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Contrôle optimal des équations de Navier-Stokes par

utilisation de schémas de type Lagrange-Galerkin

Résumé : Dans ce rapport, nous nous intéressons à un problème de contrôle optimal pour
un système �uide en écoulement incompressible décrit par les équations de Navier-Stokes.
Ce système d'EDP est discrétisé en utilisant une méthode d'éléments �nis de bas degré
couplée à une méthode de Lagrange-Galerkin pour le traitement de l'opérateur de convection
non-linéaire. Nous décrivons un schéma linéarisé totalement discret a�n de calculer de
façon consistante le gradient d'une fonctionnelle de coût liée à la physique du problème.
Nous traitons, alors, deux applications de contrôle en nous appuyant sur des algorithmes
d'optimisation fondés sur le calcul du gradient :

1. Réduction de la trainée autour d'un solide cylindrique en rotation,

2. un problème d'identi�cation de conditions aux limites en amont à partir de la connais-
sance des e�orts �uides sur un pro�l rectangulaire, en con�guration �xe ou mobile.

Mots-clés : équations de Navier-Stokes, formulation ALE, contrôle optimal, méthode de
Lagrange-Galerkin
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1 Introduction

In the last two decades, the number of studies concerning optimal control problem for �uid
mechanics has quickly increased. On the theoretical point of view, signi�cant advances
have been realized in the derivation of optimality systems [1, 19] or in the controllability
properties investigation [11, 30, 14]. With the increasing power of computing capabilities,
numbers of numerical studies have been conducted [32, 4, 24, 26, 29]. Most of these works
involve �nite di�erence schemes for the time discretization of the Navier-Stokes system. In
this article, we propose to discretize the nonlinear-advection operator involved in the Navier-
Stokes system using the characteristic method introduced by [3]. This method is based on
the computation of characteristic paths in order to approximate the material time derivative.
The use of this algorithm [9] introduces some technical di�culties addressed in this paper.
Once the discrete linearized system is established, its solution enters the computation of
cost function gradients involved in the optimization loop which minimizes a given objective.
Two di�erent applications are addressed:

� One concerning the drag reduction around a rotating circular cylindrical body using
its angular velocity. This problem has been already treated by several authors [26, 29].
Our goal is mainly to validate our approach by analysing its ability of dealing with
non-trivial control problem benchmarks.

� We also deal with an identi�cation problem that may enter an aeroelastic stability tool
described in [34]. It consists in trying to identify far-�eld boundary conditions from
the knowledge of �uid loads time history on a given blu� body in �xed or prescribed
moving con�guration. The �nal application should be the aeroelastic stability analysis
of civil engineering super-structures [39, 2, 12].

2 Mathematical setting

Let us consider a �uid inside a �xed domain Ω with boundary ∂Ω = Γc ∪ Γs ∪ Γin ∪ Γout.
It is discribed by its velocity and its pressure (u, p) solution of the following Navier-Stokes
system, 



∂tu +∇u · u− ν∆u +∇p = 0, Ω
div(u) = 0, Ω
u = g, Γc

u = 0, Γs

σ(u, p) · n = 0, Γout

u = u∞, Γin

u(t = 0) = u0, Ω

(1)

where ν stands for the kinematic viscosity and u∞ is the far�eld velocity. The quantity

σ(u, p) = −p I+ν(∇u +∇T u)

RR n° 4609



8 Gilles Fourestey, Marwan Moubachir

stands for the �uid stress tensor inside Ω, with (∇u)ij = ∂jui = ui,j .
The aim of this paper is to control the behaviour of the �uid trough the control g on
Γc, by minimizing a given cost function J depending on the control g and on the state
solution (u(g), p(g)). This cost function may represent a given objective related to speci�c
characteristic features of the �uid �ow (e.g the drag on a given surface, the vorticity level,
the distance to a given target). Hence we are interested in solving the following problem,

min
g∈Uad

J(u(g), p(g)) (2)

where (u(g), p(g)) satis�es the Navier-Stokes system (1) associated to the control g ∈ Uad.
In the applications, we shall deal with particular cost functions of the following type,

� The cost to overcome the drag on the solid interface or to track a given �uid load
target,

J(u, p) =
∫ T

0

∣∣∣∣
(∫

Γs

σ(u, p) · n dΓ
)
· e1 − Fd(t)

∣∣∣∣
2

d t (3)

� The mean square value to a given target,

J(u, p) =
∫ T

0

∫
Γout

(u− ud)2 d Ω d t (4)

Dirichlet boundary control for the Navier-Stokes system has been addressed on the theoret-
ical level in [19, 25] in the 2D case. This is a non trivial problem, especially concerning the
regularity of the boundary control [18]. We shall not address such an issue in this paper,
since we will use regular classes of controls in the applications. Our main interest here,
is to describe how the continuous gradient of the cost function J can be obtained using
the solution of a linearized �uid system. In a second step, we shall describe a continuous
optimization algorithm based on the continuous gradient ∇J .

2.1 Continuous cost function gradient

Let us consider the control variable g as the element of an Hilbert space Uc. Basic continuous

feasible algorithms for minimizing the functional j(g) def= J(u(g), p(g)) are based on the
evaluation of the functional gradient against arbitrary direction inside Uc. Through the
paper, we shall use the following result,

Theorem 1 The functional j(g) is Gâteaux di�erentiable with respect to g ∈ Uc in every
direction δg ∈ Uc and its derivative is given by the following expression,

〈j′(g), δg〉Uc = 〈∂(u,p)J(u(g), p(g)), (z(δg), q(δg))〉, ∀δg ∈ Uc (5)

INRIA
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where (z(δg), q(δg)) def=
(

D
D g (u, p)

)
(g) · δg stands for the linearized state which is solution

of the linearized Navier-Stokes system,


∂tz +∇u(g) · z +∇z · u(g)− ν∆z +∇q = 0, Ω
div(z) = 0, Ω
z = δg, Γc

z = 0, Γs

σ(z, q) · n = 0, Γout

z = 0, Γin

z(t = 0) = 0, Ω

(6)

The linearized system is a forward in time linear advection-di�usion-reaction problem. It
needs the knowledge of the original �uid �ow u(g) which is speci�c to non-linear control
problems. If we want to identify the functional gradient, we need to evaluate the linearized
�ow for every direction δg ∈ Uc. Concerning the discretization issue, this can lead very
quickly to expensive computations. For this reason, people usually use an adjoint continuous
formulation in order to use a control space of arbitrary size, as described in the following
theorem,

Theorem 2 The functional j(g) =
1
2

∫ T

0

∫
Γout

(u(g) − ud)2 d Ω d t is Fréchet di�erentiable

with respect to g ∈ Uc and its gradient is given by the following expression,

∇j(g) = −σ(ϕ, π) · n|Γc×(0,T ) (7)

where (ϕ, π) stands for the adjoint state which is solution of the adjoint Navier-Stokes sys-
tem, 



−∂tϕ−∇ϕ · u(g) +∇T u(g) · ϕ− ν∆ϕ +∇π = 0, Ω
div(ϕ) = 0, Ω
ϕ = 0, Γc

ϕ = 0, Γs

σ(ϕ, π) · n = u(g)− ud, Γout

ϕ = 0, Γin

ϕ(t = T ) = 0, Ω

(8)

The adjoint problem is a backward linear advection-di�usion-reaction system. As for the
linearized system, it needs the knowledge of the primal state u(g) in order to be solved.
Contrary to the linearized state which can be advanced in time with the solution u(g) of
the state problem, the adjoint system has a �nal time condition, which means that it has to
be solved once the Navier-Stokes system has been solved. Several authors have been using
this formulation in order to solve complex �uid �ow control problems [26, 42, 8]. In this
paper, we will not use such an approach and prefer a direct approach involving the linearized
system.

RR n° 4609
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2.2 Gradient based optimization strategy

At this stage, several optimization strategies can be considered, we have choosen to investi-
gate the use of two iterative optimization procedures that may need only the computation
of the cost function gradient at each minimization step. The �rst one is refered as the con-
juguate gradient algorithm in the context of nonlinear - nonconvex optimization problems
and is usually seen as a �rst order optimization algorithm. The second one is refered as the
BFGS method and belongs to the second order quasi-Newton optimization algorithms class.
We shall describe both strategies in the next section in an abstract setting.

2.2.1 Conjugate gradient method

Let us consider the following abstract minimization problem,{
u ∈ H,
j(u) ≤ j(v), ∀ v ∈ H

(9)

where H stands for an Hilbert space and j : H → R is a di�erentiable functional on H . The
Conjuguate Gradient algorithm applied to problem (9) can be described in the following
manner,

� Step 0

Choose u0 ∈ H

{
Solve for g0 ∈ H, such that
(g0, v)H = H∗ < j′(u0), v >H , ∀ v ∈ H

We set

w0 = g0

� Step n + 1

For n ≥ 0, we assume that (un, gn, wn) is at our disposal, and we seek for
(un+1, gn+1, wn+1) thanks to the following steps :

1. Line search: Compute ρn such that,

(LS)
{

Solve for ρn ∈ R, such that
j(un − ρnwn) ≤ j(un − ρwn), ∀ ρ ∈ R

We set

un+1 = un − ρnwn,

INRIA
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2. Gradient computation :{
Solve for gn+1 ∈ H, such that
(gn+1, v)H = H∗ < j′(un+1), v >H , ∀ v ∈ H

3. Convergence test:

If ‖gn+1‖
‖g0‖ ≤ ε, the solution is given by

u = un+1

unless, we compute one of the following quantities,

a)

γn =
‖gn+1‖2
‖gn‖2 , Fletcher-Reeves

b)

γn =
(gn+1, gn+1 − gn)

‖gn‖2 , Polack-Ribière

Then, we set

wn+1 = gn+1 + γnwn

4. Iteration loop : we set n := n + 1, we come back to step n + 1.

The investigation of the convergence of the Conjugate gradient algorithm was performed
on the in�nite dimensional level for quadratic convex functionals. We refer to [27] for a
review of such results. These results cannot be applied in our case, since we deal with a
non-convex, non-linear functional. Still, on the numerical point of view the CG method has
shown great convergence features in many applications, and particularly for optimal control
of �uid models [23, 28].

2.2.2 Quasi-Newton algorithms

For very large optimization problems involving very �at functionals, it has been shown that
the CG method can converge very slowly. In order to circumvent this issue, it happens to
be useful to use quasi-Newton methods that may show second order convergence properties
near the optimum. One possible choice is the use of the BFGS method as described by Liu-
Nocedal in [31]. This method is based on the approximation of the cost function Hessian
inverse using a rank one perturbation of identity deduced from the gradient knowledge. This
method was successfully applied to optimal control of Navier-Stokes equations in [4],[26].

RR n° 4609
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We consider the abstract minimization problem (2). For (u, v) ∈ H × H , we consider the
element u⊗ v ∈ L(H) de�ned as follows,

(u⊗ v)(w) =< w, v >H u, ∀w ∈ H

Hence the BFGS algorithm reads as follows,

� Step 0 : Choose u0 ∈ H ,H0 ∈ L(H){
Solve for g0 ∈ H, such that
(g0, v)H = H∗ < j′(u0), v >H , ∀ v ∈ H

� Step n + 1
For n ≥ 0, we assume that (un, gn, Hn) is at our disposal, and we seek for
(un+1, gn+1, Hn+1) thanks to the following steps :
We set dn = −Hn · gn,

1. Line search: Compute ρn such that,

(LS)
{

Solve for ρn ∈ R, such that
j(un + ρndn) ≤ j(un + ρdn), ∀ ρ ∈ R

We set

un+1 = un + ρnwn,

2. Gradient computation :{
Solve for gn+1 ∈ H, such that
(gn+1, v)H = H∗ < j′(un+1), v >H , ∀ v ∈ H

3. Convergence test : If ‖gn+1‖
‖g0‖ ≤ ε, the solution is given by

u = un+1

unless perform step 4.
4. Hessian update :

We set

sn = un+1 − un

and

yn = gn+1 − gn

Then we compute

Hn+1 = Hn +
dn ⊗ dn

< dn, sn >H
− Hn · sn ⊗Hn · sn

< Hn · sn, sn >H

5. Iteration loop : we set n := n + 1, we come back to step n + 1.
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3 The Lagrange-Galerkin Scheme for the Navier-Stokes

equations

In this paragraph, we shall describe our strategy for the �nite dimensional approximation
of the solution of the Navier-Stokes system, based on a Lagrange-Galerkin scheme.

3.1 Time discretisation

3.1.1 Introduction

The Lagrange-Galerkin scheme was �rst introduced by Benqué [3] and is made of the combi-
nation of the characteristics method with a standard �nite-element formulation. The main
idea of this method lies in the fact that the operator ∂

∂t + u.∇ may be turned into a total

derivative d
dt using a Lagrangian formulation. However, this Lagrangian formulation is only

valid along the characteristics curves of the particule. This curves are described by the
following equations:{

d

dτ
χ(τ ; t, x) = u(τ, χ(τ ; t, x)), τ ∈ [0, t]

χ(τ = t; t, x) = x x ∈ Ω
(10)

or equivalently :

χ(τ ; t, x) = x +
∫ t

0

u(τ, χ(τ ; t, x))dτ (11)

Hence, the characteristics method consists in performing the following steps :

1. De�ne an approximation scheme for the Cauchy problem (10). Solving this system
leads to an approximation of the characteristic curves.

2. De�ne a time approximation scheme for the total derivative operator using the ap-
proximate characteristic curves.

3. Solve the resulting generalized Stokes system.

Remark 1 The non-linear part of the Navier-Stokes system is hidden in the Cauchy problem
(10), and the generalized Stokes system is linear.

3.1.2 Time semi-discrete �rst order characteristics scheme

We set

(un, pn, gn)(x) = (u, p, g)(x, tn), x ∈ Ω̄
tn = t0 + n∆t, t0 = 0, tN = T

RR n° 4609



14 Gilles Fourestey, Marwan Moubachir

We consider the characteristic curve associated to the �ow �eld u as the solution of the
Cauchy problem (10). Hence, using the chain rule, we get the following expression for the
time derivative of the �ow �eld u along a characteristic curve ,

d

dτ
u(τ, χ(τ ; t, x))|τ = ∂τu(τ, χ(τ ; t, x))|τ +∇u(τ, χ(τ ; t, x)) · u(τ, χ(τ ; t, x))

For t = tn+1, tn ≤ τ ≤ tn+1, we de�ne the �rst-order approximation of the total time
derivative ( Backward Euler scheme),

d

dτ
u(τ, χ(τ ; t, x))|τ=tn+1 =

u(tn+1, x)− u(tn, χ(tn; tn+1, x))
∆t

The characteristic footχ(tn; tn+1, x) is computed from (11) using the following linear discrete
interpolation :

χ(tn; tn+1, x) = x−∆tun(x) (12)

Setting χn(x) = χ(tn; tn+1, x), we �nally obtain the time semi-discrete �rst order Navier-
Stokes system (see [16] for the full proof ) :



1
∆tu

n+1 − ν∆un+1 +∇pn+1 = 1
∆tu

n ◦ χn, Ω
div(un+1) = 0, Ω
un+1 = gn+1, Γcyl

σ(un+1, pn+1) · n = 0, Γout

un+1 = un+1
∞ , Γin

(13)

with ut=0 = u0. One of the greatest advantage of this formulation is that large time
steps may be used in conjunction with the Lagrange-Galerkin method. Unlike its Eulerian
counterpart, the Lagrangian formulation is not restricted, at least theoretically, by any CFL.
However, working with large time steps may induce large numerical dissipation. An increase
of the order of the time dicretization scheme can eventually reduce this overdissipation.

3.1.3 Time semi-discrete second order characteristics scheme

The second order Lagrange-Galerkin method was introduced by Boukir et al [6] and is an
extension of the �rst order scheme. As before, let us de�ne the total derivative :

d

dτ
u(τ, χ(τ ; t, x))|τ=tn+1 =

3u(tn+1, x)− 4u(tn, χ(tn; tn+1, x)) + u(tn−1, χ(tn−1; tn+1, x))
2∆t

Now we need to compute two sets of characteristics paths :{
χn

1 = χ(tn; tn+1, x) = x−∆t(2un − un−1)(x)
χn

2 = χ(tn−1; tn+1, x) = x− 2∆t(2un − un−1)(x)
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Then, we get the time semi-discrete second order Navier-Stokes system [6] [16],


3
2∆t

un+1 − ν∆un+1 +∇pn+1 =
1

∆t

[
2un ◦ χn

1 −
1
2
un−1 ◦ χn

2

]
, Ω

div(un+1) = 0, Ω
un+1 = gn+1, Γcyl

σ(un+1, pn+1) · n = 0, Γout

un+1 = un+1
∞ , Γin

(14)

We may note that the general form of the second order scheme is similar to the one used
for the �rst order scheme. Apart form the coe�cient of the mass matrix and the two
sets of characteristics path needed to perform the computation of the right hand side for the
second order, both Lagrange Galerkin formulations may be solved using the same procedure.
Nevertheless, the right hand side computation for the second order is much more cpu time
consuming than the �rst order because instead of tracking the particle using one velocity �eld
over a time period of ∆t, the second order will require another tracking over a time period
of 2∆t. This may substantially slow down the characteristics path construction procedure.
In case the tracking process is performed with poor numerical accuracy, some numerical error
may impair the whole �ow computation. This issue will be discussed in the next section.

3.2 Spatial approximation

3.2.1 Introduction

Here we describe several points that must be handled carefully in order to compute a rea-
sonable numerical approximation of the Navier-Stokes system.
When the viscosity constant ε is small, the Navier-Sokes equations are strongly non-linear.
This imply a severe restriction over the time step, but the use of the characteristics method
may overcome this di�culty, as long as the characteristics path is computed correctly. Then,
the incompressible constraint confers the Navier-Stokes equations with a strong saddle point
character. This implies the velocity and the pressure functional spaces to be chosen with
care. In order to correctly cope with this di�cult, the LBB condition [20] [22] must be satis-
�ed. If Xh and Mh are the discretized spaces for the velocity and the pressure respectively,
then, for all v ∈ Xh and p ∈Mh:

inf
p∈Mh\Qh

sup
v∈Xh

|(∇.v, p)|
||v||Xh

||p||Mh

≥ γ > 0 (15)

with Qh = {q ∈ Mh|(q,∇.v) = 0 ∀v ∈ Xh} and γ is a constant independent of h. A set
of spaces satisfying this condition may be found in [40] and [20]. Among them, we shall
use the popular P1-bubble/P1 subspace, which is the smallest subspace satisfying the LBB
condition.
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16 Gilles Fourestey, Marwan Moubachir

3.2.2 The P1-bubble/P1 space

Let us suppose that Ω ∈ R
d is a polyhedral set, and let us consider a d− simplex partition

Th of Ω. We suppose that (Th)h≥0 satis�es standard hypothesis in order to de�ne a �nite
element family[22].
We set,

P 1
h =

{
φ : Ω→ R / φ|K ∈ P

1, ∀ K ∈ Th

}
For k ∈ Th, we consider {λi}1≤i≤d+1, the barycentric coordinates with respect to the d−
simplex K. We introduce the bubble function

bK =
d+1∏
i=1

λi

and we set

P b
K = vect{bK}

We de�ne an approximation space pair based on the above space,

Xh =
{

v ∈ (C0(Ω))d, v|K ∈
(
P

1 ⊕ P
b(K)

)d

, ∀ K ∈ Th

}
(16)

Mh = P 1
h

⋂
C0(Ω) (17)

Remark 2

� The nodes of elements of Mh are de�ned as the vertex of the simplex,

� the nodes of elements of Xh are de�ned as vertex and isobarycentre of the simplex,

� (Xh, Mh) satis�es the LBB condition [22] [20] [16].

We introduce the following functional spaces,

V =
{
v ∈ (H1(Ω))d, v = 0 on Γin ∪ Γs, v · n = 0, Γlat

}
Q = L2(Ω)

We set Vh = X3
h ∩ V and Qh = Mh ∩Q, and we look for (un+1

h , pn+1
h ) ∈ X3

h ×Qh solution
of the following system :


1
∆t

(un+1
h , vh) + ν(∇un+1

h ,∇vh)− (pn+1
h , div vh) =

1
∆t

(un
h ◦ χn

h, vh), ∀ vh ∈ Vh

(div un+1
h , qh) = 0, ∀ qh ∈ Qh

un+1
h = Πhgn+1, Γcyl

σ(un+1
h , pn+1

h ) · n = 0, Γout

un+1
h = Πhun+1

∞ , Γin

(18)
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for the �rst order scheme and


3
2∆t

(un+1
h , vh) +ν(∇un+1

h ,∇vh)− (pn+1
h , div vh)

=
2

∆t
(un

h ◦ χn
1,h, vh)− 1

2∆t
(un−1

h ◦ χn
2,h, vh)

∀ vh ∈ Vh

(div un+1
h , qh) = 0, ∀ qh ∈ Qh

un+1
h = Πhgn+1, Γcyl

σ(un+1
h , pn+1

h ) · n = 0, Γout

un+1
h = Πhun+1∞ , Γin

(19)

where χn
h stands for an approximation of the characteristic foot coming from point x ∈

Ω. Existence and uniqueness results of the solution of problem (18) and (19) are well
known, whereas regularity results are insured by the LBB condition. The details of this
approximation will be speci�ed in the next section.

3.3 Spatial approximation of the characteristic curve

As stated before, severe restrictions on the CFL may be relaxed using the Lagrange-Galerkin
scheme. However, when large time steps are used, computing the characteristics path e�-
ciently becomes crucial. We shall now describe three backtracking schemes,

a) Simple backtracking :
This is the simplest algorithm for characteristics path approximation. The feet of the
characteristics are computed using the following formulae, obtained directly from the
characteristic path de�nition :

χn
h(x) = x−∆t · un

h(x), x ∈ Ω

Here, the characteristic path is considered to be a straight line from the starting point
x to its foot χn

h(x). This algorithm, though very simple provided we have a good
particule tracking algorithm, performs badly when the time step is relatively large. In
fact, when tracking the particles in a �nite element mesh, one should not jump too
many cells at once in order to ensure consistency. Hence, this algorithm should be
used only when small time steps are used.

b) Subcycling backtracking :
Depending on the discrete velocity �eld un

h(.), the last approximation may be more
or less accurate, specially if the characteristic foot χn

h is far from its origin point x.
Hence it may be convenient to perform a re�nement of such an approximation :
The characteristic foot χn(.) is approximated by the extreme point of a polygonal
curve of time length ∆t with vertex (χn

0 = x, . . . , χn
m = χn(x)) such that,

χn
i+1 = χn

i −∆ti · un(χn
i )) with

m∑
i=1

∆ti = ∆t
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18 Gilles Fourestey, Marwan Moubachir

The major drawback of the last scheme is that it requires, on the discrete level, to have
an e�cient element searching tool for the velocity �eld interpolation at each substep
points χn

i . This may be even more CPU time consuming if we use 3D unstructured
meshes. Whatsmore, the subdivision parameter is not mesh-dependent and may be
easily oversized without necessarily increasing the accuracy level of χn(.).

c) Adaptative backtracking :
As stated previously, it may be useful to overcome the use of an element searching tool
while using unstructured meshes. This may be done by using the following scheme as
in [40] :
The characteristic foot χn(.) is approximated by the extreme point of a polygonal
curve of time length ∆t with vertex (χn

0 = x, . . . , χn
m = χn(x)) where x ∈ K0

h such
that,

1. χn
i+1 = χn

i −∆ti · un(χn
i ),

2. ∆ti is such that χn
i , i ∈ [1, m− 1] belongs to the edge of the simplex of Ki

h and
m∑

i=1

∆ti = ∆t.

It follows that, in each element, the characteristic path is approximated by a straight
line until the edge is reached. A complete description of these algorithm may be found
in [16].

Remark 3

1. As we may see in the sequel, the intermediate points χn
i+1 can be viewed as the

projection along the vector un(χn
i ) on the edge of the simplex Ki

h.

2. It may be emphasized that the time partition depends on the geometry of the mesh
and the velocity �eld un

h(.).

3. Because of adaptativity, the number of sub-time steps is not exactly controlled.

3.4 Quadrature rules

Computing the right hand side of the Lagrange-Galerkin system exactly is extremely expen-
sive. Therefore, we shall use a Gauss quadrature formula. Introducing the family of Gauss
points (αi, ζi)i∈I , we have

(un
h ◦ χn

h, vh)K =
∑
i∈I

αiu
n
h(χn

h(ζi)) · vh(ζi)

We can see that the characteristic path will be computed from each Gauss point. It follows
that increasing the number of Gauss points in order to reach higher accuracy will result
in an increase of the number of characteristics paths. This makes the characteristic feet
location procedure even more expensive, especially when large time steps are used.
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Remark 4 Because the characteristics foot χn
h does not necessarily belong to the degree of

freedom family of the discrete space Xh, the unconditional stability of the exact Lagrange-
Galerkin scheme is lost. It has been proven that using a non-exact integration rule for the
Lagrange-Galerkin method leads to a conditionnaly stable scheme, with non-linear CFL-like
conditions (see [33] and [15] for more details). However, these instabilities may be reduced,
though not entirely removed, by using a large number of Gauss points.

3.5 Extension to the case of a moving domain

We may now change the problem con�guration. Indeed we consider that the �uid domain is
no more �xed, but can move with prescribed evolution. We note by Ωf

t the moving domain
at time t > 0. We endow the system with a sticking boundary condition at the �uid-solid
interface,

u(x, t) = ẋs, (x, t) ∈ Γs
t × (0, T ) (20)

We may only deal in the sequel with rigid body displacement �elds, i.e

xs(x0, t) = d(t) + Q(t) (x0 − xG), on Γs
0 (21)

where,

Q(t) = Q0

(
cos θ − sin θ
sin θ cos θ

)

stands for the rotation operator and xG the center of mass of the solid. The couple (u, p)
satis�es the Navier-Stokes equations in moving domain,



∂tu +∇u · u− ν∆u +∇p = 0, Ωf
t

div(u) = 0, Ωf
t

u = ẋs, Γs
t

σ(u, p) · n = 0, Γout

u = u∞, Γin

u(t = 0) = u0, Ω

(22)

3.5.1 ALE formulation

The previous formulation is not convenient in view of its approximation. Indeed, the tem-
poral derivation part ∂t|x∈ Ωf

t
is computed while �xing the spatial variable x in a time-

dependent domain Ωf
t . Then, in the neighbourhood of the moving boundary Γs

t , it may be
di�cult to de�ne an approximation of such a derivative.
A solution consists in introducing a map that will transform the term ∂t|x∈ Ωf

t
into a tem-

poral derivative term at time t ≥ 0, keeping the space variable �xed in a domain which does
not dependent on the time variable t.
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In order to work with a Lagrangian description of the solid dynamic, we choose an invariant
moving boundary map along Γs

t . Hence, we introduce the following mapping family, for
0 ≤ τ < 0,

Aτ
t : Ω

f
(τ) −→ Ω

f
(t)

ξ 7−→ x = Aτ
t (ξ)

such that

Aτ
t (ξ) ∈ Γs

t , ∀ξ ∈ Γs
0

We set xf = Aτ
t (ξ) for ξ ∈ Ωf (τ) and xs def= Aτ

t (ξ) for ξ ∈ Γs(τ). Then the ALE map can
be described as follow,

xf (ξ, t) = Ext(xs)(ξ, t), ∀ξ ∈ Ωf (τ),
xs(ξ, t) = d(t) + Q(t) ξ, ∀ξ ∈ Γs(τ).

Here, Ext represents any extension operator from Γs(τ) to Ωf (τ) preserving Γf
∞.

wτ (x, t) = ∂Aτ
t (ξ)
∂t

∣∣∣
ξ∈Ωf (τ)

with x = Aτ
t (ξ), stands for the ALE velocity.

In the sequel, we will not distinguish between a function de�ned in Ωf (τ) or Ωf (t), keeping
in mind that they are connected through the ALE map (Aτ

t )0<τ<t. Using the Chain Rule,
we may state the following identity,

∂u(x, t)
∂t |ξ∈Ωf (τ)

=
∂u(x, t)

∂t |x∈Ωf (t)
+∇u(x, t) · wτ (x, t), for x = Aτ

t (ξ), ∀ξ ∈ Ωf (τ) (23)

It allows us to obtain the strong ALE formulation of the �uid-structure coupled system,


∂u

∂t |ξ∈Ωf (τ)
+∇u · (u − wτ )− ν∆u +∇p = 0, Ωf

t

div(u) = 0, Ωf
t

u = ẋs, Γs
t

σ(u, p) · n = 0, Γout

u = u∞, Γin

u(t = 0) = u0, Ω

(24)

3.5.2 Discretization

The ALE formulation of the Navier-Stokes system in moving domain has a similar structure
compared to the �xed domain case. The only di�erence is the convection velocity �eld which
is shifted by the ALE velocity �eld. Hence the Lagrange Galerkin scheme can be applied
and the characteristic curves are backtracked thanks to the �eld un−wn. This leads to the
following semi-discrete systems,
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� First-order characteristic scheme :


1
∆tu

n+1 − ν∆un+1 +∇pn+1 = 1
∆tu

n ◦ χn
u−w, Ωn+1

div(un+1) = 0, Ω
un+1 = wn+1, Γs

n+1

σ(un+1, pn+1) · n = 0, Γout

un+1 = un+1∞ , Γin

(25)

where χn
u−w(x) = χ(tn; tn+1, x) stands for a characteristic foot obtained through the

characteristic path χ(tn; tn+1, x) which is computed from (11) using the following
formulae ( linear discrete interpolation ):

χ(tn; tn+1, x) = x−∆t(un − wn)(x)

� Second-order characteristic scheme :


3
2∆t

un+1 − ν∆un+1 +∇pn+1 =
1

∆t

[
2un ◦ χn

u−w,1 −
1
2
un−1 ◦ χn

u−w,2

]
, Ωn+1

div(un+1) = 0, Ω
un+1 = wn+1, Γs

n+1

σ(un+1, pn+1) · n = 0, Γout

un+1 = un+1
∞ , Γin

(26)

with the following set of characteristic feet,{
χn

u−w,1 = χ(tn; tn+1, x) = x−∆t(2(un − wn)− (un−1 − wn−1))(x)
χn

u−w,2 = χ(tn−1; tn+1, x) = x− 2∆t(2(un − wn)− (un−1 − wn−1))(x)

4 Discrete linearization and discrete cost function gradi-

ent

In order to perform our optimal control strategy, we need to compute the gradient of the cost
function with respect to boundary velocity �eld. This may be done by using the derivative
(z, q) of the state variable (u, p) with respect to g ∈ Uad. Concerning the numerical approx-
imation of the optimization procedure, there exists mainly two strategies for computing the
cost function gradient:

1. De�ne an approximation of the continuous linearized problem.

2. De�ne a linearization of the discretized state problem.

On the limit case (h, ∆t)→ 0, both systems will converge to the continuous linearized sys-
tem. Nevertheless, since we shall perform an optimization descent algorithm, both systems
may furnish di�erent descent directions, inducing di�erent convergence properties. In the
sequel, we may describe such an alternative. We will only deal with �rst-order characteristic
linearized schemes, since the second-order case derives easily from the �rst-order case as
shown before.
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4.1 Linearized discrete system

The procedure which consists in,

1. discretizing the state problem,

2. then linearizing the discrete problem.

will produce what we call the linearized discrete problem (LDP). Let us describe this pro-
cedure for the Navier-Stokes problem. We set (ui

h(g), pi
h(g))0≤i≤Nt the solution of the full-

discrete Navier-Stokes system associated with the control variable g.
We would like to evaluate the following quantities,

(zi
h(δg), qi

h(δg)) = (
Dui

h(g)
Dg

· δg,
Dqi

h(g)
Dg

· δg)

For that purpose, the only di�culty is to di�erentiate the following term, involved in the
right hand side of the generalized Stokes system,(

D(un
h ◦ χn

h(g))
Dg

)
· δg =

D(un
h)

Dg
(χn

h(g)) · δg +∇un
h(χn

h(g)) · D(χn
h(g))

Du
·
(

D(un
h)

Dg

)
· δg

(27)

We recall that zn
h =

D(un
h)

Dg
· δg, then we get

(
D(un

h ◦ χn
h(g))

Dg

)
· δg = zn

h(δg) ◦ χn
h(g) +∇un

h(χn
h(g)) ·

(
(Dχn

h(g))
Du

)
· zn

h (δg) (28)

This term involves the derivative of the characteristic foot with respect to the convection
velocity �eld in the direction of the linearized velocity �eld. Hence depending on the char-
acteristics backtracking procedure, we may get di�erent derivative expressions. This issue
will be investigated in the sequel.

4.1.1 Linearized simple backtracking

In this simple case, we recall that the characteristic foot χ(z) is approximated by a line,

χ(z) = x−∆t · z(x)

It follows easily that,

Dχ

Dz
· δz = −∆t · δz(x)

Then we get(
D(un

h ◦ χn
h(g))

Dg

)
· δg = zn

h(δg) ◦ χn
h(g)−∆t · ∇un

h(χn
h(g)) · zn

h(δg) (29)
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We �nally need to solve the following linearized problem,


1
∆t

(zn+1
h , vh) + ν

(
∇zn+1

h ,∇vh

)
− (qn+1, div vh) =

1
∆t

[(zn
h (δg) ◦ χu,n

h (g), vh)−∆t · (∇un
h(χu,n

h (g)) · zn
h(δg), vh)] , ∀vh ∈ Vh

(
div zn+1

h , qh

)
= 0, ∀ q ∈ Qh

zn+1
h = Πh

(
δgn+1

)
, Γs

zn+1 = 0, Γin

(z0
h, vh) = (Πh(δu0), vh), ∀vh ∈ Vh

(30)

Remark 5 The linearized system involves the term ∇un
h(χu,n

h (g), i.e the gradient of the
velocity �ed un

h evaluated at the characteristic foot χu,n
h (g). Depending on the choice of

approximation spaces, this term may be more or less well captured.

Remark 6 Both non-linear and linearized system can be performed advancing in time :

� We �rst compute the caracteristic feet,

� we then evaluate the di�erent r.h.s involved in the generalized Stokes systems,

� �nally, we solve the linear systems.

4.1.2 Linearized subcycling backtracking

We recall that the foot of a characteristic curve χ(z) associated to vector �eld z is given by,
χm where

χi+1 = χi −∆ti · z(χi),
m∑

i=1

∆ti = ∆t

χ0 = x, x ∈ Ω
(31)

Hence, the derivative of the characteristic foot is given by the formula δχ
def=

Dχ(z)
Dz

· δz =

Dχm(z)
Dz

· δz, with

{
δχi+1 = δχi −∆ti · δz(χi)−∆ti · (∇z(χi) · δχi) ,
δχ1 = −∆t0 · δz(x), x ∈ Ω (32)
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Then we get, (
D(un

h ◦ χn
h(g))

Dg

)
· δg = zn

h(δg) ◦ χn
h(g) +∇un

h(χn
h(g)) · δχn

m,h (33)

where 


δχn
i+1,h = δχn

i,h −∆ti · zn
h (χn

i,h)−∆ti∇un
h(χn

i,h) · δχn
i,h,

δχn
1,h = −∆t0 · zn

h (x), x ∈ Ω
(34)

We �nally need to solve the following linearized problem,


1
∆t

(zn+1
h , vh) + ν

(
∇zn+1

h ,∇vh

)
− (qn+1, div vh) =

1
∆t

[(zn
h (δg) ◦ χu,n

h (g), vh) + (∇un
h(χu,n

h (g)) · δχn
h, vh)] , ∀vh ∈ Vh

(
div zn+1

h , qh

)
= 0, ∀ q ∈ Qh

zn+1
h = Πh

(
δgn+1

)
, Γs

zn+1 = 0, Γin

(z0
h, vh) = (Πh(δu0), vh), ∀vh ∈ Vh

(35)

Remark 7 Here we choose to approximate the velocity using Lagrangian P1 �nite elements.
Then on each simplex, the gradient ∇uh is constant, that means that the gradient of uh is
discontinuous at each simplex interfaces. We may get troubles if one of the points χi,h is
located on faces of a given tetraedron Kh. This may almost never occur, but we need to pay
attention on these singularities that may produce numerical artefacts on the solution of the
linearized discrete system.
If we choose a higher-order �nite element method, these singularities may disappear.

Remark 8 In order to avoid large vector �eld storage, the computation of the linearized
characteristic direction δχn

h can be performed in the routine which build the non-linear char-
acteristic curves. In this case, the intermediate points χn

i,h do not need to be stored.

4.2 Linearized adaptative backtracking

In the case, of the adaptative algorithm, the foot is still given by, χm, with

χi+1 = χi(z)−∆ti(z) · z(χi),
χ0 = x, x ∈ Ω (36)
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Figure 1: 2D projection along a given vector

The major di�erence is that m and {∆ti}1≤i≤m depends on the transport �eld z, which
might add some extra computations and di�erentiability questions.

4.2.1 2D case

For the sake of simplicity, we �rst explain how we might perform the derivation of the
adaptative characteristic scheme with respect to the vector �eld z(.) on a 2D case.
Let us consider, a line D(A, a) in R

2 de�ned by a point A(xA
1 , xA

2 ) and a vector a(a1, a2)
where the coordinates are given in the orthonormal euclidian frame (O, i, j). Considering a
point M(xM

1 , xM
2 ) in R

2, we look for the projection point P of point M on D along a vector
e ∈ R

2, which can be identi�ed as P = P
R

2((A, a), e; M) ( see Fig. 1 ).

Lemma 1 Assuming that vector e is not colinear to a, then the projection point P is deter-
minated by the following expression,

OP = OM +
(

MA ∧ a

e ∧ a

)
· e (37)

Lemma 2 Assuming that vector e is not colinear to a, the derivative of the projection point
P = P

R
2((A, a), e; M) considered as a function of the projective direction e is continuous

and is given by the following expression,

d(OP )
de

=
(

MA ∧ a

(e ∧ a)2

)
·
[
(e ∧ a) I+e · (a⊥)∗

]
(38)

with a∗ = (a1, a2) and (a⊥)∗ = (−a2, a1).

Proof : It can be easily obtained using the cartesian coordinates,

d

dei

(
ej

e1a2 − e2a1

)
=

(e1a2 − e2a1)δi, j + (−1)iejai+1

(e1a2 − e2a1)2

=
1

(e ∧ a)2
[
(e ∧ a) I+e · (a⊥)∗

]
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Figure 2: Projection on the edge of a triangle

2

Let us return to the case of the projection of a point on the edge of a triangle along a given
direction. We consider a triangle de�ned by 3 points (A1, A2, A3).

Lemma 3 Let χ stands for the projection of the point M ∈ R
2 on the edge of the triangle

(A1, A2, A3) along the vector e ∈ R
2. Then, χ(e) is di�erentiable with respect to e ∈ R

2 \
{eA1, eA2 , eA3}, where eAi is such that

χ(eAi) = Ai

Proof : We may only check whether, χ(.) is di�erentiable at point eAi for i ∈ [1, 3]. We
consider eA+

i
and eA−

i
, such that

� χ(e+
Ai

) = A+
i and χ(e+

Ai
) ∈]Ai, Ai+1[

� χ(e−Ai
) = A−

i and χ(e+
Ai

) ∈]Ai−1, Ai[

Using χ(e+
Ai

) = χ(e−Ai
), we get(

MAi ∧ ai

e ∧ ai

)
=
(

MAi+1 ∧ ai+1

e ∧ ai+1

)
= ρ

Thus we get that the jump of derivatives at point eAi is given by the following expression,

dχ

de
(e−Ai

)− dχ

de
(e+

Ai
) = ρ ·

[
eAi · (a⊥

i )∗

eAi ∧ ai
−

eAi · (a⊥
i+1)

∗

eAi ∧ ai+1

]

6= 0, for ai 6= ai+1

This last identity points out the lack of continuity of the derivative dχ
de for directions pointing

towards the vertices of the triangle. 2
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Figure 3: 3D projection

4.2.2 3D case

The previous analysis can be easily extended to the 3D case. We may omit the proof of the
following results, since it may be established using the same techniques used in the 2D case.

Lemma 4 We consider a plan D(A, a, b) de�ned by a point A ∈ R
3 and two non-colinear

vectors (a, b) ∈ R
3 × R

3 ( i.e a ∧ b 6= 0 ). The projection point P of a point M ∈ R
3 on the

plan (A, a, b) along direction given by the vector e ∈ R3 exists as long as e is not parallel to
the plan D ( i.e (e ∧ a) · b 6= 0 ) and is given by the following expression,

OP = OM +
(

(MA ∧ a) · b
(e ∧ a) · b

)
· e (39)

Lemma 5 The point P as a function of the vector e ∈ R
3 is di�erentiable and its derivative

is given by the following identity,

d(OP )
de

=
(

(MA ∧ a) · b
((e ∧ a) · b)2

)
·
[
((e ∧ a) · b) · I−e · [a ∧ b]∗

]
(40)

We consider a tetraedron K ∈ R
3 de�ned by the points (A1, A2, A3, A4). For a point M ∈ R

3

inside K, the point P stands for the projection of M on ∂K along the direction given by
the vector e ∈ R

3. The following result is an easy consequence of the previous analysis,

Theorem 3 The point P as a function of e ∈ R
3 is di�erentiable on the set R

3 \ I where
the set I is such that for e ∈ I, then

P (e) ∈ edge of ∂K

4.3 Implementation using barycentric coordinates

In this section, we will describe how the projection step involved in the adaptative backtrack-
ing characteristic scheme has been implemented using barycentric coordinates. This will be
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Figure 4: Projection on the edge of a tetrahedron

the basis for deriving an implementable linearized discrete scheme for the Navier-Stokes
system.

4.3.1 Projection using barycentric coordinates

Let us go back to the problem of projecting a point inside a tetraedron on its boundary along
a given direction. This problem is usually refered in the Computer Graphics litterature as
the Ray Tracing problem. It has been proven, that an elegant and e�cient way of solving
this problem is the use of barycentric coordinates.

De�nition 1 Let us consider a tetraedron K ∈ R
3 de�ned by the points (A1, A2, A3, A4).

For a point M ∈ R
3 inside K, the barycentric coordinates {bxi}1≤i≤4 of M are de�ned as

the solution of the following system,


4∑
j=1

bxj · c(., j) = x(.)

4∑
j=1

bxj = 1

(41)

where {c(i, j)}1≤i≤3,1≤j≤4 stands for the cartesian coordinates of the vertex Aj of the tetrae-
dron K. {x(i)}1≤i≤3 stands for the cartesian coordinates of M .

Lemma 6 If the tetraedron K is not degenerated, then the barycentric coordinates of M are
uniquely determinated and 0 ≤ bxj ≤ 1, 1 ≤ j ≤ 4. Furthermore, ∃i/bxi = 0⇐⇒M ∈ ∂K.
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Remark 9 Using matrix notation, we can solve the following problem


c(1, 1) c(1, 2) c(1, 3) c(1, 4)
c(2, 1) c(2, 2) c(2, 3) c(2, 4)
c(3, 1) c(3, 2) c(3, 3) c(3, 4)
1 1 1 1


 ·



bx1

bx2

bx3

bx4


 =




x1

x2

x3

x4




Inside NSI3, this system is solved using the substitution,

bx4 = 1− bx1 − bx2 − bx3

setting,

C =


 c(1, 1)− c(1, 4) c(1, 2)− c(1, 4) c(1, 3)− c(1, 4)

c(2, 1)− c(2, 4) c(2, 2)− c(2, 4) c(2, 3)− c(2, 4)
c(3, 1)− c(3, 4) c(3, 2)− c(3, 4) c(3, 3)− c(3, 4)




and

bx =


 bx1

bx2

bx3


 d =


 x1 − c(1, 4)

x2 − c(2, 4)
x3 − c(3, 4)




we may solve,

C · bx = d (42)

In the sequel, we may also need to express vectors in barycentric form thanks to the following
de�nition,

De�nition 2 Let us consider a tetraedron K ∈ R
3 de�ned by the points (A1, A2, A3, A4).

For a vector a ∈ R
3, the barycentric coordinates {bai}1≤i≤4 are de�ned as the solution of

the following system, 


4∑
j=1

baj · c(., j) = a(.)

4∑
j=1

baj = 0

(43)

where {c(i, j)}1≤i≤3,1≤j≤4 stands for the cartesian coordinates of the vertex Aj of the tetrae-
dron K. {a(i)}1≤i≤3 stands for the cartesian coordinates of a.

Remark 10 Inside NSI3, the barycentric coordinates of a vector are found by substitution,

ba4 = −ba1 − ba2 − ba3
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setting,

ba =


 ba1

ba2

ba3


 a =


 a1

a2

a3




we may solve,

C · ba = a

The matrix C enters the de�nition of the a�ne transform between reference and actual
tetrahedra inside the �nite element framework. Hence its inverse C−1 is usually stored for
all the mesh avoiding by the way, local computation.

Let us come back to the purpose of this section, i.e the computation using barycentric
coordinates of the projection of a point M inside a tetrahedron K on its faces along a given
direction vector e. This problem can be expressed as follow,

Problem 1 Given a point M inside a simplex K of barycentric coordinates bx and a vector
e with barycentric coordinates be , �nd ρ ∈ R

+ such that

4∏
j=1

bj(x− ρe) = 0 (44)

bj(x − ρ · e) ≥ 0, 1 ≤ j ≤ 4 (45)

Lemma 7 With the nondegeneracy assumptions on K, the following identity holds true

b(x− ρe) = bx− ρ · be (46)

Lemma 8 There exists a unique step ρ∗ ∈ R
+ and at least one index m ∈ [1, 4] such that

ρ∗ =
(

(bx)m

(be)m

)
,

bj(x − ρ∗ · e) ≥ 0, 1 ≤ j ≤ 4

Remark 11

Inside the code NSI3, this step is performed by trial and error, by changing the index m and
checking the above conditions until it works, i.e

1. Set m = 1 and choose a tolerance parameter ε > 0,

2. Compute ρm =
(

(bx)m

(be)m

)
,

3. if bj(x− ρm · e) < −ε for j 6= m, go to step 5.,

4. else set χ = x− ρm · e and STOP.

5. Set m← m + 1 and go back to step 2.
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4.3.2 Derivative of the projection using barycentric coordinates

Let us go back to the original problem of computing the derivative with respect to the
convective velocity �eld of the characteristic foot associated to the adaptative backtracking
scheme. For this purpose, we need to di�erentiate the previous projection formula with
respect to the vector e ∈ R

3 .

Lemma 9 Let χ stands for the cartesian coordinates of the projection of point M on ∂K.
The coordinate χ is di�erentiable for e ∈ R

3 \ I and,(
d(bχ)

de

)
· δe = −ρ∗(e) · b(δe) +

(
ρ∗(e) · (b(δe))m

(be)m

)
· be (47)

where I is such that for e ∈ I

χ(e) ∈ edge of ∂K

Proof : Using the identity bχ = bx− ρ∗ · be, we get(
d(bχ)

de

)
· δe = −

(
dρ∗(e)

de
· b(δe)

)
· be− ρ∗ · b(δe) (48)

Using ρ∗ =
(

(bx)m

(be)m

)
, we deduce that

(
dρ∗(e)

de
· b
)
· δe = −bxm · (b(δe))m

(be)2m

= −ρ∗(e) ·
(

(b(δe))m

(be)m

)

from which we deduce the derivative identity. 2 A straightforward consequence is the
following result,

Lemma 10

dχ

de
· δe = −ρ∗(e) ·

[
δe−

(
(b(δe))m

(be)m

)
· e
]

(49)

Then, once the projection on the edge of K has been done, we can compute the linearized
characteristic foot in the direction δe, for the knowledge of the barycentric coordinates of the
initial point, the projection step ρ∗(e) and the barycentric coordinates of the perturbation
direction δe. In fact, only the barycentric coordinates of index m play a role, where m is
the index solution of the algorithm described in remark 11.
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4.3.3 linearization of the discrete scheme inside NSI3

The previous steps allows us to linearize the full discrete approximation of the Navier-Stokes
system used inside the computational research code NSI3. This scheme has the special
feature of using an adaptative backtracking characteristic algorithm.

� Navier-Stokes full discrete scheme :
we look for (un+1

h , pn+1
h ) ∈ X3

h ×Qh solution of the following system,




1
∆t (u

n+1
h , vh) + ν(∇un+1

h ,∇vh)− (pn+1
h , div vh) = 1

∆t(u
n
h ◦ χu,n

h , vh), ∀ vh ∈ Vh

(div un+1
h , qh) = 0, ∀ qh ∈ Qh

un+1
h = Πhgn+1, Γs

un+1
h = Πhun+1∞ , Γin

(50)

where χu,n
h = χu,n

m,h stands for an approximation of the characteristic foot coming from
point x ∈ Ω computed using the following scheme,

� Adaptative backtracking scheme :

χu,n
i+1,h = χu,n

i,h − ρi · un
h(χu,n

i,h ),

χu,n
0,h = x, x ∈ Kh

(51)

with

ρi =

(
(bχu,n

i,h )mi

(bun
h(χu,n

i,h ))mi

)
, in the frame Ki

h (52)

Then, it is possible to establish the structure of the (LDP) problem,

INRIA



Optimal control of Navier-Stokes equations using Lagrange-Galerkin methods 33

� Linearized discrete problem We look for (zn
h , qn

h) solution of the following linear
system,


1
∆t

(zn+1
h , vh) + ν

(
∇zn+1

h ,∇vh

)
− (qn+1, div vh) =

1
∆t

[
(zn

h (δg) ◦ χu,n
h (g), vh) +

(
∇un

h(χn
h(g)) ·

(
Dχu,n

h (z)
Dz

· zn
h(δg)

)
, vh

)]
,

∀vh ∈ Vh

(
div zn+1

h , qh

)
= 0,

∀ q ∈ Qh

zn+1
h = Πh

(
δgn+1

)
, Γs

zn+1 = 0, Γin

(z0
h, vh) = (Πh(δu0), vh),
∀vh ∈ Vh

(53)

with the following characteristic derivative scheme,

� Linearized adaptative backtracking scheme

Dχu,n
h

Dun
h

(χu,n
h ) · zn

h = (δχu,n
m,h)) · zn

h (54)

with


(δχu,n
i+1,h) · zn

h = (δχu,n
i,h ) · zn

h − [(δρi) · zn
h ] · un

h(χu,n
i,h )

−ρi ·
[
∇un

h ◦ χu,n
i,h

]
· (δχu,n

i,h ) · zn
h − ρi · zn

h (χu,n
i,h ),

δχu,n
1,h = − [(δρ0) · zn

h ] · un
h(x)− ρ0 · zn

h (x), x ∈ Kh

(55)

with

ρi =

(
(bχu,n

i,h )mi

(bun
h(χu,n

i,h ))mi

)
, in the frame Ki

h (56)

and

(δρi) · zn
h = −ρi

(
(bzn

h (χu,n
i,h ))mi

(bun
h(χu,n

i,h ))mi

)
, in the frame Ki

h (57)
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Remark 12 This algorithm is only valid if we assume that the projected points on each
simplex do not cross the edge of ∂K. This is a strong hypothesis, but the probability for this
to occur is weak.

Remark 13 A much stronger obstruction for the last algorithm to perform well inside NSI3
is that we only have a P

1 approximation for the velocity, this means that the gradient ∇uh is
discontinuous on each side of the simplex K ∈ Th. This causes the adaptative backtracking
scheme to be non-di�erentiable inside NSI3. If we choose a higher-order �nite element
approximation, this will not be the case, even if problems at the edge of the vertex can still
remain. We will show in the sequel the kind of numerical problems that arises with such an
implementation inside NSI3.

4.4 Discrete linearized system

As described previously, we may be interested in a di�erent procedure which consists in,

1. linearizing the state problem,

2. then discretizing the linearized problem.

This leads to the discrete linearized problem (DLP). Let us describe this procedure for the
Navier-Stokes problem.
We have already establish the structure of the continous linearized problem with respect to
Dirichlet boundary conditions. We set,

(z(δg), q(δg)) =
(

D(u, p)
Dg

)
· (δg)

stand for the state derivatives with respect to the parameter g in the perturbation direction
δg. The directional derivatives are solution of the following linear evolution system,



∂tz +∇u · z +∇z · u− ν∆z +∇q = 0, Ω
div z = 0, Ω
z = 0, Γs × (0, T )
σ(z, q) · n = 0, Γout

z = δg, Γin

z(t = 0) = 0, Ω

(58)

The main issue is the choice of the time discretization for the above system.
Let us introduce as previously the solution χu of the following Cauchy problem,{

d
dτ χu(τ ; t, x) = u(τ, χu(τ ; t, x)), τ ∈ (0, t)
χu(τ = t; t, x) = x

(59)

Using the chain rule, it can be easily stated that the following identity holds true,

d

dt
(z ◦ χu) = ∂tz +∇z · u (60)

Hence the linearized system can be viewed as a combinaison of,
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1. a Stokes operator, {
−ν∆z +∇q
div z = 0

2. a linear advection operator,

d

dt
(z ◦ χu)

3. and a reaction operator,

∇u · z

The last operator is the key problem in the derivation of e�cient approximation scheme for
the linearized Navier-Stokes system, since depending on the sign and the size of ∇u, this
term may add a non-positive dissipation contribution resulting in an unstable numerical
scheme.
For the time being, as reported in [10], there is no e�cient strategies in order to stabilize
the reaction term ∇u · z. For that reason, we suggest to use an explicit development of this
term in the discretization. Then using a �rst-order characteristic scheme coupled with the
same �nite element strategy used for the state problem, we obtain the following full discrete
problem,


1
∆t (z

n+1
h , vh) + ν(∇zn+1

h ,∇vh)− (qn+1
h , div vh) = 1

∆t (z
n
h ◦ χu,n

h , vh)

−(∇un
h · zn

h , vh), ∀ vh ∈ Vh

(div zn+1
h , qh) = 0, ∀ qh ∈ Qh

zn+1
h = Πh(δgn+1), Γs

zn+1
h = 0, Γin

(z0
h, vh) = 0, ∀ vh ∈ Vh

(61)

Remark 14

1. Such a scheme may be used, as long as the mesh is enough re�ned in the region where
the gradient of un

h is large. These regions may correspond to the existence of boundary
layers near the walls.

2. In the last system, we do not need to compute the caracteristic feet χu,n
h , since it may

be furnished by early state computation steps.
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3. The above scheme has the advantage to be easily implementable. Nevertheless, the
cost functional gradient approximation computed with such a linearized state may not
be consistent with the cost functional approximation. This causes the optimization
procedure to possibily fail.

5 Implementation

In this section, we describe some details about the implementation of the whole optimization
structure, including the Navier-Stokes solvers, the optimization routines and the parallel
direct mode strategy for the gradient computation.

5.1 Nonlinear and linearized Navier-Stokes solvers

5.1.1 NSI3

The NSI3 solver is a 3D sequential Incompressible Navier-Stokes equations solver used at
INRIA. It is a Fortran 77 code. Its main features are listed below :

� mixed �nite element P1-bubble/P1 for the spatial discretisation.

� Semi-lagrangian (Lagrange-Galerkin method) implicit time discretisation

� ALE capable for �uid/structure interaction.

This code is based upon solving at each time step a generalized Stokes problem with a
preconditionned Conjugate-Gradient algorithm for the Schur complement system. Setting
Ah to be the matrix associated to the operator D

Dt − ν∆ , and Bh the matrix associated to
the operator ∇, the system to be solved may be written as a linear system of the following
form : {

AhUh + BhPh = Fh

BT
h Uh = 0

where Uh and Ph are the discrete velocity and pression unknowns. The Uzawa method is
based upon writing this system only with the pressure unknown Ph. If we set :

Uh = A−1
h [Fh −BhPh]

the modi�ed system may be written in the following form :

MhPp = BT
h A−1

h Fh

The matrix Mh = BT
h A−1

h Bh is called the Schur complement and is symmetric positive
de�nite and well conditionned and thus may be used as a preconditioner. The linear system
is then solved using a SSOR-preconditioned CG method. For more informations, see [37]
and [39].
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OPTIMIZATION CODE

Control

Flag

Gradient

Cost

Flag

Flag

Gradient

Cost

Control

New Control

Flag

DRIVER

NAVIER_STOKES CODE

Figure 5: Optimization tool structure

5.1.2 LGNSI2FS

LGNSI2FS is a 2D Lagrange-Galerkin code we developed during our PhD. It includes the
main features of NSI3 such as P1-Bubble/P1 mixted formulation, Lagrange-Galerkinmethod
with adaptative backtracking methods and also �uid-structure algorithms. However the
subcycling backtracking method is also implemented and the linear system is solved using
a standard GMRES method based upon the Sparsekit library developed by Y. Saad1 with
an ILUT preconditioner. The ILUT preconditionner is an Incomplete LU factorisation
with a dropping strategy. This means that, when assembling the ILU matrix used as a
preconditioner, elements under a given drop tolerance are ignored. The complete description
of this preconditioning algorithm may be found in [41].

5.2 Optimization routines

As described in section 2, we use gradient based methods in order to solve the minimization
problem (2). There exists a huge amount of research studies concerning the development
of e�cient optimization algorithms and routines [36, 5]. The major e�ort is to build op-
timization tools that can be used by any one without deep knownledge of the underlying
optimization algorithms. These tools are very pratical, since the parameter of the routines
have been tuned to reach optimal e�ciency, e.g globalization issue using line search is one
of the hardest part to tune.
For these reasons, we chose to work with two optimization routines that have been bench-
marked by the optimization community for academic and pratical applications. We have
used the following routines :

1http://www.cs.umn.edu/research/arpa/SPARSKIT/sparskit.html
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DRIVER

N_S flow
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N_S flow
L_N_S flow

N_S flow
L_N_S flow

N_S flow
L_N_S flow




g1
g2
.

.

.

gNc−1
gNc


 ∇J =




∂g1
J

∂g2
J

.

.

.

∂gNc−1
J

∂gNc



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J∂g1J

δgNc
δg1 δg2 δgNc−1

Figure 6: Parallel strategy for the gradient computation

� The CGPLUS 2 routine based on the conjugate gradient method described in [21] with
a very e�cient line search procedure.

� The L-BFGS-B3 routine which is based on a bound constraint quasi-Newton method
with BFGS update rule described in [7, 43].

As described in Fig. 5, we only need to furnish the current control, the value of the cost
function and its associated gradient for the optimization routines to perform. Hence we can
easily change either the �uid solvers or the optimization solvers. As a consequence, we have
at our disposal an evolutive tool that can be easily updated in the future.

5.3 Parallel direct mode strategy

As stated before, we chose to compute the cost-function gradient using the linearized state
computation using the linearized discrete Navier-Stokes system described in section 4. This
means that the number of linearized systems to solve is equal to the cardinal of the control
space. This drawback is balanced by the fact that the linearized system can be advanced
forward in time with the nonlinear state computation (see Remark 8).
We took advantage of this situation by adopting a parallel computation of the linearized state
(zh, qh). Its means that we need to spawn Nc linearized state computations corresponding to
the Nc directions of the control state space. For each spawned task, we compute sequentially
the non-linear state and the linearized state for every time step (see Fig. 6). This avoids local
storage of the characteristic feet and local vertices involved in the characteristic backtracking
procedure. This strategy is restricted by the number of processor at our disposal and is
considered as a �rst step towards e�cient strategy for the control of �uid systems. However,

2http://www-neos.mcs.anl.gov/neos/solvers/UCO:CGPLUS/
3http://www-neos.mcs.anl.gov/neos/solvers/BCO:L-BFGS-B/
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assuming we have Nc processors, the complexity of this approach is almost equal to the
complexity of a non-linear and linearized �ow joint computation.

6 Discrete gradient computation

In this section, we shall analyse the accuracy and consistency of the discrete gradient in
some simple �uid �ow con�gurations, namely the Poiseuille and the driven cavity �ow. For
both cases, we compare our discrete gradient to the di�erential quotient approximation of
the gradient.

6.1 Case of Poiseuille �ow

Let us �rst consider an open rectangular �uid domain, where we impose parabolic in�ow
boundary conditions, i.e (u, p) is solution of the following Navier-Stokes system,



∂tu +∇u · u− ν∆u +∇p = 0, Ω
div(u) = 0, Ω
u(ρ, x, t) = 4ρ(t)x(h− x)/h2, Γin

σ(u, p) · n = 0, Γout

u(t = 0) = 4ρ(0)x(1− x)/h2, Ω

(62)

First let us assume, that ρ ∈ R is constant. The solution of the above system is given by:

u(x, t) = 4ρx(h− x)/h2

We shall need in the sequel to compute the derivative of the state variable (u(ρ), p(ρ) with
respect to ρ, it is given by the couple (z, q) solution of the following linearized Navier-Stokes
system, 



∂tz +∇u · z +∇z · u− ν∆z +∇q = 0, Ω× (0, T )
div(z) = 0, Ω× (0, T )
σ(z, q) · n = 0, Γout × (0, T )
z = 4δρx(h− x)/h2, Γin × (0, T )
z(t = 0) = 4δρx(h− x)/h2, Ω

(63)

Like the non-linear equation (62), an exact solution of (63) is available :

z(x, t) = 4δρx(h− x)/h2

6.1.1 Flow tracking control problem

We would like to minimize the following optimization problem,

J(ρ) =
1
2

∫ T

0

∫
Γout

|u(ρ)− ud|2 dΓdt (64)
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where ud is a known velocity �eld. We can choose, for instance, ud = 4ρdx(h − x)/h2 for a
simple tracking optimization. Then, because of the extremly simple shape of the solution,
it is possible to compute exactly J(ρ) :

J(ρ) =
8T

h4
(ρ− ρd)2

∫ h

0

(x(h− x))2 dx

=
4T

15
h(ρ− ρd)2

In order to apply the conjugate gradient algorithm described in the previous section, we
need to compute the derivative of J(ρ) with respect to ρ,

(∇J(ρ), δρ) =
∫ T

0

∫
Γout

(u(ρ)− ud)z(δρ) dΓdt

where (z(δρ), q(δρ) are solutions of the linearized Navier-Stokes system (63), whose solution
is given by :

z(x, t) = 4δρx(h− x)/h2

and we have,

(∇J(ρ), δρ) =
8T

15
h(ρ− ρd) · δρ

We may compare, such an expression with the one computed using the linearized �ow (z, q)
and the one obtained by using �nite di�erence, i.e

DJ(ρ, δρ) =
J(ρ + δρ)− J(ρ)

δρ

Since J is twice di�erentiable with respect to ρ and ∇2J(ρ) = 8T
15 h , we may expect that,

DJ(ρ, δρ)−∇J(ρ) =
4T

15
hδρ (65)

Using this equation, we can now check accuracy and consistency of the discrete cost function
gradient.

6.1.2 Derivative checking : the intersection algorithm case

Test setup We �rst use the NSI3 code to compute the Poiseuille �ow and its associated
linearized �ow. The 2D computational domain is represented in Fig. 7. The �nal computa-
tion domain is an elevation of this 2D domain with an elevation parameter of 0.1 in depth.
The discretisation was performed using ∆x = 1/40, ∆y = 1/40 and ∆z = 0.1. The overall
scheme was integrated over a period of 10 seconds.
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First Order LG NSI3 code
Time Step Cost Lin. Cost
0.10 10.6595 21.1319
0.05 10.6595 21.1319

Table 1: Cost and cost function for the �rst Lagrange-Galerkin method using the NSI3 code

Test results We set here ρd = 0, ρ = 1, and we compare the discrete gradient obtained by
the linearized state computation with the �nite di�erence gradient for di�erent perturbation
steps. Results are given by Fig. 8. Up to δρ = 10−6, the linearized gradient is consistent
with the �nite di�erence gradient. It shows that we are indeed solving the exact linearization
of the discrete Navier-Stokes system, which guarantees a consistent approximation of the
cost function gradient. Furthermore, we recover the linear decrease of the consistency error
DJ(ρ, δρ) with respect to δρ up to δρ = 10−6 with the correct slope 4T

15 h.
Below the perturbation level δρ = 10−6, �nite precision computations produce larger gradi-
ent �nite di�erence approximations. These quantities are no more relevant for the approxi-
mation of the cost function gradient. Table 1 represents the cost function and its gradient
for two time steps using the NSI3 code with �rst order LG using adaptative backtracking :

� The time steps seems irrelevant as far as the costs functions are concerned. This is
not surprising since the Poiseuille �ow is a stationary �ow, but this proves that the
characteristics path as well as the linearized state are well computed. In fact, the
cost function and its gradient are constant up to 1e-13, which is almost the machine
precision in double precision.

� The second remark is that the cost function and its gradient are very well approximated
by our code. More precisely, we have :

∇Jdt
h −∇Jtheo

∇Jtheo
= 6.0× 10−5

This means that we may use the linearized gradient as an approximation of the cost
function gradient inside an optimization procedure.

6.1.3 Simple control test case

Now, we try to track a given parabolic pro�le at the out�ow boundary, i.e with ud =
16ρdx(h − x)/h2 with ρd = 5. This can be done by minimizing the tracking functional
introduced previously. We use the conjugate gradient method with the starting point ρ0 = 2
and an input �ow u = 16ρx(h−x)/h2. Convergence was reached after 10 iterations as shown
in Fig. 9 and Fig. 10. We found the optimization process very robust with respect to the
starting point value. This means that the functional is strongly convex and has a unique
optimimum.
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Figure 9: Optimization process for the Poiseuille �ow.
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6.2 The driven cavity

6.2.1 De�nition of the problem

Let Ω = [0, 1]× [0, 1]× [0, 0.1] be the computational domain and Ωh an associated triangu-
lation. We are interested in solving the following problem,


∂tu +∇u · u− ν∆u +∇p = 0, Ω× (0, T )
div(u) = 0, Ω× (0, T )
u(., t) = ρ(t)x(1 − x), Γ1 × (0, T )
u(., t) = 0. Γ2 × (0, T )

(66)

with Γ1 = (x, y = 1, z), Γ2 = ∂Ω−Γ1. In order to accelerated convergence, (u0, p0) = (u(t =
0), p(t = 0)) are initialized with the solution of the corresponding Stokes �ow :


−ν∆u0 +∇p0 = 0, Ω× (0, T )
div(u0) = 0, Ω× (0, T )
u(., t = 0) = ρx(1 − x), Γ1 × (0, T )
u(., t = 0) = 0, Γ1 × (0, T )

(67)

This time, the cost function will be de�ned as follow :

J(ρ) =
1
2

∫ T

0

∫
Ω

|u(ρ)|2dΩdt (68)

which is the integral of the kinetic energy over [0, T ]. The derivative of J(ρ) follows :

(∇J(ρ), δρ) =
∫ T

0

∫
Ω

u(ρ)z(δρ)dΩdt (69)

6.2.2 Non-di�erentiability illustration for the adaptative backtracking scheme

In this paragraph, we perform the gradient consistency test for the cavity �ow with the
code NSI3. As a matter of fact, this test shed some light on the non-di�erentiability of
the characteristic method while using an adaptative backtracking scheme coupled with low
order �nite elements. Indeed as shown in Fig. 12, for the time steps dt ∈ [0.01, 0.1], the
quantity

Dg
def=

(∇Jdt
h −D Jdt

h )
DJdt

h

does not converge to 0 as the �nite di�erence step δρ goes to 0. Actually, it has a non
zero asymptotic limit that decrease while decreasing the time step. For large time steps,
the characteristic paths intersect increasing numbers of tetrahedra edges. Since we need to
evaluate the discontinuous gradient of the reference �ow un

h at each of the intersection points,
this creates numerical errors that grow with time and with the number of characteristic
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paths. Decreasing the time step has the e�ect of reducing the number of intersection with
tetrahedra edges, resulting in lower asymptotic limit of the gradient residual Dg. However
for a time step dt = 0.01, this asymptotic limit is of order 10−4 which is still unsatisfactory
to validate the discrete gradient. Hence, we have shown that the NSI3 linearized code has
poor numerical properties and it was predicted by the theory. In the sequel, we shall use
our 2D research code and avoid the use of the adaptative backtracking scheme.

6.2.3 Discrete gradient consistency using the subcycling backtracking algo-
rithm
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Figure 12: First order Lagrange-Galerkin scheme applied to the driven cavity �ow - Gradient
consistency checking with NSI3

Numerical settings Let now Ωh be a regular triangulation of Ω = [0, 1] × [0, 1] with
∆x = ∆y = 1/40. The right hand side was computed using a 7 points Gauss quadrature.
We choose to compute the solution of (66) over a period of 20s, thus reaching steady state.
The characteristics path is computed using the subcycling backtracking algorithm, with a
splitting parameter lsplit = 10.

Remark 15 The splitting parameter lsplit was chosen a priori. Problems regarding the

choice of this parameter will be discussed later.
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Derivative consistency The procedure for checking the derivative consistency is basically
the same as the one used for the Poiseuille �ow. Here, we chose to compute the linearized
gradient with ∆t = 0.05 over 400 iterations. Fig. 13 gives the �rst order convergence of the
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Figure 13: First order and second order Lagrange-Galerkin scheme applied to the driven
cavity �ow - Gradient checking

�nite element gradient for both �rst order and second order scheme. We can see that both
�rst and second order schemes globally perform the same way. However, for δρ ≥ 10−5, the
�rst order �nite di�erence derivative gives a better approximation of the derivative than its
second order counterpart. Then, for δρ ≤ 10−5, both schemes give constant result with a
better approximation for the second order scheme. Computing the relative errors between
the �nite di�erence gradient and the linearized state gradient we get

∇Jdt
h −DJdt

h

DJdt
h

= 1.16× 10−5

for the �rst order and
∇Jdt

h −DJdt
h

DJdt
h

= 2.1× 10−6

for the second order, from which we may conclude that the discrete gradient is fairly well
computed. Table 4 gives the cost function value and its gradient value for both order with
ρ = 1, and the overall and characteristics path time computation. The second order scheme
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Figure 14: l2 norm of the driven cavity at steady state

Cost Cost Grad. Tot. Calc. Time Char. Calc. Time
1.018 2.155 30421 7701

Table 3: Reference solution : �rst order LG scheme ∆t = 0.001

Order Cost Cost grad. Tot. Calc. Time Char. Calc. Time
1 0.859 1.604 959 351
2 1.013 2.168 1508 765

Table 4: First and second order LG schemes comparison with rho = 1 and ∆t = 0.05
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Cavlin-01.desc

Figure 15: l2 norm of the linearized driven cavity at steady state

produces a better approximation of the gradient compared to the �rst order scheme.
This may be explained by the relatively large time step used for both schemes : δρ, when
small enough, fails to in�uence the topology of the �uid because of the numerical dissipation
induced by the choice of large time steps. But, whereas this is not a surprise for the �rst
order scheme, the second order scheme should be less di�usive. We suggest three reasons
that could explain this fact :

� The numerical errors do not allow to reach a good agreement with the discretized
gradient for δρ less than 10−6. This was already observed for the Poiseuille �ow.
Thus, the second order scheme cannot achieve full performance.

� The derivative consistency was performed according to both �rst order and second
order derivative cost function. This means that the �rst order (resp. second order)
�nite di�erence derivative is compared to the linearized derivative computed with the
�rst order (resp. second order) scheme.
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First Order LG
Time Step Cost Cost grad.
0.2 0.648 1.028
0.1 0.766 1.313
0.05 0.859 1.604
0.01 1.026 2.091

Second Order LG
Time Step Cost Cost grad.
0.2 1.011 2.010
0.1 1.043 2.204
0.05 1.013 2.168
0.01 1.152 2.601

Table 5: Cost function and cost function gradient for the �rst and second order Lagrange-
Galerkin method

� For this test, the characteristic path computation was performed using the sub-cycling
backtracking strategy. Unlike the adaptative backtracking, this algorithm requires that
we provide a splitting parameter to our code. Unfortunately, the optimal parameter
cannot be computed a priori and it may be easily under or overestimated.

We shall now develop the two last points.

First and second order comparison The table 5 gives the cost and cost function gra-
dient for both �rst and second order LG schemes with several time steps. If we consider the
�rst order LG scheme with ∆t = 0.001 (Tab. 3) as our reference solution, several facts may
be outlined :

� The �rst order Lagrange-Galerkin scheme seems to converge towards a limit as the
time steps tends toward zero and therefore seems consistent in time.

� The second order Lagrange-Galerkin with ∆t = 0.2 cost function and cost function
gradient are already a very good approximation since it almost matches the reference
�rst order LG scheme values.

� As ∆t tends toward zero, the second order LG scheme behaves erratically.

The �rst explanation concerning the last point is that for the second order scheme, in some
time steps range, the caracteristic feet reach the edges of some mesh elements, as the number
of substeps is doubled compared to the �rst order scheme. However, this is unlikely, since
the cost function is also subjected to an irregular behavior. The second explanation is based
upon the conditional stability of the LG scheme. As stated before, when inexact integration
of the right hand side is used, the Lagrange-Galerkin scheme su�ers from unconditional
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Second Order LG
lsplit Cost Cost grad.

5 1.012 2.017
10 1.011 2.010
20 1.010 2.003
30 1.010 2.003

Table 6: Cost function and its gradient for the second order Lagrange-Galerkin method with
various splitting parameters

instabilities for some speci�c CFL numbers range (see [33] for instance). As a result, for
this range of CFL numbers, oscillations may appear and produce numerical pollution inside
the computation of the cost function and its gradient.
Finally, it is commonly admitted that the LG scheme is not e�cient when using small time
steps (see [6]) since numerical errors appear when the characteristics path is too short. This
may explain the large values of the cost functions obtained for the second order LG scheme
with ∆t = 0.01. Since we are using the subcycling backtracking method in order to compute
the characteristics path, the latter issue is crucial. The lack of a priori rule concerning the
value of the splitting parameter leads us to perform a parameter sensitivity analysis in the
next paragraph.

6.2.4 In�uence of the splitting parameter

Problem statement As stated before, the algorithm used to compute both the steady
state �ow and the linearized �ow was the subcycling backtracking method. This method,
however more accurate than the initial method for large time steps, requires a splitting
parameter which cannot be deduced a priori and may be easily under or over-estimated. If
the splitting parameter is under-estimated, the characteristics path tracking procedure can
produce a large number of cells jump at once, increasing by the way the di�usivity of the
scheme.
On the other hand, over-estimating this parameter will drastically increase the characteris-
tics time computation as well as numerical errors, since a characteristic speed needs to be
interpolated at every sub step of the scheme. Whatsmore, large splitting parameters may
also increase the probability to reach a mesh element boundary, thus ruining derivability
since we are using a P1 �nite element method.

Splitting parameter e�ciency In order to illustrate the di�culties described above, we
decide to check the gradient consistency using various splitting parameters. Fig. 16 and
Tab. 7 give the gradient consistency graph and the computation time for the second order
Lagrange-Galerkin method with ∆t = 0.2 using various splitting parameters.
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Figure 16: Splitting parameter e�ciency for the second order LG scheme with ∆t = 0.2

Second Order LG
lsplit Tot. Time Char. Time % Res. Time

5 200 89 44 90
10 300 156 52 91
20 360 246 68 89
30 459 347 75 90

Table 7: Computation time for the second order LG scheme with various splitting parameters
(∆t = 0.2)

Second Order LG
lsplit Cost Cost grad.

01 1.015 2.192
05 1.013 2.171
10 1.013 2.168
20 1.014 2.169

Table 8: Cost function and its gradient for the second order Lagrange-Galerkin method with
various splitting parameters (∆t = 0.05)
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Figure 17: Splitting parameter e�ciency for the second order LG scheme with ∆t = 0.05

From Tab. 6 and Fig. 16, we can see that setting lsplit = 5 gives the worst results, specially

for 10−6 ≤ δρ ≤ 10−3. On the contrary, lsplit = 20 and lsplit = 30 furnish similar values,

slightly less accurate than the reference splitting parameter lsplit = 10 for small δρ but show
a signi�cantly better behavior for δρ > 10−4.
Finally, our reference splitting parameter is clearly inaccurate for δρ > 10−3 but performs
better below this value. Another side e�ect of increasing the splitting parameter is that
it will automatically increase the computation time. If we look at Tab. 7, we clearly
see the in�uence of a large splitting parameter over the overall computation time : while
the resolution time remains the same, for lsplit > 20 the characteristics path computation

represents up to 75% of the total computation time, making the whole computation more
than twice as expensive as lsplit = 5 case. Hence, large spitting parameters should not be

considered, at least for this time step. In Fig. 17, we ran the same test with a time step set
to 0.05 and with various splitting parameter values. The cost function values are given in
Tab. 8. As before, we can see that there seems to be an optimal value for lsplit. But this

time, as the time step is smaller, this optimal parameter seems to be close to 10: the costs
values are almost identical for lsplit = 10 and lsplit = 20. Another obvious remark is that

the case with no splitting does not produce good approximations since the cost function
values are obviously too large for this range of time steps.
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Second Order LG
lsplit Cost Cost grad.

10 1.152 2.601
01 1.153 2.603

Table 9: Cost function and its gradient for the second order Lagrange-Galerkin scheme with
∆t = 0.01

Conclusion As a partial conclusion, we shall point out the following remarks,

� The subcycling backtracking method behaves well for the computation of the linearized
state for the driven cavity. This is a good point since this �ow features some non-linear
aspects that the Poiseuille �ow con�guration does not take into account.

� The subcycling backtracking method requires an optimal splitting parameter. Unfor-
tunately this parameter can not be determined a priori.

� the second order LG scheme is signi�cantly a better approximation than the �rst order
scheme for large time steps.

6.2.5 Second order LG scheme and integration rule

Motivations In Tab. 5, we saw that, for ∆t = 0.01, the second order Lagrange-Galerkin
scheme produces abnormal cost functions and gradients. But for all these tests, as we stated
before, the computation was performed with a constant splitting parameter of 10. Of course,
as we just stated in the latter paragraph, such a splitting parameter for such a small time
step is likely to introduce numerical instabilities. Hence, we decided to perform the same
test but with a splitting parameter lSplit = 1. the result is displayed in Tab. 9. There is no

di�erence between the two tests, the cost function and its gradient being equal up to 10−3.
Since obviously the problem is not the splitting parameter, the quadrature rule should be
the cause, as stated in the paragraph 6.2.3.

Integration rule in�uence The basic idea of the characteristics method is to turn the

non-linear term
∂

∂t
+u.∇ operator expressed in Eulerian coordinates into a Lagrangian par-

ticular derivative
d

dt
. But this is possible only along the characteristics curves, de�ned by

(10). Subsequently, when integrating the LG scheme over the time step ∆t, one must provide
the foot of the characteristics in order to integrate the right hand side. Unfortunately, this
foot does not belong, in general, to the discrete space and therefore must be interpolated.
This whole procedure results in an inexact integration of the right hand side by a quadrature
integration rule, and the unconditional stability is lost. Even worse, ranges of time steps
appear where the scheme is unstable, especially when the time step is small. But as stated
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First Order LG
Gauss points Cost Cost grad.
07 pts 1.039 2.135
12 pts 1.004 2.005

Second Order LG
Gauss points Cost Cost grad
07 pts 1.153 2.603
12 pts 1.062 2.133

Table 10: Cost and cost function gradient for the second order Lagrange-Galerkin scheme
with ∆t = 0.01 for both 7 and 12 points quadrature

�rst Order LG
Gauss points Tot. time Char. time %
07 pts 2959 1455 32
12 pts 5236 2610 50

Second Order LG
Gauss points Tot. time Char. time %
07 pts 5251 2847 54
12 pts 7477 5094 68

Table 11: Computation time for the �rst and second order Lagrange-Galerkin scheme with
∆t = 0.01 for both 7 and 12 points quadrature

in [33] and [15], increasing the number of integration points reduces these instabilities. So
far, the integration rule we used was a 7-point Gauss rule. Let us now consider the same
test, but with a 12-point Gauss rule. Tab. 10 gives the cost function and its gradient for
∆t = 0.01. The splitting parameter was set to lsplit = 1 .
Clearly, the use of a more accurate integration quadrature reduces the instabilities of the
second order Lagrange-Galerkin in conjunction with small time steps. However, the coun-
terpart is an increase of the computation time as displayed in Tab. 11 : the characteristics
computation time is almost doubled for both �rst and second order algorithm.
Nevertheless, when a 12 Gauss point integration is used, the cost values seem to be more
within the range of each LG scheme order. We can therefore conclude that the more Gauss
point you use, the better the approximation is. This may not be entirely true since rising
the number of integration points also increases the number of characteristics paths to be
computed, hence rising the odds to reach the edge of an element where the NS equations
are not derivable for P1 �nite element class.

Conclusion For that reason, we may conclude as follow:
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� The second order LG scheme is very unstable when small time steps are used.

� Making the second order scheme stable requires that we use more Gauss point for the
right hand side integration, making the overall algorithm very expensive.

� The �rst order LG scheme is less unstable than the second order scheme for small time
steps.

� For small time steps, both �rst order and second order schemes when stabilized perform
almost the same way.

7 Drag reduction around a rotating cylinder

In this section, we shall apply our optimal control strategy in order to reduce the drag
induced by a �uid �ow around a rotating cylinder. The control parameter is the angular
velocity of the cylinder that will be considered either constant or time-dependent. This
problem has been investigated previously by many authors, on the experimental and numer-
ical point of view, we refer to [26] and [29] for a complete review on this subject. Our goal
is not to improve earlier results, but try to validate our optimization strategy based on the
Lagrange-Galerkin scheme for the Navier-Stokes system and a quasi-Newtonian method for
the optimization procedure.

7.1 Control problem setting

We consider an incompressible Navier-Stokes �ow around a circular cylinder of radius a = 0.5
(see Fig. 18). The �uid is assumed to be a viscous incompressible newtonian �uid. Its
evolution is described by its velocity u and its pressure p. The couple (u, p) satis�es the
classical Navier-Stokes equations written in non-conservative form :



∂tu +∇u · u− ν∆u +∇p = 0, Ω× (0, T )
div(u) = 0, Ω× (0, T )
u = g, Γcyl × (0, T )
σ(u, p) · n = 0, Γout × (0, T )
u = u∞, Γin × (0, T )
u(t = 0) = u0, Ω

(70)

where ν stands for the kinematic viscosity and u∞ is the far�eld velocity �eld. The quantity
σ(u, p) = −p I+ν(∇u + ∇T u) stands for the �uid stress tensor inside Ω, with (∇u)ij =
∂jui = ui,j.
We assume the velocity g to be tangent to the cylindar, we de�ne the tangent vector to the
cylinder, {

τ1(x, y) = −y,
τ2(x, y) = x,

(71)
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and we set g = ω(t) τ with ω(t) stands for the amplitude of the angular velocity of the
cylinder.
Hence the parameter of control is here ω(.) ∈ Uc, where Uc will be described later on.
We de�ne the Reynolds number as follows,

Re =
2a|u∞|

µ
(72)

We set |u∞| = 1 and µ = 1
200 . Hence we are working with a Reynolds number Re = 200.

The Strouhal number Sa is de�ned by

Sa =
2af

|u∞|
(73)

where f stands for the frequency of the vortex shedding.
We would like to solve the following minimization problem :

min
ω∈Uad

J(u(ω), p(ω)) (74)

where (u, p) satis�es the Navier-Stokes system and the cost function J(u,p) measures the
mean square of the drag around the cylinder, i.e

J(u, p) =
∫ T

0

∣∣∣∣∣
(∫

ΓCyl

σ(u, p) · n dΓ

)
· e1

∣∣∣∣∣
2

dt (75)

In the sequel, we will choose di�erent admissible control spaces Uc of �nite dimension.

7.2 Case of a single harmonic angular velocity

7.2.1 Continuous optimal control

We set ω(t) = ρ · sin(2πSet). The quantities (ρ, Se) stand for the forcing amplitude and
frequency parameters. This means that we set,{

g1(x, y, t) = −ρ · sin(2πSet) y
g2(x, y, t) = ρ · sin(2πSet)x

(76)

We are interested in solving the following minimization problem,

min
(ρ,Se)∈R

2
j(ρ, Se) (77)

where

j(ρ, Se) = J(u(ρ, Se), p(ρ, Se))
def=
∫ T

0

∣∣∣∣∣
(∫

ΓCyl

σ(u(ρ, Se), p(ρ, Se)) · n dΓ

)
· e1

∣∣∣∣∣
2

dt (78)
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In order, to perform an optimization procedure as described in section (1), we need to
compute the gradient of the cost function j(ρ, Se) with respect to the design variables (ρ, Se).
This gives,

< ∇j(ρ, Se), (δρ, δSe) >

= 2 ·
∫ T

0

[(∫
ΓCyl

σ((u, p)(ρ, Se)) · n dΓ

)
· e1

]
·
[(∫

ΓCyl

σ((z, q)(δρ, δSe)) · n dΓ

)
· e1

]

where (z, q)(δρ, δSe) = Du
D(ρ,Se) (ρ, Se)·(δρ, δSe) stands for the state derivative with respect to

the parameters (ρ, Se) in the perturbation direction (δρ, δSe) and is solution of the following
linearized system, 



∂tz +∇u · z +∇z · u− ν∆z +∇q = 0, Ω

div(z) = 0, Ω

z =
{

δρ sin(2πSct) τ
2πρδSe cos(2πSct)τ

, Γcyl

σ(z, q) · n = 0, Γout

z = 0, Γin

z(t = 0) = 0, Ω

(79)

7.2.2 Numerical experiments

At that point, we apply the numerical strategy described in section (4) with the parameters,
in the following table

Time Space

Characteristic of order 2
(

P
1 ⊕ P

b(K)
)2

× P
1

dt = 5.10−2 meas(Kh) ∈ [10−3, 10−1]

7 Gauss points 1363 vertices 2560 triangles

We have �rst performed a direct parameter analysis, in order to characterize the shape of
the cost function and track some local optimum. The Fig. 19 and Fig. 20 show the contour

INRIA



Optimal control of Navier-Stokes equations using Lagrange-Galerkin methods 59

Figure 18: Computational mesh around the cylinder

plot of the cost function. It may be emphasized that the functional is apparently convex and
coercive, since its shape is almost close to a parabola. This means, that the optimization
procedure should fast converge to the optimum point, which seems to be unique, at least in
the range of our direct sensitivity analysis.
We found by this simple approach a minimum value at point (ρ = 4, Se = 0.9). We call this
point the direct optimal value. We have plotted in Fig. 21 and Fig. 22, the drag and the
lift evolution for three di�erent sets of parameters: the uncontrolled case parameters, the
case of arbitrary parameters and the one for the direct optimal parameters.
We can see that our control a�ects e�ciently the drag history, with a rapid decrease of the
instantaneous drag value. On the contrary, the lift coe�cient is much less perturbed by the
rotation of the cylinder. Only its frequency is a�ected by the forcing rotation. This can be
explained by the fact that the mean �ow is horizontal and the rotation of the cylinder does
not really perturb the transverse �ow.
Near the direct optimal parameters, we started an optimization procedure using the quasi-
Newton BFGS algorithm described in section 4. We found an optimal value at point (ρ =
3.986, Se = 0.942) after 15 iterations with a small decrease of 0.15% compared to the direct
optimal value. The overall drag reduction compared to the uncontrolled case represents
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Figure 19: 3D contour plot of the cost function j(ρ, Se)

11.5% of the uncontrolled mean drag.
We have represented the �ow topology for the uncontrolled case and the optimal controlled
case at a given time t = 10 in Fig. 23 and Fig. 24. We see that the control e�ect is
to suppress or at least weaken the vortex shedding phenomenon. This should have been
predicted, since the mean source of friction forces is due to the vortex shedding alley as
reported by many experiments [26].

7.3 Case of several harmonics

In order to enrich the control parameter space, we chose to deal with a control which is
variable as an harmonic series based on the forcing Strouhal number Sopt = 0.942 found in
the previous section, i.e

ω(t) =
N∑

k=1

ρk · sin(2kπSoptt)

as reported in [26]. Hence, the control parameters are the family {(ρk)}1≤k≤N . We perform
the optimization procedure for N = 3. We found that the e�ect of higher harmonics is negli-
gible as shown in Fig. 25. But still our algorithm performs well and found an optimal value
for the three parameters. The computations ran on three computers with the same clock

INRIA



Optimal control of Navier-Stokes equations using Lagrange-Galerkin methods 61

0.6 0.8 1 1.2 1.4 1.6 1.8

1

2

3

4

5

6

7

S
e

ρ

Variation of the drag C
D

 with S
e
 and ρ at Reynolds number 200

16
.7

34
6

16.7346

16.734617
.0

92
7

17.0927

17.0927

17.0927

17.0927

17
.4

50
9

17
.4

50
9

17.4509
17.4509

17
.4

50
9

17.4509

17
.8

09

17
.8

09

17.809

17.809

17.809

17.809
17.809

18
.1

67
2

18
.1

67
2

18.1672

18.1672

18.1672

18.1672

18.1672

18
.5

25
3

18
.5

25
3

18.5253

18.5253

18
.8

83
4 18.8834

18.8834

19
.2

41
6

19.2416

19
.5

99
7

19.5997
19

.9
57

9

20
.3

16
20

.6
74

2
21

.0
32

3

Figure 20: 2D contour plot of the cost function j(ρ, Se)

speed, leading to an equivalent cpu time compared to the case with only two parameters.
We �nally, recall the mean drag value for the di�erent optimization procedures,

Case of study Mean Drag C̄D

uncontrolled 0.92576
direct optimal control 0.8188215

single harmonic optimal control 0.8186945
3 harmonics optimal control 0.817156

8 Identi�cation of far-�eld boundary conditions from

�uid loads on blu� bodies

In this section, we are interested in an identi�cation problem arising in the aeroelastic
stability analysis of elastic structures inside a �uid �ow [34]. The goal is to identify in�ow
velocity �elds from the knownledge of �uid loads time history on a �xed solid that may
represent the 2d-section of a bridge deck [39, 2].
The extension of this work to �uid-structure interaction context may be appropriate to
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Figure 21: Drag evolution for di�erent control parameters

identify the in�ow velocity �eld inducing unstable structural displacements. This work is
a �rst basic attempt towards the full coupled case and that needs several improvements in
order to reach e�ciency.

8.1 Problem settings

We consider an incompressible Navier-Stokes �ow around a rectangular blu� body Ωs ∈ R
2.

The couple (u, p) satis�es the classical Navier-Stokes equations,


∂tu +∇u · u− ν∆u +∇p = 0, Ω× (0, T )
div(u) = 0, Ω× (0, T )
u = 0, Γs × (0, T )
σ(u, p) · n = 0, Γout × (0, T )
u = u∞, Γin × (0, T )
u(t = 0) = u0, Ω

(80)

This model is appropriate in order to analyse aerodynamic characteristics of structures
inside atmospheric �uid �ows. The solution of such a system has been computed using the
discretization described in section 3.
Our main concern is to identify the in�ow boundary velocity u∞ on Γin which produces a
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Figure 22: Lift evolution for di�erent control parameters

Figure 23: Vortex shedding in the uncontrolled case

Figure 24: Vortex shedding in the optimal controlled case

�uid load on Γs arbitrary close to a given load target Fd(t) on the time intervall (0, T ). This
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can be solved by using the following minimization problem,

min
u∞∈Uad

J(u(u∞), p(u∞)) (81)

where (u, p) satis�es the Navier-Stokes system. Here, we only consider the �uid load corre-
sponding to the mean �ow direction, i.e the drag. Then, the cost function J(u, p) measures
the mean square of the di�erence between the current drag and the target drag time history,

J(u, p) =
∫ T

0

∣∣∣∣
(∫

Γs

σ(u, p) · n dΓ
)
· e1 − Fd(t)

∣∣∣∣
2

dt (82)

Using exactly the same framework as for optimal control of rotating cylinder drag, it is
possible to derive the gradient of the cost function j(u∞) with respect to the in�ow velocity
in the perturbation direction δu∞.

8.2 The rectangular cylinder

Because of its pro�led shape, the cylinder used for our tests in the previous section is of
little interest as far as �uid-structure interaction is concerned. Its curved shape was barely
a challenge for the Lagrange-Galerkin method. We shall this time consider the rectangular
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Figure 26: Optimal Drag time evolution - 3 harmonics case

cylinder. This test is popular in wind-engineering because, though geometrically very simple,
the right angles it provides are very representative of the object shapes commonly studied
such as bridges or towers for instance. The rectangular cylinder we will consider consists of
a rectangle with chord to thickness ratio c/d = 4, where c is the chord and d the length. Fig.
29 and Fig. 30 give the lift, drag and the pressure pro�le at t = 500 seconds for the second
order Lagrange-Galerkin scheme with Re = 1000 computed with the code LGNSI2FS. Like
the cylinder, we can see that after a transient phase the perturbation of the �ow becomes
periodic. Again, the lift oscillation frequency fl is half the drag oscillation frequency fd and
the corresponding Strouhal number here is S = fld/u∞ = 0.105.

8.3 Harmonic perturbation of the in�ow velocity

As in the previous section, since we do not use an adjoint formulation, we have to restrict
drastically the class of admissible controls. Since we have in mind the case where the solid
is moving using a single second-order di�erential equation of spring-mass type, we use an
harmonic perturbation around a steady state for the in�ow velocity,

u∞(ρ, Se, φ) = 1 + ρ sin(2πSet + φ) (83)

This means that we must use a control space of dimension 3. Of course this kind of controls
restricts the kind of load time history that may be reached. But since the basic �ow while
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using steady in�ow velocity produces harmonic �uid loads on Γs, this choice is admissible.
We will �rst use a synthetic load Fd produced by a set of input control parameters and try
to recover this set using an optimization procedure based on a Quasi-Newton gradient based
method. In a second time, we will de�ne an harmonic arbitrary load and track this load
using optimal control parameters.

8.4 Synthetic load

In this paragraph, we shall use a reachable target, i.e that has been obtained by selecting
a set of control parameters and by computing the result drag time history Fd(t) on the R4
pro�le. The target has been obtained using the in�ow velocity ud

∞ = 1+ ρd sin(2πSd
e t) with

(ρd, Sd
e ) = (0.3, 0.3).

We have displayed in Fig. 31, the control parameters during the optimization procedure,
with an in�ow velocity u∞ = 1 + ρ sin(2πSet). The initial guess was set to (ρ0, S0

e ) =
(0.5, 0.5). Convergence was reached after 12 iterations. We recover the awaited control
parameter without any regularization process, which is a characteristic of the reachable
target class. We did not deal with the question of the stability of this inverse problem, since
our goal was to validate the computation of the cost function gradient.
We have used an harmonic in�ow velocity in the direction of the drag, and we recover in Fig.
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32 the frequency of the in�ow inside the drag time history. This means that the frequency
of the in�ow strongly controls the frequency of the resulting drag. On the contrary, the
frequency of the lift does not depend on the frequency of the in�ow as shown in Fig. 34.
This is due to the fact that the in�ow velocity is horizontal and that the transverse �uid
�ow is not perturbed by the time variation of the mean horizontal �ow. This is why we did
not try to track the lift time history.

8.5 Arbitrary harmonic loads

The next step is to track an arbitrary �uid load. We mean here that this load does not
result from �uid �ow computations. Nevertheless, we cannot choose a completely arbitrary
load, since the class of the in�ow velocity strongly pilots the kind of load to be produced by
the numerical simulations. For this reason, we choose an harmonic load oscillating at the
fundamental frequency fd,

Fd(t) = Ad sin(2πfdt) (84)

with (Ad, fd) = (0.2, 0.5). We work with a in�ow control integrating phase control,

u∞ = 1 + ρ sin(2π Se t + φ) (85)
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Figure 29: Lift and drag for the R4 rectangular cylinder

Initial time condition for the �uid is set with a developed �ow obtained at time t = 20s
with an in�ow velocity u∞ = 1. The optimization process was performed with the initial
guess (ρ0, S0

e , φ) = (0.5, 0.4, 0). In Fig. 35, we have displayed the control parameters during
the optimization process. Convergence was reached after 31 iterations of the L-BFGS-B
algorithm on 3 di�erent processors. The tracking functional was highly reduced as shown
in Fig. (36). The di�erent partial derivatives during the optimization are displayed in Fig.
37. Compared to the case of a synthetic load, the convergence was slower and the reduction
factor was weaker. This is due to the fact that the coercivity of the functional is not ensured
in this case, leading to poor conditioning property of the linear systems involved in the
computation of the descent directions. Nevertheless, convergence was reached, what might
indicate that our linearized algorithm behaves well even in non trivial situations.
Furthermore, these numerical experiments may shed some light about the identi�ability
question for the Navier-Stokes system. Indeed, it has been possible to identify the Dirichlet
boundary condition on Γf

∞ from the knowledge of the mean of the normal stress tensor on
Γs. This means that the approximate identi�cation property is certainly true, even if it has
not been proven yet. We note that for the Stokes system, a similar identi�ability property
was proven theoretically in [34].
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9 Identi�cation of far-�eld boundary conditions from

�uid loads on moving blu� bodies

In this section, we may extend the setting of the previous section to moving domain con�g-
uration. The goal remains the identi�cation of �uid velocities on the far-�eld boundary Γf∞
thanks to the knowledge of �uid loads on a moving pro�le inside the �uid �ow.

9.1 Problem settings

We consider an incompressible Navier-Stokes �ow around a moving rectangular blu� body
Ωs ∈ R

2. The couple (u, p) satis�es the ALE Navier-Stokes system ,


∂u
∂t |ξ∈Ωf (τ)

+∇u · (u − wτ )− ν∆u +∇p, Ωf
t

div(u) = 0, Ωf
t

u = ẋs, Γs
t

σ(u, p) · n = 0, Γout

u = u∞, Γin

u(t = 0) = u0, Ω

(86)

The motion of the solid is rigid and prescribed as follows,

xs =
[

cosα(t) − sinα(t)
sin α(t) cosα(t)

]
·
[

x
y

]
, (x, y) ∈ Γs

0
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Figure 31: Control parameters during optimization steps

As before, we would like to identify the in�ow boundary velocity u∞ on Γin which produces
a �uid load on Γs

t arbitrary close to a given load target Fd(t) on the time intervall (0, T ).
Hence we need to solve the following minimization problem,

min
u∞∈Uad

J(u(u∞), p(u∞)) (87)

where (u(u∞), p(u∞)) satis�es the Navier-Stokes system and the cost function J(u, p) mea-
sures the mean square of the drag di�erence,

J(u, p) =
∫ T

0

∣∣∣∣∣
(∫

Γs
t

σ(u, p) · n dΓ

)
· e1 − Fd(t)

∣∣∣∣∣
2

dt (88)

9.2 Mesh movement algorithm

In the previous section, our computation domain Ωs
h was �xed. Since we would like to control

the �uid load history with �uid/structure interaction, we should be able to move the com-
putation domain with respect to the �uid/structure interface [38]. Therefore, the reference
domain Ωs will evolve in time, following the structural displacement. The computational
domain Ωs

h will have to be updated in order to stick to Ω(t). Here, we assume we know
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the position of the �uid mesh Ωs at t = t1 and the position of the �uid/structure interface
Γ(t) at t = t2. We will restrict ourselves to the case of a forced sinusoidal oscillation for the
structure. The displacement angle θ(t) is given by the following formula:

θ(t) = θm sin(ωmt) (89)

The general algorithm used to update the �uid mesh is then the following:

� the far-�eld points Γh
∞ are �xed and therefore not updated.

� Γs(t2) needs to be computed. This will be done by using (89). For exemple, this can
be done by simply applying this formulae to the orignal Γs(t = 0), or computing the
rotation between t1 and t2 using Γh(t1).

� The mesh points inside Ωs \Γ are updated using the following method: Each edge ij of
the triangulation, i and j being the correponding vertices, is given a sti�ness coe�cient
κij . This coe�cient is, for instance, the inverse of their length, i.e:

κij =
1√

(xi − xj)2 + (yi − yj)2
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Figure 33: Gradient decrease during optimization steps

The goal is now to compute the displacement δi for all vertices i of the mesh Ωs between t1

and t2. The algorithm we used is a Jacobi based iterative method. Given a prediction δp
i of

the displacement, Jacobi iterations are performed, namely :

δn+1
i =

∑
j∈N(i)

κijδ
n
j

∑
j∈N(i)

κij

(90)

for i ∈ Ωs \ (Γh

⋃
Γ∞), and where N(i) are neighbour vertices of i. This iterative procedure

is initialised by the following set of data:


δ0
i = 0, ∀i ∈ Γ∞

δ0
i = xi(t2)− xi(t1), ∀i ∈ Γh

δ0
i = δp

i , ∀i ∈ Ωs

After N iterations, when the residual between two successive iterations is under a given
tolerance parameter, we get the displacement needed to update the mesh :

xi(t2) = xi(t1) + δN
i , ∀i ∈ Ωs − Γ.
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Fig. (38) give the mesh vertices position for t = 0s and t = 16s using this procedure, with
θm = 1 deg. and ωm = 2π

5 .

Remark 16 The convergence of the Jacobi iterative method is assured because the matrix
associated to (90) is diagonal dominant.

9.3 Discrete gradient consistency

For the time being, we have been analysing optimal control problems in �xed domains.
Here the domain is moving with a given displacement of the solid boundary Γs

t . Since this
situation is new, we have been checking the consistency of the discrete gradient computed
by the LGNI2FS code.
First let us describe the linearized system using the subcycling backtracking procedure. We
recall that the Navier-Stokes system is discretized as follows, we look for (un+1

h , pn+1
h ) ∈
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X3
h ×Qh solution of the following system,


1
∆t (u

n+1
h , vh) + ν(∇un+1

h ,∇vh)− (pn+1
h , div vh) = 1

∆t (u
n
h ◦ χu−w,n

h , vh), ∀ vh ∈ V n+1
h

(div un+1
h , qh) = 0, ∀ qh ∈ Qn+1

h

un+1
h = (ẋs)n+1

h , Γn+1
s

σ(un+1
h , pn+1

h ) · n = 0, Γout

un+1
h = Πhun+1

∞ , Γin

(91)

INRIA



Optimal control of Navier-Stokes equations using Lagrange-Galerkin methods 75

0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

Optimization step

|J
/J

0|

Cost function decrease
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where χu−w,n
h = χu−w,n

m,h stands for an approximation of the characteristic foot coming from
point x ∈ Ω computed using the subcycling backtracking scheme,


χu−w,n

i+1,h = χu−w,n
i,h −∆ti · (un

h − wn
h)(χu−w,n

i,h ),
m∑

i=1

∆ti = ∆t

χu−w,n
0,h = x, x ∈ Kh

(92)

We shall need the expression of the linearized system satis�ed by the couple (z, q) def=
D

Du∞ (u, p) · δu∞. This can be done as in section 4. The major point, here, is that
the ALE velocity w does not depend on the control variable u∞. Hence we look for
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Figure 37: Gradient decrease during optimization steps

(zn+1
h , qn+1

h ) ∈ X3
h ×Qh solution of the following system,



1
∆t

(zn+1
h , vh) + ν

(
∇zn+1

h ,∇vh

)
− (qn+1, div vh) =

1
∆t

[(
zn

h (δg) ◦ χu−w,n
h (g), vh

)
+ (∇un

h(χu−w,n
h (g)) · δχn

h, vh)
]

, ∀vh ∈ V n+1
h

(
div zn+1

h , qh

)
= 0, ∀ q ∈ Qn+1

h

zn+1
h = 0, Γn+1

s

σ(zn+1
h , qn+1

h ) · n = 0, Γout

zn+1
h = Πhδun+1

∞ , Γin

(z0
h, vh) = 0, ∀vh ∈ Vh

(93)
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Figure 38: Mesh vertices position at t = 0s (left) and t = 16s (right)

with


δχn
i+1,h = δχn

i,h −∆ti · zn
h(χu−w,n

i,h )−∆ti∇(un
h − wn

h)(χu−w,n
i,h ) · δχn

i,h,

δχn
1,h = −∆t0 · zn

h(x), x ∈ Ω
(94)

The derivation of the linearized system for the second order scheme follows the same argu-
ments and has not been displayed for the sake of shortness.
These systems have been inplemented in the code LGNSI2FS and used to compute the
gradient of the cost function in equation (88). The quantity,

Dg
def=

(∇Jd
h −DJdt

h )
DJdt

h

has been displayed in Fig. 39 for the �rst and second order characteristic schemes. The
results are satisfactory and can be compared with the results obtained for the driven cavity
in Fig. 13.

9.4 Harmonic perturbation of the in�ow velocity

As in the previous section, we use an harmonic perturbation around a steady state for the
in�ow velocity,

u∞(ρ, Se, φ) = 1 + ρ sin(2πSet) (95)
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Figure 39: First and second order Lagrange-Galerkin scheme applied to the moving R4
pro�le - Gradient test

This means that we use a control space of dimension 2. We only deal with a synthetic
load Fd produced by a set of input control parameters and try to recover this set using an
optimization procedure based on a Quasi-Newton gradient based method. The moving con-
�guration is set with α(t) = α0 sin(2π t/Ts) where α0 = 2π/180 and Ts = 5. The synthetic
load is produced with (ρ, Se) = (0.1, 0.1).
The optimization was performed using the L-BFGS-B with an initial guess in the neig-
bourhood of the optimal value (ρ0, S0

e ) = (0.15, 0.15). The convergence was reached after 62
iterations. The control parameters during the optimization are displayed in Fig. 40 and Fig.
41. We found this optimization problem harder than the others because the convergence
only succeeded for initial guess near the target control parameters. This can be explained
by the fact that this problem is sti�, since as shown in Fig.43 the value of partial derivative
∂SeJ at iteration 24 is greater than 103 while the corresponding control parameters are in a
close neighbourhood of the optimal values.
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Figure 40: Amplitude control parameter during the optimization steps
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Figure 41: Frequency control parameter during the optimization steps
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Figure 43: Gradient of the cost function behaviour during the optimization steps
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10 Conclusion

In this report, we have been investigating optimal control problems for some �uid systems
described by the Navier-Stokes equations in �xed and moving domains. The originality of
this work is twofold :

� We have introduced a discrete linearized schemes associated to �rst and second or-
der Lagrange-Galerkin discrete scheme for the Navier-Stokes system. The properties
of this linearized scheme highly depend on the type of backtracking procedure used
to compute the characteristic paths involved in the Lagrange-Galerkin method. We
have shown that using an adaptative backtracking procedure including a projection
on simplex sides along velocities leads to a non-di�erentiable system. This result has
been numerically illustrated using the code NSI3 which is based on the adaptative
backtracking procedure. Furthermore, we have shown that using a subcycling back-
trackings procedure leads to di�erentiable problems and this has been numerically
proven on simple test problems using the code LGNSI2FS.

� The computation of cost function partial derivatives has been performed using a par-
allel architecture taking advantage on the forward in time structure of the linearized
discrete system.

The ability of our code to compute cost function gradients enabled us to deal with two
optimal control problems. The numerical experiments that we performed led to the following
conclusions :

� Reducing the drag around a moving circular cylinder has been feasible with the code
LGNSI2FS. We have recovered early results based on di�erent time discretization and
using an adjoint based formulation. The drag minimization came with a reduction
of the vortex shedding without including this objective in the cost function. The
optimization worked well without any regularization, what was expected with a low
Reynolds number.

� We have been also dealing with an original problem consisting in the identi�cation of
in�ow boundary conditions from the knowledge of �uid loads time history on a �xed
or moving embedded solid. We have shown that the exact identi�ability property
holds at least numerically in the case of reachable targets for the �xed and the moving
con�gurations. For arbitrary targets, a kind of approximate identi�ability property
has been exhibited for the �xed con�guration.

However these results have been obtained for a very small class of control parameters. This
choice has been motivated by two main reasons: �rst for the drag minimization problem,
it was proven in di�erent works that the harmonic decomposition of boundary controls is a
very good choice even with only one harmonic. Secondly, the use of a direct approach based
on linearized solution computation induces an increasing number of system to solve. Even
if these systems are solved in parallel, we are restricted by the number of processors that
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can be used at the same time.
Again we may emphasize the fact that our aim was to validate the use of Lagrange-Galerkin
algorithms while considering optimal control problems. This has been done using the direct
mode approach. We are already working on the adjoint based formulations [17] which may
represent a deep improvement of this work as far as e�ciency is concerned.
Finally, we shall point out that the identi�cation problem was originally designed for the
�uid-structure interaction problem as described in [34]. Future works may concentrate on
optimal control problems for the full coupled problems using the �uid-structure linearized
system whose structure has been established in [13]. We will also deal with the adjoint
formulation by using the results obtained in [35].
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