analysis of the models, nor on the numerical analysis of the
methods. We shall only give an outline of the techniques we have adopted or
developed, and present significant simulations we have performed. For more
details, we refer the interested reader to other publications of us: [7, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22]. In particular, a companion article [21] presents
a thorough account of the numerical analysis.

1.1 The industrial problem

The industrial production of aluminium is a problem of outstanding difficulty.
The aluminium is produced from an aluminium oxyde Al2O3, itself coming from
a native form, bauxite. In presence of Carbon, the aluminium oxyde Al2O3 is
reduced into pure aluminium. Thermodynamically, the reduction can only occur
around 1000 degrees Celsius, a temperature at which Aluminium is a liquid. Let
us briefly indicate that a schematic picture of the functioning of the electrolysis
cell is as follows (see [27]) : an electric current of the order of 105 A runs through
two horizontal layers of conducting incompressible fluids, namely a bath of the
aluminium oxyde above, and a layer of liquid aluminium below, which is the
aluminium produced “so far” (see Figure 1). The oxydoreduction reaction takes
place both at the interface between the two fluids

Al2O3 + 6 e− −→ 2Al3+ + 3O2− + 6 e− −→ 2Al + 3O2− (1)

and at the surface of anods, which provide the bath with the Carbon needed for
the reaction:

3O2− + 3/2C −→ 3/2C02(gas) + 6 e− . (2)

The global balance reads

2Al2O3 + 3C −→ 4Al + 3CO2 (3)

The difference of electric potential needed for the oxydoreduction is small (around
a few Volts) but the intensity of the current is so large that the electric power
spent in the cell is huge. The reason why the intensity of the electric current
is taken so large is of course that the quantity of aluminium produced in the
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cell is proportional to the intensity (accordingly to (1)). For an intensity such
as 105 A, the production is typically of a few tons of aluminium per cell and
per day. A plant of production of aluminium consists in one (or many) line(s)
of, say, 250 cells connected in series. The electric power needed for the whole
plant is typically of the order of magnitude of that produced by one unit of a
contemporary nuclear plant.

With a view to reducing the power waste, the distance between the carbon
anods covering the top of the cell and the surface of the aluminium layer (a
perfectly conducting fluid directly connected to the cathode at the bottom of the
cell) is to be kept as small as possible. Indeed, as the intensity needs to be kept
as large as possible, diminishing the power amounts to diminishing the difference
of potential. The latter, which is bounded from below by the potential needed
for the oxydoreduction to occur, is also due to the potential drop in the (badly
conducting) upper fluid of the cell. The goal is therefore to keep the thickness of
the upper fluid layer as small as possible. This thickness is called the anod-metal

distance which is a self explanatory term. Typically, the order of magnitude of
the anod-metal distance is of a few centimeters vertically, which is a very tiny
distance with respect to the horizontal sizes of the cell which are of the order of
many meters, say 4 by 10 to fix the ideas. In addition to this penalizing aspect
ratio, the main difficulty in trying to diminish the anod-metal distance lies in
the fact that, due to the presence of the electric current, the conducting fluids
experience strong Lorentz forces (the induced magnetic field is of the order of
0.01 T) and therefore move (the typical flow velocity in the cell is 0.2 m/s).
This causes movement of the interface, which separates the two fluids. This
movement may lead to instabilities. The anod-metal ditance should be small
to reduce the cost ; however, this distance should be sufficiently large to avoid
short-circuits: this optimization is an experimental challenge. Let us indeed
emphasize that if the interface between the two fluids ever touches the anod,
the consequences may be dramatic, as is easily understandable when a short-
circuit occurs at such huge powers. There is even the possibility of destroying
the series of cells. The challenge is all the more difficult as the intensity used in
the cell becomes larger and larger, which is indeed the case with the endless seek
for financial profit. As is often the case for industrial processes, the maximum
pay-off that is dreamed of will be obtained by adopting risky strategies, on the
borderline of instabilities.

1.2 A need for numerical simulations

The stage is now set. It is understandable that controlling and optimizing
such an industrial process is not an easy task. An electrolysis cell is kind of
a wicked environment, where precise experimental observations are difficult to
make. Even monitoring the phenomena at play inside the cell is a challenge:
high temperature, corrosive medium,.... Controlling and optimizing is one step
further. In such a framework, numerical simulation can efficiently complement
the experimental strategy, and advantageously compensate for its weaknesses.

We intend to address in further research the optimal control problem, say:
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Figure 1: An aluminium cell: vertical cut.

how to stabilize the position of the interface? Which parameter should be
used ? is it possible in practice ? In such industrial problems, it should indeed
be born in mind that the practical constraints are of enormous impact: some
actual control parameters are the height of anods, the intensity, the shape of the
conducting wires bringing the current to and from the cell. These parameters
cannot be tuned in real time. This is a feature that must be accounted for, one
way or another, when posing the optimization problem.

But for the time being, as a preliminary and necessary step before attacking
the optimization problem, and also as a step which has its own interest, we have
concentrated our efforts on the direct simulation problem. It was expected that
the results of careful numerical simulations could give a valuable insight into the
understanding of the phenomena inside the cell, and therefore implicitly help to
optimize it. It is indeed the case. But before we describe the modeling strategy
we have employed, two comments are in order.

First, the fact that experimental observations are difficult, and therefore
rather incomplete, to the least, has another consequence than that of giving
full value to the strategy of numerical simulation. It also precisely renders
this strategy difficult, because of the lack of complete reliable measurements.
As only a few measures are available, the question is indeed how to obtain
definite conclusions about the validity of the numerical simulations. In order to
overcome, as far as possible, this difficulty, we have chosen both (a) to validate
our algorithms on academic test problems, and (b) to try and recover in “real”
simulations phenomena well known in the engineering world, or recipes well
known by engineers of the field. This has proven to be a reasonable strategy in
such a context, so far.

Second, it is useful to mention at this point the possible numerical ap-
proaches for this problem. Simplifying assumptions have to be done, due to
the overwhelming number of physical phenomena involved in the functioning
of the cell, namely (i) magnetohydrodynamics (MHD), (ii) moving interface,
(iii) ferromagnetism (the material the boundaries are made of is ferromagnetic),
(iv) electrochemistry (the concentration of the chemical species is not homoge-
neous throughout the bath, which has some impact on the global behaviour of
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the cell), (v) three-phase flows (bubbles of carbon oxydes at the surface of an-
ods (see (2)), solidification process at the boundaries), (vi) temperature effects
(which influences the value of the physical parameters, in particular). Usually,
a continuum, purely fluid, description is chosen. Items (iv), (v) and (vi) are
neglected, or postponed to specifically dedicated studies, item (iii) is accounted
for in establishing the boundary condition for the magnetic field. Apart from
the present work, the existing approaches are essentially based upon the use of
mechanical/physical arguments to guess recipes for stability, possibly together
with a strategy of numerical simulation based upon a linearization procedure
applied to the equations at the vicinity of the equilibrium state, followed by a
linear stability analysis. Instances of such works are [4, 5, 6, 32, 33, 36, 38].

2 The modeling strategy

Our strategy has been to adopt a genuine nonlinear approach, where no lin-
earization at all is made (at the continuous level). As taught to us by analysis
on test situations (even in radically different contexts), a nonlinear stability
analysis, as the one needed here to study the stability of the interface between
the two fluids, can only come out from direct numerical simulations. This has
been our bottom line. Of course, we only have succeeded in our program at the
price of doing other simplifying assumptions, none of them related to nonlin-
earity issues.

Therefore, we start with the very complete system consisting of the Maxwell
equations coupled to the multifluid Navier-Stokes equations, and then try to
reduce the complexity by carefully imposing simplifying assumptions we have
total control upon. The system we start from therefore reads

∂tρ+ div (ρu) = 0, (4)







∂t(ρu) + div (ρu ⊗ u) − div (2ηǫ(u)) + ∇p = ρf +
1

µ
curlB× B

divu = 0
(5)











∂tB + curlE = 0
divB = 0

−∂t(εE) + curl
B

µ
= j

(6)

j = σ(E + u × B), (7)

where one recognizes (from (4) to (7)) the mass conservation equation, the
incompressible two-fluids Navier-Stokes equations, the Maxwell equations and
Ohm’s law. We introduce ρ to denote the density of the fluids (it is a piecewise
constant function), u the velocity field, B the magnetic field, E the electric
field, j the current, f the body force (gravity), p the pressure field, and ǫ(u)
the deformation gradient (∇u +∇uT )/2. The electrical conductivity σ and the
viscosity η are assumed to be known functions of ρ.
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It turns out that, as such, system (4)-(5)-(6)-(7) cannot be studied math-
ematically, due to the hyperbolic nature of the Maxwell equations, and is not
tractable numerically either. As a matter of fact, this system is likely to be not
necessary for the situation at hand. We indeed believe, that a simpler system,
both well-posed mathematically and tractable numerically, suffices to correctly
reproduce the behaviour of the cell. It is obtained from the full system (4)-
(5)-(6)-(7) by neglecting the ∂t(εE) term (low frequency hypothesis), and, less
important, by setting µ = µ0. This allows one to eliminate the unknown E, and
to obtain a system with the only unknowns u, p, ρ, B.

The governing equations we shall use are thus the time-dependent incom-
pressible Navier-Stokes equations for two viscous immiscible fluids (4)-(5) cou-
pled with the Maxwell equations in their parabolic form (see [26] for example):

∂tB + curl (
1

µ0σ
curlB) = curl (u × B), (8)

divB = 0. (9)

These equations are set on a fixed bounded domain Ω of R
d (with d = 2 or 3),

and complemented with the magnetic boundary conditions

(B · n)|∂Ω = given, (curl B× n)|∂Ω = given, (10)

and for the hydrodynamic boundary conditions, pure slip on the side walls
and no-slip elsewhere. The initial conditions read: ρ|t=0 = ρ0, u|t=0 =
u0 and B|t=0 = B0, where u0 and B0 are divergence free vector fields.
The density of each fluid is assumed to be constant at t = 0, a property which
is propagated in time by (4), the volume of each fluid being then preserved.

Let us emphasize again that no additional simplification will be made on
these equations and that we shall therefore deal with all the nonlinearities of this
strongly coupled system of PDEs. The mathematical analysis of this system,
as well as the foundation of it on the basis of a whole hierarchy of possible
models, is an issue that has already been dealt with in a series of previous works:
existence of solution to (4)-(5)-(8)-(9) in [13], regularity of the flow and of the
interface in [7], long-time behaviour of the hydrodynamics two fluid system in
[15], regularity of the Navier-Stokes equation in [17].

In particular, it is to be emphasized that the system we shall employ cannot
be simplified further naively, for instance by considering that the electromag-
netic phenomena are so more rapid than the hydrodynamic ones that they can
be considered as stationary (which is indeed a tempting assumption). It would
lead (even in the one-fluid case, see the details in [14, 18]) to an ill-posed math-
ematical system consisting of a coupling between the time dependent Navier
Stokes equations and the stationary Maxwell equations, i.e. the static form of
(8). Consequently, if one wants to use the stationary Maxwell equation, then
one needs also to consider the stationary Navier-Stokes equations, i.e. the static
version of (4)-(5). From the theoretical viewpoint, studying mathematically this
purely static system requires to answer the open mathematical question: can
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one prove existence of a solution to the steady-state two-fluids Navier-Stokes
equations? In spite of the fact that the existence of solution is an open question
(see however [28]), we shall nevertheless try in our computations to reach the
infinite time limit of (4)-(5)-(6)-(7) and thus the steady state version of our time
dependent equations. It indeed is of primary interest to determine the steady
state in practice. Let us emphasize the crucial message : the choice of system
(4)-(5)-(8)-(9) is supported by a rigorous mathematical analysis (in the limit of
course of the capabilities of the current mathematical techniques, see [13]).

From the numerical viewpoint, the simulation of system (4)-(5)-(8)-(9) re-
quires to understand the following issues

• how to conveniently discretize the MHD coupling,

• what type of finite elements should be used,

• how to deal with the motion of the interface, and to ensure, when neces-
sary, the motion of the mesh,

• how to ensure the conservation of the mass of each fluid and the energy
stability in the time dependent simulation.

Let us briefly say here that we use an Arbitray Lagrangian Eulerian formulation
to move the interface and the mesh, that we take care of having a discrete
energy inequality and a conservation of mass using a discretization scheme that
ensures a geometric conservation law. Apart from the above issues, we have also
examined (in [21]) the numerical strategy to properly account for the surface
tension term when such a term is added to the right-hand side of (4), either for
physical reasons or as a numerical artefact. For the sake of brevity, we however
leave this question aside here.

We concentrate in the remainder of this article on the numerical strategies
we used to answer to the above questions, together with a rapid exposition of
the results we obtained.

For computational purposes, it proves convenient after a rewriting of the
preceeding equations in non-dimensional form (for which we refer to [21]), to
eliminate the body force in one fluid, in the spirit of the method described in
[19]. This trick greatly improves the robustness of the numerical computations.
As far as the non-dimensional numbers are concerned, let us only mention that

they are seven of them: the Reynolds numbers Rei =
ρiUL

ηi

(of the order of

105 in our application), the magnetic Reynolds numbers Rmi = µ0σiLU (10−1

in one fluid, 10−5 in the other one), the coupling parameter S =
B2

µ0ρ1U2
(of

the order of 1), the Froude number F =
U2

gL
, the density ratio M =

ρ2

ρ1
. The

simulations we shall present in Section 4 make use of non-dimensional numbers
that are one or two orders of magnitude smaller than in reality. In particular,
the Reynolds number will be taken 100 times as small as the real one, which
can be interpreted as a somewhat vague way to account for turbulence effects.
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It is a concern of us to perform computations with the physically relevant non-
dimensional numbers within a near future.

To begin with, we concentrate, in Subsection 3.1, on the difficulties in the
numerical simulation of the coupled MHD problem in the case of one single fluid,
postponing the specific difficulties due to the presence of two fluids to Subsec-
tion 3.2. The numerical computations of (4)-(5)-(8)-(9) we show in Section 4
are obtained by a combination of all the techniques of Section 3.

3 Numerical strategies

3.1 The one-fluid MHD equations

With a view to focusing on the MHD coupling, we come back as announced to
the one-fluid case, and therefore consider the system



















































ρ∂tu+ρu · ∇u −div (2ηǫ(u))+∇p =ρf+
1

µ0
curlB× B

divu = 0

∂tB + curl (
1

µ0σ
curlB) = curl (u × B)

divB = 0

where ρ is a constant throughout the domain. The system is supplied with ad

hoc boundary and initial conditions. It is straightforward to show that, due to
a cancellation of terms in the right-hand side, the solution satisfies the energy
equality

1

2

d

dt

∫

Ω

(

ρ|u|2 +
|B|2

µ0

)

+

∫

Ω

(

1

σ

|curlB|2

µ2
0

+ η|∇u|2
)

=

∫

Ω

ρf · u (11)

The fact that this estimate of energy is to be reproduced at the discrete level
will be a guide for our discretization strategy. For the sake of simplicity, let
us detail how we iterate inside the coupling terms in the case of the stationary
version of the above equations, written in non-dimensional form:











−
1

Re
△u + u · ∇u + ∇p = S curlB× B + 1

F
f

1

Rm
curl (curlB) = curl (u × B)

Basically, one can at first think of a segregated algorithm of the following
type

−
1

Re
△un+1 + un.∇un+1 + ∇pn+1 = S curlBn × Bn + 1

F
f

1

Rm
curl (curl Bn+1) = curl (un+1 × Bn+1)

(12)
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It may be proven that the above algorithm needs a good amount of damping,
and is only conditionally stable. On the other hand, a more efficient strategy is
to design a fully coupled algorithm in the following way











un · ∇un+1 −
1

Re
△un+1 + ∇pn+1 + SBn × curlBn+1 = 1

F
f

1

Rm
curl (curlBn+1) − curl (un+1 × Bn) = 0,

(13)

(Both systems (12) and (13) are complemented by the divergence free con-
straints divun+1 = 0, divBn+1 = 0), where it should be noted that the special
discretization of the coupling terms allows one to recover an energy estimate of
the form (11) at the discrete level. In addition, the above algorithm is uncon-
ditionally stable (provided that the continuous solution is unique).

When implementing algorithm (13) in a finite element type method, a spe-
cific feature appears, that we now wish to underline. Even if the magnetic
equation (second line of (13)) is diffusion dominated, it is actually necessary to
use a stabilization technique for it. A stabilization method for the fully coupled
MHD equation has thus been developed (see [12]).

Let us also briefly mention that various methods for solving the magnetic
equation (second line of (13)) have been tested in [11, 16]. We also refer to
the latter work for the description of some numerical methods to impose the
boundary conditions (10).

The consideration of classical benchmarks of the MHD literature such as the
Hartmann flow (“magnetic version” of the hydrodynamic Poiseuille flow) has
allowed us to validate the above numerical strategy, see [21]. Incidentally, let us
mention that such numerical experiments also indicate that turbulence effects
are very specific in a MHD framework which convinced us to deliberately forget
them, in the absence of any deep understanding of turbulence for such MHD
flows.

In addition, a simple one-fluid model for the real electrolysis cell has been
designed and the influence of the shape of the wires and the distribution of the
external current upon the behaviour of the hydrodynamic flow inside the cell
has been investigated. Again, this has been found to be in good qualitative
agreement with well known behaviours.

3.2 The two-fluids MHD equations

We now come back to the two-fluid MHD problem. With respect to the pre-
vious section, the extension is now to simulate the motion of the free interface
between the two fluids. As no topological change of the interface is expected
(it is reasonable to assume that it remains the graph of a function), and as a
great accuracy is needed in the determination of its position (as the anod-metal
distance is the central issue that heavily influences the behaviour of the cell, as
explained above), we have chosen to explicitly track the interface and therefore
have adapted an Arbitrary Lagrangian Eulerian formulation to the present con-
text of a MHD flow. The ALE formulation for one fluid with a free surface has
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been used by several authors, for example [39, 40, 31, 25, 1, 3, 24]. In the case
of two fluids, see for example [35], and in the framework of MHD, see [2].

As for the computation of the domain velocity field w, we have chosen a
special form for it, namely wn = (0, 0, w), at each time step tn, and define it as
the solution of



















−△w = 0 on Ωn
i , i = 1, 2,

w =
un · n

nz

on Σn,

∂w

∂n
= 0 on ∂Ω.

(14)

This special determination allows us to ensure the following Geometric Conser-
vation Law (in the spirit of [23, 30, 34] in the framework of the finite volume
method, [10] in the framework of finite element methods, and [29] for fluid
structure interaction problems):

∫

Ωn+1

i

ψ(x) dx −

∫

Ωn

i

ψ ◦ An,n+1(y) dy = δt

∫

Ωn

i

ψ ◦ An,n+1(y)divyw
n dy

= δt

∫

Ωn+1

i

ψ(x)divxw
n ◦ A−1

n,n+1(x) dx

(15)

for any ψ defined on Ωn+1
i , where An,n+1 is the discretization in time of the

function that maps the reference domain onto the current one.
Relation (15) is the discrete analogue of the continuous formula

d

dt

∫

Ω(t)

ψ(x, t) dx =

∫

Ω(t)

∂ψ

∂t

∣

∣

∣

x̂
dx+

∫

Ω(t)

ψ(x, t) div w dx.

This being done, we are in position to ensure two key properties for our
global algorithm: first, the conservation of the mass of each fluid, and second,
the stability in the energy norm. Both of these properties are easy to fulfill
on a fixed mesh, but have seemed to us not so trivial to ensure in the ALE
setting. The above GCL is one ingredient to ensure both these properties.
More explicitely, when (i) the normal vectors at the nodes of the free interface

Σ(t) are computed so as to have (see also [8])

∫

Σ

uh · nh dσ =

∫

Ω1

divuh dx, (ii)

the condition

∫

Ω1

divuh dx = 0 holds, and (iii) GCL is satisfied, then we can

first prove that the mass of each fluid is conserved at the discrete level. Second,

denoting by En =

∫

Ωn

ρ|un|2

2
dy +

∫

Ωn

|Bn|2

2µ0
dy the total energy of the system,

we may show, again because of the above three properties (i)-(ii)-(iii), that the
discrete analogue of (11) holds (for convenient simple data), namely (see [21])

En+1 − En

δt
+

∫

Ωn+1

2η|ǫ(un+1)|2 dx+

∫

Ωn+1

1

µ0σ
|curlBn+1|2 dx ≤ 0.
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As was the case for the issues examined in the previous subsection, we also
have tested the above numerical methodology on classical benchmarks. In addi-
tion, we have checked that the properties (i)-(ii)-(iii) are in some sense optimal
in order to obtain the conservation of the mass of each fluid. For instance, test
cases have shown that when the displacement field for the mesh w is assumed
to be the solution of











−△w = 0 on Ωn
i , i = 1, 2,

w = u on Σn,
∂w

∂n
= 0 on ∂Ω,

(16)

instead of (14), so that the GCL property does not hold anymore, then the mesh
is distorsed as time evolves, and a modification of the mass is indeed observed,
thus condition (iii) is “necessary”. Likewise, we have shown through test cases,
that condition (ii) is also instrumental: it can be ensured using discontinuous
finite elements for the discretization of the pressure (for example with the mixed
elements Q2/P1), or using continuous finite elements while imposing with a La-

grange multiplier that the numerical flux

∫

Σn

un
h · nh dσ through the interface

vanishes (see [9]). Then, the conservation of mass holds. It has been experi-
mentally checked that it does not hold otherwise in the context of continuous
finite elements for the pressure.

4 Numerical simulations

4.1 The steady state of the cell

We have performed computations on realistic cells, however on a simplified
geometry (but a real aspect ratio), with a viscosity two orders of magnitude
as large as the real one (for both transient and steady-state calculations) and
boundary conditions on the magnetic field divided by 10 (for transient calcula-
tions). The boundary conditions on the magnetic fields are taken either from
experimental measures or from independent numerical simulations of the mag-
netic field created by the conductors around the cell. The aim of our simulations
is to recover some well known phenomenological parameters (e.g. the number of
vortices : see [12]) and to have an insight into some parameters that are difficult
to measure (e.g. the shape of the interface between the bath and the metal).

In this article, we present in Figure 2 the result of a computation on a
cell with a simplified (nevertheless relevant) circuit of conductors. The electric
current in the cell is 90 kA and the dimensions of the cell are about 3 × 9 ×
1.5 m. For Biot and Savart computations (giving the boundary conditions on
the magnetic field), we use either linear or parallelepipedic conductors. This
interface has been obtained by computing the solution of the time-dependent
system after a long time. On Figure 3, we show the result of a steady state
calculation for a typical cell (the position of the interface is assumed to be
known from a previous computation). The four swirls shown are effectively
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observed in reality and the magnitude of the velocities is rather close to the
experimentally measured one.

Despite the fact we have artificially decreased the Reynolds number (for
transient and steady-state calculations) and the magnetic field on the boundary
(transient calculations), our results turn out to be in good qualitative agree-
ment (shape of the interface, number of swirls) and even quantitative agreement
(magnitudes of velocity in the steady-state calculation) with the experimental
observations.

X

Y

Z

B

B’

A

A’

C

C’
D

D’

X

Y

Z

Figure 2: On the right, the shape of the interface at large time. The circuit of
conductors is represented on the left.

Figure 3: Left: velocity profile in the cell in a plane situated 5 cm under the
interface. Velocity is between 1 cm.s−1 and 9 cm.s−1. Right: magnetic field on
the boundary of the cell.
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4.2 The rolling phenomenon

One of the phenomena which is observed in industrial cells and which has
been thoroughly investigated with a view to understanding it, forecasting it
and avoiding it, is metal pad rolling. It is an oscillation of the cryolite / alu-
minium interface with a period ranging from five seconds up to more than one
minute (see [27]). The physical origin of the phenomenon is a “constructive”
interaction between the vertical component Bz of the magnetic field and a pos-
sible horizontal perturbed electric current, which results in a possibly instable
rotating motion of the interface. It has been reported on that the metal can
even get out of the cell in some cases ! Most studies, in the vein of [37, 4], are
based upon a linearization procedure that leads to a definite criterion on the
stability or unstability of a given cell, depending on its geometry, parameters,...
In [4], the authors assert that a cylindrical cell becomes instable whatever the
vertical field Bz. With a view to test this strong result of instability, we have de-
velopped a numerical simulation (see [20, 21]) that has shown that actually the
situation is not truly described by the linearized system. For large Bz, our time
dependent simulations show an interface that is indeed unstable, in accordance
to the conclusions of the linearized study. But, there exists some Bz , small
enough and not ridiculously small, for which the same time dependent simula-
tion shows a stable motion of the interface. Of course, one could argue that,
for times larger than those reached in our numerical simulations, the motion of
the interface indeed becomes unstable, as predicted by the linearization study.
But we wish then to make the following point. From a practical viewpoint, the
goal is to understand what happens when the nominal functioning of the cell
is unfortunately perturbed by an exterior event (say a change of anod in the
cell, or in the cell nearby, or ...), which generally happens over a definite time
window. Thus the perturbation is turned off after a while. This is exactly the
conditions we have imposed for our time dependent simulation. The pertinent
issue is then to know whether this “bounded in time” perturbation will durabily
unstabilize the interface, or if the instability will vanish after a while. Typically,
this type of transient external conditions are out of reach of the linearization
studies, which are more binary, in some sense, but also more predictive in the
infinite time limit. This explains why there is room for both approaches.

Of course, definite conclusions about this comparison between the two ap-
proaches are yet to be obtained, but this test case demonstrates the capability
of our nonlinear approach to simulate complex MHD phenomena. In the past,
these phenomena were analyzed with models based on many simplifications of
the original equations providing excellent qualitative results, most of the time.
But the influences of such simplifications need in any case to be tested and may
become not negligible when precise results are desired. We have demonstrated
that we can reproduce qualitatively the results predicted by simplified models,
but that we are also able to give quantitative informations on the transient evo-
lution of the system. This capability should have practical implications in the
study of the instabilities of industrial cells.
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