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Abstract

In this paper, we numerically determine the effective stress-strain relation of some
two-dimensional polycrystals. These are aggregates of a few tens of perfectly bonded
single-crystal (hexagonal atomic lattice) grains, with varying orientations. Each
grain obeys a given nonlinear viscoplastic stress-strain relation, which depends on
the orientation of the grain. Precise calculations performed with this microscopic
model are compared with calculations done with a macroscopic approximate model
(in which matter has no microstructure) in order to determine the macroscopic
constitutive law. We find an effective behaviour for the stationary response which
appears to be also consistent for the transient response. The influence of the num-
ber of the grains as well as that of the distribution of the grain orientations are
investigated.
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1 Introduction

The theoretical prediction of the effective response of an heterogeneous mate-
rial is still an essentially open question. In some few simple cases, an analytic
closed form expression is known. For instance, this is the case for a linear elas-
tic matrix with linear elastic inclusions, in the dilute limit (that is, inclusions
are considered too far away from one another to have an interaction) [7].
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A more general case is that of an hyperelastic material [6,9]. Let us recall
for consistency that, by definition, an hyperelastic material is a material for
which there exists a differentiable real-valued function U(x, σ) such that the
constitutive law (also named the stress-strain relation) reads

ε(x, t) =
∂U

∂σ
(x, σ(x, t)). (1)

The function U is the heterogeneous elastic stress potential, σ(x, t) is the stress

tensor (the first Piola-Kirchhoff tensor), and ε(x, t) is the strain tensor, which
is linked to the displacement field u(x) by the linearized compatibility equation

ε =
1

2

(

∇u + t∇u
)

. (2)

In this setting, one can derive various bounds and estimates on the effective
behaviour [4,8,10–12]. Let us note that, in general, no closed form expression
for the effective elastic stress potential is available.

The situation is the same for nonlinear viscoplastic materials, for which the
constitutive law reads

ε̇(x, t) =
∂U

∂σ
(x, σ(x, t)). (3)

In this case, U is the viscoplastic stress potential, σ(x, t) is the stress tensor
and the strain rate tensor ε̇(x, t) is the time derivative of the strain tensor.

However, there exist materials for which the constitutive relation cannot be
written as in (1) nor (3). Elasto-viscoplastic materials are such ones. For some
of these materials, the strain rate tensor ε̇ depends both on the stress tensor
σ and the stress rate tensor σ̇ along

ε̇(x, t) =
∂Uvp

∂σ
(x, σ(x, t)) +

∂U e

∂σ̇
(x, σ̇(x, t)), (4)

where U vp is the viscoplastic stress potential and U e is the elastic stress po-

tential. In such a case, when the stress-strain relation cannot be written with
a unique potential, there are no theoretical bounds known.

In this article, we numerically investigate the effective behaviour of a hetero-
geneous polycrystal obeying such an elasto-viscoplastic law [1]. With a view to
studying a more realistic and complex model in the future, we want to check
here whether an effective constitutive law of type (4) can be inferred from the
examination of the material at lower scale.
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The article is organized as follows. The polycrystal model is presented in
Section 2. Let us just mention in this Introduction that a polycrystal is an
aggregate of perfectly bonded single-crystal grains, and that each grain is ho-
mogeneous and obeys a given nonlinear stress-strain relation. This relation
depends on parameters which are not the same from one grain to another one,
thus making the polycrystal heterogeneous. Section 3 is dedicated to the theo-
retical study of such an heterogeneous law. We first recall some definitions and
classical results on the derivation of an effective law for heterogeneous materi-
als, by an homogenization procedure. As above stated, the classical procedure
does not apply for our model, since the microscopic law cannot be written by
using a single potential. We however decide to make use of the classical proce-
dure separately on the elastic potential and on the viscoplastic potential, thus
obtaining an effective elastic potential and an effective viscoplastic potential,
up to some unknown parameters. Collecting these two effective potentials, we
are able to postulate some expression for the effective constitutive law (see
(24) below).

Our aim is to use, in the future, the effective law in the following way. Com-
puting the response of a structure (composed of a large number of grains) by
using the microscopic law is very expensive. Recall that, if one uses a finite
element method, the mesh size has to be smaller than the grain size. Using an
effective homogeneous law is much cheaper, for it allows for larger mesh sizes.
In this article, as a first step, we look for an effective constitutive law which is
consistent with the microscopic law. This consistency is checked by comparing
the numerical results that are obtained on the basis of the effective law with
the numerical results that are obtained (through a costly calculation) with the
microscopic law. For this purpose, we choose some test problems, and make
two computations, one with the macroscopic model, one with the microscopic
model (by using a very fine finite element mesh). Numerical results are given
in Section 4.

In this study, we have worked in 2.5D, that is to say we just simulate a 2D
layer of the polycrystal, and the displacement is a function from R

3 to R
3 but

its dependence with respect to the third space variable is a priori specified up
to a few number of parameters. Strain and stress tensors are 3×3 tensors, but
on the top and bottom faces of the layer, we impose that the normal stress
σ · n be zero (n is the normal vector to the layer). We can thus work with 3D
tensors whereas the geometry is 2D.

2 The microscopic model

As mentioned above, a polycrystal is a set of a large number of perfectly-
bonded single-crystal grains [1] (see Fig. 1), which occupies the region Ω.
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We will only consider polycrystals made of grains of isotropic shape (there
is no special direction in the grain shape). Each grain is characterized by
its orientation, which will be detailed in the following. For the materials we
deal with, the characteristic size of a grain is 5.10−6 m, which is much larger
than the atomic scale (10−10 m). The stress-strain relation inside a grain just
depends on its orientation, and the heterogeneity in the polycrystal comes
from the fact that this orientation is not the same from one grain to another
one.

Fig. 1. Internal structure of a polycrystal (the arrow is a symbol for the orientation
inside each grain).

The materials we deal with are metals which have an hexagonal atomic lattice
(see Fig. 2). The orientation of the lattice is not uniform in the polycrystal. By
definition, a grain is a domain of the polycrystal in which the orientation stays
constant. The large size of a grain with respect to the atomic scale makes it
possible to use a continuum model to describe the constitutive relation inside
a grain. At this scale, the stress tensor is σµ(x, t), the displacement is uµ(x, t)
and the strain tensor εµ(x, t) is linked to the displacement by the linearized
compatibility equation (2). We do not include in our model any grain interface
properties, and we only suppose that the displacement and the normal stress
are continuous at the grain interfaces (we recall that the normal stress is
σ(x) ·n(x), where σ is the stress tensor and n is the normal vector to the grain
interface).

We suppose in the following that for all grains, the basal plane of the atomic
lattice (see Fig. 2) is the same, namely the (ex, ey) plane. So, the orientation
of the grain is defined by an angle between 0 and π/6. We also make the
assumption that the orientations of the grains occur with equal probability
(there are actually very few experimental data for the metals we deal with,
so this assumption is the most sensible one). In Fig. 3, we draw the atomic
lattice of two different grains, with two different orientations.

Let us now write the stress-strain relation inside a grain. In the metal we
study, there are 12 preferred slipping systems that one knows as soon as the
lattice orientation is known. These systems are defined by the plane in which
the slip takes place (the normal direction to this plane is denoted by ns), and
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prismatic plane
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Fig. 2. Atomic lattice inside a grain: 3D unit cell (left), 2D section along the basal
plane inside a grain (right).

a few nm

a few 10 µm

Fig. 3. Two grains with different orientations inside the polycrystal.

by the slipping direction ls. Here, the vectors ns(x) and ls(x) depend on the
space variable x, as they change from one grain to another one. In this article,
we want to work in a 2D geometry in the (ex, ey) plane, so we only take into
account the 3 systems for which the vectors ns(x) and ls(x) belong to the
(ex, ey) plane (see Fig. 4).

n2

n1
n3

l3 l1

l2

ex

ey

Fig. 4. The 3 slipping systems we take into account in a grain.

Knowing the slipping systems, one can compute the orientation tensors ms(x),
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which are defined by

ms(x) =
1

2
(ns(x) ⊗ ls(x) + ls(x) ⊗ ns(x)) . (5)

The intensity of the stress in the slipping direction is the so-called “resolved
shear stress”, which is given by σµ : ms.

The strain rate tensor ε̇µ is the sum of two terms, the elastic strain rate tensor

ε̇e
µ and the viscoplastic strain rate tensor ε̇vp

µ . The elastic term is given by the
linear Hooke law

εe
µ(x, t) = Λ : σµ(x, t).

We do not include in our model any nonlinear elastic effects, for they are
small in comparison to the efforts we account for. We suppose that the elastic
characteristics are homogeneous in the polycrystal, so the fourth order tensor
Λ does not depend on x. We also suppose that this elastic term is isotropic.
Using the Young modulus E and the Poisson ratio ν, the elastic term reads

εe
µ(x, t) =

1 + ν

E
σµ(x, t) −

(

ν

E
tr σµ(x, t)

)

I, (6)

where I is the identity 3 × 3 tensor. On the other hand, we assume the vis-
coplastic term to be of a power-law type

ε̇vp
µ (x, t) =

3
∑

s=1

(

| σµ(x, t) : ms(x) |

Kµ

)n

sign (σµ(x, t) : ms(x)) ms(x). (7)

The viscoplastic strain rate tensor ε̇vp
µ is a linear combination of the orientation

tensors ms, with coefficients depending on the resolved shear stress. We make
the assumption that the parameters n and Kµ of the power-law are the same
for all the grains. So, as mentioned above, the heterogeneity from one grain to
another one just comes from the fact that the orientation tensors ms(x) are
not the same.

So, the constitutive relation inside a grain reads

ε̇µ(x, t) = ε̇e
µ(x, t) + ε̇vp

µ (x, t). (8)

Recasting (8) in the form of (4), we see that, in our case, the microscopic
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stress potentials (introduced in (4)) read

U e
µ(σ̇µ) =

1

2
σ̇µ · Λ · σ̇µ,

Uvp
µ (x, σµ) =

1

n + 1

(

1

Kµ

)n 3
∑

s=1

| σµ : ms(x) |n+1.

(9)

Solving the microscopic model consists in searching for the displacement field
uµ(x, t) solution to the equilibrium equation

∀x ∈ Ω, ∀t ∈ [0, T ], div σµ(x, t) = 0, (10)

along with the constitutive laws (6 - 7 - 8), the compatibility equation (2),
and convenient initial and boundary conditions.

Quantitatively, we use the following numerical values:

E = 105 000 MPa , ν = 0.43 , Kµ = 178 MPa , n = 6.5

3 The homogenization procedure

In Section 3.1, we first briefly recall the classical homogenization procedure
[11] used in the stationary case when the stress-strain relation can be written
by using a single potential. Next, we detail some time-dependent cases for
which we can use this procedure: these are the quasistatic cases. Finally, in
Section 3.3 , we use the procedure to determine the analytical expression, up
to some parameters, of the effective behaviour of the polycrystal. Henceforth,
there are no body forces.

3.1 Classical homogenization procedure

Let us consider an hyperelastic material (see Section 1) in the stationary
case, described by an heterogeneous microscopic stress potential Uµ(x, σµ).
The constitutive law is given by

ε(x) =
∂U

∂σ
(x, σ(x)). (11)

We suppose that Uµ is strictly convex of σµ. The microscopic deformation

potential Wµ(x, εµ) is defined as the Legendre transform of Uµ with respect to
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σµ (let us note that Uµ is convex of σµ):

Wµ(x, εµ) = sup
σµ

σµ : εµ − Uµ(x, σµ).

As Uµ is strictly convex of σµ, the potential Wµ(x, εµ) is strictly convex of εµ.
The constitutive law (11) can be recast into

σµ(x) =
∂Wµ

∂εµ

(x, εµ(x)). (12)

We can first work with the displacement as the unknown. The energy of the
material as a function of the displacement is given by

E(uµ) =
∫

Ω

Wµ(x, εµ(x)) dx, (13)

where the strain tensor εµ is defined from the displacement field uµ by (2). As
Wµ(x, εµ) is strictly convex of εµ, the energy E(uµ) is strictly convex of uµ.
The displacement at equilibrium, under given displacement u0 at the boundary
∂Ω, is the solution of the minimization problem

inf
{

E(uµ), ∀x ∈ ∂Ω uµ(x) = u0(x)
}

. (14)

Let us now define the so-called effective deformation potential WM . For a given
symmetric constant tensor εM , WM(εM) is defined by

WM(εM) = inf
εµ(x) ∈ K(εM)

〈Wµ(x, εµ(x)) 〉, (15)

where 〈 · 〉 is the average over Ω and the minimization space is defined by

K(εM) =











εµ(x) ; ∃ uµ(x) satisfying (2) in Ω

and uµ(x) = εM · x on ∂Ω











.

Note that, as a consequence of (2), all strain tensors εµ in K(εM) satisfy
〈 εµ(x) 〉 = εM .

We thus look at the equilibrium of the material with special displacement
boundary conditions. Let εµ(x) be the minimizer of problem (15). The micro-
scopic stress field at equilibrium is (see (12))

σµ(x) =
∂Wµ

∂εµ
(x, εµ(x)).
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The effective strain and stress tensors are defined as the average over Ω of the
microscopic tensors. We have already noticed that the effective strain tensor
is εM . We set σM = 〈 σµ(x) 〉. One can show that the effective tensors and the
effective potential are linked by

σM =
∂WM

∂εM
(εM). (16)

For completeness, let us mention that there are other ways to define an effective
potential. We have so far worked with the deformation potential Wµ(x, εµ),
we may alternatively work with the stress potential Uµ(x, σµ), the stress field
being the unknown. The energy of the material as a function of the stress
tensor is given by

E∗(σµ) =
∫

Ω

Uµ(x, σµ(x)) dx,

and the stress at equilibrium, under given surfacic force T 0 at the boundary
∂Ω, is the solution of the minimization problem

inf
{

E∗(σµ), div σµ = 0 on Ω, σµ(x) · n(x) = T 0(x) on ∂Ω
}

.

The so-called effective stress potential UM is defined by

UM(σM ) = inf
σµ(x) ∈ S(σM)

〈Uµ(x, σµ(x)) 〉, (17)

where σM is a given symmetric constant tensor, and where the minimization
space is defined by

S(σM) =











σµ(x) ; σµ(x) · n(x) = σM · n(x) on ∂Ω

and div σµ = 0 in Ω











.

We thus look at the equilibrium of the material with special surfacic force
boundary conditions. Let σµ(x) be the minimizer of problem (17). The micro-
scopic strain field at equilibrium is (see (11))

εµ(x) =
∂Uµ

∂σµ
(x, σµ(x)).

Again, effective tensors are defined as averages over Ω of microscopic tensors.
All stress tensors σµ(x) in S(σM) satisfy 〈 σµ(x) 〉 = σM , so the effective stress

9



tensor is σM . We set εM = 〈 εµ(x) 〉. As in the first case, one can show that
the effective tensors and the effective potential are linked by

εM =
∂UM

∂σM
(σM).

One says that the material follows an effective stress-strain relation if the ef-
fective stress potential UM defined by (17) is the Legendre transform, with
respect to the macroscopic strain tensor εM , of the effective deformation po-
tential WM defined by (15).

3.2 Homogenization procedure in some time-dependent cases

The homogenization procedure we have just recalled is based on calculus of
variations. No quantity depends on time. In this section, we detail some time-
dependent cases for which we can still use the same procedure.

We consider the same hyperelastic material as previously, described by the
convex microscopic deformation potential Wµ(x, εµ): its constitutive law is

σµ(x, t) =
∂Wµ

∂εµ
(x, εµ(x, t)). (18)

Let ρ(x) be the mass density of the material. We suppose that the material
is subjected to a given time-dependent displacement u0(x, t) at the boundary
∂Ω. The dynamics is ruled by

∀x ∈ Ω, ∀t ∈ [0, T ], ρ(x) ∂ttuµ(x, t) = div σµ(x, t),

along with the constitutive law (18), the compatibility equation (2), the bound-
ary conditions uµ(x, t) = u0(x, t) on ∂Ω for all t ∈ [0, T ], and convenient initial
conditions.

We make the approximation that the problem is quasistatic: we can neglect
the acceleration ρ ∂ttuµ, which is small compared to the internal forces. Thus,
the system to solve becomes

∀x ∈ Ω, ∀t ∈ [0, T ], div σµ(x, t) = 0, (19)

along with (2), (18) and the same boundary conditions as previously. The un-
known is uµ(x, t). At a given time t, this system is exactly the Euler-Lagrange
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equation of the problem

inf
{

E(uµ), ∀x ∈ ∂Ω uµ(x) = u0(x, t)
}

,

with E(uµ) defined by (13). Since Wµ is convex, solving (19) is equivalent to
solving the previous variational problems for all t ∈ [0, T ].

In this case (working with an hyperelastic material and in the quasistatic
regime), we can still define an effective deformation potential and an effec-
tive stress potential, which are again given by (15) and (17). The material
follows an effective stress-strain relation if these two effective potentials are
the Legendre transform one of each other.

3.3 Homogenization of the polycrystal law

We now proceed to the homogenization of the polycrystal model presented
in Section 2. Constitutive laws are (6 - 7 - 8), corresponding potentials are
defined by (9), and the equilibrium equation is (10). When writting this equa-
tion, we have neglected the acceleration. As two potentials are involved, and
as the constitutive law is time-dependent (it involves an ODE), we cannot di-
rectly use the theory we have just recalled. However, we can apply the theory
separately on the elastic stress potential and on the viscoplastic stress poten-
tial. Indeed, if we only consider one potential, we are in the quasistatic setting
detailed in Section 3.2. Actually, the procedure is immediate for the elastic
potential as elastic properties are homogeneous in the polycrystal (the tensor
Λ does not depend on x). We thus focus on the viscoplastic stress potential. To
simplify the notation, let dµ = ε̇vp

µ denote the microscopic viscoplastic strain
rate tensor.

3.3.1 The viscoplastic term

We first note that, because of their definition (see (5)), the orientation tensors
ms have the following very particular expression

ms =















us vs 0

vs −us 0

0 0 0















.

The same form also holds for dµ, which therefore only depends on two scalar
variables, dxx

µ and dxy
µ . We also check that, for any symmetric microscopic
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stress tensor σµ, we have

σµ(x) : ms(x) = αµ(x)us(x) + βµ(x)vs(x),

where we set

αµ = σxx
µ − σyy

µ and βµ = 2 σxy
µ .

So the only variables to consider are dxx
µ , dxy

µ , αµ and βµ. The potential
Uvp

µ (x, σµ) that we introduced in (9) is not strictly convex of σµ, but if we
rewrite it in terms of (αµ, βµ),

Uvp
µ (x, αµ, βµ) =

1

n + 1

(

1

Kµ

)n 3
∑

s=1

| αµus(x) + βµvs(x) |n+1,

it turns out to be a convex function of (αµ, βµ), and (7) can be recast into

dxx
µ =

∂Uvp
µ

∂αµ

and dxy
µ =

∂Uvp
µ

∂βµ

.

Let W vp
µ (x, dxx

µ , dxy
µ ) be the Legendre transform of U vp

µ with respect to (αµ, βµ).
It holds that

αµ =
∂W vp

µ

∂dxx
µ

and βµ =
∂W vp

µ

∂dxy
µ

.

As Uvp
µ is homogeneous of degree n + 1 of the pair (αµ, βµ), the potential W vp

µ

is homogeneous of degree 1 + 1/n of the pair (dxx
µ , dxy

µ ).

We now turn to the derivation of an effective model. Following the general
procedure recalled in Section 3.2, we define the effective potential W vp

M by

W vp
M (dxx

M , dxy
M ) = inf

(dxx
µ , dxy

µ ) ∈ K(dxx
M , dxy

M )
〈W vp

µ (x, dxx
µ , dxy

µ ) 〉,

where K(dxx
M , dxy

M ) is defined by

K(dxx
M , dxy

M ) =



























(dxx
µ (x), dxy

µ (x)) ; ∃ uµ(x) such that uµ(x) = γ(dxx
M , dxy

M ) · x

on ∂Ω and
1

2

(

∇uµ + t∇uµ

)

= γ(dxx
µ (x), dxy

µ (x)) in Ω



























,
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the function γ being defined by

γ : (u, v) ∈ R
2 7→















u v 0

v −u 0

0 0 0















∈ M3(R).

Just as (16) holds, it holds that

αM = σxx
M − σyy

M =
∂W vp

M

∂dxx
M

,

βM = 2 σxy
M =

∂W vp
M

∂dxy
M

.

(20)

The macroscopic potential W vp
M is homogeneous of degree 1+1/n of (dxx

M , dxy
M ).

To use this fact, we need to change of variables: instead of working with
the cartesian variables dxx

M and dxy
M , let us work with the polar coordinates

associated to them, the radius

RM =
√

(dxx
M )2 + (dxy

M )2

and the angle θM . These variables present the advantage that RM is homo-
geneous of degree 1 of (dxx

M , dxy
M ), whereas θM is homogeneous of degree 0. So

W vp
M reads

W vp
M (RM , θM ) = R

1+1/n
M C(θM),

where C is an unknown function.

As this point, we introduce the following simplification. Considering that,
first, all the orientations of the grains occur with equal probability, and sec-
ond, that the geometry of the grains and of the polycrystal is isotropic, we
postulate, without any rigorous justification of this fact, that the response
of the polycrystal is isotropic, at least when the number of grains is large
enough. We therefore simplify the previous expression of W vp

M , setting C(θM )
as an (unknown) constant C, for θM is an anisotropic variable whereas RM is
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an isotropic variable. Writting (dxx
M , dxy

M ) as a function of (αM , βM), we get

dxx
M = C

(

√

α2
M + β2

M

)n−1

αM ,

dxy
M = C

(

√

α2
M + β2

M

)n−1

βM .

(21)

To agree with a usual normalization, we prefer to recast these equations into
a slightly different expression. We set

J(σM ) =

√

3

2

√

(σ̃xx
M )2 + (σ̃yy

M )2 −
1

2
(σ̃zz

M )2 + 2 (σxy
M )2, (22)

where σ̃M = σM −
(

1

3
trσM

)

1 is the deviatoric part of σM . Then equations

(21) can be written as

ε̇vp
M =

(

J(σM)

KM

)n
∂J

∂σM
, (23)

where KM is an unknown parameter (playing the role of the constant C used
above) that we will determine by numerical computations in Section 4.

3.3.2 Postulated macroscopic model for the polycrystal

In the previous part, we have made use of the classical homogenization pro-
cedure to obtain separately an elastic effective potential and a viscoplastic
effective potential. We postulate, again without any rigorous justification of
this fact, that the effective constitutive law for the polycrystal is the sum of
the elastic effective term with the viscoplastic effective term. So the effective
constitutive law that we use is

ε̇M(x, t) = Λ : σ̇M (x, t) +

(

J(σM(x, t))

KM

)n
∂J

∂σM

, (24)

where J is defined by (22). Solving the effective model consists in searching
for the displacement field uM(x, t) solution to the equilibrium equation

∀x ∈ Ω, ∀t ∈ [0, T ], div σM (x, t) = 0, (25)

along with the constitutive law (24), the compatibility equation (2), and con-
venient initial and boundary conditions.
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The whole microscopic constitutive law involves an ODE, and the procedures
detailed in Section 3.1 and 3.2 do not apply in this case. With the numerical
tests described in the following, we check whether this approximation may be
sensible.

4 Numerical results

In the previous part, working with the deformation potential, we have found
an effective model for the polycrystal, up to the knowledge of the constant KM

(see (24)). In order to determine a value for KM , we use numerical computa-
tions on different polycrystals [2,5], with several linear displacement boundary
conditions. In the following, we check that there exists a single value for KM

such that macroscopic computations agree with microscopic computations for
all test problems (that is, macroscopic tensors are equal to the mean of mi-
croscopic tensors over the polycrystal Ω).

One can also work with the microscopic stress potential to obtain an effective
stress potential. One finds the same result as in (23), with a a priori different
constant Ks

M . To numerically determine a value for Ks
M , one would follow the

same procedure as before, except that one would work with linear surfacic
force boundary conditions. If the value found for Ks

M is the same as the value
found for KM (with linear displacement boundary conditions), then the ef-
fective stress potential is the Legendre transform of the effective deformation
potential, and the polycrystal actually obeys an effective stress-strain relation
(see Section 3.2). We did not made this kind of test, since, when one uses
surfacic force boundary conditions, the displacement at equilibrium is only
determined up to a rigid body motion.

Finally, a third test is possible: one can use mixed boundary conditions (we
impose on some part on the boundary the displacement and elsewhere the
normal stress). Results of this kind of test are given in the following. The
polycrystal actually obeys an effective stress-strain relation if the value pre-
viously found for KM (using linear displacement boundary conditions) is also
valid with these mixed boundary conditions.

We have performed numerical tests with three different polycrystals, one of 30
grains (first with a coarse mesh: 5 to 15 finite elements per grain; then with a
finer mesh: finite element edges two times smaller), and two of 110 grains (the
same grain geometry, but with two different orientation samples). We work
in 2.5D (see Section 1), just simulating a 2D layer of the polycrystal of side
surface S (see Fig. 5).
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x

y

z

Surface S

Fig. 5. Only a 2D layer of the polycrystal is simulated.

On the surface S, we choose several different boundary conditions: linear dis-
placement boundary conditions (traction compression, thus a strain denoted
by a superscript TC; shear, a strain denoted S; traction compression shear, a
strain denoted TCS), and also mixed boundary conditions, letting two opposite
faces force free, imposing zero normal displacement on one face, and imposing
a uniform traction displacement rate on the last face (test denoted T). For
displacement boundary conditions, the strain tensors are

εTC
M (t) =















α t 0 0

0 −α t 0

0 0 0















, εS
M(t) =















0 α t 0

α t 0 0

0 0 0















and

εTCS
M (t) =















α1 t α2 t 0

α2 t −α1 t 0

0 0 0















.

For brevity, we only detail here one test case, namely that of a polycrystal
subjected to a shear load. The averaged microscopic strain tensor and the
macroscopic strain tensor increase linearly as time increases. One can see on
Fig. 6 the averaged microscopic stress 〈 σµ(x, t) 〉 as a function of time (we have
〈 σyy

µ 〉 = −〈 σxx
µ 〉 and σzx

µ (x, t) = σzy
µ (x, t) = σzz

µ (x, t) = 0), and the macro-
scopic stress σM (t), which is uniform in this case. We make the assumption
that, in the long-time limit, the stress tensors σµ(x, t) and σM(x, t) converge
to a limit, which thus corresponds to the stationary regime of (8) and (24).
One can check that the limit limt→∞ σxy

M (t) depends on KM (for this shear
load test, an analytical expression can be found). We choose KM so that

lim
t→∞

σxy
M (t) = lim

t→∞
〈 σxy

µ (x, t) 〉,

which leads in this case to the numerical value KM = 347 MPa. The previous
equation enforces that, in the long-time limit, the effective law is consistent
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with the microscopic law. The macroscopic stress displayed on Fig. 6 has been
computed using this value of KM . We also notice that σxx

M = 0, as expected.
On the other hand, 〈 σxx

µ (x, t) 〉 is not zero, however up to a small error.

〈 σxx
µ 〉

〈 σxy
µ 〉

time

2015105

60

40

20

0
σxx

M

σxy
M

time

54321

60

40

20

0

Fig. 6. Shear load on the 30 grain polycrystal: averaged microscopic stress (left),
macroscopic stress (right).

For the other test problems, the situation is the same as the one we describe
here. It is possible to find of value for KM by adjusting the largest components
of the stress and strain tensors (in the limit t → ∞), and there is a small error
on some components (xx and yy in shear load, xy in traction compression
load). The values found for KM are given in Tab. 1. We notice that, up to a 0.4
% error, the value depends neither on the type of boundary conditions, on the
number of grains, on the mesh size nor on the orientation distribution sample.
Thus the polycrystal obeys an effective constitutive law with KM = 346 MPa.

30 grains

Coarse mesh

30 grains

Fine mesh

110 grains

Sample 1

110 grains

Sample 2

T 345.6 347.1

T C 345.6 345.6 347.1 345.3

S 347.25 347.25 344.6 344.6

TCS 346.1 346.0 346.62 345.4

Table 1
Values of KM for different polycrystals with different loadings (the indicated value
is the average on different boundary condition values).

In order to measure the error of the small components of the tensors with
respect to the average value, we define some empiric estimators:

• for mixed boundary conditions, lim
t→∞

(

〈 εxy
µ 〉/〈 εyy

µ 〉
)

;

• lim
t→∞

(

〈 σxx
µ 〉/〈 σxy

µ 〉
)

for shear load;

• for traction-compression load, lim
t→∞

(

〈 σxy
µ 〉/〈 σyy

µ 〉
)

;
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• lim
t→∞

(

〈 σxx
µ ± σxy

µ 〉/σxy
M

)

for traction-compression-shear load, boundary con-

ditions being so that lim
t→∞

σxx
M ± σxy

M = 0;

The values found for these estimators are given in Tab. 2. One can notice
that all values are small, so the effective law is a good approximation of the
microscopic model in most of the situations studied.

30 grains 30 grains 110 grains 110 grains

Coarse mesh Fine mesh Sample 1 Sample 2

T 2% 0.9%

T C 2.5% 2.5% 0.8% 1.2%

S 2.9% 2.9% 1.1% 1%

TCS 0.3% 0.3% 1.4% 1.3%

Table 2
Values of the error estimators for different polycrystals with different loadings.

It is also interesting to compute averages on grains of the stress or strain
tensors, and not on the whole polycrystal. We want to know whether these
averages are similar from one grain to another one, or very different. Let us
focus on the traction-compression-shear load. At each time step, we compute,
for each grain, the average over the grain of (εvp

µ )yy and of σ̃yy
µ (σ̃ is the devia-

toric part of σ). We work with the viscoplastic strain tensor and the deviatoric
stress tensor since these are the natural variables for the viscoplastic term of
the constitutive law. Results are displayed in Fig. 7. At the beginning, the
averages for all grains are the same. As the viscoplastic term increases, grain
responses become heterogeneous.

〈 σ̃yy
µ 〉g

〈 (εvp
µ )yy 〉g

0.00180.00140.0010.00060.0002-0.0002

60

50

40

30

20

10

0

Fig. 7. Evolution of 〈 σ̃
yy
µ 〉g as a function of 〈 (εvp

µ )yy 〉g for the 30 grain polycrystal,
traction-compression-shear load (〈 · 〉g is the average over the grain).

So far, we have just compared the responses in the limit t → ∞ (in this
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limit, the elastic part of the constitutive law cancells). We may also com-
pare responses during the whole load process, to check whether microscopic
and effective laws agree only in the viscoplastic limit or also when elastic
and viscoplastic terms are of the same order of magnitude. We make such a
comparison in Fig. 8. For the other test problems, the situation is alike: the
effective law is in good agreement with the microscopic law (the difference is
smaller than 1%).

〈 σxy
µ 〉

σxy
M

6543210

60

40

20

0

〈 σxy
µ 〉

σxy
M

43.532.5

61.5

61

60.5

60

59.5

Fig. 8. Transient response of the 30 grain polycrystal, shear load. The effective law
is in good agreement with the microscopic law (left). On the right-hand side, a zoom
on the region where there are some differences.

This numerical result is very surprising. Starting from a microscopic constitu-
tive law which is time-dependent and involves two potentials, we split it into
two terms. We apply separately on each of them a procedure which is based
on stationary calculus of variations. We fit KM on the long-time limit of the
system, which corresponds to the viscoplastic regime. The numerical result is
that the effective law is in agreement with the microscopic one both in station-
ary and transient regime! We acknowledge the fact that there is no rigorous
reason for this success: we just observe that the two laws are consistent.

5 Conclusions

We have dealt in this article with a simple model of a 2D heterogeneous
elasto-viscoplastic polycrystal, for which no theoretical results on the effective
law are available. We have succeeded in numerically identifying an effective
law. We observe that this effective law is consistent with the microscopic law
in both the stationary and transient regime, although it has been obtained
by an homogenization procedure designed for stationary problems. We are
unfortunately unable to provide any explanation for this fact but are currently
working in that direction.
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