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Abstract :

In this paper we develop an adaptative method for Monte Carlo
simulations of expectations driven by high-dimensional vectors. The
method uses importance sampling based on a change of drift. When
there exist an —unknown- optimal drift, The change of drift is
selected adaptatively through the Monte Carlo computation by using
a suitable sequence of approximation. In the case we use a recursive
non-deterministic sequence of approximation to the optimal drift, the
independence of the simulated sample paths is shattered. However it is
proved that we still have a Law of Large Numbers and a Central Limit
Theorem for the problem. In our applications the method is used to
perform variance reduction in a Monte Carlo computation of both
path-dependent and path-independent options, stochastic volatility
models, and interest rate derivatives.

KEY WORDS: Monte Carlo methods,variance reduction, Importance
Sampling, Stochastic algorithms, CLT for martingales, Chen’s projec-
tion method.

1 Introduction

Monte Carlo simulation is widely used in many areas of applied sciences. In
Finance, it is frequently the only method available for the pricing and the
hedging of complex path-dependent and —path-independent— options, par-
ticularly if the number of relevant asset involved is large or if additional
randomness are included in the model. In all such cases, the computational
demands of simulation have motivated interest in Monte Carlo methods for
increased efficiency. That is to say with important reduction on variance.

In this paper we develop a Monte Carlo method which integrate an im-
portance sampling technique based on an adaptative change of drift. The
change of drift is selected adaptatively by using a sequence of approximation
of an optimal drift. When a recursive non-deterministic sequence is used to
approximate this optimal drift, the independence of the simulated sample



paths is blured. However it is proved that we still have a Law of Large Num-
bers and a Central Limit Theorem leading to an adaptative “optimal” Monte
Carlo method.

In section 2 we recall without proofs the Law of Large Numbers and the
Central Limit Theorem for martingales we will use to prove our main result.
Section 3 deals with a general theorem which is the main result of this pa-
per. In Section 4 we show how the result can be used to reduce variance in
a Monte Carlo simulation. The last section illustrates the use of the method
by some numerical applications to the pricing of options and interest rate
derivatives.

2 Limit theorem for martingales

We start the work by recalling some widely known classical results on mar-
tingales: the so called law of large numbers and central limit theorem for
martingales are the keys of this work.

Theorem 1. Let (My)n>0 be a real, square-integrable martingale which is
adapted to a filtration (F,)n>0 and has a bracket process denoted by ( M ).
Suppose that for a real deterministic sequence (an)n>0 increasing to +o0o the
following assumption applies:

M
(1) < >nE>02 with o > 0;
an, n
My .. . .
then: — —= 0. If in addition
ap 7

(2) Lindberg’s condition holds; in other words, for all € > 0,
P
o Z?_lE[Wk = My1PY g0t -ty >eyany/ Fo-1| =0,

M
then: —= £5 N(0,02).

Qp N

Remark 2.1. The theorem is proved in various books which give it its due
importance (see [14] for example). For a deeper discussion on the subject,
many references can be found in [11]. The Lindberg condition is essential
to prove the last part of the theorem.

We will need also the following elementary and usefull lemma.

Lemma 1. (Cesaro) If f is a continuous function from R? to R and (zp)n>0
is a sequence of real vectors which converges to x, then

%éf(xk) — f(z), as n — +oo.



3 The framework

In many areas of applied sciences, it is question of computating by simulation
quantities of the form

V =Elp(X)], X ~ p(dz),

where p(dz) is a given probability distribution on R%, d > 1. Very often,
one need to reduce the statistical error of the Monte Carlo estimation of
this expectation. There exist many classical methods which work in specific
cases (see for instance [4], or [12] and the references given there). There
exist also some more advanced way to reduce this error which in general are
closely related to the expression of ¢ and the law p(dz) of X (see among all
[15], [2], [5] and [3]).

The method we propose here lies on a relatively general theorem which is the
main result of this work. In order to prove this result in a general setting,
let us consider a random vector Z defined on a probability space (Q2,F,P)
and let (Z,)n>0 be a sequence of independent vectors drawn from the law of
7.

For a fix parameter §* € R? assume that there exist a sequence (On)n>0 of
approximation to #* defined on the same probability space (2, F,P). For
more convenient I'* stands for {6, == 6*}.

We also assume that there exist a map

g:REXRI R

such that the following conditions hold:

(A) g(2) €eLY(P) and Elg(6n,2)] = E[g(6*,2)] Vn>0.

(B) The mapz +—— E[g?(z, Z)] = sp(x) is continuous at 6*
for p=2,3,4.

(C)  (6n)n>0 is adapted to the filtration of (Z,)n>0 and
for each n > 0, s4(0,) < C), for some C,, € R,.

Remark 3.1. Note that we do not specify anything else more about the
sequence (6,,)n>0. It could be either deterministic or stochastic. In addition
the sequence (Cp)n>0 is allowed to tend to infinity.

Remark 3.2. The last part of hypothesis (A) holds very often. For example
if Z ~ f(z)dz, the random vector Z + 6, § € R? has the probability density
fo(2) = f(z—8). Thus for a positive measurable function ¢, we can certainly
write

Elp(Z)] = Elg(0, 2)]

with ¢(0,Z) = o(Z + 9)% and (A) is satisfied if ¢ is sufficiently inte-

grable.



Our main result is the following
Theorem 2. Under assumptions (A), (B) and (C),
1. If P(I'™*) > O then a.s. on I'* we have,

1

o= 1S (01, 2) —> 51(6°) — Elg(6, 2
k=1

2. If P[I'*] =1 then we have
Vn[S, — 51(6%)] =N N(0,0%) with o? = var[g(0*, Z)).

3. If we write o2 for the value of 2 S | g*(6k_1, Zx) — S2, then

on n
Proof

The proof consists in the construction of a martingale for which the hypothe-

ses of Theorem 1. hold.

stage 1.

We first suppose that P(I'*) > 0 and we consider the following sequence

(Mn)nZO defined by

n
My = [g(0k—1,2Zk) —51(6.)], mn>1, and My =0.
k=1
We denote by F,, the o-algebra generated by 6 and Zj, for k < n. Since the
sequence (0,)n>0 is adapted to the natural filtration of (Zy,)n>o0, it is easily

seen that 6, 1 is F,_1-mesurable and that Z, is independent from F, 1.
Thus

E[g(enfla )/fnfl] = 31(97171) = 31(9*)a
and (M, )n>0 is a martingale with respect to (F,)n>0. By hypothesis (C) we
have

E(|AM, |*) < E(so (8 <+Cp, on I

so that the martingale (Mp,)p>0 is squared integrable on I'*. Its angle bracket
process is given by

M), =Y E|AMg P/ Fi-1]
k=1

_Z< (Ok—1, Z1) | Fr—1] — 87 (05— 1))

= Z (32(9k—1) - 3%(‘%—1))-

k=1



Then using the Cesaro lemma (stated in section 2 above) we see that a.s.

on I'™*
(M)n

n

s 52(60%) — $2(6%) = var(®(6", 2) = o,
n
By applying the part (1) of Theorem 1. we have

M,
as. on I'* —2 0,
n n

which is equivalent to the first part of the theorem. In order to obtain the
second part of the theorem, it is sufficient to prove the Lindeberg conditon
for the martingale (Mp)n>0. From here to the end of the proof, we suppose
that P(I'*) = 1 and all the work below is done on the event I'*.

stage 2.

By few algebra one can see that

E(|g(9k—1, Zy) — 81(9k—1)|4/7:1c—1) = E(94(9k—1, Zk)/]:k—1> — 351 (0k—1)
- 481(9k—1)E(g3(9k—1, Zk)/]:k—l)

+ 63%(%1)]}3(92(%1, Zk)/]:kl) :

Using again Cesaro’s lemma we find that
1 & s
p > E( 19(Ok-1, Zk) — 51(0k—1)|*/ Frr — L,
k=1
where
L = 54(6%) — 351(0%) — 451(0%)s3(0%) + 652(6%)s3(6%)
is a non—negative constant number. Now for a fix a > 0 and n > 1 define
1 ¢ 5
Fo(a) = — > B 19(0k—1, Zk) — 51(Ok-1)1* 1{lg(011,20)-s1 (Bu_)|>a} [ Fh-1 ).
k=1

We have certainly

_on

a
Fp(a) < — ZE(|Q(9k—1, Zy) — 81(9k—1)|4/5’:k—1)-
n k=1
Then by choosing a, = e4/n for an arbitrary € > 0 we can write

Falon) < 5 S (19000-1,20) - 1 0 /7o ),
k=1



showing that
lim supF, (a,) = 0,

n—-+00

and that the Lindeberg condition holds. Thus by applying the part 2 of
Theorem 1. the desired result follows.

stage 3. To end the proof, we only need to show that the following two
sequences

1 o 1 o
= E G*(Or—1,2;) and — E $9(0k—1) for m>1
n n
k=1 k=1
converge to the same limit. Similarly to that in the stage 1. we define

n
My = [6%(0k 1, Zk) — 52(0k 1)), n>1, My=0.
k=1

The same reasoning as in stage 1. applies and shows that (My),>0 is a
squared integrable martingale with respect to (F,)n>0. Its hook is given by

n

=3 (E[g4 Ot Z2) Fis] — sg(ok_l))

k=1

— Zn: (34(0k1) - S%(%l))-

k=1

Again by the Cesaro Lemma we easily see that

(M)n

— 54(07) = 55(0") = var(g*(6”, Z)).

Thus we have % — 0 which equivalently can be rewrite as
n

1 n
on = - ;92(91@1,%) — Sy — 52(0") — s1(6%) = var(g(6*, 2),
and the proof is complete. B

Now our objective is to show how Theorem 2. can be used to reduce
variance in Monte Carlo simulations.

4 Applications

In order to ensure hypothesis (A) of section 3, all our applications will lie in
an importance sampling method.



4.1 Importance Sampling

Consider the general problem of estimating V' = E[p(Z)], for some ¢ : R? —
[0,00), with Z a d-dimensional random vector having —multivariate— density
f(2). Shortly, we limit ourselves to a parametric change of law. Then

Eip(2)] = / () f(2)dz
= / o(z+0)f(z+6)dz

= / o(z + 9)%]”@%&

f(Z+0)]
f(z)

and among all # the optimal one solves the problem

- ]E[(p(Z +0)

I f2(Z+0)

maln]E[(p (Z + H)W] . (1)
In practice, finding the optimal @ is infeasible and even if this optimal 8 can
be found, it will not in general provide a zero-variance estimator (precisely
because our change of law is parametric!). Algorithms such as gradient’s
algorithm, Newton’s algorithm or Robbins-Monro’s algorithms could be used
to solve asymptotically the problem of above (see for instance [10], [11],
[13] or [17]).

4.2 Finance

In a complete market the arbitrage price of an option with payoff 1(S;,t < T')
is given by
Vo =Ele "T4(Sp, t <T), (2)

where the underlying asset S is supposed to follow the stochastic differential
equation
dSt == St(’l“dt + O'(t, St)th), S() =, (3)

with r the risk-free, continuously compounded interest rate, o(t,y) the asset
volatility, W a Brownian motion, and z fixed.

When an exact solution of (3) is not available we assume that an acceptable
discretization of this equation has already been determined on a discrete
grid of points 0 =ty < t; < --- < tg = T, and thus we focus attention
on obtaining precise estimates of the price V. Therefore, in a practical
situation, to compute V) we have to evaluate

Vo =Ee ™ 4(Sy,- .-, S,)],



which we rewrite as R
Vo = Elp(Z)], (4)

where Z = (Z1,...,24) ~ N(0,1;) and I, is the identity matrix of R?. ¢
is a function we can compute by using the dicretization of S and the payoff
function 1& relative to the discretized problem.
In this case (1) becomes

min H (),

fcRd

where the function H is given by
H(0) = Elp?(Z + 0)e~ 2021017, (5)

||lz|| denotes the Euclidean norm of a vector z € R? and z -y is the inner
product of two vectors z,y € R?.

It is shown in [3] that when the payoff function ¢ is sufficiently integrable
with respect to the law of Z, problem (4) has a unique solution. It is also
shown that this unique solution can asymptotically be estimated by a ran-
domly truncated version of the Robbins Monro-algorithms (for more details
about stochastic algorithms see among all [10], [11], [1] or [6]). For the
convenience of the reader we briefly recall the definition of this version of the
Robbins Monro algorithms from [3]. Shortly said, it is defined for n > 0, by

)= Yapr i [|6n — Y1 Yol < Usny,
Opi1 = , (6)
;‘L otherwise
n—1
o(n) = Z 1{H9k—7k+1Yk+1ll>Ua(k)}’ a(0) =0, (7)
k=0

where (Uy,)n>0 is an increasing sequence of positive numbers tending to in-
finity and o(n) is the number of projections done after n iterations. z}, is
given by

*
n

(8)

Z

_Jzt ifo(n) is even,
" |2® ifo(n)is odd,

with (7n)n>0 a sequence of positive numbers satisfying

nyn =400 and Z’yﬁ < +00. (9)
n>0 n>0

The sequence (Y )n>0 of above is defined by
Y1 = (6, — Zn+1)(p2(Zn+1)e—0n-Zn+1+%||9n||2’ (10)

with (Zn)n>0 & sequence of i.i.d. gaussian vectors following the law of Z.
The following proposition allows to apply the result of Theorem 1.



Proposition 4.1. If ¢ satisfies E(|o(Z)|*) < +oo with some § > 1, and
g9(0,2) = p(Z + H)e_a'Z_% O then hypotheses (A),(B) and (C) of section
(3) hold.

Proof. It is a simple matter that hypothesis (A) is satisfied. By the
Girsanov theorem it is rather trivial to see that

5(0) = E(¢? (Z)e= =00 245510

Now suppose that ||f|| < K where K is a non negative constant. With the

62+ B2 10])?

notation v,(6,z) = P(z)e” P~ , we have

(0,0, )| < 5 @D ()] K@D,

Using Holder’s inequality, it follows that

-}
/‘(pp(z)‘ex(p—mz||e—%|z||2dz < (/e(;l’i<p—1>||z||e—§||z||2dz> (/wp(zn
1

» e—$||z||2dz) ’
(11)

Since E(|¢* (Z)|) < oo, with § > 1, the Lebesgue theorem applies and the
function s, is continuous for p = 2, 3,4. Hypothesis (B) is then satisfied. By
definition, we have for each n > 0, 6,, < Uy, where (Up)n>0 is that sequence
which appears in the construction of the algorithm (6,),>0. Now if we go
back to the inequality (11), we easily see that

34(0,) < Cp, foreach n>0

for some constant positive number Cy,, and hypothesis (C) holds. W

5 Numerical tests and practical considerations

We begin this section by some important remarks on the convergence of
the algorithm (6-10). In equation (10), Y,41 is set to satisfie to following
equation

EY,t1/Fn] = VH(6,)

with H defined in (5) and F, = o{0k, Zk, 0 < k < n}. Let VZH(6*) be
the hessian matrix of the function H at the point 6* (it is proved in [3]
that H is twice differentiable in R? and that V2H(6*) is a positive definite
matrix). Let L stands for the highest eigenvalue of V2H (9*). It is shown in



[16] that among all sequences (yn)n>0 Which verified (9), the optimal ones
for the algorithm (6-10) are given by

Vn = g, n>1, with 2al >1, (%).
n

Unfortunately, the computation of L is infeasible in practice as we don’t
know the exact value of a.

However that suggests us to make the following heuristics:

e If H is likely to take high values, then « should be small and vice versa.
e In the case of Call and Put options it can be helpfull to normalized the
payoff-function ¢. Indeed the function to minimize is

H(0) = E[p*(2)e "2+310P),

and if ¢(z) = ¢(2)/So, with Sy the spot price of the underlying, then it is
easily seen that
argminH (0) = argminH (6),
9 0

where
A(0) = E[p?(Z)e~ 7 +2 101,

The idea is thus to make use of the Robbins-Monro algorithm to compute

the “argmin” of H instead of H. In this case, a good value of a found for an

option with a given spot and strike (let say z1 and K1) prices must work for
T1 _ T3

any other option with spot zo and strike Ko whenever =

5.1 Constant Volatility Model

We begin our tests with an application to the pricing of a European Basket
Call option on d assets. The option payoff we consider is

where S is the solution to the stochastic differential equation (under the
risk neutral Probability)

d
s = s (rdt — 3" gijdw; (t))a t>0, (%)
j=1

with (W1 (), ..., Wd(t)) a d—dimensional brownian motion, (¢;)o<i,j<d
0<t<T
the volatility matrix and r the bank account.

The make use of the method is very easy. For more simplicity, we restrict
attention to the case where the volatility surface is flat and the spot values

10



of all the underlying are the same and equal to Sp. Then the solution to the
stochastic differential equation (*) can be exactly simulated by setting

d
. 2
S = Suexp(r - a2 )T+aﬁzz,-], i=1,.d
Jj=1

where o stands for the flat volatility and Zi,..., Z4 are indepent standard
normals. Numerical results in Table 4.1 confirm the effectiveness of the pro-
cedure. This table shows the variance ratios relative to standard Monte
Carlo, using adaptatively the Robbins-Monro algorithm (6),>0 defined by
(6-10). Each variance reduction ratio is the variance per replication us-
ing standard Monte Carlo divided by the variance per replication using the
method developped here.

To say it briefly, the algorithm introduced in this paper consists in approxi-
mating Vj —identified in (4)- using

1 o >

l o(Zy, + O e Ok Zr |10kl ,

PILCALE
instead of the standard Monte Carlo estimator = >, ¢(Z). The addi-
tional computational effort of the method is negligeable since the same sim-
ulated paths are used to perform the convergence of (6,)n>0 —to the optimal
0*— and the Monte Carlo computation. In return, we have a gain in compu-
tational effort greater than a factor of 10.

Table 4.1

Estimated Variance Reduction Ratios for the European basket call

Parameters Importance Sampling

n « o 550 Price Variance
Ratio

10 25 0.1 0.8 13.41 11
25 1.0 7.42 12
25 1.2 3.76 15
25 02 08 17.86 18
2.5 1.0 13.36 18
2.5 1.2 10.03 20
20 25 0.1 0.8 15.14 13
25 1.0 9.89 14
25 1.2 6.33 17
25 02 08 21.80 29
2.5 1.0 18.06 30
2.5 1.2 15.12 31

We use 100,000 Monte Carlo simulated paths for both d=10 and d=20. The
option parameters are So = 50, r = 0.05, and T' = 1.0,.

11



In other words, to get the same accuracy with our method, it would be nec-
essary to increase the number of Monte Carlo steps in the standard approach
by a factor of 10 (in the worst of our cases). Since our method could be used
systematically in a large class of situations, this gain is quiet important. It
is worth pointing out that the method proposed here can be combined with
more specific or standard variance reduction methods such as control variate,
antithetic variables, stratification methods etc...

5.2 The Heston Model
Our next example is the Heston stochastic volatility model (1993):

dS; =rSidt+ \/’U_tStthl,
dvy = k(a —v)dt + o /o, dW§,

where W' and W2 are two correlated brownian motions with (W, W?);, = pt,
and k, a and o are constants. Discretizing with an Euler scheme leads to

StH—l = Stl(]- + rAt + \/’UtiAtZi),
Vg, = Uyt k(a — ’Uti)At + O'\/At’l)ti (pZz + 41— pZZdH-),

where (Z;);>1 is a sequence of independent Gaussian variables with mean 0
and variance 1.

Tableau 4.2
Estimated Variance Reduction Ratios for the European call in the Heston model
Parameters Importance Sampling

0 «@ 550 Price Variance
Ratio

0.04 10 0.8 23.59 25
50 0.9 14.13 12

100 1.0 6.99 14

400 1.1 3.24 15

400 1.2 1.43 18

0.09 10 0.8 23.62 20
20 0.9 15.28 12

40 1.0 9.16 12

400 11 5.16 12

400 1.2 2.99 17

‘We use 20,000 Monte Carlo simulated paths and n = 50 discretization steps.
The option parameters are So = 100, r = 0.1, and T'=0.5, k = 2, a = 0.01,
o = 0.5.

12



In our implementations we have taken the stochastic input to the model to
be the single vector (Z1,. .., Zsq). In some respects, it might be more natural
to think of two separate vectors, each of length d. Heston has given a closed
form solution to the pricing of a European call option by the caracteristic
functions technique (see [18]). But the example still useful as a numerical
illustration. The last column in Table 4.2 contains the variance reduction
ratios obtained in the Heston model for a european Call option. As in Table
4.1 the gains in computational effort are greater than a factor of 11. Table
4.3 shows numerical results for an Asian option in the same model. Like the
previous examples the gain factors in this one still important (in the range
of 10-20).

Tableau 4.3
Estimated Variance Reduction Ratios for the Asian call in the Heston model
Parameters Importance Sampling

o) «a 550 Price Variance
Ratio

0.04 10 0.8 22.59 16
20 0.9 13.70 17

100 1.0 6.18 10

1000 1.1 2.38 14

4000 1.2 0.91 18

0.09 10 0.8 22.60 18
25 0.9 14.18 11

100 1.0 7.83 11

400 1.1 3.99 13

500 1.2 2.03 17

We use 20,000 Monte Carlo simulated paths and n = 50 discretization steps.
The option parameters are So = 100, r = 0.1, and T'=1, k = 2, a = 0.01,
o =0.5.

In these particular cases, the estimation errors —with respect to the
prices— contain both statistical and discretization errors. This last error
is unrelated to our method which reduces only the statistical error.

5.3 The CIR Model

Following [15], our final example is the interest rate model of Cox, Ingersoll,
and Ross (1985):
dr; = k(a — ‘l"t)dt + 0'\/’1"_15th, (12)

with W a standard brownian motion. It is shown in [8| that when d = 4ak /o
is an integer, the process (r:);>o has the same law as (|| X;||*)¢>0, where X

13



is the d—dimensional process defined by
k o
dX; = —§Xtdt + §th’

and the components of X, are all equal to v/rod. The process X is known
as Orstein Uhlenbeck process and on a discrete grid of points ¢t; = jh, h > 0
and j =0, ..., the ith coordinate of this process can be simulated exactly by
setting

) 1 .

X\ =eafhx 4 % %(1 — e Z g 5= 0,1, — 1,
where Zi, ..., Zg, are independent standard normal variables. In order to
separate the examination of variance reduction from discretization bias un-
related to our method, we apply it to the CIR Model in the case when d
is an integer. More precisely, we take d to be equal to 1. We consider an
interest rate cap with total life T', a principal of S, and a cap rate of K.
Suppose that the reset dates are t1 < to < ... < t,, and define ¢,11 = T. The
cash flow of this cap is S(ry, — K)4 at each payment date ¢;11, ¢ =0,1,...,n.
Thus the total discounted payoff can be written as

n )
S e MBI (r, — K)o

i=1
Tableau 4.4
Estimated Variance Reduction Ratios for Cap Prices in the CIR Model
Parameters Importance Sampling

T « K Price Variance
Ratio

0.25 0.001 0.044 30.21 22
0.001 0.054 15.31 18

0.1 0.064 3.56 11

1.0 0.074 0.40 20

200 0.084 0.03 84

0.50 0.001 0.044 28.63 19
0.001 0.054 14.98 16

0.01 0.064 4.62 11

0.1 0.074 1.02 16

20 0.084 0.19 39

‘We use 50,000 Monte Carlo simulated paths and n = 16 reset dates. The
cap parameters are 7o = 0.064, £ = 0.05, and d =1, k = 2, 0 = 0.08. Prices

are for face value of 100.

14



As noted in [15] this formulation is a little bit nonstandard in that it blurs
the distinction between discrete and continuous compounding (see [9] or [7]
for some details). Nevertheless the example still illustrative.

In Table 4.4, the variance is reduced by factors in the range of 10-90. Con-
trary to the other cases, the values of a in Table 4.4 are all most smaller
than 1 —except in two cases—. This is easily explained by the fact that all the
prices in this table are for face value S = 100, so that condition (x) of above
holds for relatively small «. Due to the heuristics made at the begining of
this section, the same pricing problem with prices for face value § = 1 will
give the same variance reduction ratios if each value of the parameter « in
Table 4.4 is replaced with o x 10%.

6 Conclusion

The framework we have developped in this paper is relative to Theorem 2
which itself still of interest. The use of this theorem is based on Conditions
(A), (B), and (C). These conditions are fullfilled under some integrability
assumptions —which can be weaken—, when an importance sampling method
is used. However, another type of transformation could lead to an analogue
result. We use this theorem in order to reduce variance in Monte Carlo esti-
mations by combining importance sampling technique and Robbins-Monro’s
algorithm. The method is applicable in a very general setting and works
for widely used derivatives. It doesn’t cost nothing for a negligeable gain in
computation. It could be used even if another variance reduction methods
are available. In this case the gain could be very large.
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