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1 Introduction and motivation

We continue here our endeavor, initiated in [9], to put the micro-macro models for polymeric
fluid flows on a mathematically sound ground.

Let us recall for consistency that these models aim at circumventing the difficulty of
finding a closure equation at the pure macroscopic level. In the case of non newtonian
fluids such as polymeric fluids, such an equation links the stress tensor to the velocity
field through, say, a partial differential equation or an integral relation. In order to build
a micro-macro model, one goes down to the microscopic scale and makes use of kinetic
theory to obtain a mathematical model for the evolution of the microstructures of the
fluid, here the configurations of the polymer chains. We refer the reader to [9] or [12] for a
more complete introduction to this type of models and to [1, 2, 6, 14] for a comprehensive
survey of the physical background. Contrary to the purely macroscopic approach where
the microscopic models are used to derive macroscopic constitutive equations, most of
the time through some simplifying assumptions (closure assumptions) whose impact on
the result is difficult to evaluate, the so-called micro-macro approach consists in keeping
explicit track of both scales. In mathematical terms, this micro-macro approach translates
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Figure 1: The polymer (in dashed line) is modelled by a “dumbbell” : two beads linked by
a spring. The vector X is called the end-to-end vector.

into a coupled multiscale system of the following form (we consider here the simplest case :
the so-called dumbbell model, where the polymer is modelled by two beads linked by a



spring, see Figure 1) :

P <8_u + u.Vu) = —Vp+nAu+div 1,

ot
divu =0,
r—n [(X @ F(X))(t, 2, X)dX —nkpTId, (1)

2
% suav = v ((Voux - 2P0 ) ) + Gaxe,

where u(t,x) is the velocity of the fluid, p(t,«) the pressure, 7(t,x) the stress tensor,
and v (t,x, X ) denotes the probability density function of the end-to-end vector X of the
polymer at time ¢ and at position . The other symbols are physical parameters : F(X)
is the entropic force a representative polymer chain experiences, p and 7 respectively are
the density and the viscosity of the ambiant fluid, n denotes the density of polymers, the
coefficient ¢ is defined by 02 = 2kpT¢ with T the temperature and ¢ the friction coefficient
of the beads within the fluid. It is to be noted that the Fokker-Planck equation on v holds
at each macroscopic point «.

Let us at once indicate that, from a physical point of view, the dumbbell model, for
which the configuration space is R? (that is, X € R3), is too crude to completely describe
the evolution of the polymer chain. But this model serves as an efficient test problem
for more sophisticated modelling strategies. In order to be more realistic, one has indeed
to consider a model where the polymer is not just modelled by its end-to-end vector but
by a chain of beads and springs, which leads to a system of the form (1), but with a
Fokker-Planck equation set in a configuration space of dimension larger than 3. This
highly complicates a direct numerical attack of the Fokker-Planck equation on ¢ (there
exists however such tentatives of direct attacks, see [17| and the references therein).

The main trend in the community of researchers performing numerical simulations of
such complex flows is therefore to “replace” the Fokker-Planck equation by the underlying
stochastic differential equation ruling the evolution of random variables whose density is .
Such an hybrid strategy mixing stochastic and deterministic aspects can be advantageously
studied already in the setting of the simple dumbbell model. In the simple case of the
dumbbell model, it indeed consists in turning (1) into the following mathematical system :

( ou )
p <E + u.Vu) = —Vp+nAu + div (1),

div (u) =0,
7 = nE(X @ F(X)) — nkpTId, (2)
dX +w.VXdi = <vux _ %F(X)) dt + %dwt,

where X (¢, x) is a stochastic process representing the end-to-end vector of the polymer
modelled by a dumbbell (see Figure 1). The stochastic process W is a standard (multi-
dimensional) Brownian motion and IE denotes the expectation.

In our previous work (see [9]), we have made the (simple) mathematical analysis and
the (more intricate) numerical analysis of this model when applied to a simple Couette
flow (see Figure 2) and when considering a linear force in the dumbbell (model of hookean
dumbbells : F(X) = HX, with H a constant coefficient) (see also [7] for an other example
of a mathematical analysis of a viscoelastic flow in this geometry). It then reduces to the
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Figure 2: Velocity profile in a shear flow of a dilute solution of polymers.

system :
Ohu — 8yyu = ayT + fet
T(t,y) = E()gi’Yt),

X
dxy = —7t + ayuyt> dt + dv, (3)
dY; = —Etdt + dW,,

where (due to the simple geometry of the problem) u = u,(y) and 7 = 7T,,(y) are here
valued in R, while the space variable y varies in O = (0,1). In (3) and henceforth, we
write all the equations in a non dimensional form and f.;; denotes an external force.
The stochastic variables (X/,Y;) denote the components of the stochastic variable X,
introduced before. We have proved in [9] the well-posedness of the Cauchy problem by
showing a global-in-time existence and uniqueness result. On the other hand, we have
shown the convergence of the numerical approximation of the solution (finite difference in
time, IP1 finite element in space, and Monte Carlo realizations) to the exact solution.
Despite its interest as a test problem for many mathematical and numerical techniques,
the above hookean dumbbell model is somewhat limited since it can in fact be written under
the form of a purely macroscopic model, namely the Oldroyd-B model, that we recall here

in its differential form :
oT B

ot
with the upper convected derivative % defined by :

T+ A nkpTA(Vu +' Vu), (4)

i—; = ?9_715- +u.VT — 7'Vu — Vur,
% is a characteristic time.

In order to address more general situations, we here want to treat the case of a micro-
macro model which cannot be written under the form of a macroscopic model, and therefore
is genuinely micro-macro. An instance of this model (at least to the best of our knowledge,
see [11] on this subject) is the so-called FENE model where the acronym FENE stands
for Finite Extensible Nonlinear Elastic. In this model, the force within the spring has the
following expression : F(X) = 1—\\X||2I%§kBT/H) (H and b being two constant coefficients).
This model is more realistic from a physical point of view than the model of hookean
dumbbell since it accounts for the finite extensibility of the real polymer. For example,
this model exhibits shear-thinning or hysteretic behavior in elongational flows, contrary to

the linear model of hookean dumbbells, and accordingly to experiment.

where A =




Like in [9], we only consider in the sequel the setting of a simple Couette flow. The
FENE model then reads, in a non-dimensional form :

Opu — 8yyu = 8y7_ + fexts (5)
Xy
r=F (1 EYIETE ) ’ ®)
_ OOy
y 1 X} Y
X} = | 3 T O ) di+ v,
’ (7)
avy = [ -1 Y dt + dw;
v\ Tay e | T e
b

where the non-dimensional parameter b > 0 measures the finite extensibility of the polymer
and is in practice of the order of 100 (see [14] page 217). The space variable y varies in O =
(0,1) and
t € [0,T]. The random variables are defined on a filtered probability space (92, F, F, IP).
The random process (Vi, W;) is a (F;)-two-dimensional Brownian motion. For simplicity,
the boundary conditions are taken homogenous : u(t,y = 0) = u(t,y = 1) = 0. The initial
velocity is u(t = 0,.) = ug, and (Xo, Yp) is a Fo-measurable random variable.

It is worth emphasizing the differences with respect to the hookean dumbbell model
(3) (which can formally be recovered from (5-7) by letting b go to infinity) :

e No explicit expression of the stress in function of the velocity is known to date (the
FENE model is not closed),

e Both components X} and Y} of the connecting vector modelling the polymer chain
depend on the space variable,

e The drift term in (7) is nonlinear and singular.

Such differences make the mathematical analysis more delicate than that for the hookean
dumbbell model. The purpose of the present article is to conduct such an analysis. We
hope to be able to treat the numerical analysis of such a system in the future.

To the best of our knowledge, system (5-7) has never been analyzed mathematically.
The only result concerning a problem close to (5-7) is due to M. Renardy in [15] where
system (1) is analyzed and proved to admit a local-in-time solution in spaces of regular
functions. The result applies to the case of a flow of polymeric inviscid fluid (n = 0) in R3
with spring forces slightly more explosive than the FENE force.

The article is organized as follows. In Section 2, we deal with the stochastic differential
equation (7) (see also [8] for a more complete analysis of this stochastic differential equa-
tion). We first show the existence of a solution when v = 0 and then, using the Girsanov
Theorem, we build a weak solution to (7) when the velocity u is arbitrarly given. Using
Yamada-Watanabe Theorem, we next show that (7) admits a unique strong solution. The
main difficulty in proving the existence of a solution to the stochastic differential equa-
tion comes from the singular nature of the drift. We shall however see that we can take
benefit of this singular nature to obtain an a priori bound on the stochastic processes
(which does not exist in the hookean case and must therefore be circumvented by ad hoc
cut-off techniques, see [9]). We next consider the coupled system (5-7) and show some
a priori estimates in Section 3. We use these estimates in Section 4 to prove our main
result (stated in Theorem 1), namely a local-in-time existence and uniqueness result of
the solution (u, X},Y}”) to the coupled system (5-7), being understood that (X/,Y}”) is



a strong solution (in the sense of probability theory) of (7) and u is a regular solution
giving to (5) an almost everywhere sense (which requires a good regularity of the data :
initial condition, boundary conditions, fe;t). We unfortunately are unable to extend this
existence result to any arbitrary large time, nor to extend it to a less regular class of data.
The numerical analysis of some discretization schemes used for the simulation of stochastic
differential equations of type (7) is currently under study.

2 Existence of a solution to the stochastic differential equa-
tion

In this section, we consider the stochastic differential equation (7) with a given velocity
u. More precisely, we fix y in O, we set g(t) = dyu(y,t) for conciseness, and we suppose
throughout this section that

geLi. 8)

We are interested in solving for ¢ > 0 the following stochastic differential equation :

g
AX! = | =3 o 9 Ytg> at + i,
T (9)

YQ

d}/tg == - W) dt“‘th,
it

D=

1—

with initial condition (Xp,Yp). Throughout this paper we will suppose that (Xo,Yp) is
such that IP (Xg + Y02 > b) = 0. In this section, we consider that ¢ varies in the whole of
R..

2.1 Notion of solution
Let us begin by giving a precise mathematical meaning to (9).

Definition 1 We consider a filtered probability space (2, F, F¢, IP), a (Ft)-two-dimensional
Brownian motion (V;,Wy) and a Fy-measurable random variable (Xo,Yy). We shall say
that a (F;)-adapted process (X7,Y7) is a solution to (9) when : for P-a.e. w, Vt >0,

[

t
X9:X0+/ . X5 +9(s)Y? | ds+V;
' o \ 21 CIPOPP s ’

7

1
ds < oo with the convention W = 400 if 22 + y2 =b,
T b

| _ XDV
b

voi—ves [Z1 YW
L A PR Y 7
b

(10)
Our purpose in this section is to show :
Proposition 1 Assume that b > 2 and (8). There exists a unique (Fi)-adapted pro-
cess (X7,Y?) with values in C([0,00],R?) solution to (9) in the sense of Definition 1.
In addition, this solution is such that P (3t > 0,(X{)* 4+ (Y}7)? =b) = 0 and (X],Y7?) is
P
1
o (Xo, Yo, (Vs, Ws)s<t)-adapted. Moreover, assuming b > 4 and | ——— | is inte-
= 1| X315

grable for some p > 1, we have the following expression of the stress (6) in function of the



solution (X7,Y/) for g = 0 henceforth denoted by (X;,Y;) :

thY;tg . XYy °
E<1_(Xf)22r(Ytg)2 =B 1_7;(3:;32 & /OQ(S)stVs ) (11)

where € (/ g9(s)Ys dV;) is the exponential martingale :
0 t

£ < /0 W02 dV8>t — exp < /0 glsviavi— 2 /0 (gls)¥2)? ds) -

We begin by proving the uniqueness, next show the existence when ¢ = 0 and in a
third step show the existence for a general g satisfying (8).

2.2 Uniqueness

Lemma 1 Let (X9,Y9) and (X9,Y9) be two solutions of (9) in the sense of Definition 1.
Provided (X9,Y9) is such that P (3t > 0,(X7,Y;) > b) = 0, then,

P (Vt >0, (X7, Y) = (Xf,Yg)) =

Proof :
Let us consider the stopping time

Tn:mf{umax(<Xf>2+<ng> (XE)*+ <Yf’>)2"<1‘l>}'

n

Let set Fy(z,y) = —1 — and Fy(z,y) = These functions are Lipschitz

1y

2_ 2+ 2 _224y2

continuous with constant K on the ball B,, = {(x, y), 22+ <b (1 - %) }
Let us now consider P, = X/ — X7 and Q; =Y/ — Y. We have

t
P - / Fy(X9,Y9) — F,(X9,79) ds + / 9(5)Qs ds,
0

Q - /0 Fy(X9,Y9) — F,(X9,79) ds.

We can therefore write, for any ¢ € (0,7,) :

t
Pyl + Q] s/o<2Kn+\g<s>\><\Ps|+|@8|>ds

Using Gronwall Lemma and the fact that g € L}, we deduce that, almost surely, for any
t € (0,7,), P, =0 and Q; = 0. Hence (X?,Y{) and (X7,Y?) coincide on (0,lim, .o 7).
As a consequence, 7, = inf {¢, (X7)? + (Y7)? > b(1 — 1)} and by the assumption made
on (X7,Y7), limy, e T = +o00. O

Remark 1 The proof makes a crucial use of the fact that (9) only differs from a system
of ordinary differential equations by the simple addition of a Brownian motion.



2.3 Existence when g =0

The crucial lemma which will be used in the sequel states the existence of a (strong)
solution to (9) when g = 0. We recall that this solution will be denoted in the following
by (Xt7 }/t)

Lemma 2 Assume thatb > 2 and g = 0, then there exists a unique solution (X¢,Y:) to (9)

in the sense of Definition 1. This solution is such that P (3t > 0, (X;)* + (Y;)? = b) = 0.

In addition, for any p > 1, if b is such that b > 2(p + 1) and if the random variable
P

1

1 .
(17> is integrable, then t — TE (W

P
X ) is locally bounded.
b

Proof :  'We consider the following approximation of the stochastic differential equation
(9), with g =0 :

axp = | -1 X dt + dV;,

ny2 n)2
max(l—i(xt) :(Yt ) 7%>

n_ | _1 "
aYy = 2 ( (XM)24(v)2 1) dt + dWs,
max 1—T =

n

and the stopping time :

1
Tn = inf {t, (X2 4+ (Y2 >0 (1 - —> } .
n
Using the fact that (12) has a unique strong solution (X}*,Y;*) on [0,7,) and setting
(X, Yy) = (X, Y") on [1,—1,7y), one obtains by continuation of the piecewise solutions
a strong solution to (9) with ¢ = 0 on [0,lim, o 7). Using It6’s formula, one finds that
Ry = (X;)?+ (Y3)? satisfies the following stochastic differential equation on [0,lim,, o 75) :

R
dR, = (-17; + 2) dt+2 (X, dVi + YidWh).
b

Using  Girsanov  Theorem on (X/,Y/"), one may mnext check that
P(3t € [0,7,), (X)? + (Y*)? = 0) = 0 and therefore IP(3t € [0, lim,, o 7,), By = 0) = 0.
The former equation may thus be written in the following form :

a8, = <_1 R +2) it + 2/ FudB, (13

b

where B; is a Brownian motion by Paul Lévy characterization. Let us now consider a scale
function s : (0,b) — IR such that :

< * +2>8'(:13)—|-2333"(:13):0

-3

which leads to
s'(x) = Cb—z) 2271,

We choose a primitive function s defined on (0, ). This function s is increasing and is such
that lim,_; s(x) = 400, provided b > 2. Using It0’s formula, on [0, lim,_,~ 75,), we have

s(Ry) = s(Ry) +2 /0 S (Re)\/RodBs. (14)

7



Let us suppose first that s(Ry) is integrable, so that s(R;) is a local martingale. Let k be
a non-negative integer. We now introduce the stopping time

1
o), = inf {t < lim 7, R; < E} , with the convention inf{(}} = +oco.
n—oo

The random process s(Rar, 0, ) 1S @ martingale. Thus we have for any ¢ and for any n,

E(s(Rinr,nay,)) = E(s(Ro))

which leads (using the fact that s is increasing) to

1 1
s (b <1 - —>> P(r, <tAog)+s <E> (1 -P(r, <tAoy)) <E(s(Rp)).
n

Taking first the limit n — oo, we obtain P(lim, oo < t A or) = 0. Taking then
the limit & — oo, we obtain P(lim, o7, < t A limg_ooor) = 0. We know that
P(3t € [0,limy, 0o 7), B¢ = 0) = 0, which implies P(lim;, oo 7, > limg_oo0) = 0
and finally

]P(lim Tngt) §]P<lim o < tA lim 0k> —i—]P(lim 7o > lim 0k> ~0.
n—0o0 n— 00 k—o0 n—00 k—oo

We have shown that IP(lim, 7, = o0) = 1, and we have therefore built a strong so-
lution (X,Y) to (9) with ¢ = 0 on Ry. If s(Rp) is not integrable, one has to use the

same arguments as before on {e < X2 + YZ < b — €} where ¢ > 0 (by multiplying (14) by
1€<X02+Y02<b_€) and conclude by letting € go to 0.

If one considers another solution (X,Y) of (9) with g = 0 in the sense of Definition 1,
using Lemma 1, this solution is such that P (Vt >0,(X, ) = (f(t,f’t)) = 1. This shows

that (9) admits a unique strong solution.

P
1
Let us now turn to the integrability of (W) and let us consider first the case
1 — 2t t

1 B 1 i 9 /b (4 — b)R,/b? ;
E<1—Rt+ﬁ>_E<l—%>+E</o (-2 (&) d)‘

2/b (4—b)x/b?
+ -
(-3)" " (-3)

1 1

This yields, for any t > 0,

1
p =1, assuming [E (1 R0> < 00. Using [t6’s formula, it is easy to derive :

Assuming b > 4, it is clear that M = sup,¢ () < > < oo and one can

then obtain




P
1
For an exponent p > 1, the same arguments show that <w) is integrable,
1 _ t t
1 P
provided b > 2(p + 1) and that (W) is integrable. O
— 20

Remark 2 (On the assumption b > 2(p + 1).) We assume that b > 2 as in Lemma 2.

Let -
b 7+ r 2 2
Y e T
Hay) =] 2 ) dey (15)
400 otherwise,

denote a potential of the FENE force. Setting X, = (X¢,Y;) and W = (Vi, Wy), we see
that the stochastic differential equation (9) with g =0 has the following form :

1
dX, = 5 VII(X,) dt +dW . (16)

Hence, one expects the probability measure with density

pO(xvy) =

exp(—II(z,y)) _b+2 1_x2+y2
 Jreexp(—I(z,y))dzdy — 2mb

b/2
: ) Lorps (17

to be invariant. One can indeed prove this property by comparing (16) with stochastic differ-
ential equations where the potential 11 is carefully reqularized and for which the symmetry
properties of the transition densities given by Rogers in [16] (see remark (ii) and line 2
p-161) hold. The choice of this invariant probability measure as the law for the initial ran-
dom variable (Xo,Yy) is natural from a physical point of view, since we consider here the
start up of a shear flow : the fluid is therefore initially at rest (see also [3]). Notice that for

this initial distribution, we have T|i=o = IE = 0. In addition, for this initial

P
1
distribution, for any t > 0, (X, Y;) has the density po and therefore <W) 18
1 _ t t
b
integrable as soon as b > 2(p—1) (and not only under the stronger assumption b > 2(p+1)
made in Lemma 2). See [8] for more details.

Remark 3 (On the optimality of the assumption b > 2.) The assumption b > 2 turns
out to be a necessary condition to prevent (X¢,Y:) from touching the boundary of the ball
B = B(0, \/5) = {(x,y),a?2 + 9% < b} and therefore to have pathwise uniqueness of the
solution to the stochastic differential equation (9) when g = 0 in the sense of Definition 1.
The function %H : R? —] — 00, 400|, where 11 is defined by (15), is a continuous convez
function with domain B. Its subdifferential O (%H) 15 a mazimal monotone operator on
R2. According to [4], for any b > 0, the multivalued stochastic differential equation

1

where Wy = (Vi, Wy) and with X = (Xo, Yo) has a unique strong solution. This solution
belongs to C(Ry, B) and following the approach of [5] (see Lemmas 3.3, 8.4, 3.6 and 3.8),
one can check that X, = (X,Y;) is a solution of the stochastic differential equation (9)
when g = 0 in the sense of Definition 1. In case b > 2, this solution is equal to the
one given in Lemma 2 and PP (Ht >0,X?+Y?= b) = 0. In case 0 < b < 2, applying



Feller’s test for explosions (see [10] pages 348-350) to the semi-martingale Ry = || X ¢||?
which satisfies (13), we check that P (Elt >0, X2 +Y?= b) = 1. In this case, using again
results concerning multivalued stochastic differential equations, one can build a solution to
(10) outside of the ball B, with initial condition on the boundary and with g = 0 : this can
be used to show that uniqueness in law and therefore pathwise uniqueness do not hold for
(10). All these results are detailed in [8].

2.4 Existence in the general case

We now turn to the proof of Proposition 1 in the general case g # 0.

Lemma 2 provides us with a weak solution to the stochastic differential equation (9)
when g € L? by the Girsanov Theorem. Indeed, let us consider the solution (X¢, Y;) defined
in Lemma 2 in the probability space (2, F, F;, P). Under the probability IPY defined by

E=5</O'g<smdvs>t,

the process (VI,W7) = (V; — fgg(s)Y5 ds,W;) is a Brownian motion and therefore
(Xt,Y:, V2, W7 PY) is a weak solution of the stochastic differential equation (9).

By construction, this weak solution has its paths in C([0,T], B), where B = B(0,V/b) =
{(:E,y),aj2 +92 < b}. On the other hand, we know that trajectorial uniqueness holds for
such solutions in the ball (by Lemma 1). Therefore, by Yamada-Watanabe Theorem,
we have the existence of a strong solution (X7, Y?) to (9) with its paths in C([0,T], B).
Yamada-Watanabe Theorem also gives us uniqueness in law for the solution to (9).

Suppose we are now given another solution of (9) in the sense of Definition 1. By com-
paring this solution to the above strong solution (X{,Y,?) and applying again Lemma 1, we
obtain that this solution is equal to the one we have built. This also shows that any solution

(X9,Y9) of (9) in the sense of Definition 1 is such that P (315 >0, (X9)? + (Y9)? = b) = 0.

1

1— X2+YZ2

want to show the equality (11). We need the following Lemma :

dp9
dlP

P
Let us now suppose that b > 4 and ( ) is integrable for some p > 1. We

Lemma 3 If g € L?, then we have, for any 1 <r < 0o, if b > 2(r + 1), and provided that
T
xX{vyy
1— (th)Q;)r(Ytg)2

P
1
<7> is integrable for some p > r, for allt, 15 integrable and,
1

_ Xg+Ye
b

b—2
foranym\/%<q<oo:

N 1/7 _q ‘
E ( ) < Cy,rexp <q—b/ l9(s)I? d8> 7
’ 2r 0

1 -t
where Cy, denotes a constant depending only on q, v, b and IE (W)
1 _ 0 0
b

X7y
| PP
b

Proof :  Using Holder inequality and the properties of the exponential martingale, we

have :
o E( Ts(/o'g@)mvs)t)

10

X7y
(X7 +077)?
b

XYy

1_Xﬁﬁ

E

1—



gr\ Ve

X.Y, L a\ L/a
(2] ) e o)
. 2—q [t 1/q
< (G (e (o [Comiav.) e (T [t as))
¢
q— 1 t ° l/q
< oo (50 [laePas)E (e (o [Cawan) )
t
r q— 1 ! 2
< (Corew (L300 [ oo ds
0
oo\ @)
with ¢’ = 5 and Cy, = sup;cpo 1 E (%) < 00 by Lemma 2. %
_Xey

Using this Lemma with » = 1 (and a ¢ such that ¢ > g:—i V —E5), one can show that
Xv¢
| P07

P
is integrable and therefore that the equality (11) holds. This concludes

the proof of Proposition 1.

3 Notion of solution and a prior: estimates on the coupled
system

We now consider the coupled system of equations (5-7). From now on, we suppose that ¢
varies in a bounded interval [0, 7). The space variable y varies in O = (0, 1). The notation
L7(L2) is a shortcut for L2([0,T7, L*(0)), for example.

3.1 Notion of solution

The notion of solution we shall deal with in the sequel is the following.

Definition 2 Let us be given ug € HZ}, fext € L%(Lz), together with a probabilized space
(Q,F, F:,P), (Xo,Yo) a Fo-measurable random variable and (Vi, W) a (F;) two-dimensional
Brownian motion. We shall say that (u(t,y), X},Y}”) is a solution on the time interval
[0,0) if u e L*([0,0], Hj,,) N L*([0,0], HZ) satisfies :

X7y
8tu(t7 y) - ayyu(t, y) = ay]E 1_ (XZJ)2+(Yty)2 + femt(t7 y)v
b

in the sense of D'([0,0) x O) (at least), and for a.e. (y,w), Vt € (0,0),

[

ds < oo, with the convention =400 if a2 +y%> =0,

XIP PP P
1 % 1 - 2t
y t 1 Xy
_ _2 s y
X/ = Xo—l—/o 2T (Xg)QZ(YSy)Q +o,uYy | ds+V,,
t 1 Yy
Y _ S
Y= Y0+/0 ~3 ey Bt W
b

11



Remark 4 One can notice that we require the solution u to the partial differential equation
(5) is strong. This is due to the fact that our technique of proof requires an estimate on
Oyu in norm HZ} in order to control the stress T (see Section 3.2.2).

Remark 5 Since for a.e. y € O, dyu(.,y) is in L*([0,0]), we see that (X},Y)) =
(X?yu,Y;ayu), where (X?yu,Ytayu) denotes the solution to (10) with g = Oyu(.,y) (see
Proposition 1).

3.2 A priori estimates
In this section, we give some formal a priori estimates which will be used in the sequel to
prove the existence of a solution to the coupled problem.

3.2.1 First energy estimate

The first a prior: estimate expresses the conservation of the energy stored in the flow and
in the dumbbells.

Lemma 4 (Global-in-time first energy estimate) Let (u(t,y), X/, Y)”) be a solution

P
1
of (5-7) on [0,T) in the sense of Definition 2. Assume moreover b > 6 and m)
B

integrable for some p > 2. Then we have the following formal estimate :

li 2 i Yy vy / 2
s |+ 5 [ Eaer )+ [ o

+1/]E (XP)? + () _/E 1 /f s (18)
2 Jo (1_(X§’)2;)r(Yty)2)2 o (1 (Xy)2+ vY)2 “

where 11 is the potential for the FENE force defined by (15). Under the additional as-
sumptions feyr € L%(Lz) and uy € Lz, this yields the following formal estimate on the
solution :

ullpge 2y + [10yullpz(zzy + ITHXY Y ) [ oo 1 pny) + ITXY Y ) p2p2(r2)) < €5 (19)

LT and C' is a constant depending on T, ||u0||L§, ||f€$t||Lt1(L§) and

where Y (z,y) =
E(II(Xo, Yo)).

Proof :  Multiplying the equation (5) by u and integrating over O, one obtains :

;/O u(t,y)? - / // (Oyu)® /O/OTayu—k/O/Ofmu_ (20)

Notice that this is the only formal operation that will be later on justified once the problem
discretized : the following of the proof is completely rigorous.

2
A simple calculus shows that VII = o (7, y)1424 2 and Al = 5 124,20
1— by 1— x2+y2)
b
Therefore, using Itd’s formula, we have :
1 x/yY 1
dI(X?, YY) = —=T(X/, YY) dt L dt dt
( ( to~t )) 9 ( to~t ) +8yu1 _ (Xf)Q-li)—(Y;y)Q + (1 _ (Xty)2+(}/ty)2)2 +
b
X/ vy
T orope M ey
b b

12



This calculus is justified by the fact that the random process (X/,Y}?) does not touch the
boundary of B (see Proposition 1). Integrating both in time and space and taking the
expectation value, we therefore obtain :

/O]E(H(Xf,Yy /]E (X0, Yy)) ——//]E (XY, YY)?)ds +
Ry e R

Notice that the expectations of the local martingales are null since we have assumed b > 6

D
1
and (W) integrable for some p > 2 so that, by Lemma 3, for a.e. y € O,
1 _ 0 0
3

)2+ (VS
b
tains the energy equality (18).

2
T
1
E / < B (Yy)2> ds | has a finite value. By summing (20) and (21), one ob-
0 1 — 2s s )7

Estimate (19) is then obtained by using the energy equality. Indeed, the term II(X/,Y}”)

1
is positive and one can notice that the term / E can be bounded

(1 _ (Xf)?:(yt@‘)z)?

(XY)* + (v)?
XY)24(yY)2\ 2
(1 BD2p02)

1
from above by the term 3 / E by writing :
@

X2+ (V2 1

1 (X7)? + (V)2 Lxpy24(vp)2>24e
1 i i B
2 (1 _ (Xty)Q;)r(Yty)Q) (1 _ (Xty)Q?)r(Yty)Q)

1
2 (1 CEZOPR)T () e

~ laprrop)z<ate
XY)2 4 (Y)2 ) 2
(1 _ ) )

€ (X9 + @ b’

>
T 202+ (1_ (Xty)?;myﬁ)? (b—(2+¢))?

with € such that b — 2 > e. &

3.2.2 Second energy estimate

In order to show the second estimate, we have to use an expression of the stress 7 which
will give us regularity in the space variable y. In Proposition 1, we have shown that the
1

_ Xg+vg
b

P
> is integrable for
1

stress 7 has the following expression (assuming b > 4 and (

some p > 1, see (11)) :

xPvY
mlhy) = ]E(l_(xéﬁimy)?)’

b

- E ((%) £ (/0 Dyu(y)Ys st>t> . (22)

13




Diffrenciating (22) with respect to y enables us to convert the regularity of u to the
one of d,7, which provides us with the following local-in-time estimate.

Lemma 5 (Local-in-time second energy estimate) Under the assumptions b > 6,
P
1
feat € L?(Lg): ug € H@} and provided that (W) is integrable for some p > 2, we

have the following formal estimate on [0,T"], with T" € (0,T) depending on [10yuollzz, on

P
1
er:ctHLf(Lg); on b, and on I ((71 X§+Y02> > :
— =00

ull oo go,777, 1) + Mull L2 (0,77, 12) < C.
This also yields the following formal estimate on Oyu, on [0,T'] :
OpullL2(j0,7),12) < C.
In both cases, C' is a constant depending on |\8yu0\|L§, er:ctHLQ([O,T’],Lg); on b and on

p
1

Proof : Multiplying (5) by —0y,u and integrating over O, one obtains :

/(8 ult,y))? ——/ 8u0 // yyu //87'8yyu / /fextayyu
This yields
/(Qauty // Oyytt) <A+2//|8T\|8yyu\

with A = [[0yuo|2, + fo Jo | feat|*. Notice that this is a formal operation that will be later
Y

on justified once the problem discretized.
Using (22), we can derive :

t t .
o= (e ) ([ owomiars - [[@umionas) e ([ oman) ).

(23)
This can be shown in two steps, by first derivating with respect to y, for almost every w,
X Y; ¢
the random variable (% & ( /0 Oyu(y)Ys st> and then by proving uniform
T ¢

integrability (in w) on this derivative. To perform the first step, one can consider the
random variable (; 5 defined by :

fo yu(y + h)Ys dVs — fo L u(y)Ys dVy

Gt = ¢ h
/ Oy yu(y)Ys dVs ifh=0
0

if h#£0

and prove that ¢ is continuous by Kolmogorov Theorem (see Theorem 2.8 p. 53 of [10]).
This is also done in a formal way, since it required regularity on « : this operation will
be justified once the problem discretized. Notice that the following of the proof is now
completely rigorous.

14



For the first term, one can obtain, by using the fact that Y; is bounded (see Proposi-
2(b 2) v 2
p=2 "

X.Y t .
']E ((%) (/ DyyuYs dV5> £ </ dyuYsy dV8> )
1 _ t 5 t 0 0 t
t 2\ 1/2 _1 t
C, (]E < / DyytiYs dV5> > exp (qu / (8yu)2ds> <
0 0
t 1/2 q—1 t
C,Vb (/ |8yyu|2ds> exp <Tb/ (Oyu)?
0 0

For the second term, a similar argument shows :

)
t [
E ((%) </ (Dyyu) (Byu) Y d3> & </ OyuYs dV8> >
1— % 0 0 .
¢ g1 [t
e ([ ot as ) o (1550 [ @02as).
0 0

We thus have (using, since we are in dimension one, dyu(r,y) < ||0yu(r, )HH;) :

t
/ / 10,71yl ds <
0 (@)

tion 1) and Holder inequality in w, for any ¢ such that ¢ >

t . s s 1/2 s
/0 /Oexp <qT1b/0 (Oyu)? dr) (Cq Vb </0 |Oyyul? dr) +Cyb </0 |Oyyutl|Oyul dr)) |0yyul(s) ds

t -1 s s 1/2
< cq\/E/ exp <qu/ ||ayu||§,1dr> </ </ |8yyu|2(r)dr> 10,yul(s) | ds
0 0 Y o \Jo
t S S
q—1
repo [ (U500 [y ar) ([ 10l o) [ 0nulioults)ar ) as.

So we obtain by the application of Cauchy Schwartz inequality (to the spatial integral) to
both terms :

t
| [ 1orloyulas <
0o JO
t q—l 1/2
i [ e (1570 [ ol erar) ([ 10wty rar)  lonulzy (o) ds

or /exp(q‘1 [ otz ) ([ 10,z ) 1ol s) ds

IN

1/t 5
1] Nowuliy(s)as

+0t@) [ e (a=v0 [ 10,y erar) ([ louliiyear) o
+c’<q,b>/0texp<q—1 [0yl ) ([ 10,y (0l ) )d

We thus have shown the following inequality :
ol 0)+ 5 [ 0ty (o) ds <
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ax 20 [ e (a0 [ louliorar) ([ 1ol ar) as
+20) [ Cexp (a0 [0,y ar) ([ 10,ullny ol ) dr>2 ds.

Let f1(t) = H(‘)yuﬂig( ) and fa(t) fo |0y yuHLQ( s)ds. We have :

R0+ 380 < 42000 [ow (o [ A0)ar+26)) 2ds

—I—ZC”(q,b)/oteXp( </ A dr + Fals >> (/ A dr + fols )>f2(s)ds,

with @ = (¢ — 1)b. Let R(t) be the right hand side of the former equation. We can then
write :

#) = 200 (o [ a0+ 50)) (can+an ([ ama+nn)) s
< dexp <a < /O "Ry dr + 2R(t)>> <0(q, b)+ C'(q,b) ( /0 "Ry dr + 2R(t)>> R(b).

By integrating in time, this leads to

R(t) < A+d /O Cexp <a ( /O "R dr + 2R(s)>> <C(q, b) + C'(g,b) < /0 "R dr + 2R(s)>> R(s) ds.

Since R is an increasing function, we have :

R(t)

IN

A+ 4/0 exp (a (T +2) R(s)) (C(g,b) + C'(q,b) (T +2) R(s)) R(s)ds

IN

A+ /0 exp (BR(s)) (¢ + ¢ R(s)) R(s) ds,

with 8 = a (T +2), ¢ = 4C(q,b) and ¢ = 4(T +2)C'(q,b). From this one can deduce

p
1
that there exists v > 0 and C' > 0, (both depending on ¢, b, E ((W) ) and T')
b

such that : .
R(t) < A+ C/ exp(yR(s)) ds.
0

Let H(t) denote the right hand side. It is easy to derive from this inequality the
following estimate : Vt € (0, % eXp(—fyA)),

1 |
Rf) < H{p) < Jln <exp(—7A) - 70t> '

If we set T" = 7% (exp(—yA) — exp(—2vA)), we have : for all t € (0,7"),
R(t) < H(t) < 2A.

This leads to the following estimate : for all ¢ € (0,77),
0,150+ 5 [ N0y (o) ds <24 29
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In order to obtain the estimate on d;u, we observe that Oyu = Oyyu + fear + 0y7. We
have already shown an estimation of dy,u in L*([0,T"], L) norm. Moreover, using the
same argument as before, we can easily show that, for any function v € L2([0,7"], LZ),

‘/Ot/oaym

where C' is a constant depending on ¢, b, A, I|E ((

< Cllvll2(o,11,22)

1
1_ Xg‘;)‘yog
estimate on Ju. &

p
> > and T”. This yields the

4 Existence of a solution to the coupled system
The aim of this section is to prove the following :

Theorem 1 (Local-in-time existence and uniqueness) We assume thatb > 6, fey €

1

1— X3+Y{

T € (0,T) (depending on the data) such that the system (5-7) admits a unique solution
(u(t,y), XY, YY) on [0,T'] in the sense given in Definition 2.

P
L?(Lg), up € H@} and ( > is integrable for some p > 2. Then there exists

Remark 6 If one chooses some initial random variables (Xo,Yy) distributed with the in-
variant density po defined by (17), then Theorem 1 holds under the weaker assumption
b > 2 (see Remark 2 and Lemma 5). We recall that none of these assumptions on b is
restrictive in practice since b is physically of the order of 100.

P
1

: 2/72 1 :

In the following, we assume b > 6, fext € Li(Ly), uo € H, and (1 - X§+Y02> is

integrable for some p > 2.

In order to show the existence of a solution to the coupled system, we introduce the
following variational formulation of (5) :
Find u € LfO(H&’y) N Lf(Hg) such that for all v € H&y,

i/uv = —/8yu8yv—/7'8yv—|—/ Sext U, (25)
dt Jo o o o

together with

Xty
o ]E<1_<Xf>2+my>2 ’ (26)
b
! X!
= X0+/0 “a - capreay oY | ds Y (27)
—_ IO
t 1 ng
Yy = Y0+/O 5T W (28)

b

The ordinary differential equation (25) is to be understood in D’([0,T")). The stochastic
differential equations (27-28) are to be understood in the sense of Definition 1. This
problem is well defined. Indeed, Proposition 1 gives a strong solution to (27-28). Moreover,
the term [, 70,v has a meaning since Lemma 3 shows that 7 is in L{°(Lg°). A solution
to this variational problem is a solution to (5-7) in the sense of Definition 2.
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4.1 Definition and resolution of the discretized problem

We introduce a Galerkin approximation of the variational problem (25 - 28). Let (v;)1<i<oo €
C>®(0) N HEO) be such that {v;} is a basis of H}(O) and such that
Oyyvi € Vect{v;,1 < j < i} (take e.g. the eigenvectors of the Dirichlet laplacian on O).
We set V,,, = Vect{v;,1 < j <m}. The problem we consider at the discrete level reads :
Find U™ € L{°(R™) such that the function u™(t,y) = >, U™ (t)vi(y) satisfies :

d
— [ Wy = —/ Oyu™ Oyv; —/ 7™ Oyv; +/ Seatvi, for 1 <i<m, (29)
dt Jo o o o
’ Xty
T (1 TR OPTE | (30)
b
m ¢ 1 xom
X" o= Xo+ /0 S 2 _ XM (rm? +Oum Y™ | ds+V,, (31
. S0 b nt £ e

L il ds + W, (32)
7= Yot | B We
b

The initial condition u™(t = 0) is II"™(up) where II" is the H!-projection on V,,. The
ordinary differential equation (29) is to be understood in D’([0,7")). The stochastic differ-
ential equations (31-32) are to be understood in the sense of Definition 1. We know from
Proposition 1 that the stress can be written in the following form :

X,Y; .
moo= E((%)E(/ 8yumY5dV8>>.
1 — =it 0 t

Notice first that the formal a prior: estimates of Lemma 4 can now be derived rigor-
ously on the discretized problem (since one can take v = u™ as a test function in (29))
and show that if «" is a solution of the problem (29-32) on [0, 7], then HumHLoo([07TLL:’QJ)
is bounded which means that |[U™()||re(o,r) < M (where M depends on m). Notice also
that if «™ is a solution of the problem (29-32) on [0,0], with © < T, then we also have
[[U™(t)||ooj0,0) < M with the same upper bound M (independant of ©).

In the following, the dimension m is fixed and we omit the superscript m.

We now want to show that the nonlinear system (29-32) admits a solution. We in-
troduce the matrices A;; = fo vivj, Bij = fo OyviOyvj, the field 2 = (v, ...,v,) and

the vector F.,; with components fextv;. We are going to construct a fixed point U
@]

of the following mapping which associates to any function ® € C([0,7],IR™) the function
F(®) € C([0,T],R™) defined by :

F(®)(t)=Uy— A" (/0 <B<I>(s) - /O]E <%Z(@)s) OyE +Fert(5)) ds) ,
b

where
Z(®)s =& (/ > ®i(r) oY dw) :
07 s

The initial condition Uy is the vector with components (II" (uy));.
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First step :
First, we are going to show by the Picard fixed point theorem that the function F' has a
unique fixed point when restricted on C([0, a], B(Up, 1)) endowed with the uniform con-
vergence topology, for some a € (0,T) well chosen and only depending on |[Fea||Lse,
mMaxj<i<m ||’UZ'||Wyl,oo, m, b and T (see inequalities (34) and (35) below). The ball B(Up, 1)
is defined by B(Up,1) = {K € R™,||K — Uy|| < 1}. Notice first that we have, for any
® € C(]0, a], B(Uy, 1)) and for any t € [0,a] :

<5 </O.Zq)i(r)8yvin dw) )2
exp / (ZQJ ) Oy v T>2 dr | € (2 /.Z@i(r)ayvin dVT>
0 .
exp (C’ab (||<I>||%Oo[0’a])) E <g (2 /O.Zcpi(r)%vin d‘/r) )

exp (COéb (H‘I’H%W[Ova])) ’

where C' only depends on maxi<j<m ||Vi||[;;;1.00. This means (since a« < T and ® €
y <i< W

C([O,a],B(Uo, 1))) :
1Z(®)el| Lo (10,0, L20(22)) < exp (CTb (1 + ||Uol[?)) - (33)

Using this estimate (and Lemma 2), for any ® € C([0, o, B(Uy, 1)), we have the following
estimate on ®' = F(®) :

E ((Z(2):)?)

IA

IN

12°(t) = Uollzopoa) < 1A=l Bl a(1 +[|Uol]) + Cal|Z(P)]| Loo((0,0], L3¢ (£2)) T+ Ol [ Feat|| o
Yy
< Ca(l +||U|) exp(C||Uol*),

where C' is a constant depending only on ||Feg||re, maxi<i<m [[villy 100, m, b and T
- Y

(and not on ||Uy]|). Thus, F (C([0,«], B(Up,1))) C C([0,«], B(Uy, 1)) if we choose « small
enough to ensure that :
Ca(1 +|Uol]) exp(Cl|Uo|?) < 1. (34)

We next show that the function F restricted on C([0,a], B(Up, 1)) (with « small enough)
is contracting. Let ®' = F(®1), Z} = Z(®'), and 2 = F(92), Z} = Z(®?), where
®! € B(Up,1) and ®% € B(Uy, 1). Suppose moreover that (34) holds. We have

197 (1) = @ (llzwpper < AT (Bl (0) = @Ol oo + CallZE = Zlim oot 122

‘o (1101 (1) = 92Ol p=(0.0) + 112 = Z2llze (002312 ) -

N

IN

¢
We now want to estimate (Z}—Z?). We use the fact that ZF =1 + / Z F(r)0yv; Yy ZF dV,

(k=1or2):

Zt - 72 = /(Z@ (r)dyv; Z} — Zqﬂ )Oyvi Z, )de
_ /Z ))OUZZYdV—l—/ (Z(I) avz> — Z2)Y, dV,.
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From this and (33), we deduce that, V¢ € [0, o],

2
]E((Ztl_zf)Q) < 2E (/Z ))OUZZYdV>
2
+2E (/ (Z@ avz) Z,?)KdV;) :
¢ 2
L)y — ®2(r v; Z2 T
< 2/0113 (ZZ:(@Z-() @In())ayzzm) d
2
/ ((Z@ 8vl> ZE)YT> dr,
< 20C"aexp (CTh (1+ |[Uo|*)) |9 — ©[7 0.0

t
B gy [ (20 - 22)%) i
Using Gronwall Lemma, this yields an estimate :

|z} - z¢ < C'aexp(C'[|Uo][)]|@* — @[ Lo [0,0),

[ o (0,00, L3022

where C’ is a constant depending only on || Featl|Loo, maxi<i<m ||vi||W1,oo, m, band T. We
- - Y
finally have an inequality of the following type :

127 (#) = % (1)l p0.0] < C'aexp(C']|Uo| )12 () = B2(1)]| 1o 0,0]-
so that F' is contracting if we have :
C'aexp(C'||Uo|?) < 1. (35)

At this stage, we have shown that for any initial condition Uy, there exists a solution
U € C([0,ap],R™) to the discrete problem on a time interval [0, ap], with g > 0 such that
(34) and (35) hold.

Second step (continuation) :
We can now start again the construction of a solution to (29-32) from the final point U (ay)

and Zo, = Z(U)a, = exp( 00 S Ui (r)0yuiYe dVy — L (90 (3, Us(r)0yv,Y,)? dr) using
the same arguments as before. Notice that by the a priori estimate of Lemma 4, we have
on the one hand U(ap) < M and on the other hand ||Za0||L§o(L3) < exp(Cagb(1+ M?)) <
exp(CTb(1+ M?)) = M’ (using (33)), with C only depending on maxi<;<pm, ||'UZ||Wyloo We
now consider the mapping F*which associates to any function ® € C([ag, T],IR™) the
function F*(®) € C([ap, T], R™) defined by :

FO0(®)(t) = U(ap)—A~! ( / (B@(s) [ (%zm)g) 554 Fext@)) ds> |
a0 -

where Z%(®), = Zo, € (/ Z <I>Z-(r)8yvin d%) . The same arguments as before show
ap
that we can find a time interval [ag, g + @ (wit}f a € (0,7 — o)) on which F* has a
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fixed point. Indeed, what is important is just that Z,, € L;O(Li) This is for example the
way one can estimate Z?(®),, for any t € [ag, g + @] :

2
E ((Zao((I))t)2) = E <Z(O¢0)g </ Zfbi(r)%vm dV,«) )

2
- E(2E (5 ( / Zq>i<r>ayvindvr)) P )

7

. t
= E(Z2E|€ (2/ > ®i(r)oyv:Y; dVT> exp (
ap '
< exp (C’(a - a0>b||(1)||2L°°[ao,ao+a]) E (ZO%O E <€ <2/ Zfbi(r)ayvin d%) |,7:a0))
ag . '

< exp (C(a - a(])b”q)”%m[ao,ao—i-a]) E (cho) :

2
Z@Ar)@wﬂ@) dr | |Fa,

Going through the same arguments as before, one can thus show that F“°, when restricted
to C([a, ap+a], B(U(ap), 1)) is such that F*° (C([aw, o + o, B(U(ayp),1))) C C([awo, o+
al, B(U(ap), 1)) and is contracting, provided that « satisfies an inequality of the type :

CaM'(1+ M)exp(CM?) <1

where C' is a constant only depending on ||Fezt||ree, maxi<i<m |[vill;1.00, m, b and T. We
- - Yy

can choose !

 OM'(1+ M)exp(CM?)’

We have thus built a solution U € C([0,a9 + a1],R™) to the discrete problem on the
interval [0, + «;]. The final points U(ag + 1) and Z(U)ag+a, are again such that
[|U(ap + a1)|| < M and ||Z(U)ozo+a1||L§;°(L3) < M'. This means that we can, by the
same arguments, extend the solution on the time interval [ + a1, a9 + 2a4], and by a
continuation argument, we can build a solution to (29-32) on the time interval [0, 7.

a =

Remark 7 This proves that any finite element approximation of the variational problem
(25 - 28) has a solution on a time interval [0,T] for any T > 0.

Remark 8 One can easily prove the uniqueness of a solution to the problem (25 - 28) on
[0,T], for example by adapting the proof of Lemma 6 to the finite dimensional case.

4.2 Convergence of the discretized problem

We now turn to the convergence of the solution of the discretized problem. The formal
a priori estimates of Lemma 5 can be derived rigorously on the discretized system. Indeed,
one can take v = —0,,u™ as a test function in (29) (see the special basis (v;) we have
chosen), and the expression (23) of the derivative of 7 with respect to y is completely
rigorous since Vt € [0,7], u™(t,.) € C*®(0). Therefore, using Lemma 5, we know that
there exists 7" > 0 such that there exists a uniform bound on u"" in norm L*([0,T"], H,) N
L?([0,7"), H}) and on dyu™ in norm L*([0,T"], L2).

Up to the extraction of a subsequence, we can suppose that there exists
u e L*®([0,77], H)) N L*([0,T"], H]) such that :
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o u™ — u weakly in L*([0,7"], H2) and weakly-* in L°°([0,7"], H}),
o Jyu™ — dyu weakly in L*([0,T7], L2),
o u™ — u strongly in L*([0,1"], Hy).

For the third convergence, we use the standard fact that the injection
{vst. v € LQ([O,T’],H§ N H&y), o € L2([0,T’],L§)} — L2([0,T’],H&y) is compact
(see Theorem 5.1 p. 58 in [13]). We can also suppose that v — wu for almost every
(t,y) € (0,t) x O. We want to show the convergence of each of the terms of the following
equation (for a fixed i) :

d m m o XtY;f ¢ m
a/@u Ui‘i‘/oayu ay’ljz—/(oE((W) g(/o 8yu YSdVS>T,> ay'l)i‘i‘/o fextvi,

(36)
where we have used the following standard property of the exponential martingale : for
any y fixed in O, since dyu(t,y) € L*(0,0), we have V¢ € (0,7"),

T(t,y) = E ((%) E </0. Oyu(y)Ys dV5>T,> .

Using the above convergences, we easily pass to the limit in all terms of (36) but

r XY, o s
X7 E ; Oyu™Ys dV . Oyviw |, where w € C§°(0,7"). Let us
5

XY ¢
define the function f™(t,y,w) = % & (/ Oyu"™Y st> Oyviw. It is easy to
1— % 0 T

T T T
1
see that, ; Oyu"Y, dVy converges in L;(Lf,) to ; OyuYs dVy and that 5 /0 (0,u™Y;)* ds
1 T
converges in L} (LL) to 3 / (8,uY;)? ds. We can therefore (extracting a subsequence) sup-
0
pose that fm converges for almost every (t,y,w) towards

XY, *
flt,y,w) = (%) E (/ OyuYs st> Oyv; w. Moreover, we can find a uniform
S 0 T
b

bound on the norm L*([0,T"], LZ(LZ)) of f™ (using the same techniques as in Lemma 3).
This shows that the family (f™)m>1 is uniformly integrable and therefore that

Aé@ﬂﬁ%ﬁéréﬂﬂ

Finally, one can prove by standard arguments (see e.g. [18| page 260) that «(0) = ug
and this concludes the “existence part” of Theorem 1.
4.3 Uniqueness of the solution

Lemma 6 (Uniqueness of the solution) The system (5-7) admits a unique solution on
[0,T"] in the sense given in Definition 2.

Proof : Let us consider two solutions (u, X,Y) and (@, X,Y). One easily obtains the
following estimate on w = u — u, for any 0 < t < T" :

1 t t
s [wos [ [l = - [ [ @3
2 Jo 0o Jo 0o Jo
< 5 [owkes [ -7
< - w — T — 7|,
2 Jo Jo ! 2 J)o Jo
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where

IN
&5
e N
| 2
<[] &
i
N——
[\
B
=
N
&
|
N
S/l
o
N——

We know that

2= 2@y = [ Ou)Z(), = 0,i()Z(0),) VeaV:

This yields :
Uy — ﬂtQ < t W 2 u% T t U 2 Uy — &TQ T.
B((Z() - 2@0)) < 2 [ Du@PEEE ar+2 [ 0a0PE (20, - 2@),)) d

Using Gronwall Lemma and the fact that IE(Z(u)?) < exp (b fOTI Oy ul? ds), this yields an

estimate :

T

E((Z(u) - Z(@))?) < Cexp (c / \aya<y>|2+|ayu<y>\2> | 1ot

We have finally, using the estimates of Lemma 5 :

t t S
//|ayw|2 < o///|ayw|2.
0 O 0 JO O

which shows that w = 0 by Gronwall Lemma.

In order to conclude this proof of Lemma 6, and therefore of Theorem 1, it remains
to recall from Proposition 1 that the stochastic differential equation (7) admits a unique
strong solution. O
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