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Combust. Theory Modelling

Abstract. We investigate laminar bunsen flames with detailed chemistry and
multicomponent transport. The governing equations are discretised by a finite element
method on a sequence of adaptively refined, unstructured triangulations. The finite
element method is an extension to chemically reacting flows of the streamline diffusion
method, including least squares stabilisation of the pressure gradient and the low-Mach
continuity equation as well as a shock capturing term designed to control species mass
fraction undershoots near flame fronts. Unstructured meshes are adaptively refined based
on a posteriori estimates of a user specified functional of the numerical error. These
estimates are derived from the dual weighted residual method in the form of elementwise
residuals weighted by coefficients depending on the solution of a linearised dual problem
that accounts for convective error propagation and multicomponent chemistry couplings.
Numerical results are presented to illustrate the efficiency of the proposed methodology
and to study the impact of inflow velocity profiles on the structure of several hydrogen-air
bunsen flames.
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1. Introduction

Bunsen flames are obtained experimentally by flowing a premixed fuel /oxidiser jet through
a cylindrical tube. When the jet velocity exceeds the laminar flame speed, it is possible
under appropriate experimental conditions to stabilise a flame of conical shape above
the tube lips. Bunsen flames arise in several practical applications including household
and industrial burners. Furthermore, bunsen flames provide a relatively simple flow
configuration on which to investigate fundamental aspects of laminar premixed combustion,
including flame stabilisation mechanisms as well as chemically and hydrodynamically
controlled extinction limits. The investigation of bunsen flame structures may also yield
useful information to derive new, and improve current, premixed turbulent combustion
models.

Despite the extensive progress witnessed over the last few years in computer
technology, bunsen flame simulation still remains an extremely challenging task, especially
when detailed chemistry modelling is taken into account. Computational difficulties
stem from the disparity of time and space scales to be resolved and from the nonlinear
couplings present in the governing equations. It is therefore critical to design reliable
and efficient numerical methods that may achieve a prescribed level of accuracy at the
lowest computational costs. A first important step in this direction is to optimise discrete
degrees of freedom by using locally refined meshes. When the governing equations are
discretised by finite difference methods, hierarchical meshes must be employed. Although
hierarchical meshes offer some advantages, such as the possibility to construct smoothing
operators within multigrid methods, fully unstructured meshes are particularly attractive
because of their simplicity due to the absence of hanging nodes and their flexibility in
handling complex geometries. Numerical methods well suited to fully unstructured meshes
are finite element and finite volume methods.

In order to further reduce flame simulation costs, a highly desirable feature of a
numerical method is its ability to provide a quantitative assessment of the computational
error in the form of local error indicators. Such indicators provide information on the
nature of the discrete solution and may therefore be used to construct adaptively refined
meshes. A first strategy to design error indicators consists in using local estimates of the
gradient and curvature of the numerical solution. Application to combustion problems
includes [1, 2, 3, 4, 5, 6, 7, 8]. However, such error indicators lack theoretical justification
as soon as the problem is not single-component and diffusion dominated. In bunsen
flame simulations, error propagation due to convective transport and complex chemistry
couplings is extremely important and must therefore be accounted for. Another drawback
of local gradient and curvature indicators is that they do not provide a quantitative
assessment of the actual numerical error. Such estimates are crucial in driving approximate
solutions towards convergence. Moreover, they may also provide general guidelines to
calibrate experimental measurements which are also subject to uncertainties, especially if
minor species are measured.

An interesting approach towards adaptive mesh generation with quantitative error
control has been developed recently in the framework of finite element methods and optimal
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control techniques [9]. The dual weighted residual (DWR) method provides an estimate for
a user specified functional of the error in terms of residuals, defined as the finite element
solution re-injected into the governing equations, weighted by coefficients depending on
the solution of a linearised dual problem. The dual weights account for convective error
propagation and also contain the information relative to complex chemistry couplings at the
flame front. The DWR method is particularly attractive because it yields a quantitative
error estimate that may be split into elementwise contributions and subsequently used
to generate an adaptively refined mesh. Applications to combustion problems include
premixed flames in hot wall tubes and periodic slot burners with detailed chemistry [10, 11]
as well as axisymmetric jet flames with simple chemistry [12].

The goal of the present paper is to derive a finite element method with adaptive
mesh generation based on the DWR method to simulate laminar bunsen flames. From
a computational viewpoint, one novelty of the present work is that the governing
equations are discretised on unstructured triangulations, as opposed to previous work where
hierarchical rectangular meshes were considered [11, 12]. From a physical viewpoint, this
work is the first application of the DWR method to bunsen flames with detailed chemistry
and transport. Our physical model indeed incorporates both complex chemical kinetics and
detailed multicomponent transport algorithms, including non-diagonal molecular diffusion
and thermal diffusion. In order to evaluate the usefulness of the proposed methodology
for bunsen flame simulation, two series of results are investigated for rich and lean Hy/Air
bunsen flames. We first assess numerical errors on a series of adaptively refined meshes
corresponding to various error output functional. We then investigate the impact of
injection velocities on bunsen flame shape.

The paper is organised as follows. The equations governing laminar bunsen flames are
presented in Section 2. Numerical methods are described in Section 3. Section 4 contains
our numerical results. Conclusions are drawn in Section 5.

2. Physical modelling

This section specifies our physical model for laminar bunsen flames, including conservation
equations, complex chemistry with finite rate kinetics, multicomponent transport
algorithms and boundary conditions.

2.1. Conservation equations

The equations governing laminar bunsen flames express the conservation of species mass,
momentum and energy. These equations are considered here in their axisymmetric and
steady form. Furthermore, since the flow velocities are significantly smaller than the sound
speed, we shall use the isobaric (or low Mach) flame approximation and split the pressure
into a spatially varying hydrodynamic pressure p plus a constant thermodynamic pressure
po in such a way that the ratio p/py scales as the square of the Mach number [13, 14].
Letting ns be the number of species in the mixture, one may choose for the dependent
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unknowns the (ns + 4)-vector u with components

u:(pavT7UZ7T7y17"'7yns>7 (1)

where v, and v, denote respectively the radial and axial velocity components, 7" the
temperature and ¥y, ..., y,s the species mass fractions.
The governing equations may be written in the general form

1

Liw) = Fo) + 0.0 F (W) + 0(Fi(w) =0,  1<i<ns+d, ()
where 0, and 0. denote differentiation with respect to the radial coordinate r and the axial
coordinate z respectively. The zero-order fluxes F°(u) are given by
vy + 0.v, + %= + % (0:0rp + v,0.p)
P(U : a)vr - g - %g(arvr + azvz + UTT) + 27%'07"
Fou)= | plv-8)v. + pg , (3)
pcp(v-0)T — wr

p(v - 9)y; — wi
where p denotes the density given by the ideal gas law
Pom

pP= RT (4)
In the above equations, m is the mean molecular mass of the mixture, R the universal gas
constant, v - 0 = v,.0, + v,0, the convective derivative, g > 0 the gravity constant, c, the
specific, constant pressure heat capacity of the mixture, wy the enthalpy production rate
and w; the mass production rate of the ith species. The first-order radial and axial fluxes
F"(u) and F*(u) may be expressed as

0

—200,v, + p + 20(d, v, + D.v. + %)
F'(uw) =1 —n(0v: + 0.v;) : (5)
qr
i

and
0

—1(0pv. + 0:v;)
Fiu) = | —200.v. +p+ 3n(0or + v + ) |, (6)
g

Jiz

where 7 is the shear viscosity, ¢ = (g, q.) the thermal part of the heat flux vector and

fi = (fir, fi-) the mass diffusion flux of the ith species. The enthalpy production rate is
given by

wp = — Z hiw; — Z Cp,z‘(fm@rT + fLZ&ZT) ’ (7)
i=1 i=1
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where h; is the specific enthalpy of the ith species and ¢, ; its specific, constant pressure heat
capacity. Because of overall mass conservation, the governing equation for the last chemical

ns

species (typically a dilutant such as Ny) is actually written as Lpsqa(u) :== > 52, y; — 1.

2.2. Thermochemistry

Thermochemistry properties are computed using vectorised and highly optimised versions
of the Chemkin package [15]. The species specific enthalpies and constant pressure
heat capacities are evaluated as a function of the temperature using polynomial fits
with tabulated coefficients. The species production rates result from a complex reaction
mechanism and may be expressed as

nr ns yf ns b
c=mi Y (v =) Ko TTe = Ko [T ) ®)
j=1 j=1

r=1
where m; is the molecular mass of the ith species, nr the number of elementary reactions,
Vf:, and 1. are respectively the forward and backward stoichiometric coefficient for the
ith species in the rth elementary reaction, Ky, and K, respectively the forward and
backward reaction constant for the rth elementary reaction and c; the concentration of the
jth chemical species. The forward reaction constant K, is evaluated as a function of the
temperature using a modified Arrhenius expression. The backward constant is recovered
from the relation K,, = Ky,/K., where K., is the equilibrium constant given by the
thermodynamics. In our simulations, we consider a reaction mechanism involving ns = 9
species Hy, O2, H,O, H, O, OH, HO,, HyO5, and N, participating in nr = 19 elementary
reactions [16].

2.3. Multicomponent transport algorithms

From the kinetic theory of dilute polyatomic gas mixtures and the first-order Enskog-
Chapman expansion, the fluxes expressing multicomponent transport of species mass,
momentum and energy take on the form [17]

( ns
fi = =Y pyiDy(0z; + 2;%,;010gT), 1 <i<ns,
j=1
S = —2ne+ Intr(e)l, (9)
- ns & |
q = A8T+RTijfj,
\ Jj=1
where z; is the mole fraction of the jth species, 0 = (0,,0,) the gradient operator,
D = (Dij)i1<ij<ns the multicomponent diffusion matrix, X = (X;)i<j<ns the rescaled
thermal diffusion ratios, € the strain tensor given by
0y, 0 %(&mz + 0,v,)
€= 0 - 0 , (10)

%(&vz +0.v.) 0 0,v,
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and A the thermal conductivity. For the sake of simplicity, the viscous tensor S has already
been eliminated from the physical fluxes (3)—(5). The multicomponent diffusion matrix D
is symmetric positive semidefinite with kernel spanned by the vector (yi,...,yns) and the

rescaled thermal diffusion ratios are such that > ", x;X; = 0. As a result, the species

diffusion fluxes are compatible with the overall mass conservation constraint

ij:o. (11)

Non-diagonal molecular diffusion and thermal diffusion are accounted for in the
multicomponent fluxes (9) because these effects often have a sizeable impact on laminar
and turbulent Hy /Air flame structures [18, 19, 20].

The multicomponent transport coefficients D, X, A and 1 depend on the temperature
and the species mass fractions. In the framework of the kinetic theory of gases, these
coefficients may be expressed in terms of the solution of constrained singular linear
systems. The mathematical structure of these systems has been investigated in [17, 21].
In particular, the transport coefficients can be expanded as convergent series whence cost-
effective, accurate approximate expressions are derived by truncation [22|. Optimised
transport algorithms for flame codes are implemented in [23]. We may evaluate the
shear viscosity by performing one conjugate gradient iteration on the usual transport
linear system of size ns preconditioned by its diagonal. The resulting expression is more
accurate and less computationally expensive than the empirical Wilke approximation. The
thermal conductivity and the rescaled thermal diffusion ratios may be evaluated from a
linear system of size ns. This system, based upon a reduced expansion basis for the
species perturbed distribution functions, is half the size of the classical linear system
usually considered in the literature. Three conjugate gradient iterations with diagonal
preconditioning are performed to evaluate A and Y. Finally, the species mass diffusion
fluxes are evaluated from the Stefan-Maxwell-Boltzmann equations. The associated system
matrix is symmetric positive semidefinite and of size ns. A symmetric positive definite
matrix may be easily constructed upon adding a symmetric rank-one perturbation. Let
A be the matrix with coefficients A;; = —z;2;/D;;, for 1 < 4,5 < ns and ¢ # j, and
Ay == j»i Dij where D;; is the binary diffusion coefficient for species pair (1,7). Let
Y = (y1,--.,Yns) be the mass fraction vector and let d = (dy,...,d,s) be the vector with
components d; = dx; + z;X;0logT. The positive definite version of the Stefan-Maxwell-
Boltzmann equations we consider may be written as: seek ( € R™ such that

A+YQY)(=—-d, (12)

and the species mass diffusion fluxes are then given by f; = py;(;. They satisfy the
constraint (11) by construction.

2.4. Boundary conditions

The governing equations discussed in the previous sections are posed on a computational
domain € which in our simulations will be a rectangular domain [0, L,] x [0, L,]. The
boundary 0f2 is split into its 4 sides numbered clockwise, with 92; denoting the axis of
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symmetry (r = 0), 9§, the outflow boundary (z = L.), 093 the far field (r = L,) and 09y
the inflow boundary (z = 0). The physical configuration is depicted in figure 1.

C\
T
air coflow air coflow

HQ/AiI'

Figure 1. Physical configuration for the axisymmetric bunsen flame problem (not in
scale)

The governing equations are closed by the following boundary conditions:

e axis of symmetry

op=0, v.=0, 0wvw,=0, 0,T=0, 0uy;=0, (13)
e outflow

p=0, v.=0, Oduv, =0, 0,T=0, 0u,=0, (14)
o far field

op=0, v.,=0, Ow,=0, 0,T=0, 0y =0, (15)
e inflow

pl(r) v (r) (yi — yd(r)) + fi. = 0, (16)

where the superscript ¢ indicates prescribed values.

{vr:O, v, =vir), T=T%,

The premixed fresh gas mixture is injected through a tube with inner radius r; = 2 mm
and outer radius r, = 2.5 mm. Both the burner flow and the air coflow are of plug type
with exponential boundary layer

up(1 — exp((r —1;)/9) r<r;,
vi(r)y=< 0 ri<r<r,, (17)
ve(1 —exp((r, — r)/0) ro <1,
and gradient parameter 6 = 0.5 mm. The burner lips, the fresh mixture flow and the air
coflow are kept at a temperature of 7¢ = 300 K.

3. Numerical methods

This section describes the numerical methods considered in this paper: the finite element
discretisation of the governing equations, the a posteriori error estimate based on the dual
weighted residual method and the algorithmic aspects related to adaptive grid generation.
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3.1. Finite element discretisation

Let 7 be a triangulation (with no hanging nodes) of the computational domain 2. Let P!
be the conforming finite element space with linear trial functions given by

Pl = { 6 € C°[Q), VK € T, ¢ € P* } (18)

where P! is the set of polynomials of degree < 1. Set also P!y ={ ¢ € P}, $jogo =0 } and
f0r1§l§4’ Pcl,l:{(bepcl7 ¢|Bﬂl:0}

We seek for a discrete solution u, = (Ps, Vrss Vax, Toy Ytny - - 5 5 Unsx) € ul + V where
d

*

u? accounts for non-homogeneous Dirichlet boundary conditions, that is velocity and

temperature at inflow, and

V=P, xPlyxPlyx P x(P)". (19)
In the Galerkin formulation, the approximate solution w, is required to satisfy the discrete
equations

\V/QS: (¢17"'7¢n5+4) €V7 a(u*,gb) :Oa (20)
where

CL(U,*; (b) = Z?:sirél fQ f;o(u*) : (bl rdrdz
— S F(w) - Oy rdrdz — [ FE(w,) - Oudirdrdz (21)

+ 302 Joa, PN Wi — Y para rdl.
The form a is nonlinear in u, but linear in ¢.

Some additional terms must be added to the form a in order to stabilise the Galerkin
finite element formulation (20). The stabilisation is designed to match the following targets:

e least-squares control of streamline derivatives for velocity components, temperature
and species mass fractions |24, 25, 26];

e least-squares control of hydrodynamic pressure gradient and of continuity equation
[27, 28];

e high-order shock capturing term to control spurious oscillations near sharp fronts [29].

In order to write the stabilisation terms, it is convenient to introduce the following
numerical parameters

(8= (Br,8:) = (0xVrs, psv24) , gt = (B, =Br), Bl = (53 + 53)1/27

176 B\ s
sd = =\| 7= R R :1 ,
Osd 2<h2+h> o=10 (22)
Sea = 0401264,

\ Odiv = 4h|5‘ ’

where p, is the density evaluated from the approximate solution w,. All the numerical
parameters in (22) are computed locally in each triangle K € T at the centre of gravity.
Because the Prandtl number and the species Lewis numbers are not significantly different
from unity, the same reference diffusion coefficient o is used for momentum, energy and
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species mass. This approximation improves significantly the conditioning of the Jacobian
matrices that are considered when solving the discrete equations while keeping the correct
asymptotic behaviour for the streamline diffusion coefficient 4.

The stabilisation form may be expressed locally over a triangle K € 7 as

bK u*, fK ns+3 5sd£z(u*) (ﬁ : 8¢Z) rdrdz

+ fyc B (Ez(u*)(ﬁ D62+ 0,00) + La(w.) (8- 06 + 0un) ) rdrd

i O La(w) (D02 + £ + 0. + 520,04 + $20.61) rdrd: (23)
Syt (B% D) (5 905) (5 D2) (5 994))
# fie8ea (85 OT)(B - 000) + XI5 (85 0yi) (B - 09u)) .

The first two lines in the r.h.s. of (23), which correspond to the streamline diffusion method
and the least-squares control of the hydrodynamic pressure gradient, have been considered
in a wide range of applications involving convection-dominated flows or pressure-velocity
instabilities due to the same order of discretisation for both variables. The third line yields
a least-squares control of the low-Mach continuity equation and is introduced in this work
as an extension of the stabilisation terms usually considered for incompressible flows. The
last two lines are high-order, shock capturing terms whose function is to help preserve mass
fraction positivity in the vicinity of sharp fronts. Note that only crosswind diffusion terms
are considered.

Since the residuals of the governing equations £;(u,) are evaluated elementwise and
the approximate solution u, is linear in each triangle, second derivatives due to diffusion
fluxes vanish identically. A further simplification is introduced by neglecting the spatial
derivatives of multicomponent transport coefficients in the local residuals. We thus consider
local stabilisation terms by (u,; ¢) obtained from (23) upon substituting the residuals £;(u,)
by the local residuals R;(u,) given by

([ Ri(uy) = 00, + 0,0, + o % (0:0rp + v,0.p)
Ra(u) = plo- vy +Op — 4200, — )
Rs(us) = p(v - O)v. + azp +pg — 20, + 50.0,) (24)
Ra(us) = pep(v- )T + &= — wr
[ Ravi(us) = p(v- )y + f'r’"" —wj

the r.h.s. being evaluated using the approximate solution wu,. The stabilised FEM
formulation then consists in seeking u, € uo + V such that

Vo €V, a(uy; @ +ZbK (us; ) = 0. (25)
KeT
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3.2. A posteriori error estimation

Let e = (eq, ..., €ns14) be the error with components e; = u; — uy;, 1 < i < ns+ 4. Given
a function 1) € L?(2)"™ our goal is to estimate the error output measure

J(e) = /Q(w -e)rdrdz, (26)

in terms of computable quantities, i.e., only depending on the data, the mesh and the
approximate solution. For instance, the functional 7 may be of the form

Tmw(€) = ﬁ / em rdrdz , (27)

where m denotes a solution component with 1 < m < ns + 4, w a subdomain of the
computational domain 2 and |w| its measure. In this way, one controls the average error
on a given solution component and over a specified region of the flow. The subdomain w
may typically cover the flame front or follow a line along which experimental measurements
are made.
An a posteriori estimate of the quantity 7 (e) may be derived in the framework of the
dual weighted residual method. The estimate takes on the form
)<Y g, (28)
KeT,

where we have introduced the local error indicators
ns+4

Nk = Z TKiWK,i - (29)
i=1
Here, the quantities rx ; are finite element residuals given by

1
rics = hacll L)l + ghi N FD) -l (30)

where hy is the diameter of K, 0K its boundary, n its outward normal and [(F], F?) - n]
the jump of the normal diffusion fluxes across 0K in the direction of n. The quantities
wg; are weights evaluated from the solution of the linearised dual problem: seek &, € V
such that

Vo eV,  d(uid &)+ Y Vielu b, &) = T(9), (31)

KeT
where a'(u,; ¢, ) is the Gateaux derivative of a in the direction of ¢ evaluated at u, and a
similar notation is used for g}(
In practice, the finite element residuals 7k ; are approximated as follows

1/2 1 1/2 8 2
T'Ki= h%{ﬁé([()‘RiW*”G(m + 2 Z hKT|G/’(K)H(fi S F7) ]l (32)
ecOK
where G(K) is the centre of gravity of K. Furthermore, the weights wy ; are approximated

as

Wk, = h%(T};/(i()D%(f*i , (33)
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where D%.£,; is a local upper bound to the second derivatives of &,;. On unstructured
meshes, this approximation is computed using a patch of elements around each triangle K.
Let 7; be the set of triangles in 7 containing vertex j. Let s, be the smoothing operator

nno

s.:0€P' > s.0=Y ¢N;€P!, (34)
j=1
where P is the space of piecewise constant functions and
’ ZKeTj |K| ’

where | K| is the measure of K. Second derivatives are then approximated by differentiating
the local P! reconstruction of the first-order derivatives of &,;, yielding the expression

rr ZZ 1 Tz AN 1
D} & :maXO ®&xil, | Kg*i‘ui‘ 7 Swi t Ké*i|7—|87’§*i\K‘>7 (36)
TG(K)

where §9°¢,; = 0a(5:0884i) i for a, B € {r, 2 }.

3.8. Adaptive mesh refinement

The meshes considered in this work are fully unstructured, quasi-Delaunay triangulations
generated from the procedure described in [30]. The mesh generator uses two input files:
the first one specifies the trace of the mesh on the boundary 0f) and is referred to as the
boundary mesh file. The second one specifies the desired mesh size around a set of points
inside €2 and is referred to as the background mesh file.

The core of the adaptive mesh refinement procedure is to create boundary and
background mesh files from the information provided by the local error indicators 7.
The adaptive algorithm involves three steps:

(i) compute desired mesh sizes

Wi = f(nr)hx (37)

where for instance, f(nx) = 3 if nx < TOL and f(nx) = 1 otherwise. The function f
may also take values larger than 1 for very small 7 in order to allow for local mesh
coarsening. An error balancing method is employed in which the tolerance TOL is
evaluated as follows 11

TOL = ——
2nt MK
KeT

where nt is the number of triangles in the current mesh;

(ii) the boundary mesh file is determined directly from the quantities /) using the triangles
having at least an edge located on 0f);

(iii) the background mesh file is also directly generated from the provisional A}’s. In
order to avoid excessive specifications in this file, a layering algorithm is employed in
which the desired mesh size of a given triangle is written to the background mesh file
only if its value is sufficiently different from that of the neighbouring elements. The
fluctuation test is for instance |log(h'y, /R’ )| > logy with parameter v = 1.5.
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3.4. Numerical solution methodology

The discrete equations (25) are conveniently recast into a system of nonlinear equations
upon introducing the decomposition

nno

U*ZZZUz,ija 1§Z§TLS+4, (38)
j=1

where nno is the number of mesh vertices (including boundary ones) and N; the Lagrange
nodal basis function associated with vertex j, 1 < 7 < nno. For 1 < i < ns+ 4 and
1 < j < nno, let ¢;; € V be the test function with components (0;zV;)1<k<ns+a Where
;. is the Kronecker symbol. The discrete unknowns form a vector U € R0 with
components U; ; satisfying the nonlinear discrete equations
Fii(U) = alus; ¢ig) + D bic(us ¢i) = 0. (39)
KeT

The residuals F; ;(U) are evaluated using numerical quadratures with 3 Gauss points
located at midpoints of triangle edges.

The residual equations (39) are written in vector form F(U) = 0 and an approximate
solution is obtained using a damped Newton’s method. Given an initial guess U°, the
damped Newton’s method yields the sequence of iterates

Oy F(UR) (T — UR) = —o*F(U*), (40)

where Oy F(U*) is the Jacobian matrix of F' evaluated at U*, U™ the provisional Newton

iterate at the (k + 1)st iteration and o* the damping parameter. The Newton iterate U*+!
is then evaluated from U using a projection on the cone A of positive mass fractions.
Convergence of Newton’s method is achieved when the norm of the update vector U*+1 —U*
is brought below a prescribed tolerance, typically 10~%. The projection on A is compatible
with the convergence of Newton’s method only if its numerical convergence domain is
sufficiently close to A. This is indeed the case in our computations thanks to the shock
capturing terms used to stabilise the Galerkin formulation.

At each Newton step (40), the Jacobian matrix is assembled from perturbed residual
evaluations and the linear system is solved approximately using a preconditioned Krylov
iterative solver, typically BICGStab with Gauss-Seidel preconditioner blocked at node level.
The efficiency of the preconditioner may be enhanced by an appropriate renumbering of
the mesh nodes according to the flow streamlines. Convergence is achieved when the
relative linear residual has been brought below a prescribed tolerance, typically 1077.
Because the source terms present in the local residuals (24) have a significant impact on
the conditioning of the Jacobian matrix, it is more efficient to consider on coarse meshes
a first-order streamline diffusion method in which the local species residuals only contain
the convective-diffusive contribution. On fine meshes where convective-diffusive-reactive
effects are adequately resolved at the flame front, the high-order expressions (24) may be
used. This point will be further discussed below.

Once convergence has been achieved on a given mesh, an a posteriori estimate of the
numerical error is evaluated and the local error indicators 7y given by (29) are used to
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construct a new, adaptively refined, unstructured mesh. While the finite element residuals
T may be readily evaluated, the computation of the weights wg ; requires the solution of
the following linearised dual problem: seek X € R(st4)*mno gt

OFT - X =1, (41)

where Oy FT denotes the transpose of the last Jacobian used in the damped Newton’s
method and where the r.h.s. ¥ € R®stmno hag components U, ; = J(¢;;) for
1 <71 <ns+4and 1 < j < nno. The nodal values of the dual solution &, are then
directly recovered from the components of the vector X. Note that the computational
effort to solve (41) is much lower than that required to obtain the discrete solution U.

4. Numerical results

In this section we discuss our numerical results. We first investigate the numerical
performance of the adaptive grid refinement methodology. Numerical errors corresponding
to various output functionals are assessed on a sequence of adaptively refined, unstructured
triangulations. The reference flame problem consists of a rich bunsen flame structure. We
then study the influence of injection velocity profiles on rich bunsen flame shapes. Finally,
we investigate a lean bunsen flame structure.

4.1. Evaluation of the adaptive methodology

We evaluate the adaptive methodology on a rich bunsen flame. The fresh Hy/Air mixture
contains 75% hydrogen and 5.2% oxygen in mole fraction, corresponding to an equivalence
ratio of 7.2. Injection velocities are given by v, = v. = 120 cm/s. Figure 2 presents
isotherms and mole fraction isocontours for species H, OH and HO,. The computational
domain, as in all subsequent simulations, has dimensions L, = 1.5 and L, = 25 cm. We
observe a cold dark zone circumscribed by the conically shaped premixed flame front.
Although the temperature peaks at the cone tip located on the symmetry axis, its value
remains nearly constant along the cone vertex, in agreement with the Clavin and Williams
theory since the overall Lewis number for oxygen is about unity [31]. The flame length,
defined from the point on the symmetry axis where the temperature reaches its maximum,
is 1.26 cm and the flame lift-off, defined as the lowest z for which the temperature is above
1000 K is 0.11 mm. Most of the hydrogen is not consumed at the premixed flame front,
but diffuses radially to create an outer diffusion flame where it burns with the oxygen
supplied by the air coflow. This phenomenon is clearly visible in the H and OH mole
fraction isocontours.

We investigate 4 strategies for adaptive error control based on functionals of the type
(27) and illustrated in figure 3. We propose to control errors on either the temperature over
subdomain [0, 0.66] x [0, 1.5], or the H mole fraction over subdomain [0, 0.5] x [0.19, 0.21],
or the OH mole fraction over subdomain [0.25,0.35] x [0, 1.5] or the HO, mole fraction
over subdomain [0,0.4] x [0,0.2] (units in cm). In all cases, the adaptive procedure is
started with an initial coarse unstructured triangulation containing 1599 nodes and 2954
elements (see figure 3). This mesh is constructed with very little a priori knowledge on
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Figure 2. From left to right: isotherms and mole fraction isocontours for species H , OH
and HOs; rich bunsen flame; peak values are respectively 2038 K, 1.74e-2, 1.07e-2 and
4.39e-4; the plotting domain is [0,1.5] x [0, 2] in cm
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Figure 3. Ilustration (not in scale) of the four numerical strategies for adaptive error
control and initial coarse triangulation

the flame structure. In the boundary mesh file, we simply set h to 0.05 mm at the burner
lip, to 0.3 mm at the lower left corner and to 4 mm at the upper and right boundaries.
The background mesh file further imposes a desired mesh size of h = 0.4 mm at points
(0.2,0.8) and (0.3,1) cm inside the computational domain. Four levels of refinement are
then adaptively constructed by using the error functionals depicted in figure 3. Numerical
results are summarised in table 1.

T H OH HO,
level nodes error nodes error nodes error nodes error
0 1599  1.22e-1 1599 9.35e-5 1599 1.91e-3 1599 1.30e-4
1 2826  5.55e-2 2511 4.66e-5 2800 8.82e-4 1891 3.79%e-5
2 5948  2.76e-2 4687 2.33e-5 6056 4.37e-4 2771 1.25e-5
3 13987 1.40e-2 10390 1.23e-5b 14844 2.34e-4 4996 4.66e-6
4 34577 7.60e-3 25387 6.73e-6 37540 1.33e-4 11638 2.14e-6

Table 1. Number of nodes of adaptively generated, unstructured meshes and a posteriori
error estimates based on four different strategies for error control
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Thanks to the error balancing method, the number of nodes is increased progressively
from one mesh to the next finer one. The ratio in the number of nodes on subsequent
triangulations generally ranges between two and three. This ratio can be compared to the
one obtained by uniform refinement of structured meshes, namely 4. The error estimates
decrease steadily and are brought down to levels compatible with the Newton tolerance
within four adaptive refinement steps. Letting nno; denote the number of nodes in the mesh
at refinement level [, 0 <[ < 4, and err; the corresponding estimated error, a convergence
order ¢ may be evaluated from the expression

_ log(erri_1/erm)

~ log(nnoy/nnoi_,) (42)
For linear finite elements stabilised by the streamline diffusion method, a convergence
order o = % is expected for the error in the L?-norm. Provided the dual problem is solved
with sufficient accuracy, the same order should be in principle observed for a posteriori
estimates of functionals averaging the error over a subdomain. Convergence orders observed
numerically are reported in table 2 for the various functionals. For all functionals, super-
convergence is observed on the coarser meshes as a result of simultaneous improvement
of primal and dual resolution as the mesh is adaptively refined. On the finer meshes, the

convergence order is close to the value expected theoretically.

level 1 2 3 4

T 1.39 0.94 0.79 0.67
H 1.54 1.11 0.80 0.68
OH 1.37 0.91 0.70 0.60
HO, 7.37 2.90 1.67 0.92

Table 2. Convergence orders observed numerically for error functionals controlling either
the temperature or the H, OH or HO5 mole fraction

Figure 4 presents the adaptive, unstructured meshes generated at level [ = 2 for the
four functionals. We observe that local mesh refinement occurs at quite different locations
depending on the targeted solution component. For error control on the temperature
over the whole flame, mesh refinement occurs above the burner lips, inside the premixed
cone vertex and along the trailing diffusion flame. The adaptive mesh based on error
control for the OH mole fraction has a comparable number of nodes because this radical
is very sensitive to the temperature profile. The adaptive mesh for H error control is
substantially different from the previous two triangulations and also from the shape of the
H mole fraction isocontours. Indeed, because of multicomponent chemistry couplings, the
accuracy achieved for the H mole fraction strongly depends on the resolution of various
radical profiles inside the premixed cone vertex. This information is indeed captured by
solving the dual problem, but not if local solution residuals were used solely. The adaptive
mesh based on HO, error control concentrates most of its degrees of freedom above the
burner lips and in the upstream part of the cone vertex and the trailing diffusion flame.
Further downstream, the HO, radical is consumed and a coarser mesh may be used. To
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Figure 4. Unstructured meshes generated after the second adaptive refinement step;
from left to right: temperature, H, OH and HO; error output functionals
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Figure 5. Solution profiles along selected lines as computed during the adaptive process;
from left to right: H mole fraction at z = 2 mm, OH mole fraction at » = 3 mm, HO»
mole fraction at z = 0.5 mm and a zoom of the HO, profile

sum up, we may recommend temperature or OH error control if the target is an accurate
resolution of the overall flame structure. When the goal is to predict concentration of
minor species such as H, significant computational savings may be achieved by using the
appropriate error output functional. Finally, HOy error control appears to be an efficient
strategy for computations where high resolution above the burner lips is required.

Figure 5 presents solution profiles along selected lines as computed during the adaptive
process. For each radical, we compare the profiles obtained using the corresponding error
functional. The improvement in capturing the radical profiles is clearly visible, especially
for HO, where adequate resolution is achieved only at the fourth adaptive refinement step.

As discussed before, the first-order streamline diffusion method has been used in
the above simulations since on coarse meshes, the inclusion of the species source terms
deteriorates the conditioning of the Jacobian matrix. We have verified numerically that
starting from the converged solution with first-order streamline diffusion on the finer
meshes, Newton’s method exhibits a smooth convergence behaviour towards the high-order
solution. The a posteriori error estimates corresponding to both strategies are actually very
close, confirming the adequate resolution of the inner flame structure. For instance, the
error estimate on the temperature is 1.46e-2 K for the converged solution with high-order
streamline diffusion on the third adaptively refined mesh. This value should be compared
with the value of 1.40e-2 K obtained with the first-order method.
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Figure 6. Profiles for various solution components along selected lines; burner and coflow
velocities are varied according to (43); from left to right (top): T along symmetry line, T
at r = 2 mm, Hy mole fraction along symmetry line, Hy mole fraction at z = 0; from left
to right (bottom): H mole fraction along symmetry line, OH mole fraction at » = 3 mm,
OH mole fraction at z = 2 mm and HO5 at z = 0.5 mm

4.2. Impact of injection velocities on flame shapes

In this section we investigate the impact of injection velocities on rich bunsen flame
structures. Numerical simulations are performed on the second, temperature based,
adaptively refined mesh containing 5948 nodes and on which the error on the temperature
is estimated to be 2.76e-2 K. Two experiments are considered. In the first one, both the
burner and the coflow velocities are varied according to

vy = v, € {30,60,90,120, 150, 180, 210 } cm/s. (43)

Figure 6 presents profiles for various solution components along selected lines. We observe
important modifications in the flame length and the species profiles as the injection
velocities are increased. For injection velocities lower than 90 cm/s, the premixed flame
front is located very near the inflow boundary z = 0 and the Hy mole fraction does not reach
the value supplied by the fresh gas mixture. This phenomenon, due to upstream diffusion
of intermediate species, is accounted for thanks to the inflow boundary condition (16). The
peak value reached by radicals such as H, O and HO, is also significantly modified by the
injection velocities (peak values increase with v, and v.). The most important changes
are observed for the H profile along the symmetry line where changes by a factor of 4 are
obtained.

In our second experiment, we consider the following values for the injection velocities

vy =120cm/s, v, € {30,60,90,120 } cm/s. (44)

Figure 7 presents profiles for various solution components along selected lines. We observe
that the temperature along the symmetry axis is not significantly modified. However, as
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Figure 7. Profiles for various solution components along selected lines; burner and coflow
velocities are varied according to (44); from left to right: T along symmetry line, T at
r =2 mm, OH mole fraction at z = 2 mm and HO; at z = 0.5 mm

Figure 8. From left to right: isotherms and mole fraction isocontours for species H, OH
and HO; ; lean bunsen flame; peak values are respectively 1718 K, 9.86e-3, 6.95e-2 and
4.10e-4; the plotting domain is [0,0.7] x [0,0.7] cm

the coflow velocity is decreased, the flame front extends more outwards radially and the
radical profiles are shifted accordingly. Peak values of OH and HO, profiles decrease when
v, is diminished but the changes are less important than in the previous experiment. All
the flame structures presented in this section have been obtained using a straightforward
continuation procedure. Four to five steady Newton iterations were sufficient to achieve
convergence from one flame structure to the next one.

4.8. A lean bunsen flame structure

In this section we investigate a lean bunsen flame structure. The fresh Hy/Air mixture
contains 20% hydrogen and 16.8% oxygen in mole fraction, corresponding to an equivalence
ratio of 0.595. Injection velocities are set to v, = v. = 160 cm/s. Figure 8 presents
isotherms and mole fraction isocontours for species H, OH and HO,. The maximum
temperature is not reached on the axis, a phenomenon attributable to the overall Lewis
number of hydrogen which is lower than one [31]. Mole fractions for H and OH peak slightly
upstream of the premixed flame front. The HO, radical is present along the bunsen cone
vertex, but also above the tube lip where outward diffusion of Hy results in the formation
of a small diffusion flame.

The present flame structure has been computed after four adaptive refinement steps
starting with an initial mesh containing 2025 nodes. For the adaptive procedure, we
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Figure 9. Adaptively refined, unstructured meshes based on temperature error control;
lean bunsen flame

considered temperature error control over the same domain as for the rich flames. Figure 9,
which presents the initial and the following three adaptive meshes, illustrates how the
resolution of the flame front is steadily improved. A posteriori error estimates along with
convergence orders are reported in table 3. As for the rich flame case, slightly super-
convergence results are observed on coarser meshes.

level 0 1 2 3 4
nodes 2025 3075 6207 13966 35216
error 2.03e-2 1.17e-2 7.12e-3 3.60e-3 2.11e-3
o - 1.22 0.75 0.83 0.58

Table 3. Number of nodes, a posteriori error estimates and convergence orders o observed
numerically in the lean bunsen flame simulation

5. Conclusions

In this work, we have evaluated the numerical efficiency of stabilised finite element
methods on adaptively refined, unstructured meshes to simulate Hy /Air bunsen flames with
detailed chemistry and multicomponent transport. We have considered rich and lean flame
structures with varying injection velocities. Our numerical results show that the streamline
diffusion method alone can not cope efficiently with the nonlinear instabilities present
in reactive fronts. Appropriate modifications include shock capturing terms ensuring
positivity of the species mass fractions and first-order modifications of the method on coarse
meshes. Furthermore, our numerical results show that the dual weighted residual method
yields a very powerful and flexible tool to drive numerical solutions towards convergence
by controlling user specified functionals of the numerical error. As such, the method is
particularly attractive to be used in conjunction with experimental measurements and
provides an efficient means to optimise the degrees of freedom required in simulation of
bunsen flames.
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