
Existene of solution for a miro-maro modelof polymeri �uid : the FENE modelBenjamin Jourdain, Tony Lelièvre, Claude Le BrisCERMICS, Eole Nationale des Ponts et Chaussées,6 & 8 Av. Pasal, 77455 Champs-sur-Marne, Frane.{jourdain, lelievre, lebris}�ermis.enp.frDeember 20, 20021 Introdution and motivationWe ontinue here our endeavor, initiated in [9℄, to put the miro-maro models for polymeri�uid �ows on a mathematially sound ground.Let us reall for onsisteny that these models aim at irumventing the di�ulty of�nding a losure equation at the pure marosopi level. In the ase of non newtonian�uids suh as polymeri �uids, suh an equation links the stress tensor to the veloity�eld through, say, a partial di�erential equation or an integral relation. In order to builda miro-maro model, one goes down to the mirosopi sale and makes use of kinetitheory to obtain a mathematial model for the evolution of the mirostrutures of the�uid, here the on�gurations of the polymer hains. We refer the reader to [9℄ or [12℄ for amore omplete introdution to this type of models and to [1, 2, 6, 14℄ for a omprehensivesurvey of the physial bakground. Contrary to the purely marosopi approah wherethe mirosopi models are used to derive marosopi onstitutive equations, most ofthe time through some simplifying assumptions (losure assumptions) whose impat onthe result is di�ult to evaluate, the so-alled miro-maro approah onsists in keepingexpliit trak of both sales. In mathematial terms, this miro-maro approah translates
X

Figure 1: The polymer (in dashed line) is modelled by a �dumbbell� : two beads linked bya spring. The vetor X is alled the end-to-end vetor.into a oupled multisale system of the following form (we onsider here the simplest ase :the so-alled dumbbell model, where the polymer is modelled by two beads linked by a1



spring, see Figure 1) :
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(

∂u

∂t
+ u.∇u

)

= −∇p+ η∆u + div τ ,

div u = 0,

τ = n

∫

(X ⊗ F (X))ψ(t,x,X) dX − nkBT Id,
∂ψ

∂t
+ u.∇xψ = −div X ((∇xu X − 2

ζ
F (X)

)

ψ

)

+
σ2

ζ2
∆Xψ, (1)

where u(t,x) is the veloity of the �uid, p(t,x) the pressure, τ (t,x) the stress tensor,and ψ(t,x,X) denotes the probability density funtion of the end-to-end vetor X of thepolymer at time t and at position x. The other symbols are physial parameters : F (X)is the entropi fore a representative polymer hain experienes, ρ and η respetively arethe density and the visosity of the ambiant �uid, n denotes the density of polymers, theoe�ient σ is de�ned by σ2 = 2kBTζ with T the temperature and ζ the frition oe�ientof the beads within the �uid. It is to be noted that the Fokker-Plank equation on ψ holdsat eah marosopi point x.Let us at one indiate that, from a physial point of view, the dumbbell model, forwhih the on�guration spae is IR3 (that is, X ∈ IR3), is too rude to ompletely desribethe evolution of the polymer hain. But this model serves as an e�ient test problemfor more sophistiated modelling strategies. In order to be more realisti, one has indeedto onsider a model where the polymer is not just modelled by its end-to-end vetor butby a hain of beads and springs, whih leads to a system of the form (1), but with aFokker-Plank equation set in a on�guration spae of dimension larger than 3. Thishighly ompliates a diret numerial attak of the Fokker-Plank equation on ψ (thereexists however suh tentatives of diret attaks, see [17℄ and the referenes therein).The main trend in the ommunity of researhers performing numerial simulations ofsuh omplex �ows is therefore to �replae� the Fokker-Plank equation by the underlyingstohasti di�erential equation ruling the evolution of random variables whose density is ψ.Suh an hybrid strategy mixing stohasti and deterministi aspets an be advantageouslystudied already in the setting of the simple dumbbell model. In the simple ase of thedumbbell model, it indeed onsists in turning (1) into the following mathematial system :






























ρ

(

∂u

∂t
+ u.∇u

)

= −∇p+ η∆u + div (τ ),

div (u) = 0,
τ = nIE(X ⊗ F (X)) − nkBT Id,
dX + u.∇Xdt =

(

∇uX − 2

ζ
F (X)

)

dt+

√
2σ

ζ
dW t,

(2)where X(t,x) is a stohasti proess representing the end-to-end vetor of the polymermodelled by a dumbbell (see Figure 1). The stohasti proess W t is a standard (multi-dimensional) Brownian motion and IE denotes the expetation.In our previous work (see [9℄), we have made the (simple) mathematial analysis andthe (more intriate) numerial analysis of this model when applied to a simple Couette�ow (see Figure 2) and when onsidering a linear fore in the dumbbell (model of hookeandumbbells : F (X) = HX , with H a onstant oe�ient) (see also [7℄ for an other exampleof a mathematial analysis of a visoelasti �ow in this geometry). It then redues to the
2
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Figure 2: Veloity pro�le in a shear �ow of a dilute solution of polymers.system :


























∂tu− ∂yyu = ∂yτ + fext,
τ(t, y) = IE(Xy

t Yt),

dXy
t =

(

−X
y
t

2
+ ∂yuYt

)

dt + dVt,

dYt = −Yt

2
dt + dWt,

(3)where (due to the simple geometry of the problem) u = ux(y) and τ = τ xy(y) are herevalued in IR, while the spae variable y varies in O = (0, 1). In (3) and heneforth, wewrite all the equations in a non dimensional form and fext denotes an external fore.The stohasti variables (Xy
t , Yt) denote the omponents of the stohasti variable X tintrodued before. We have proved in [9℄ the well-posedness of the Cauhy problem byshowing a global-in-time existene and uniqueness result. On the other hand, we haveshown the onvergene of the numerial approximation of the solution (�nite di�erene intime, IP1 �nite element in spae, and Monte Carlo realizations) to the exat solution.Despite its interest as a test problem for many mathematial and numerial tehniques,the above hookean dumbbell model is somewhat limited sine it an in fat be written underthe form of a purely marosopi model, namely the Oldroyd-B model, that we reall herein its di�erential form :
τ + λ

δτ

δt
= nkBTλ(∇u +t ∇u), (4)with the upper onveted derivative δ

δt de�ned by :
δτ

δt
=
∂τ

∂t
+ u.∇τ − τ

t∇u −∇uτ ,where λ = ζ
4H is a harateristi time.In order to address more general situations, we here want to treat the ase of a miro-maro model whih annot be written under the form of a marosopi model, and thereforeis genuinely miro-maro. An instane of this model (at least to the best of our knowledge,see [11℄ on this subjet) is the so-alled FENE model where the aronym FENE standsfor Finite Extensible Nonlinear Elasti. In this model, the fore within the spring has thefollowing expression : F (X) = HX

1−||X||2/(bkBT/H)
(H and b being two onstant oe�ients).This model is more realisti from a physial point of view than the model of hookeandumbbell sine it aounts for the �nite extensibility of the real polymer. For example,this model exhibits shear-thinning or hystereti behavior in elongational �ows, ontrary tothe linear model of hookean dumbbells, and aordingly to experiment.3



Like in [9℄, we only onsider in the sequel the setting of a simple Couette �ow. TheFENE model then reads, in a non-dimensional form :
∂tu− ∂yyu = ∂yτ + fext, (5)
τ = IE

(

Xy
t Y

y
t

1 − (Xy
t )2+(Y y

t )2

b

)

, (6)






















dXy
t =
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Xy
t
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t )2
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+ ∂yuY
y
t

)

dt+ dVt,

dY y
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−1

2

Y y
t

1 − (Xy
t )2+(Y y

t )2

b

)

dt+ dWt.

(7)where the non-dimensional parameter b > 0 measures the �nite extensibility of the polymerand is in pratie of the order of 100 (see [14℄ page 217). The spae variable y varies in O =
(0, 1) and
t ∈ [0, T ]. The random variables are de�ned on a �ltered probability spae (Ω,F ,Ft, IP).The random proess (Vt,Wt) is a (Ft)-two-dimensional Brownian motion. For simpliity,the boundary onditions are taken homogenous : u(t, y = 0) = u(t, y = 1) = 0. The initialveloity is u(t = 0, .) = u0, and (X0, Y0) is a F0-measurable random variable.It is worth emphasizing the di�erenes with respet to the hookean dumbbell model(3) (whih an formally be reovered from (5-7) by letting b go to in�nity) :

• No expliit expression of the stress in funtion of the veloity is known to date (theFENE model is not losed),
• Both omponents Xy

t and Y y
t of the onneting vetor modelling the polymer haindepend on the spae variable,

• The drift term in (7) is nonlinear and singular.Suh di�erenes make the mathematial analysis more deliate than that for the hookeandumbbell model. The purpose of the present artile is to ondut suh an analysis. Wehope to be able to treat the numerial analysis of suh a system in the future.To the best of our knowledge, system (5-7) has never been analyzed mathematially.The only result onerning a problem lose to (5-7) is due to M. Renardy in [15℄ wheresystem (1) is analyzed and proved to admit a loal-in-time solution in spaes of regularfuntions. The result applies to the ase of a �ow of polymeri invisid �uid (η = 0) in IR3with spring fores slightly more explosive than the FENE fore.The artile is organized as follows. In Setion 2, we deal with the stohasti di�erentialequation (7) (see also [8℄ for a more omplete analysis of this stohasti di�erential equa-tion). We �rst show the existene of a solution when u = 0 and then, using the GirsanovTheorem, we build a weak solution to (7) when the veloity u is arbitrarly given. UsingYamada-Watanabe Theorem, we next show that (7) admits a unique strong solution. Themain di�ulty in proving the existene of a solution to the stohasti di�erential equa-tion omes from the singular nature of the drift. We shall however see that we an takebene�t of this singular nature to obtain an a priori bound on the stohasti proesses(whih does not exist in the hookean ase and must therefore be irumvented by ad hout-o� tehniques, see [9℄). We next onsider the oupled system (5-7) and show somea priori estimates in Setion 3. We use these estimates in Setion 4 to prove our mainresult (stated in Theorem 1), namely a loal-in-time existene and uniqueness result ofthe solution (u,Xy
t , Y

y
t ) to the oupled system (5-7), being understood that (Xy

t , Y
y
t ) is4



a strong solution (in the sense of probability theory) of (7) and u is a regular solutiongiving to (5) an almost everywhere sense (whih requires a good regularity of the data :initial ondition, boundary onditions, fext). We unfortunately are unable to extend thisexistene result to any arbitrary large time, nor to extend it to a less regular lass of data.The numerial analysis of some disretization shemes used for the simulation of stohastidi�erential equations of type (7) is urrently under study.2 Existene of a solution to the stohasti di�erential equa-tionIn this setion, we onsider the stohasti di�erential equation (7) with a given veloity
u. More preisely, we �x y in O, we set g(t) = ∂yu(y, t) for oniseness, and we supposethroughout this setion that

g ∈ L2
t . (8)We are interested in solving for t ≥ 0 the following stohasti di�erential equation :























dXg
t =

(

−1
2

Xg
t

1−
(X

g
t
)2+(Y

g
t

)2

b

+ g(t)Y g
t

)

dt+ dVt,

dY g
t =

(

−1
2

Y g
t

1−
(X

g
t
)2+(Y

g
t

)2

b

)

dt+ dWt,

(9)with initial ondition (X0, Y0). Throughout this paper we will suppose that (X0, Y0) issuh that IP
(

X2
0 + Y 2

0 ≥ b
)

= 0. In this setion, we onsider that t varies in the whole of
IR+.2.1 Notion of solutionLet us begin by giving a preise mathematial meaning to (9).De�nition 1 We onsider a �ltered probability spae (Ω,F ,Ft, IP), a (Ft)-two-dimensionalBrownian motion (Vt,Wt) and a F0-measurable random variable (X0, Y0). We shall saythat a (Ft)-adapted proess (Xg

t , Y
g
t ) is a solution to (9) when : for IP-a.e. ω, ∀t ≥ 0,
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ds+Wt. (10)Our purpose in this setion is to show :Proposition 1 Assume that b ≥ 2 and (8). There exists a unique (Ft)-adapted pro-ess (Xg
t , Y

g
t ) with values in C([0,∞[, IR2) solution to (9) in the sense of De�nition 1.In addition, this solution is suh that IP
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∃t ≥ 0, (Xg
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t )2 = b
)

= 0 and (Xg
t , Y
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t ) is

σ (X0, Y0, (Vs,Ws)s≤t)-adapted. Moreover, assuming b > 4 and ( 1

1 − X2
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0
b

)p is inte-grable for some p > 1, we have the following expression of the stress (6) in funtion of the5



solution (Xg
t , Y

g
t ) for g = 0 heneforth denoted by (Xt, Yt) :

IE

(

Xg
t Y

g
t

1 − (Xg
t )2+(Y g

t )2

b

)

= IE

((

XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
g(s)Ys dVs

)

t

)

, (11)where E
(∫ •

0
g(s)Ys dVs

)

t

is the exponential martingale :
E
(
∫ •

0
g(s)Ys dVs

)

t

= exp

(
∫ t

0
g(s)Ys dVs −

1

2

∫ t

0
(g(s)Ys)

2 ds

)

.We begin by proving the uniqueness, next show the existene when g = 0 and in athird step show the existene for a general g satisfying (8).2.2 UniquenessLemma 1 Let (Xg, Y g) and (X̃g, Ỹ g) be two solutions of (9) in the sense of De�nition 1.Provided (Xg, Y g) is suh that IP (∃t ≥ 0, (Xg
t , Y

g
t ) ≥ b) = 0, then,

IP
(

∀t ≥ 0, (Xg
t , Y

g
t ) = (X̃g

t , Ỹ
g
t )
)

= 1.Proof :Let us onsider the stopping time
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(Xg
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. These funtions are Lipshitzontinuous with onstant Kn on the ball Bn =
{
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1 − 1
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)}.Let us now onsider Pt = Xg
t − X̃g

t and Qt = Y g
t − Ỹ g

t . We have
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(2Kn + |g(s)|) (|Ps| + |Qs|) ds.Using Gronwall Lemma and the fat that g ∈ L1

t , we dedue that, almost surely, for any
t ∈ (0, τn), Pt = 0 and Qt = 0. Hene (Xg

t , Y
g
t ) and (X̃g
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g
t ) oinide on (0, limn→∞ τn).As a onsequene, τn = inf
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)} and by the assumption madeon (Xg
t , Y

g
t ), limn→∞ τn = +∞. ♦Remark 1 The proof makes a ruial use of the fat that (9) only di�ers from a systemof ordinary di�erential equations by the simple addition of a Brownian motion.
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2.3 Existene when g = 0The ruial lemma whih will be used in the sequel states the existene of a (strong)solution to (9) when g = 0. We reall that this solution will be denoted in the followingby (Xt, Yt).Lemma 2 Assume that b ≥ 2 and g = 0, then there exists a unique solution (Xt, Yt) to (9)in the sense of De�nition 1. This solution is suh that IP
(
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2 = b
)
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)p is loally bounded.Proof : We onsider the following approximation of the stohasti di�erential equation(9), with g = 0 :
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(12)and the stopping time :
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t, (Xn
t )2 + (Y n
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n

)}

.Using the fat that (12) has a unique strong solution (Xn
t , Y

n
t ) on [0, τn) and setting

(Xt, Yt) = (Xn
t , Y

n
t ) on [τn−1, τn), one obtains by ontinuation of the pieewise solutionsa strong solution to (9) with g = 0 on [0, limn→∞ τn). Using It�'s formula, one �nds that

Rt = (Xt)
2+(Yt)

2 satis�es the following stohasti di�erential equation on [0, limn→∞ τn) :
dRt =

(

− Rt

1 − Rt
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)

dt+ 2 (Xt dVt + YtdWt) .Using Girsanov Theorem on (Xn
t , Y
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t ), one may next hek that

IP(∃t ∈ [0, τn), (Xn
t )2 + (Y n

t )2 = 0) = 0 and therefore IP(∃t ∈ [0, limn→∞ τn), Rt = 0) = 0.The former equation may thus be written in the following form :
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dt+ 2
√

RtdBt, (13)where Bt is a Brownian motion by Paul Lévy haraterization. Let us now onsider a salefuntion s : (0, b) −→ IR suh that :
(

− x

1 − x
b

+ 2

)

s′(x) + 2x s′′(x) = 0whih leads to
s′(x) = C(b− x)−b/2x−1.We hoose a primitive funtion s de�ned on (0, b). This funtion s is inreasing and is suhthat limx→b s(x) = +∞, provided b ≥ 2. Using It�'s formula, on [0, limn→∞ τn), we have

s(Rt) = s(R0) + 2

∫ t
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√
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Let us suppose �rst that s(R0) is integrable, so that s(Rt) is a loal martingale. Let k bea non-negative integer. We now introdue the stopping time
σk = inf

{

t < lim
n→∞

τn, Rt ≤
1

k

}

, with the onvention inf{∅} = +∞.The random proess s(Rt∧τn∧σk
) is a martingale. Thus we have for any t and for any n,
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)) = IE(s(R0))whih leads (using the fat that s is inreasing) to
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)

(1 − IP(τn ≤ t ∧ σk)) ≤ IE(s(R0)).Taking �rst the limit n → ∞, we obtain IP(limn→∞ τn ≤ t ∧ σk) = 0. Taking thenthe limit k → ∞, we obtain IP(limn→∞ τn ≤ t ∧ limk→∞ σk) = 0. We know that
IP(∃t ∈ [0, limn→∞ τn), Rt = 0) = 0, whih implies IP(limn→∞ τn > limk→∞ σk) = 0and �nally
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)

= 0.We have shown that IP(limn→∞ τn = ∞) = 1, and we have therefore built a strong so-lution (X,Y ) to (9) with g = 0 on IR+. If s(R0) is not integrable, one has to use thesame arguments as before on {ǫ < X2
0 + Y 2

0 < b− ǫ} where ǫ > 0 (by multiplying (14) by
1ǫ<X2

0+Y 2
0 <b−ǫ) and onlude by letting ǫ go to 0.If one onsiders another solution (X̃, Ỹ ) of (9) with g = 0 in the sense of De�nition 1,using Lemma 1, this solution is suh that IP
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)
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For an exponent p > 1, the same arguments show that ( 1

1 − X2
t +Y 2

t

b

)p is integrable,provided b > 2(p + 1) and that ( 1

1 − X2
0+Y 2

0
b

)p is integrable. ♦Remark 2 (On the assumption b > 2(p+ 1).) We assume that b ≥ 2 as in Lemma 2.Let
Π(x, y) =
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1 − x2+y2

b

) if x2 + y2 < b,

+∞ otherwise, (15)denote a potential of the FENE fore. Setting Xt = (Xt, Yt) and W t = (Vt,Wt), we seethat the stohasti di�erential equation (9) with g = 0 has the following form :
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1x2+y2<b (17)to be invariant. One an indeed prove this property by omparing (16) with stohasti di�er-ential equations where the potential Π is arefully regularized and for whih the symmetryproperties of the transition densities given by Rogers in [16℄ (see remark (ii) and line 2p.161) hold. The hoie of this invariant probability measure as the law for the initial ran-dom variable (X0, Y0) is natural from a physial point of view, sine we onsider here thestart up of a shear �ow : the �uid is therefore initially at rest (see also [3℄). Notie that forthis initial distribution, we have τ |t=0 = IE

(

X0Y0

1 − X2
0+Y 2

0
b

)

= 0. In addition, for this initialdistribution, for any t ≥ 0, (Xt, Yt) has the density p0 and therefore ( 1

1 − X2
t +Y 2

t

b

)p isintegrable as soon as b > 2(p−1) (and not only under the stronger assumption b > 2(p+1)made in Lemma 2). See [8℄ for more details.Remark 3 (On the optimality of the assumption b ≥ 2.) The assumption b ≥ 2 turnsout to be a neessary ondition to prevent (Xt, Yt) from touhing the boundary of the ball
B = B(0,

√
b) =

{

(x, y), x2 + y2 < b
} and therefore to have pathwise uniqueness of thesolution to the stohasti di�erential equation (9) when g = 0 in the sense of De�nition 1.The funtion 1

2Π : IR2 →] − ∞,+∞], where Π is de�ned by (15), is a ontinuous onvexfuntion with domain B. Its subdi�erential ∂ (1
2Π
) is a maximal monotone operator on

IR2. Aording to [4℄, for any b > 0, the multivalued stohasti di�erential equation
dX t + ∂

(

1

2
Π

)

(X t) dt ∋ dW twhere W t = (Vt,Wt) and with X0 = (X0, Y0) has a unique strong solution. This solutionbelongs to C(IR+, B) and following the approah of [5℄ (see Lemmas 3.3, 3.4, 3.6 and 3.8),one an hek that X t = (Xt, Yt) is a solution of the stohasti di�erential equation (9)when g = 0 in the sense of De�nition 1. In ase b ≥ 2, this solution is equal to theone given in Lemma 2 and IP
(

∃t ≥ 0,X2
t + Y 2

t = b
)

= 0. In ase 0 < b < 2, applying9



Feller's test for explosions (see [10℄ pages 348-350) to the semi-martingale Rt = ||X t||2whih satis�es (13), we hek that IP
(

∃t ≥ 0,X2
t + Y 2

t = b
)

= 1. In this ase, using againresults onerning multivalued stohasti di�erential equations, one an build a solution to(10) outside of the ball B, with initial ondition on the boundary and with g = 0 : this anbe used to show that uniqueness in law and therefore pathwise uniqueness do not hold for(10). All these results are detailed in [8℄.2.4 Existene in the general aseWe now turn to the proof of Proposition 1 in the general ase g 6= 0.Lemma 2 provides us with a weak solution to the stohasti di�erential equation (9)when g ∈ L2
t by the Girsanov Theorem. Indeed, let us onsider the solution (Xt, Yt) de�nedin Lemma 2 in the probability spae (Ω,F ,Ft, IP). Under the probability IPg de�ned by

dIPg

dIP

∣

∣

∣

∣

Ft

= E
(∫ •

0
g(s)Ys dVs

)

t

,the proess (V g
t ,W

g
t ) = (Vt −

∫ t
0 g(s)Ys ds,Wt) is a Brownian motion and therefore

(Xt, Yt, V
g
t ,W

g
t , IP

g) is a weak solution of the stohasti di�erential equation (9).By onstrution, this weak solution has its paths in C([0, T ], B), where B = B(0,
√
b) =

{

(x, y), x2 + y2 < b
}. On the other hand, we know that trajetorial uniqueness holds forsuh solutions in the ball (by Lemma 1). Therefore, by Yamada-Watanabe Theorem,we have the existene of a strong solution (Xg

t , Y
g
t ) to (9) with its paths in C([0, T ], B).Yamada-Watanabe Theorem also gives us uniqueness in law for the solution to (9).Suppose we are now given another solution of (9) in the sense of De�nition 1. By om-paring this solution to the above strong solution (Xg
t , Y

g
t ) and applying again Lemma 1, weobtain that this solution is equal to the one we have built. This also shows that any solution

(X̃g, Ỹ g) of (9) in the sense of De�nition 1 is suh that IP
(

∃t ≥ 0, (X̃g
t )2 + (Ỹ g

t )2 = b
)

= 0.Let us now suppose that b > 4 and ( 1

1 − X2
0+Y 2

0
b

)p is integrable for some p > 1. Wewant to show the equality (11). We need the following Lemma :Lemma 3 If g ∈ L2
t , then we have, for any 1 ≤ r <∞, if b > 2(r + 1), and provided that

(

1

1 − X2
0+Y 2

0
b

)p is integrable for some p > r, for all t, ∣∣∣∣
∣

Xg
t Y

g
t

1 − (Xg
t )2+(Y g

t )2

b

∣

∣

∣

∣

∣

r is integrable and,for any b−2
b−2(1+r) ∨

p
p−r < q <∞ :

IE

(∣

∣

∣

∣

∣

Xg
t Y

g
t

1 − (Xg
t )2+(Y g

t )2

b

∣

∣

∣

∣

∣

r)1/r

≤ Cq,r exp

(

q − 1

2r
b

∫ t

0
|g(s)|2 ds

)

,where Cq,r denotes a onstant depending only on q, r, b and IE





(

1

1 − X2
0+Y 2

0
b

)
rq

q−1



.Proof : Using Hölder inequality and the properties of the exponential martingale, wehave :
IE

∣

∣

∣

∣

∣

Xg
t Y

g
t

1 − (Xg
t )2+(Y g

t )2

b

∣

∣

∣

∣

∣

r

= IE

(∣

∣

∣

∣

∣

XtYt

1 − X2
t +Y 2

t

b

∣

∣

∣

∣

∣

r

E
(∫ •

0
g(s)Ys dVs

)

t

)

10



≤ IE





∣

∣

∣

∣

∣

XtYt

1 − X2
t +Y 2

t

b

∣

∣

∣

∣

∣

q′r




1/q′

IE

(

E
(
∫ •

0
g(s)Ys dVs

)q

t

)1/q

≤ (Cq,r)
rIE

(

E
(

q

∫ •

0
g(s)Ys dVs

)

t

exp

(

q2 − q

2

∫ t

0
(g(s)Ys)

2 ds

))1/q

≤ (Cq,r)
r exp

(

q − 1

2
b

∫ t

0
|g(s)|2 ds

)

IE

(

E
(

q

∫ •

0
g(s)Ys dVs

)

t

)1/q

≤ (Cq,r)
r exp

(

q − 1

2
b

∫ t

0
|g(s)|2 ds

)

with q′ = q
q−1 and Cq,r = supt∈[0,T ] IE





(

XtYt

1−
X2

t
+Y 2

t
b

)q′r




1/(q′r)

<∞ by Lemma 2. ♦Using this Lemma with r = 1 (and a q suh that q > b−2
b−4 ∨ p

p−1), one an show that
Xg

t Y
g
t

1 − (Xg
t )2+(Y g

t )2

b

is integrable and therefore that the equality (11) holds. This onludesthe proof of Proposition 1.3 Notion of solution and a priori estimates on the oupledsystemWe now onsider the oupled system of equations (5-7). From now on, we suppose that tvaries in a bounded interval [0, T ]. The spae variable y varies in O = (0, 1). The notation
L2

t (L
2
y) is a shortut for L2([0, T ], L2(O)), for example.3.1 Notion of solutionThe notion of solution we shall deal with in the sequel is the following.De�nition 2 Let us be given u0 ∈ H1

y , fext ∈ L2
t (L

2
y), together with a probabilized spae

(Ω,F ,Ft, IP), (X0, Y0) a F0-measurable random variable and (Vt,Wt) a (Ft) two-dimensionalBrownian motion. We shall say that (u(t, y),Xy
t , Y

y
t ) is a solution on the time interval

[0,Θ) if u ∈ L∞([0,Θ],H1
0,y) ∩ L2([0,Θ],H2

y ) satis�es :
∂tu(t, y) − ∂yyu(t, y) = ∂yIE

(

Xy
t Y

y
t

1 − (Xy
t )2+(Y y

t )2

b

)

+ fext(t, y),in the sense of D′([0,Θ) ×O) (at least), and for a.e. (y, ω), ∀t ∈ (0,Θ),
∫ t

0

∣

∣

∣

∣

∣

1

1 − (Xy
s )2+(Y y

s )2

b

∣

∣

∣

∣

∣

ds <∞, with the onvention 1

1 − x2+y2

b

= +∞ if x2 + y2 = b,

Xy
t = X0 +

∫ t

0

(

−1

2

Xy
s

1 − (Xy
s )2+(Y y

s )2

b

+ ∂yuY
y
s

)

ds+ Vt,

Y y
t = Y0 +

∫ t

0
−1

2

Y y
s

1 − (Xy
s )2+(Y y

s )2

b

ds+Wt.11



Remark 4 One an notie that we require the solution u to the partial di�erential equation(5) is strong. This is due to the fat that our tehnique of proof requires an estimate on
∂yu in norm H1

y in order to ontrol the stress τ (see Setion 3.2.2).Remark 5 Sine for a.e. y ∈ O, ∂yu(., y) is in L2([0,Θ]), we see that (Xy
t , Y

y
t ) =

(X
∂yu
t , Y

∂yu
t ), where (X

∂yu
t , Y

∂yu
t ) denotes the solution to (10) with g = ∂yu(., y) (seeProposition 1).3.2 A priori estimatesIn this setion, we give some formal a priori estimates whih will be used in the sequel toprove the existene of a solution to the oupled problem.3.2.1 First energy estimateThe �rst a priori estimate expresses the onservation of the energy stored in the �ow andin the dumbbells.Lemma 4 (Global-in-time �rst energy estimate) Let (u(t, y),Xy

t , Y
y
t ) be a solutionof (5-7) on [0, T ) in the sense of De�nition 2. Assume moreover b > 6 and ( 1

1 − X2
0+Y 2

0
b

)pintegrable for some p > 2. Then we have the following formal estimate :
1

2

d

dt

∫

O
u2 +

d

dt

∫

O
IE(Π(Xy

t , Y
y
t )) +

∫

O
(∂yu)

2

+
1

2

∫

O
IE







(Xy
t )2 + (Y y

t )2
(

1 − (Xy
t )2+(Y y

t )2

b

)2






−
∫

O
IE







1
(

1 − (Xy
t )2+(Y y

t )2

b

)2






=

∫

O
fextu, (18)where Π is the potential for the FENE fore de�ned by (15). Under the additional as-sumptions fext ∈ L1

t (L
2
y) and u0 ∈ L2

y, this yields the following formal estimate on thesolution :
||u||L∞

t (L2
y) + ||∂yu||L2

t (L2
y) + ||Π(Xy , Y y)||L∞

t (L1
y(L1

ω)) + ||Υ(Xy, Y y)||L2
t (L2

y(L2
ω)) ≤ C, (19)where Υ(x, y) =

√
x2+y2

1−x2+y2

b

and C is a onstant depending on T , ||u0||L2
y
, ||fext||L1

t (L2
y) and

IE(Π(X0, Y0)).Proof : Multiplying the equation (5) by u and integrating over O, one obtains :
1

2

∫

O
u(t, y)2 − 1

2

∫

O
u0(y)

2 +

∫ t

0

∫

O
(∂yu)

2 = −
∫ t

0

∫

O
τ ∂yu+

∫ t

0

∫

O
fextu. (20)Notie that this is the only formal operation that will be later on justi�ed one the problemdisretized : the following of the proof is ompletely rigorous.A simple alulus shows that∇Π =

1

1 − x2+y2

b

(x, y)1x2+y2<b and ∆Π =
2

(

1 − x2+y2

b

)2 1x2+y2<b.Therefore, using It�'s formula, we have :
d(Π(Xy

t , Y
y
t )) = −1

2
Υ(Xy

t , Y
y
t )2 dt + ∂yu

Xy
t Y

y
t

1 − (Xy
t )2+(Y y

t )2

b

dt +
1

(

1 − (Xy
t )2+(Y y

t )2

b

)2 dt+

Xy
t

1 − (Xy
t )2+(Y y

t )2

b

dVt +
Y y

t

1 − (Xy
t )2+(Y y

t )2

b

dWt.12



This alulus is justi�ed by the fat that the random proess (Xy
t , Y

y
t ) does not touh theboundary of B (see Proposition 1). Integrating both in time and spae and taking theexpetation value, we therefore obtain :

∫

O
IE(Π(Xy

t , Y
y
t )) =

∫

O
IE(Π(X0, Y0)) −

1

2

∫ t

0

∫

O
IE(Υ(Xy

s , Y
y
s )2) ds +

∫ t

0

∫

O
∂yu τ +

∫ t

0

∫

O
IE







1
(

1 − (Xy
s )2+(Y y

s )2

b

)2






ds. (21)Notie that the expetations of the loal martingales are null sine we have assumed b > 6and ( 1

1 − X2
0+Y 2

0
b

)p integrable for some p > 2 so that, by Lemma 3, for a.e. y ∈ O,
IE





∫ T

0

(

1

1 − (Xy
s )2+(Y y

s )2

b

)2

ds



 has a �nite value. By summing (20) and (21), one ob-tains the energy equality (18).Estimate (19) is then obtained by using the energy equality. Indeed, the term Π(Xy
t , Y

y
t )is positive and one an notie that the term ∫

O
IE







1
(

1 − (Xy
t )2+(Y y

t )2

b

)2






an be boundedfrom above by the term 1

2

∫

O
IE







(Xy
t )2 + (Y y

t )2
(

1 − (Xy
t )2+(Y y

t )2

b

)2






by writing :

1

2

(Xy
t )2 + (Y y

t )2
(

1 − (Xy
t )2+(Y y

t )2

b

)2 − 1
(

1 − (Xy
t )2+(Y y

t )2

b

)2 =
1

2

(Xy
t )2 + (Y y

t )2
(

1 − (Xy
t )2+(Y y

t )2

b

)2 −
1(Xy

t )2+(Y y
t )2>2+ǫ

(

1 − (Xy
t )2+(Y y

t )2

b

)2

−
1(Xy

t )2+(Y y
t )2<2+ǫ

(

1 − (Xy
t )2+(Y y

t )2

b

)2

≥ ǫ

2(2 + ǫ)

(Xy
t )2 + (Y y

t )2
(

1 − (Xy
t )2+(Y y

t )2

b

)2 − b2

(b− (2 + ǫ))2with ǫ suh that b− 2 > ǫ. ♦3.2.2 Seond energy estimateIn order to show the seond estimate, we have to use an expression of the stress τ whihwill give us regularity in the spae variable y. In Proposition 1, we have shown that thestress τ has the following expression (assuming b > 4 and ( 1

1 − X2
0+Y 2

0
b

)p is integrable forsome p > 1, see (11)) :
τ(t, y) = IE

(

Xy
t Y

y
t

1 − (Xy
t )2+(Y y

t )2

b

)

,

= IE

((

XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
∂yu(y)Ys dVs

)

t

)

. (22)13



Di�reniating (22) with respet to y enables us to onvert the regularity of u to theone of ∂yτ , whih provides us with the following loal-in-time estimate.Lemma 5 (Loal-in-time seond energy estimate) Under the assumptions b > 6,
fext ∈ L2

t (L
2
y), u0 ∈ H1

y and provided that ( 1

1 − X2
0+Y 2

0
b

)p is integrable for some p > 2, wehave the following formal estimate on [0, T ′], with T ′ ∈ (0, T ) depending on ||∂yu0||L2
y
, on

||fext||L2
t (L2

y), on b, and on IE

((

1

1 − X2
0+Y 2

0
b

)p) :
||u||L∞([0,T ′],H1

y) + ||u||L2([0,T ′],H2
y) ≤ C.This also yields the following formal estimate on ∂tu, on [0, T ′] :

||∂tu||L2([0,T ′],L2
y) ≤ C.In both ases, C is a onstant depending on ||∂yu0||L2

y
, ||fext||L2([0,T ′],L2

y), on b and on
IE

((

1

1 − X2
0+Y 2

0
b

)p).Proof : Multiplying (5) by −∂yyu and integrating over O, one obtains :
1

2

∫

O
(∂yu(t, y))

2 − 1

2

∫

O
(∂yu0)

2 +

∫ t

0

∫

O
(∂yyu)

2 = −
∫ t

0

∫

O
∂yτ∂yyu−

∫ t

0

∫

O
fext∂yyu.This yields

∫

O
(∂yu(t, y))

2 +

∫ t

0

∫

O
(∂yyu)

2 ≤ A+ 2

∫ t

0

∫

O
|∂yτ ||∂yyu|,with A = ||∂yu0||2L2

y
+
∫ T
0

∫

O |fext|2. Notie that this is a formal operation that will be lateron justi�ed one the problem disretized.Using (22), we an derive :
∂yτ = IE

((

XtYt

1 − X2
t +Y 2

t

b

)

(
∫ t

0
∂yyuYs dVs −

∫ t

0
(∂yyu)(∂yu)Y

2
s ds

)

E
(
∫ •

0
∂yuYs dVs

)

t

)

.(23)This an be shown in two steps, by �rst derivating with respet to y, for almost every ω,the random variable ( XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
∂yu(y)Ys dVs

)

t

and then by proving uniformintegrability (in ω) on this derivative. To perform the �rst step, one an onsider therandom variable ζt,h de�ned by :
ζt,h =















∫ t
0 ∂yu(y + h)Ys dVs −

∫ t
0 ∂yu(y)Ys dVs

h
if h 6= 0

∫ t

0
∂y,yu(y)Ys dVs if h = 0and prove that ζ is ontinuous by Kolmogorov Theorem (see Theorem 2.8 p. 53 of [10℄).This is also done in a formal way, sine it required regularity on u : this operation willbe justi�ed one the problem disretized. Notie that the following of the proof is nowompletely rigorous. 14



For the �rst term, one an obtain, by using the fat that Yt is bounded (see Proposi-tion 1) and Hölder inequality in ω, for any q suh that q > 2(b−2)
b−6 ∨ 2p

p−2 :
∣

∣

∣

∣

∣

IE

((

XtYt

1 − X2
t +Y 2

t

b

)

(∫ t

0
∂yyuYs dVs

)

E
(∫ •

0
∂yuYs dVs

)

t

)∣

∣

∣

∣

∣

≤

Cq

(

IE

(∫ t

0
∂yyuYs dVs

)2
)1/2

exp

(

q − 1

2
b

∫ t

0
(∂yu)

2 ds

)

≤

Cq

√
b

(∫ t

0
|∂yyu|2 ds

)1/2

exp

(

q − 1

2
b

∫ t

0
(∂yu)

2 ds

)

.For the seond term, a similar argument shows :
∣

∣

∣

∣

∣

IE

((

XtYt

1 − X2
t +Y 2

t

b

)

(∫ t

0
(∂yyu)(∂yu)Y

2
s ds

)

E
(∫ •

0
∂yuYs dVs

)

t

)∣

∣

∣

∣

∣

≤

C ′
qb

(∫ t

0
|∂yyu||∂yu| ds

)

exp

(

q − 1

2
b

∫ t

0
(∂yu)

2 ds

)

.We thus have (using, sine we are in dimension one, ∂yu(r, y) ≤ ||∂yu(r, .)||H1
y
) :

∫ t

0

∫

O
|∂yτ ||∂yyu| ds ≤

∫ t

0

∫

O
exp

(

q − 1

2
b

∫ s

0
(∂yu)

2 dr

)

(

Cq

√
b

(∫ s

0
|∂yyu|2 dr

)1/2

+ C ′
q b

(∫ s

0
|∂yyu||∂yu| dr

)

)

|∂yyu|(s) ds

≤ Cq

√
b

∫ t

0
exp

(

q − 1

2
b

∫ s

0
||∂yu||2H1

y
dr

)

(

∫

O

(∫ s

0
|∂yyu|2(r) dr

)1/2

|∂yyu|(s)
)

ds

+C ′
q b

∫ t

0
exp

(

q − 1

2
b

∫ s

0
||∂yu||2H1

y
dr

)(∫ s

0
||∂yu||H1

y
(r)

∫

O
|∂yyu|(r)|∂yyu|(s) dr

)

ds.So we obtain by the appliation of Cauhy Shwartz inequality (to the spatial integral) toboth terms :
∫ t

0

∫

O
|∂yτ ||∂yyu| ds ≤

Cq

√
b

∫ t

0
exp

(

q − 1

2
b

∫ s

0
||∂yu||2H1

y
(r) dr

)(
∫ s

0
||∂yyu||2L2

y
(r) dr

)1/2

||∂yyu||L2
y
(s) ds

+C ′
q b

∫ t

0
exp

(

q − 1

2
b

∫ s

0
||∂yu||2H1

y
(r) dr

)(
∫ s

0
||∂yu||H1

y
(r)||∂yyu||L2

y
(r) dr

)

||∂yyu||L2
y
(s) ds

≤ 1

4

∫ t

0
||∂yyu||2L2

y
(s) ds

+C(q, b)

∫ t

0
exp

(

(q − 1)b

∫ s

0
||∂yu||2H1

y
(r) dr

)(∫ s

0
||∂yyu||2L2

y
(r) dr

)

ds

+C ′(q, b)

∫ t

0
exp

(

(q − 1)b

∫ s

0
||∂yu||2H1

y
(r) dr

)(∫ s

0
||∂yu||H1

y
(r)||∂yyu||L2

y
(r) dr

)2

ds.We thus have shown the following inequality :
||∂yu||2L2

y
(t) +

1

2

∫ t

0
||∂yyu||2L2

y
(s) ds ≤ 15



A+ 2C(q, b)

∫ t

0
exp

(

(q − 1)b

∫ s

0
||∂yu||2H1

y
(r) dr

)(
∫ s

0
||∂yyu||2L2

y
(r) dr

)

ds

+2C ′(q, b)

∫ t

0
exp

(

(q − 1)b

∫ s

0
||∂yu||2H1

y
(r) dr

)(
∫ s

0
||∂yu||H1

y
(r)||∂yyu||L2

y
(r) dr

)2

ds.Let f1(t) = ||∂yu||2L2
y
(t) and f2(t) =

∫ t
0 ||∂yyu||2L2

y
(s) ds. We have :

f1(t) +
1

2
f2(t) ≤ A+ 2C(q, b)

∫ t

0
exp

(

α

(∫ s

0
f1(r) dr + f2(s)

))

f2(s) ds

+2C ′(q, b)

∫ t

0
exp

(

α

(
∫ s

0
f1(r) dr + f2(s)

))(
∫ s

0
f1(r) dr + f2(s)

)

f2(s) ds,with α = (q − 1)b. Let R(t) be the right hand side of the former equation. We an thenwrite :
R′(t) = 2 exp

(

α

(
∫ t

0
f1(r) dr + f2(t)

))(

C(q, b) + C ′(q, b)

(
∫ t

0
f1(r) dr + f2(t)

))

f2(t)

≤ 4 exp

(

α

(
∫ t

0
R(r) dr + 2R(t)

))(

C(q, b) + C ′(q, b)

(
∫ t

0
R(r) dr + 2R(t)

))

R(t).By integrating in time, this leads to
R(t) ≤ A+4

∫ t

0
exp

(

α

(
∫ s

0
R(r) dr + 2R(s)

))(

C(q, b) + C ′(q, b)

(
∫ s

0
R(r) dr + 2R(s)

))

R(s) ds.Sine R is an inreasing funtion, we have :
R(t) ≤ A+ 4

∫ t

0
exp (α (T + 2)R(s))

(

C(q, b) + C ′(q, b) (T + 2)R(s)
)

R(s) ds

≤ A+

∫ t

0
exp (βR(s))

(

c+ c′R(s)
)

R(s) ds,with β = α (T + 2), c = 4C(q, b) and c′ = 4 (T + 2)C ′(q, b). From this one an deduethat there exists γ > 0 and C > 0, (both depending on q, b, IE

((

1

1 − X2
0+Y 2

0
b

)p) and T )suh that :
R(t) ≤ A+ C

∫ t

0
exp(γR(s)) ds.Let H(t) denote the right hand side. It is easy to derive from this inequality thefollowing estimate : ∀t ∈ (0, 1

γC exp(−γA)
),

R(t) ≤ H(t) ≤ 1

γ
ln

(

1

exp(−γA) − γCt

)

.If we set T ′ = 1
γC (exp(−γA) − exp(−2γA)), we have : for all t ∈ (0, T ′),

R(t) ≤ H(t) ≤ 2A.This leads to the following estimate : for all t ∈ (0, T ′),
||∂yu||2L2

y
(t) +

1

2

∫ t

0
||∂yyu||2L2

y
(s) ds ≤ 2A. (24)16



In order to obtain the estimate on ∂tu, we observe that ∂tu = ∂yyu + fext + ∂yτ . Wehave already shown an estimation of ∂yyu in L2([0, T ′], L2
y) norm. Moreover, using thesame argument as before, we an easily show that, for any funtion v ∈ L2([0, T ′], L2

y),
∣

∣

∣

∣

∫ t

0

∫

O
∂yτ v

∣

∣

∣

∣

≤ C||v||L2([0,T ′],L2
y),where C is a onstant depending on q, b, A, IE

((

1

1 − X2
0+Y 2

0
b

)p) and T ′. This yields theestimate on ∂tu. ♦4 Existene of a solution to the oupled systemThe aim of this setion is to prove the following :Theorem 1 (Loal-in-time existene and uniqueness) We assume that b > 6, fext ∈

L2
t (L

2
y), u0 ∈ H1

y and ( 1

1 − X2
0+Y 2

0
b

)p is integrable for some p > 2. Then there exists
T ′ ∈ (0, T ) (depending on the data) suh that the system (5-7) admits a unique solution
(u(t, y),Xy

t , Y
y
t ) on [0, T ′] in the sense given in De�nition 2.Remark 6 If one hooses some initial random variables (X0, Y0) distributed with the in-variant density p0 de�ned by (17), then Theorem 1 holds under the weaker assumption

b > 2 (see Remark 2 and Lemma 5). We reall that none of these assumptions on b isrestritive in pratie sine b is physially of the order of 100.In the following, we assume b > 6, fext ∈ L2
t (L

2
y), u0 ∈ H1

y and ( 1

1 − X2
0+Y 2

0
b

)p isintegrable for some p > 2.In order to show the existene of a solution to the oupled system, we introdue thefollowing variational formulation of (5) :Find u ∈ L∞
t (H1

0,y) ∩ L2
t (H

2
y ) suh that for all v ∈ H1

0,y,
d

dt

∫

O
u v = −

∫

O
∂yu∂yv −

∫

O
τ ∂yv +

∫

O
fext v, (25)together with

τ = IE

(

Xy
t Y

y
t

1 − (Xy
t )2+(Y y

t )2

b

)

, (26)
Xy

t = X0 +

∫ t

0

(

−1

2

Xy
s

1 − (Xy
s )2+(Y y

s )2

b

+ ∂yuY
y
s

)

ds+ Vt, (27)
Y y

t = Y0 +

∫ t

0
−1

2

Y y
s

1 − (Xy
s )2+(Y y

s )2

b

ds+Wt. (28)The ordinary di�erential equation (25) is to be understood in D′([0, T )). The stohastidi�erential equations (27-28) are to be understood in the sense of De�nition 1. Thisproblem is well de�ned. Indeed, Proposition 1 gives a strong solution to (27-28). Moreover,the term ∫

O τ∂yv has a meaning sine Lemma 3 shows that τ is in L∞
t (L∞

y ). A solutionto this variational problem is a solution to (5-7) in the sense of De�nition 2.17



4.1 De�nition and resolution of the disretized problemWe introdue a Galerkin approximation of the variational problem (25 - 28). Let (vi)1≤i≤∞ ∈
C∞(O) ∩ H1

0 (O) be suh that {vi} is a basis of H1
0 (O) and suh that

∂yyvi ∈ Vect{vj , 1 ≤ j ≤ i} (take e.g. the eigenvetors of the Dirihlet laplaian on O).We set Vm = Vect{vj , 1 ≤ j ≤ m}. The problem we onsider at the disrete level reads :Find Um ∈ L∞
t (IRm) suh that the funtion um(t, y) =

∑

i U
m
i (t)vi(y) satis�es :

d

dt

∫

O
um vi = −

∫

O
∂yu

m ∂yvi −
∫

O
τm ∂yvi +

∫

O
fext vi, for 1 ≤ i ≤ m, (29)

τm = IE

(

Xy,m
t Y y,m

t

1 − (Xy,m
t )2+(Y y,m

t )2

b

)

, (30)
Xy,m

t = X0 +

∫ t

0

(

−1

2

Xy,m
s

1 − (Xy,m
s )2+(Y y,m

s )2

b

+ ∂yu
m Y y,m

s

)

ds+ Vt, (31)
Y y,m

t = Y0 +

∫ t

0
−1

2

Y y,m
s

1 − (Xy,m
s )2+(Y y,m

s )2

b

ds+Wt. (32)The initial ondition um(t = 0) is Πm(u0) where Πm is the H1-projetion on Vm. Theordinary di�erential equation (29) is to be understood in D′([0, T )). The stohasti di�er-ential equations (31-32) are to be understood in the sense of De�nition 1. We know fromProposition 1 that the stress an be written in the following form :
τm = IE

((

XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
∂yu

mYs dVs

)

t

)

.Notie �rst that the formal a priori estimates of Lemma 4 an now be derived rigor-ously on the disretized problem (sine one an take v = um as a test funtion in (29))and show that if um is a solution of the problem (29-32) on [0, T ], then ||um||L∞([0,T ],L2
y)is bounded whih means that ||Um(t)||L∞[0,T ] ≤M (where M depends on m). Notie alsothat if um is a solution of the problem (29-32) on [0,Θ], with Θ < T , then we also have

||Um(t)||L∞[0,Θ] ≤M with the same upper bound M (independant of Θ).In the following, the dimension m is �xed and we omit the supersript m.We now want to show that the nonlinear system (29-32) admits a solution. We in-trodue the matries Ai,j =
∫

O vivj, Bi,j =
∫

O ∂yvi∂yvj, the �eld Ξ = (v1, ..., vm) andthe vetor Fext with omponents ∫
O
fextvj. We are going to onstrut a �xed point Uof the following mapping whih assoiates to any funtion Φ ∈ C([0, T ], IRm) the funtion

F (Φ) ∈ C([0, T ], IRm) de�ned by :
F (Φ)(t) = U0 −A−1

(

∫ t

0

(

BΦ(s) −
∫

O
IE

(

XsYs

1 − X2
s +Y 2

s

b

Z(Φ)s

)

∂yΞ + Fext(s)

)

ds

)

,where
Z(Φ)s = E

(

∫ •

0

∑

i

Φi(r)∂yviYr dVr

)

s

.The initial ondition U0 is the vetor with omponents (Πm(u0))j .18



First step :First, we are going to show by the Piard �xed point theorem that the funtion F has aunique �xed point when restrited on C([0, α], B(U0 , 1)) endowed with the uniform on-vergene topology, for some α ∈ (0, T ) well hosen and only depending on ||Fext||L∞

t
,

max1≤i≤m ||vi||W 1,∞
y

, m, b and T (see inequalities (34) and (35) below). The ball B(U0, 1)is de�ned by B(U0, 1) = {K ∈ IRm, ||K − U0|| < 1}. Notie �rst that we have, for any
Φ ∈ C([0, α], B(U0, 1)) and for any t ∈ [0, α] :
IE
(

(Z(Φ)t)
2
)

= IE





(

E
(

∫ •

0

∑

i

Φi(r)∂yviYr dVr

)

t

)2




= IE



exp





∫ t

0

(

∑

i

Φi(r)∂yviYr

)2

dr



 E
(

2

∫ •

0

∑

i

Φi(r)∂yviYr dVr

)

t





≤ exp
(

Cαb
(

||Φ||2L∞[0,α]

))

IE

(

E
(

2

∫ •

0

∑

i

Φi(r)∂yviYr dVr

)

t

)

≤ exp
(

Cαb
(

||Φ||2L∞[0,α]

))

,where C only depends on max1≤i≤m ||vi||W 1,∞
y

. This means (sine α < T and Φ ∈
C([0, α], B(U0, 1))) :

||Z(Φ)t||L∞([0,α],L∞
y (L2

ω)) ≤ exp
(

CTb
(

1 + ||U0||2
))

. (33)Using this estimate (and Lemma 2), for any Φ ∈ C([0, α], B(U0, 1)), we have the followingestimate on Φ′ = F (Φ) :
||Φ′(t) − U0||L∞[0,α] ≤ |||A−1|||

(

|||B|||α(1 + ||U0||) +Cα||Z(Φ)||L∞([0,α],L∞
y (L2

ω)) + α||Fext||L∞

t

)

≤ Cα(1 + ||U0||) exp(C||U0||2),where C is a onstant depending only on ||Fext||L∞

t
, max1≤i≤m ||vi||W 1,∞

y
, m, b and T(and not on ||U0||). Thus, F (C([0, α], B(U0, 1))) ⊂ C([0, α], B(U0, 1)) if we hoose α smallenough to ensure that :

Cα(1 + ||U0||) exp(C||U0||2) ≤ 1. (34)We next show that the funtion F restrited on C([0, α], B(U0, 1)) (with α small enough)is ontrating. Let Φ1′ = F (Φ1), Z1
t = Z(Φ1)t and Φ2′ = F (Φ2), Z2

t = Z(Φ2)t where
Φ1 ∈ B(U0, 1) and Φ2 ∈ B(U0, 1). Suppose moreover that (34) holds. We have
||Φ1′(t) − Φ2′(t)||L∞[0,α] ≤ |||A−1|||

(

|||B|||α||Φ1(t) − Φ2(t)||L∞[0,α] + Cα||Z1
t − Z2

t ||L∞([0,α],L∞
y (L2

ω))

)

≤ C ′α
(

||Φ1(t) − Φ2(t)||L∞ [0,α] + ||Z1
t − Z2

t ||L∞([0,α],L∞
y (L2

ω))

)

.We now want to estimate (Z1
t −Z2

t ). We use the fat that Zk
t = 1 +

∫ t

0

∑

i

Φk
i (r)∂yvi Yr Z

k
r dVr(k = 1 or 2) :

Z1
t − Z2

t =

∫ t

0

(

∑

i

Φ1
i (r)∂yvi Z

1
r −

∑

i

Φ2
i (r)∂yvi Z

2
r

)

Yr dVr

=

∫ t

0

∑

i

(

Φ1
i (r) − Φ2

i (r)
)

∂yvi Z
2
rYr dVr +

∫ t

0

(

∑

i

Φ1
i (r)∂yvi

)

(

Z1
r − Z2

r

)

Yr dVr.19



From this and (33), we dedue that, ∀t ∈ [0, α],
IE
(

(

Z1
t − Z2

t

)2
)

≤ 2IE





(

∫ t

0

∑

i

(

Φ1
i (r) − Φ2

i (r)
)

∂yvi Z
2
rYr dVr

)2




+2IE





(

∫ t

0

(

∑

i

Φ1
i (r)∂yvi

)

(

Z1
r − Z2

r

)

Yr dVr

)2


 ,

≤ 2

∫ t

0
IE





(

∑

i

(

Φ1
i (r) − Φ2

i (r)
)

∂yvi Z
2
rYr

)2


 dr

+2

∫ t

0
IE





((

∑

i

Φ1
i (r)∂yvi

)

(

Z1
r − Z2

r

)

Yr

)2


 dr,

≤ 2bC ′α exp
(

CTb
(

1 + ||U0||2
))

||Φ1 − Φ2||2L∞[0,α]

+2bC ′||Φ1||2L∞[0,α]

∫ t

0
IE
(

(

Z1
r − Z2

r

)2
)

dr.Using Gronwall Lemma, this yields an estimate :
∣

∣

∣

∣Z1
t − Z2

t

∣

∣

∣

∣

L∞([0,α],L∞
y (L2

ω))
≤ C ′α exp(C ′||U0||2)||Φ1 − Φ2||L∞[0,α],where C ′ is a onstant depending only on ||Fext||L∞

t
, max1≤i≤m ||vi||W 1,∞

y
, m, b and T . We�nally have an inequality of the following type :

||Φ1′(t) − Φ2′(t)||L∞[0,α] ≤ C ′α exp(C ′||U0||2)||Φ1(t) − Φ2(t)||L∞[0,α],so that F is ontrating if we have :
C ′α exp(C ′||U0||2) < 1. (35)At this stage, we have shown that for any initial ondition U0, there exists a solution

U ∈ C([0, α0], IR
m) to the disrete problem on a time interval [0, α0], with α0 > 0 suh that(34) and (35) hold.Seond step (ontinuation) :We an now start again the onstrution of a solution to (29-32) from the �nal point U(α0)and Zα0 = Z(U)α0 = exp

(

∫ α0

0

∑

i Ui(r)∂yviYr dVr − 1
2

∫ α0

0 (
∑

i Ui(r)∂yviYr)
2 dr

) usingthe same arguments as before. Notie that by the a priori estimate of Lemma 4, we haveon the one hand U(α0) ≤M and on the other hand ||Zα0 ||L∞
y (L2

ω) ≤ exp(Cα0b(1+M2)) ≤
exp(CTb(1+M2)) = M ′ (using (33)), with C only depending on max1≤i≤m ||vi||W 1,∞

y
. Wenow onsider the mapping Fα0whih assoiates to any funtion Φ ∈ C([α0, T ], IRm) thefuntion Fα0(Φ) ∈ C([α0, T ], IRm) de�ned by :

Fα0(Φ)(t) = U(α0)−A−1

(

∫ t

α0

(

BΦ(s)−
∫

O
IE

(

XsYs

1 − X2
s+Y 2

s

b

Zα0(Φ)s

)

∂yΞ + Fext(s)

)

ds

)

,where Zα0(Φ)s = Zα0 E
(

∫ •

α0

∑

i

Φi(r)∂yviYr dVr

)

s

. The same arguments as before showthat we an �nd a time interval [α0, α0 + α] (with α ∈ (0, T − α0)) on whih Fα0 has a20



�xed point. Indeed, what is important is just that Zα0 ∈ L∞
y (L2

ω). This is for example theway one an estimate Zα0(Φ)t, for any t ∈ [α0, α0 + α] :
IE
(

(Zα0(Φ)t)
2
)

= IE





(

Z(α0) E
(

∫ •

α0

∑

i

Φi(r)∂yviYr dVr

)

t

)2




= IE



Z2
α0

IE





(

E
(

∫ •

α0

∑

i

Φi(r)∂yviYr dVr

)

t

)2

|Fα0









= IE



Z2
α0

IE



E
(

2

∫ •

α0

∑

i

Φi(r)∂yviYr dVr

)

t

exp





∫ t

α0

(

∑

i

Φi(r)∂yviYr

)2

dr



 |Fα0









≤ exp
(

C(α− α0)b||Φ||2L∞[α0,α0+α]

)

IE

(

Z2
α0

IE

(

E
(

2

∫ •

α0

∑

i

Φi(r)∂yviYr dVr

)

t

|Fα0

))

≤ exp
(

C(α− α0)b||Φ||2L∞[α0,α0+α]

)

IE
(

Z2
α0

)

.Going through the same arguments as before, one an thus show that Fα0 , when restritedto C([α0, α0+α], B(U(α0), 1)) is suh that Fα0 (C([α0, α0 + α], B(U(α0), 1))) ⊂ C([α0, α0+
α], B(U(α0), 1)) and is ontrating, provided that α satis�es an inequality of the type :

CαM ′(1 +M) exp(CM2) ≤ 1where C is a onstant only depending on ||Fext||L∞

t
, max1≤i≤m ||vi||W 1,∞

y
, m, b and T . Wean hoose

α = α1 =
1

CM ′(1 +M) exp(CM2)
.We have thus built a solution U ∈ C([0, α0 + α1], IR

m) to the disrete problem on theinterval [0, α0 + α1]. The �nal points U(α0 + α1) and Z(U)α0+α1 are again suh that
||U(α0 + α1)|| ≤ M and ||Z(U)α0+α1 ||L∞

y (L2
ω) ≤ M ′. This means that we an, by thesame arguments, extend the solution on the time interval [α0 + α1, α0 + 2α1], and by aontinuation argument, we an build a solution to (29-32) on the time interval [0, T ].Remark 7 This proves that any �nite element approximation of the variational problem(25 - 28) has a solution on a time interval [0, T ] for any T > 0.Remark 8 One an easily prove the uniqueness of a solution to the problem (25 - 28) on

[0, T ], for example by adapting the proof of Lemma 6 to the �nite dimensional ase.4.2 Convergene of the disretized problemWe now turn to the onvergene of the solution of the disretized problem. The formala priori estimates of Lemma 5 an be derived rigorously on the disretized system. Indeed,one an take v = −∂y,yu
m as a test funtion in (29) (see the speial basis (vi) we havehosen), and the expression (23) of the derivative of τ with respet to y is ompletelyrigorous sine ∀t ∈ [0, T ], um(t, .) ∈ C∞(O). Therefore, using Lemma 5, we know thatthere exists T ′ > 0 suh that there exists a uniform bound on um in norm L∞([0, T ′],H1

y )∩
L2([0, T ′],H2

y ) and on ∂tu
m in norm L2([0, T ′], L2

y).Up to the extration of a subsequene, we an suppose that there exists
u ∈ L∞([0, T ′],H1

y ) ∩ L2([0, T ′],H2
y ) suh that :21



• um ⇀ u weakly in L2([0, T ′],H2
y ) and weakly-* in L∞([0, T ′],H1

y ),
• ∂tu

m ⇀ ∂tu weakly in L2([0, T ′], L2
y),

• um → u strongly in L2([0, T ′],H1
y ).For the third onvergene, we use the standard fat that the injetion

{v s.t. v ∈ L2([0, T ′],H2
y ∩ H1

0,y), ∂tv ∈ L2([0, T ′], L2
y)} →֒ L2([0, T ′],H1

0,y) is ompat(see Theorem 5.1 p. 58 in [13℄). We an also suppose that um −→ u for almost every
(t, y) ∈ (0, t) ×O. We want to show the onvergene of eah of the terms of the followingequation (for a �xed i) :
d

dt

∫

O
umvi+

∫

O
∂yu

m∂yvi =

∫

O
IE

((

XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
∂yu

mYs dVs

)

T ′

)

∂yvi+

∫

O
fextvi,(36)where we have used the following standard property of the exponential martingale : forany y �xed in O, sine ∂yu(t, y) ∈ L2(0,Θ), we have ∀t ∈ (0, T ′),

τ(t, y) = IE

((

XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
∂yu(y)Ys dVs

)

T ′

)

.Using the above onvergenes, we easily pass to the limit in all terms of (36) but
∫ T ′

0

∫

O
IE

((

XtYt

1 − X2
t +Y 2

t

b

)

E
(
∫ •

0
∂yu

mYs dVs

)

T ′

∂yviw

), where w ∈ C∞
0 (0, T ′). Let usde�ne the funtion fm(t, y, ω) =

(

XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
∂yu

mYs dVs

)

T ′

∂yviw. It is easy tosee that, ∫ T ′

0
∂yu

mYs dVs onverges in L2
y(L

2
ω) to ∫ T ′

0
∂yuYs dVs and that 1

2

∫ T ′

0
(∂yu

mYs)
2 dsonverges in L1

y(L
1
ω) to 1

2

∫ T

0
(∂yuYs)

2 ds. We an therefore (extrating a subsequene) sup-pose that fm onverges for almost every (t, y, ω) towards
f(t, y, ω) =

(

XtYt

1 − X2
t +Y 2

t

b

)

E
(∫ •

0
∂yuYs dVs

)

T ′

∂yvi w. Moreover, we an �nd a uniformbound on the norm L2([0, T ′], L2
y(L

2
ω)) of fm (using the same tehniques as in Lemma 3).This shows that the family (fm)m≥1 is uniformly integrable and therefore that

∫ T ′

0

∫

O
IE(fm) −→

∫ T ′

0

∫

O
IE(f).Finally, one an prove by standard arguments (see e.g. [18℄ page 260) that u(0) = u0and this onludes the �existene part� of Theorem 1.4.3 Uniqueness of the solutionLemma 6 (Uniqueness of the solution) The system (5-7) admits a unique solution on

[0, T ′] in the sense given in De�nition 2.Proof : Let us onsider two solutions (u,X, Y ) and (ũ, X̃, Ỹ ). One easily obtains thefollowing estimate on w = u− ũ, for any 0 < t < T ′ :
1

2

∫

O
w2(t) +

∫ t

0

∫

O
|∂yw|2 = −

∫ t

0

∫

O
(τ − τ̃)∂yw

≤ 1

2

∫ t

0

∫

O
|∂yw|2 +

1

2

∫ t

0

∫

O
|τ − τ̃ |2,22



where
τ − τ̃ = IE

((

XtYt

1 − X2
t +Y 2

t

b

)

(Z(u) − Z(ũ))

)

,with Z(u)t = E
(
∫ •

0
∂yu(y)Ys dVs

)

t

. We have
|τ − τ̃ |2 = IE

((

XtYt

1 − X2
t +Y 2

t

b

)

(Z(u) − Z(ũ))

)2

≤ IE





(

XtYt

1 − X2
t +Y 2

t

b

)2


 IE
(

(Z(u) − Z(ũ))2
)

.We know that
Z(u)t − Z(ũ)t =

∫ t

0
(∂yu(y)Z(u)r − ∂yũ(y)Z(ũ)r)YrdVr

=

∫ t

0
(∂yu(y) − ∂yũ(y))Z(u)rYrdVr +

∫ t

0
(Z(u)r − Z(ũ)r) ∂yũ(y)YrdVr.This yields :

IE
(

(Z(u)t − Z(ũ)t)
2
)

≤ 2b

∫ t

0
|∂yw(y)|2IE(Z(u)2r) dr + 2b

∫ t

0
|∂yũ(y)|2IE

(

(Z(u)r − Z(ũ)r)
2
)

dr.Using Gronwall Lemma and the fat that IE(Z(u)2t ) ≤ exp
(

b
∫ T ′

0 |∂yu|2 ds
), this yields anestimate :

IE
(

(Z(u)t − Z(ũ)t)
2
)

≤ C exp

(

C

∫ T ′

0
|∂yũ(y)|2 + |∂yu(y)|2

)

∫ t

0
|∂yw(y)|2.We have �nally, using the estimates of Lemma 5 :

∫ t

0

∫

O
|∂yw|2 ≤ C

∫ t

0

∫ s

0

∫

O
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