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Abstract

We investigate mathematically a minimization problem issued from computa-
tional chemistry, and known as the Optimal Effective Potentiel (OEP) problem.
We propose a weak formulation of the problem, that we show to be well-posed in a
simple case, and we address various related questions.
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1 Motivation

One of the central issues of computational quantum chemistry (see e.g. [1] for an introduc-
tion) is the determination of the electronic ground state of a molecular system consisting
of K nuclei and N electrons. Denoting by z; the charge of the k-th nucleus and by Zy its
position in space, this determination basically consists in finding the state ¥ minimizing

inf {(HyW, ¥), @ e LZ(R™), || p2gsv) =1} (1)
where the Hamiltonian Hy is given by
1
=2 A ( )+ ¥ ®)
(Y)Y ot

and acts on the position x; of each of the N electrons. In (1), the minimization runs over
all antisymmetric functions of 3N variables (thus the subscript a). For simplicity, the
functions are assumed to be real-valued and the spin variable is not accounted for in this
presentation. Due to the large size of L2(IR*") for physically relevant values of N, it is
not possible to directly attack problem (1) and the common practice is to make use of
approximations of this problem. One of the most commonly used approximations is the
Hartree-Fock approximation (obtained by restricting the minimization in (1) to U that
are normalized determinants of N functions) and reads:

IHF :inf{EHF(¢1,...,¢N),/ bid; =05, 1<i,j <N, ¢; € H(R*)}  (3)
R3

where
1 N N
E"(g1,...,¢n) = §Z/S|v¢i|2—2/s(z‘x )w

v g [ S iy [ [ ey
(R3)2 va—y\ Ry |7y

and p(z,y) = Z¢Z ) = p(z, ) Z|¢z

The Hartree- Fock equations are the Euler- Lagrange equations associated to this mini-
mization problem. Up to an orthogonal transform, it can be shown that they read:

Flpr,pm)Pi = —€ithi, (5)

where the ¢; are real eigenvalues and Fig, . 4y) is the so-called Fock Hamiltonian
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F(¢1,---,¢N)¢ = __A¢ Z|



Equation (5) appears as a nonlinear eigenvalue problem involving the Fock operator
Fi,,...6x), Which is nonlocal, because of the last term in (6). It is easily understand-
able that, from the computational viewpoint, constructing the Fock Hamiltonian in a
given basis of discretization for the ¢; is a costly procedure, in particular because of the
nonlocal nature of this operator. As early as in the 1960s (see [7]), the idea has therefore
emerged to ask whether equations (5) could be rewritten as (or at least approximated by)
a system of local equations

(—%A+W)¢i:)\i¢i, i=1,...,N (7)

for some eigenvalues \; and for some multiplicative potential W (independent of the
index 7, but of course possibly dependent of the whole family (¢, ..., #x)), in a suitable
class of regularity (say at least locally integrable functions). Consequently, the following
minimization problem has been introduced

Minimize E#* (¢1, ..., ¢n), over the set of functions ¢; that satisfy

the orthonormality constraints of the standard HF problem (3) and

1
in addition that are eigenfunctions of some operator — §A +W (8)

and labelled as the optimized effective potential problem (henceforth abbreviated in OEP
problem). This is to be understood in the sense that one wishes to find the best potential
W so that the energy given by some of its eigenfunctions approaches the infimum (3).

Let us point out that we formulate this problem somewhat vaguely here, for the main
concern of the present work will be to give a rigorous mathematical meaning to the formal
definition (8).

It turns out that the question asked above, that was primarily motivated by considerations
on the computational cost, is indeed related to some theoretical questions from quantum
chemistry dealing with an alternative theory allowing for a simplification of the original
problem (1), namely the Density Functional Theory (see e.g. [1, 2]). Indeed, a better
comprehension of the optimized effective potential problem would give some insight on the
construction of accurate exchange-correlation potential for Kohn-Sham models (see [3, 4]).

As announced, we intend to give here a possible rigorous foundation to the optimized
effective potential problem. As will be seen shortly, our work is a first step, for only very
simple, somewhat academic, cases are addressed. We however believe it provides the main
mathematical arguments and open the way to more thoroughful studies.

2 Setting of the problem and main results

Let us at once make precise that we shall not address the problem of giving a sense to (8)
in the most general context, but that we shall make three simplifying assumptions.

First, we shall consider spinless wavefunctions, as in the above introduction. This sim-
plification is not in fact a limitation, for all the results below can be straigthforwardly
extended to the models accounting for spin which are used in computational chemistry,
such as for instance the restricted Hartree-Fock (RHF) model. It is also to be remarked



that for the sake of simplicity, we have chosen to mainly deal with real valued functions.
When the consideration of complex valued wavefunctions slightly modify the arguments,
we shall indicate it (see in particular Corollary 3.2).

A second simplification we shall make, again for the sake of simplicity, is that we shall only
consider a molecular system containing only two electrons. The consideration of N > 2
electrons does not bring any new qualitative phenomenon, but requires rather tedious
details that we prefer to avoid. Here and there, we shall however make some remarks in
connection with the N > 2 case (see Remarks 2.1 and 2.2).

Contrarily to the first two ones, the third simplification we shall make is restrictive from
the mathematical viewpoint. In order to establish some of our main results, we shall

restrict our attention to the atomic case, which means that there is only one nucleus
K

Z z
of charge Z, located at Z = 0 (and consequently that ﬂ replaces E ﬁ in the
x T — Tg
k=1

energy functional and in the Euler-Lagrange equation), and we shall consider radially
symmetric wavefunctions. This assumption is restrictive both as results and arguments
are concerned. Indeed, spectral theory will play a crucial role in some of our arguments,
and it is a well known fact which will be again illustrated here that spectral theory in
one dimension (as for radially symmetric functions) features very specific behaviours, in
comparison with the situation encountered in dimensions greater than or equal to 2. Like-
wise, our arguments based upon tools of functional analysis will make an extensive use of
the fact that we work in a one dimensional setting. For these reasons, any generalization
of our results to the non radial case is unclear. In some situations (which is the case of
Theorems 4.1 and 4.2 below, and also for Section 5), the same proof and result apply
to the general case where functions are not assumed radially symmetric. On the other
hand, for some other results, the situation is radically different, as suggested by Propo-
sition 3.3 where we give an instance of such a difference with respect to the radial case
(Theorem 3.1). In this respect,let us mention that the optimized effective potential idea
has first arised in a radially symmetric setting [7], and that the consideration of this radial
case is already quite relevant from the standpoint of applications in theoretical chemistry.

Let us now define in detail the objects we shall manipulate throughout this article. We
have already defined the Hartree-Fock minimization problem (3), and the Hartree-Fock
energy functional (4) in the case of N electrons and K nuclei. For clarity, let us restate
them in the restricted case of an atom (K = 1) with N = 2 electrons:

I8 — inf{EHF(¢1,¢2),/ Gid;=0i, 1<i,j <2, ¢; € H(R?)} 9)
R3

where

B = 5 [ Vefeg [ Vak- [ Za- [ Lo

/ /R3)2 ‘f’jx_y‘ aray - | /RS)Z AL
(10)

+

As announced, we shall mainly restrict ourselves to the case when the functions are
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assumed to be radially symmetric and therefore to
M= inf{EHF(¢1,¢2),/ $idj =6, 1 <4,5 <2, ¢; € H (R®)} (11)
RS

where H'(IR?) denotes the set of radially symmetric functions of H'(IR*). Accordingly,
we shall say that (¢1, ¢2) is a solution of the Hartree-Fock equation whenever it satisfies

(o1 Z , 1 1
_%Ad’l - @d’l + (¢35 % @)d’l — (P12 % @)% = —£1¢y,

S —§A¢2 — m@ + (o7 % m)@ — (p102 % m)% = —&909, (12)
/ ip; = 0i5,1 < 4,5 < 2

\ JR3

Most of the time, ¢; and ¢, will be radially symmetric.

Let us also briefly mention the complex valued case, where the Hartree-Fock minimization
problem (possibly for radially symmetric functions, then indicated by the subscript r)
reads

177C = int{B"C (41, o), / $id; =0y, 1<i,j <2, ¢ € H,y(R*,C)}  (13)
R3

1€ = 5 [ 1Velag [ ver- [ Zier- [ Zies
612(2) 00/2(0)
+ //R3 |x—y| dzdy
- [ [, pean,,,
R3)2 |33—Z/‘

(14)
while the Hartree-Fock equations read
1 7z 1 1
—=A¢1 — —d1 4 (|¢o|* *x )1 — (105 % — )2 = —€161,
% Igl |~"f| Irfl
§ —5A¢s — o+ (|61 % — )2 — (@12 x — ) b1 = —e20bs, 15
287 1] )%~ W% 15)
iy = 0ij, 1 < 4,5 < 2.
\ 3

Notation We shall make use of the notation, standard in this context,

[ S,
0= [ Ty 1o

whenever this integral makes sense.



2.1 Definition of the OEP problems

We now wish to suggest a mathematical definition for the optimized effective potential
problem vaguely defined in (8). But before we get to this, we would like to introduce a
variant of (8), namely

Minimize E#¥ (¢y,..., ¢n), over the set of functions ¢; that satisfy

the orthonormality constraints of the standard HF problem (3) and

1
in addition that arethe first IV eigenfunctions of some operator — EA + W.
(17)

The reason why we introduce such a variant is the following. By a result proven in [5], any
N-tuple (¢, ..., ¢n) minimizing the Hartree-Fock energy is a solution of (5) that enjoys
the following property: the ¢; are the first V eigenfunctions of the operator Fy, 4.
Therefore, both for computational reasons (because searching for the first N eigenvalues
of a matrix is a specific problem) and for theoretical purposes, it is natural to introduce
the variant (17). In fact, we shall concentrate most of our attention to this variant, which
is indeed the physically relevant version of the OEP problem, and only consider (8) as a
pedagogic and technical step.

In order to give a sense to (8) or respectively (17), a major obstacle needs to be overcome.
The problem of minimizing upon W is indeed ill-posed, because a control on the mini-
mizing sequences (W,,) is missing in any natural norm. Of course, one could introduce
a penalized formulation of the problem, and we will indeed do so in Section 5 below,
but we prefer to concentrate our efforts on another track. We shall introduce a “weak”
formulation of the problems (see (20) and (26) below), that can be shown to lead to a well
posed mathematical problem, and then check, at least formally, that this weak version
indeed allows to recover the problem in a strong sense. Let us now motivate our choice
for such a weak formulation.

1
Considering two eigenfunctions ¢; and ¢, of a given operator —§A +W

1
—=A¢1 + Wi = A ¢,
—§A</52 + Waos = Moo,

(18)

it is immediate to see that the following condition, henceforth designated as the commu-
tation condition, is fulfilled

G2Ad1 — $1APy = ch10 (19)
with ¢ = 2(A\y— A1). Conversely, if two functions ¢; and ¢, satisfy (19), then they formally

: : A : : c
are eigenfunctions of _iA + W for W = 2—¢1 respectively for the eigenvalues 0 and 7
1
Thus the idea is to introduce the following minimization problem

[OFP = int{E"F (4, ), / bih; = 6 1< ij <2,
R3

¢; € H'(R?), such that for somec € R
P2 Ap1 — p1 APy = ch1¢y in the sense of D'(R?)}, (20)

6



in order to give a proper meaning to (8) in the case of two functions. Of course, an

analogous definition can be set, in an obvious way, for IOFF (radial case). Likewise,
introducing the two conditions

{ P2AP1 — ¢1APy = ch1¢o (21)
P2A¢] — PTAGe = chi o

still for ¢ real, one may define 10EP.C (complex valued case), and IP%" C (radial complex
valued case). In the complex case indeed, two commutation conditions are needed to

A
ensure that the potential W formally defined by W = Wiﬁl is real valued.
1

Remark 2.1 The extension of these definitions to the case of N one-electron wavefunc-
tions (¢1,- -+, on) with (N — 1) conditions of the type (19)

PrAP1 — P1APL = cLP1Px (22)
for 2 < k < N is left to the reader.

One purpose of the present work is to study the well-posedness of problem (20) and to
show it provides a sound mathematical foundation for the vaguely stated problem (8).

In order to now account for the additional condition of being the first N eigenfunctions
as stated in (17), we go one step further. Suppose we have at hand the first eigenfunction
¢1 (for a large class of W it is unique up to a sign) with eigenvalue \; and one of

the second eigenfunctions ¢o (with eigenvalue \y) of some ——A + W, the two of them

forming an orthonormal system. Of course, condition (19) is indeed satisfied with some
¢ =2(Aa — A1) > 0, but we can also assert that

v e DY), [ 6 VP (/ vt -( w¢%)2), (23)
R3 R3 R3
for the same real constant c. Indeed, a simple computation shows that
1 1
3 [ vwoor+ [ v —aywer=3 [ stver
2 R3 R3 2 R3

thus (23) amounts to

(=ga+mns) = [ =L ([ o= ([ 00 (24)

with ¢ = 2(A2 — A1), for any function @ which writes 0 = ¥¢@;. Inequality (24) obviously
holds true, in fact for general 8, because ¢; and ¢ are respectively the first and a second

1
eigenfunction of —§A+ W. In addition, property (24) characterizes ¢; and ¢,, among all
1
eigenfunctions of the operator —§A+W. Indeed, suppose we are given two eigenfunctions

1
¢; and ¢; of _§A + W such that, according to ¢ > 0, A; — A\; > 0, and such that

((—%A+W)0, 0) =i | == A (/RS 6” — (/RS 9@)2)- (25)



Then, (formally) testing this condition on # = ¢;, the first normalized eigenfunction of

1
_§A + W, we obtain

0> — X > (N —\) (1_(/113%@)2)'

Therefore, either ‘/113 ¢1¢i| > 1, 0or A\; = A\; = A, both conditions implying that ¢; is the
first eigenfunction ¢; (up to a sign), and \; = A;. Next, testing condition (25) (again
formally) on any eigenfunction ¢ of —%A + W different from, thus orthogonal to, ¢;, we
obtain

Ak =M >N — Ay,
which asserts that A; is the second eigenvalue )2, and that ¢; is a second eigenfunction.

Conversely, consider functions ¢; and ¢ such that (19) holds. As previously shown,

1 A
they are formally eigenfunctions of some operator _iA + W with W = % The
1
condition ¢ > 0 tells that ¢, is associated to an eigenvalue ¢, greater than (or equal to)
the eigenvalue 0 associated to ¢;. If in addition (23) is satisfied, then it can be written in
the same manner as (24) (with A\; = 0), and the same formal argument as above shows
that ¢, and ¢, are the first two eigenfunctions of the operator.

Of course, all the previous arguments are not rigorous, for in many ocasions we would

need to give a proper meaning to the division by ¢;. Nevertheless, (19), together with

¢ > 0 and (23), appears as a convenient “weak” formulation for the property of being the
1

first two eigenfunctions of some —§A + W. This consequently justifies the introduction

of the problem

JOEP = inf{EHF(¢1,¢2);/ ¢Z¢] = 51] ) 1 S Za] S 27
R3

¢; € H'(R?), such that, for somec > 0 € R,
P2 Ap1 — ¢1 APy = c1¢y in the sense of D'(R?),
and such that

vy € D(R?), /R GV > ¢ (/R ¥ - (/RS w¢%)2)} (26)

as a mathematical formulation of (17). Of course, an analogous definition can be set,

I . oepr,C
again in an obvious way, for JOFF, JOEP’C, and J; )

Remark 2.2 Likewise, the definition of problem (26) can be extended to the case of N
wavefunctions using the (N — 1) conditions (22) together with the (N — 1) inequalities

k

k 2 2
wed®), [ vz e ([ vos) +a (/R w3 ([ vo) )
j=1

j=1

for1 <k <N -1, with ¢c; = 0.



Remark 2.3 It might be useful to remark, and we shall indeed make use of this observa-
tion in some of our arguments, that condition (23) indeed enforces ¢, to satisfy ¢1 =0 or
#? =1 as soon as ¢ > 0. This can indeed easily be proven, letting 1 go to the constant
R3
function 1 over R3.

We shall study to what extent problem (26) provides a rigorous setting for problem (17).

2.2 Main results

We briefly overview here the main results obtained in the present work. We only give
formal statements, postponing the precise statements until the next sections.

First, we investigate the question: can a critical point for the Hartree-Fock energy be a
solution to the OEP problem?

The answer is as follows (Theorem 3.1): in the radial setting, a solution of the Hartree-
Fock equations cannot satisfy a condition of the type ¢poA¢1 — 1 Ads = c1¢po. The results
holds for both real and complex valued functions. Nevertheless, the situation is radically
different when allowing for non radially symmetric functions, as shown in Proposition 3.3.

Secondly, we show that the OEP problems as defined above are well-posed, i.e. that the
infimum is attained. This is the purpose of Theorems 4.1 and 4.2, and their corollaries.
There, the wavefunctions are not restricted to be radially symmetric, and may be either
real valued or complex valued. For the sake of consistency, we also indicate, in Section 5,
that penalized forms of the original OEP problems can be considered and show them to
be well posed.

We finally explain in Section 6 to what extent a minimizer of the problem (26) is solution to
the original OEP problems as vaguely defined in (17). Here, we need to restrict ourselves
to radially symmetric functions (cf. Proposition 6.4).

The remainder of this article is devoted to the detailed proofs of the above statements.

3 Exploring the link between the HF and the OEP
problem

First we shall prove:

Theorem 3.1 (Radial case) A radial solution (¢1,¢s) € (H,}(]R?’))2 to the Hartree-
Fock equations (12) cannot satisfy the commutation condition (19). A fortiori, it cannot
be a solution to (7). As a corollary, no radial minimizer of the Hartree-Fock problem is a
solution to a system of type (7).

Corollary 3.2 The conclusions of Theorem 3.1 hold true mutatis mutandis in the case
of complex valued functions.

In Theorem 3.1 and its corollary, it is crucial that the functions are radial as shown in
the following:



Proposition 3.3 (Non radial case) There ezists a pair (41, ¢2) of (non radially sym-
metric) functions solution to both the Hartree-Fock equations (12) and a system of type (7).

We begin by proving Theorem 3.1, next show how it can be extended to cover the
complex-valued case as claimed in Corollary 3.2 above, and then turn to the existence of
the counterexample announced of Proposition 3.3.

Proof of Theorem 3.1. For brevity, we rewrite equations (12) in the form:

1
—5A¢1 + Vo — Vi =0
—§A¢2 + Vi = V1 =0

(27)

where we have denoted by

Z 1
Vi = ——+oix—+e,
] 2]
Z 1
Vo = - Fdik o te,
2] 2]
1
Vo= (¢1¢2) x —

|

Let us argue by contradiction and assume (¢q, ¢2) is an orthonormal system, solution to
the above equations (27), that in addition satisfies the commutation condition (19). By
a standard elliptic regularity result, we know that ¢; and ¢, are H?, continuous on R?,
and that they both are C* outside the origin. In particular, equations (27) holds almost
everywhere in IR?® and continuously outside the origin. The same applies to (19).

Step 1 We begin by showing there exists some open set € in IR? such that, for any z € Q

1
(¢1¢2 * m) (z) #0 (28)
¢1(z)pa(z) # 0

For this purpose, we argue by contradiction, and assume (in view of the continuity) that
we have

(102 * i)fﬁlﬁbz =0onRR>. (29)

|z]
If in addition ¢, # 0 on R, we may find some open set w # () such that ¢; ¢, has no zero
1 1
on w, and thus (29) yields ¢;¢ox— = 0 on w. But this implies A(¢p1pok—) = dmd1p = 0
x

| ]

on w and we reach a contradiction. Therefore (29) indeed implies:

¢102 = 0on R>. (30)

1
Consequently V' = ¢1¢y x — = 0 and (27) reads

|z]
1
——A¢ + Vo =0
—§A¢2 +Viga =0

10



In addition, since ¢; # 0 because / #? = 1, we know using (30) that ¢, = 0 on some
R3

(non empty) open set. Since ¢, satisfies —§A¢2 + Vi¢2 = 0 and vanishes on an open set,
we obtain by unique continuation [6] that ¢, = 0 on IR®. We then reach a contradiction

because / ¢2 = 1, and this concludes this first step.
R3

Step 2

We now show we necessarily have ¢ = 0 in equation (19) i.e:

¢1A¢2 - ¢2A¢1 = 0. (3]‘)

Indeed, combining the two equations of (27) by multiplying the first one by ¢, and the
second one by ¢, next adding the two, we obtain:

c
(=5 + Vo= Vi)nds = V(6 — 62) = 0.
1 2 2 1 . . .
As we have i A(Vo = V1) = ¢f — ¢5 and i AV = ¢1¢,, we rewrite this equation as:
gAf = fAg=0 (32)
where f:Vandg:—g—i-Vg—Vl. So,

div(gVf — fVg) =0

and therefore

df fdg _a
Tar dr 2’
for some real constant a (note that we explicitely use the fact that we work with radially
d d
symmetric functions). As f, d—f, g, d—g are bounded (this is a consequence of Cauchy-
r r
Schwarz and Hardy inequalities) % must also be bounded when » — 0, which implies
d, d
a = 0. It follows that gd—f — fd—g = 0. On an open set 2 where f has no zero, as defined
r r
by Step 1, it implies that %(%) =0,s0 g =bf on Q for some constant b, and therefore
b2 P2

Ag = bAf which yields (¢_)2 —1= b¢— since ¢; has no zero either on €2, by Step 1. So
1 1
on some open subset ', connex component of €2, we have ¢ = ¢, for some constant a.

Inserting this in (19), we obtain ¢ = 0 and Step 2 is completed.
Step 3

Let us now consider z € R3. We claim we have:

o If ¢;1(z) # 0, there exists some real a; and an open set Q' containing x such that:
1
¢o = a1¢p; on Q. If in addition oy # 0, then V5 — V] = (ay — —)V on Q.
aq

11



o If ¢o(z) # 0, there exists some real ay and an open set Q' containing x such that:

1
1 = aep on Q. If in addition ay # 0, then Vi — Vo = (g — —)V on Q.

(8%)

We for instance treat the case ¢(z) # 0. By continuity, there exists an open set €
containing = where ¢; has no zero. Integrating (31) and arguing as in Step 2, we first

dgr dos

deduce the existence of some real constant a such that ¢2d— —p1— 7
r r

space, and secondly obtain ¢ = 0. This yields ¢ = a;1¢; on the connex component of €’
containing x. If in addition «y # 0, system (27) reads

= — on the whole

1
—§A¢1 + Vo1 — Va1 =0,

(33)
— 380+ Vigs -V =,

on this connex component, and combining these two equations we obtain:
1
§(¢1A¢2 — $2Ad1) + (Vo — Vi — (a1 — —) )p12 =0

thus, using (31) and the fact that ¢;¢s has no zero on ¢V,

1
Vo= Vi—(an — —)V =0.

aq

The case ¢o(x) # 0 is treated in the same manner. Of course when ¢;(z)dq(z) # 0 we

have ajap # 0 and g = —.
03]

Step 4 Let us introduce the function R defined by:

0 5(2) when  ¢1(z) = ¢o(z) =0
R(z) = V(z) o §$§ when ¢1(z) #0
V(x)z:—(i) + Va(z) — Vi(x) when ¢o(z) #0

In order to prove that R is well defined, the only fact we have to show is that when
¢1(x) # 0 and ¢o(x) # 0, the two definitions of R(z) yield the same value. It is a simple
¢1( ) 2 ()

+ Vo(z) = Vi(z) =Vi(x .
Let us now prove that R € L®(IR?). First if ¢y(x ) = 0 then R(z) = 0. Secondly, if ¢, (z) =

consequence of Step 3, since for such z: V (x)

0 and ¢o(x) # 0, using R(z) = Vzlg ; + Va(x) — Vi(z) we have R(z) = Va(z) — Vi(z).
2
Thirdly, if ¢1(x)pe(z) # 0, we can make use of both expressions R(z) = ?E ; and
1
R(z) = 2;E ; + Vi(z) — Vi(z). Therefore, if 2?8; <1, we use R(z) = V(x) ngg
and obtain |R(z)| = ‘VZ?EQC; < |V]. Alternatively, if if Z;Ez; < 1, we use R(z) =

12



¢1()
¢2(x)

V(z) + Va(z) — Vi(z), and obtain

¢1(z)
P2 (2)
In either case we have |R(z)| < |V (z)| + |Va(z) — Vi(x)|, and since V and V, — V; are in
L*®(IR?) we conclude that R € L>(IR?).

Step 5

Let us now check that both functions ¢; and ¢, are solutions to

|R(z)| = |V (x)

+ Va(z) = Vi(e)| < V()| + [Va(z) — Va(z)].

(~3A+Va— R)$=0. (34)

For this purpose, in view of the regularity of the ¢;, we only have to check that this
equation holds pointwise for all x # 0.

To begin with, we remark that if for z # 0 we have ¢;(z) =0 (for ¢ = 1 or 4 = 2) then
Ag;(xz) = 0. Indeed, if ¢1(x) = ¢o(z) = 0, A¢1(z) = Ago(x) = 0 using (27). If ¢1(z) #0
and ¢o(z) = 0, using (31) we get ¢1(x)A¢a(x) = 0 so Agy(x) = 0. And if ¢1(z) = 0 and
d9(z) # 0, using (31) again we get ¢o(x)A¢1(z) =0 so Api(z) =0
We are now in position to check (34) holds for all x # 0 :

(a) If ¢1(x) = do(x) = 0, then A¢y(z) = Agy(x) = 0 thus (34) holds.

(b) If ¢1(x) # 0 and ¢o(x) = 0, then (34) is satified by ¢ at x, and, since the first

equation of (27) gives —%Aqﬁl (z) + Va(z)¢1(7) = 0 and R(z) = V() #2()

. ¢1(2)
2 861 () + (Va(e) — () (z) =
(c) If ¢1(x) = 0 and @o(x) # 0, then

_§A¢1($) + (Vi(z) — R(z))¢:1(z) =

= 0, we have

1
and as the second equation of (27) gives —§Aq§2 () + Vi(z)pe(z) =0,

—%A¢z($)+(Vz(9€)—R(x))¢1($) = —Vi(2)¢2(2) + (Va(2) — R(z))¢2()

= —Vi(z)¢ (w)+Vz() 2(z)
(V( )¢2(x) (7) = Vi(z))p2(2)
= —V(z)pi(z) =

+ Va(z) — Vi(z).

by using R(x) = V (x) $1(7)

o) TV | |
(d) If ¢1(x)p2(x)(z) # 0 so using the equation (27) we obtain:
B 1 ¢o(x)
—§A¢1($) + (Va(2) = R(2))di(2) = —5A¢(2) + Va(2)ér(2) — V¢1(x)¢1($)
= —3261(@) + Va()n(z) — V() ga(a)
= 0,

13



and

—526:(2) + (Vala) — R@)oa(s) = —5A6(0) + Vala)a(a)
—(V(z 41(2) x) —Vi(z x
V)55 + Vale) = Vi(e)n(e)
= —306(0) + Vi(@)a(a) — V()1 ()

= 0.

Step 6. We now can conclude the proof. Since ¢ is continuous and normalized (for the
L? norm), there exists an open set € on which ¢; has no zero. Using Step 3, there exists
a1 such that ¢o = «ai¢; on a subset €2 of 2. Next, by Step 5, ¢; and ¢, are solutions

1
to (_§A + V2 — R)p = 0, so a1¢; and ¢, are solutions to this equation. Therefore, the

functions oy ¢1 and ¢, are solutions to this equation almost everywhere in R?, and coincide
on 2. Hence, ¢ = ;¢ everywhere by unique continuation. We reach a contradiction

because / $1¢2 = 0 and / ¢ = 1. o
R? R

We now turn to the proof in the case of complex valued functions, which requires some
slight modifications of the above arguments.

Proof of Corollary 3.2

In the case of two complex valued functions, the HF equations (27) read:

1
—5Ad1 + Vady — Vo =0

(35)
—5AG + Vids Vi =0
VA 1 VA 1 1
where, Vi = — " +|¢1[*x — 4¢3, Vo=——+|po**x —+e1 and V = (¢1¢})* —-.
2] |z] 2] |z |z]

In Step 1, equation (28) becomes:

1
<¢1¢2 * m) () #0 (36)
¢1(z)¢5(x) # 0

and the proof follows the same pattern. As for Steps 3 to 6, there are only minor changes
needed and we leave them to the reader. The only modification that is not straightforward
lies in Step 2. The purpose of this step is to show the analogous equation to (31), namely

P3A¢1 — d1AP; = 0. (37)
Using the same arguments, we obtain
. c
r¢5(Va — Vi — 5) +V([u]* = [82f*) = 0 (38)
and thus \%F —-1= b(%) on an open set 2 as defined by Step 1, for some b € C.
1 1

Defining z(z) = (%) (z), this condition reads |z|> —1 = bz. Contrary to the real valued
1

14



case where the conclusion was easily reached, we here have to make a different argument,
depending on b # 0 or b = 0. The case b # 0 is the easy one. Indeed, if b # 0, it is a
simple calculation to show that this implies, for some complex number « # 0, ¢ = ¢,
on a open subset ' C Q, thus ¢5A¢; — p1AP5 = a(d;AP1 — d1A¢7), and therefore

P AGy — p1AB} = ||

It follows that ¢ = 0 because the left hand side is imaginary while the right hand side is
real.

The case b = 0 requires more efforts. We then have |¢y|* = |¢1[* on Q. Thus, there exists
real valued functions fi, f, and ¢ such that ¢, (r) = e”* ™ (r) and ¢o(r) = €2Mep(r) on
Q2. Rewriting the commutation condition

¢2A¢>{ - ¢TA¢2 = C¢T¢2

in terms of fi, fo and ¢, we obtain:

2
VA~ 1)+ 200+ W+ ) = e
Since ¢ € R, we have
2
(fi + f2) (@'Y + =) = Oon 2. (39)

2
If there exists an open subset ' C Q where 1)'¢ + v is not identically zero, then on such

an open set f] + f5 = 0, then ¢5 = a¢; and (37) follows. So, in order to conclude, what
we have to rule out is the following situation: on any open set such that (36) holds, we
have ¢1(r) = 1M (r), do(r) = €2 (r), ¥(r) = ¢ for some constant . If there is no

-
such open set, the proof is completed, so we suppose there is at least one such €2y, say an

interval |\, u[, where ¢1(r) = e1p(r), do(r) = 2h(r), ¥(r) = 2 for some constant

N T
a. We now make a connexity argument. Let us introduce d € R defined by

d=sup{ y such that Vz €]\, y],
51(7) = EHOU(), Galr) = EEOU(), B(r) = 2

We will show that both cases d finite and d = +oco lead to a contradiction. Suppose d
1

is finite. By continuity of ¥, ¢ (d) = % so ¢105(d) # 0. In addition, (¢1¢§ * m) (d) =

0: otherwise there exists, n > 0 such that on |d — n,d + n[, (36) holds, thus we have

v+l
" 1

is an accumulation point of {¢;¢; % ﬂ(r) = 0}. Otherwise, there exists 7 > 0 such that
x

on |d,d + n[, (36) holds, and again we may deduce ' + v = 0, which contradicts the

r

1

definition of d. Therefore, A(¢1¢5 * ﬂ)(d) =0, i.e. (¢103)(d) = 0 which is false. If we
T

0 identically and this contradicts the definition of d. In addition, d necessarily

15



now assume d = +o00, this implies ¢ = % at infinity, which contradicts ¢; € L?(IR*). This
r

concludes the proof of Step 2, and thus that of the Corollary. &

Proof of Proposition 3.3

We present here an example of some (¢1, ¢2) both solution of the Hartree-Fock equations
(12) and of the Optimized Effective Potential equation (7) as announced in Proposi-
tion 3.3. We search for (41, ¢2) in the form

(01, $2) = (f(r, 0) cos(), f(r,0) sin(p)) (40)

where (7,0, ) denote the spherical coordinates and f is a real valued function. The
Hartree-Fock equations (12) also read

1 z 1 p(z,y) o
—5A¢; — mfﬁi + (p* m) 0i — /R oi(y) dz dy = —¢€;¢;

2 |z —y| (41)
/ Gip; = 0y
R3

with p(z, y) = Z@ ) and p(a) = p(z,2).

If (41, ¢2) is of the form (40) with f satisfying the normalization condition / f? =2,
R3

then ¢; = f(r,0) cos(p) and ¢ = f(r,0)sin(p) automatically satisfy the orthonormality

conditions

Besides, p(z,y) = f(rz, 0z) f(ry,0y) cos(pz — y), p(z) = f(rz, 0;)%, and therefore
/ LT, )¢1( ) dz dy
R

s |z —y|

/+Oo/ ” f(ry,0) Ty, ey) cos (g — ‘Py) f(ry’ 9:4/) cos(goy) sin(ﬁy) dry dfy dp,
7"2 + 7y — 2rzry (cos(0;) cos(y) + sin(6;) sin(6y) cos(pg — 901‘/)))1/2

/+oo/ 7 f(ra, 0 f(ry, by) cos(p) f(ry, 0y) cos(pz — ) sin(8y) dry df, dy
7.2 + 7«2 — 2rg7y (cos(8,) cos(8y) + sin(f) sin(6,) COS(‘P)))I/2

/+°°/ 2T F(rg, 0 f(ry, 0y) cos(p) f(ry, 0y) (cos(ps) cos(p) + sin(p,) sin(p)) sm(9 ) dry, db, dga-
(r2 + r2 — 2ryry (cos(6,) cos(6,) + sin(8,) sin(6,) cos(¢) )

Therefore

/R PTY) 4 () dady = Wo(a) n (a),

s |z —y

16



with

[ £ (ry,8,)? cos()’ o
/0 /o /o (r2 +r2 — 2ryry (cos(6y) cos(6y) + sin(6,) sin(6,) cos()))/? sin(0v)dry b

similarly

/R P, y) P2(y) de dy = Wy(x) ¢2(z)

s |z =y

(with the same Wy). For (¢1, ¢2) of the form (40), one therefore has

1 Z p(z,y)
__Ai__i i i dd:_Az Wz
¢ W*( H)cb /R Gily) dudy = =N+ W¢

2 s |z — vyl

where W is a local potential. It remains to exhibit a solution (¢y, ¢2) to equations (41) of
the form (40). A simple calculation shows that the goal is reached if one can find f(r, 0)
such that

/ VP + /3 r2sin? 6 < Foo (42)

solution to

1
At gt = 2 ([ Gl s dy) 1= et “
fr=o
R3

where G(xz,y) is the integral kernel
: 2
Sin QD:L‘ — QO
G(z,y) = —(|x m— 1

We are going to prove that such a function f can be obtained by solving the variational
problem

inf {E(u), we H'(RY), /R W2 < 2} (44)

1 Z u? 1
E = — 2 _ Zu? / _ // 2 2 )
(U) 2 /R3 |VU| rR3 T vt R3 27'2 sin2 0 + 2 (R3)2 G(x’ y) Y (-/L') U (y) dz dy

The proof next falls in four steps.

Step 1. We first prove that the infimum of (44) is attained. Let us consider a minimizing
sequence (u"); (u") being bounded in H'(IR?), we can assume that it converges toward
u € H*(R?), weakly in H?, strongly in LI for 1 < p < 6 and almost everywhere. It is
then easy to pass to the limit both in the constraint and in the energy to prove that u is
a minimizer of (44). As E(|u|) = E(u) for any u € H'(R?), we can assume in addition
that u > 0.

17



Step 2. Let x € D(R?) supported in the Ball Bij» = {z € R’, |z| < 1/2} and such that
/ x?=1. For 0 > 0 and 7 > 0, we denote by
R3

Xor(T) = T1/2 5312 x(ox — e7)

where e, is the first unit vector of the cartesian coordinates. As sin® > 3/4 in Supp(Xo,)

and as 0 < G(z,y) < |$1y|,

T0? 1 x? Z
E(xor) < — \Y% 2—1——7’02/ 7—70/ 24+ 720 D(x%,xP).
(X ' ) - 2 R3 | X| 3 R3 |$ + 61|2 R3 ‘.’L‘ + €1|X (X X )

For 7 and o small enough, x,, satisfies the constraint / X(Q;,T < 2 and E(x,,) < 0.
3

R
Therefore, u # 0 and consequently u satisfies the Euler-Lagrange equation

1 U

Z 9 B
_EAU—F el ?u%— ( " G(z,y) u(y) dy) U = —e€u. (45)

Step 3. Assume / u? < 2. Then ¢ = 0 in (45) and u is a positive eigenvector of the
R3
self-adjoint operator on L?(IR®) formally defined by

1 1 A
A=A+ ——7bF — — G 2d
2 + 2r2sin? + (/Rs (2, y) uly) y)

associated with the eigenvalue 0. As 055(A) = [0, +00[, u is the ground state of A. But
on the other hand, (Ax;.1, Xs;) < 0 when o is small enough. Indeed

2 2

o 1 X
Axo1, < — | v 2+— 2/ —
(Xa,l XU,I) = 2/1;3‘ X| o RS ‘.’L‘+61|2

ol fopaee [ f na S s)
R3 |x+e1| (R3)2 |x+61 - ay|
and
2
Z/ // x(@)” ddy—)( /u2>/ X () dr >0
R |x+61| R9)2 |x+61—0y| o0 R re [T+ e

since / u? < 2 < Z by assumption. We thus reach a contradiction. Therefore / u? =2,
R3 R3

Step 4. The function p = u? is solution to
wt{EG) p20, voen' @), [ p<o) (46)
with E(p) = E(\/p). As E is strictly convex on the convex set
C = {pZO, Vp € H'(R?), /R3p§2},

18



the solution p to (46) is unique. In addition, it follows from the definition of the integral
kernel G(z,y) that E(Rwo p) = E(p) for any ¢y € R, where R, is the rotation operator
defined in spherical coordinates by (R,,p)(r,0,¢) = p(r,0,¢ — ¢o). Consequently, the
solution p(r, 8, ¢) to (46) in actually independent on the variable ¢ (p(r,8, p) = p(r,0))
and therefore, so is u = ,/p since u > 0 in R? \ (Res) (by Harnack inequality applied to
(45)). The function f(r,8) = u(r, @) therefore satisfies the requirements (42)-(43). O

4 The OEP problems are well posed

We now study the energy of the minimization problems introduced above. In the case of
real valued functions we have:

Theorem 4.1 (Radial or non radial case) For Z > 2 (neutral atom or positive ion),
there exists a minimizer (¢1, o) of the minimization problem IOFF defined by (20). The

same conclusion holds for the minimization problem IOFF (defined analogously and re-
stricted to radially symmetric functions).

Theorem 4.2 (Radial or non radial case) For Z > 2 (neutral atom or positive ion),

there exists a minimizer (¢, ¢2) of the minimization problem JOFP defined by (26). The

P

same conclusion holds for the minimization problem JOFF (defined analogously and re-
stricted to radially symmetric functions).

Corollary 4.3 The conclusions of Theorems 4.1 and 4.2 hold true for complex valued

—_

—_ N
. . . oep,C oep,C
functions, ie for the minimization problems IOEP’C, I , JOEP,C, Jr )

As we know that there exists a minimizer of radial Hartree-Fock problem (11), we obtain
using Theorem 3.1 that

Theorem 4.4 (Radial case) For Z > 2 (neutral atom or positive ion), ['" < [9¥F <
Jou

Corollary 4.5 The conclusion of Theorem 4.4 holds true in the complex valued case.

This section is articulated as follows. We first prove Theorem 4.1 for general functions
(not necessarily radially symmetric), the proof of the radial case being the same. Next, we
prove Theorem 4.2, again in the general case. The proof of Theorem 4.4 is straightforward
and we skip it. We also skip the proofs of Corollary 4.3 and Corollary 4.5, that follow the
same lines as those of Theorem 4.1 and Theorem 4.2 respectively.

Proof of Theorem 4.1
Step 1
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We begin by proving an a prior: estimate for the energy:

1/<>7E/P<1r:inf{/R ( V|2 — ) /¢2_1}<0 (47)

For this purpose, we consider for any Z’ > 0, ¢71Z' and Z" the first two normalized radial

1 A
eigenfunctions of the operator _EA - ﬂ on L*(IR?®) which are respectively defined by:
x

! ’ eiZ'r 1 ' 1_Z_IT e_Zz'T
o) = (20" —= ad  of (r6.5) = (2 & \/% SN

Using the notation (16), we have:

Al = 7",
R
) ik
Z'2 _ 4“4
- / 217 27,
R3 ‘$|
- ile'V Z7 (49)
R |~T| ? 4’
! 1 17
D(W{ % we)?) = 8—1Z’,
! ! ! ! 16
D Z — o
(wl 2 7,(/J1 ’(/12 ) 729

Therefore, for any Z > 2,

I:i“f{/R(‘W‘Q—— ) /w—l} /Rs(élwﬁ |||w\)— -z

—_——

and, since (1)Z',9Z") are admissible test functions for JOEP,

P ' ' 5 2
IOEP < inf FHF (ypf =—-7*+nZ - -n? 50
< nf BRR(Yr ¥y ) = g 27+ nZ — o0 (50)
i 137 . N Vi
with n = 799" As the RHS of the above inequality is lower that —5 for any Z > 2,
inequality (47) follows.

Step 2

Let us now consider a minimizing sequence (47, ¢y) of the OFP problem (20). As this
sequence is bounded in H 1(]R3), we can extract a subsequence that weakly converges in

H(IR?) to (¢1, ). The weak limit (¢y, ¢) satisfies EZE (¢, ¢o) < TOFP and ( / did;) <
R3

(6ij), 1<4,5<2
Proving that (¢1, ¢2) is a minimizer of (20) amounts to proving that (¢1, ¢2) also satisfies
both conditions

¢1A¢2 — ¢2A¢1 = C¢1¢2 for some c € R (51)
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/ i = 045, 1<14,57 <2 (52)
R3

We devote this second step to the proof of (51). For each n, we have some real constant
c" such that

PrAP; — P AP = P15 (53)

We multiply by some arbitrary ¢ € D(IR?®) and integrate to obtain:

/ (95 Voy — ¢7Vey) Vi = " / L3P, (54)
R3 R3

In order to pass to the limit in the left hand side of (54), we remark that (¢7, ¢4) weakly
converges to (¢1, @) in (H*(R?))?, so (47, #%) strongly converges to (¢, @2) in (L, .(R?))?
and (V@}, Vé?) weakly converges to (Ve1, Vo) in (L?(IR?))?. Thus ¢4V} and ¢}Vl
respectively weakly converge to ¢V, and ¢, V¢, in Lj,.(R?). This allows to pass to the
limit in the left hand side.

For the right hand side of (54) we proceed as follows. If the real sequence ¢" is not bounded,
we can extract a subsequence, still denoted by ¢”, such that |¢"| — +o0. Then necessarily

$1¢2 = 0, otherwise we may choose 1 € D(IR?) such that c"/ dr P51 — oo, and this
3

R
cannot occur since the left hand side of (54) converges. Next, the fact that ¢;¢ = 0 and
that ¢1A¢y — ¢oAd; = 0 in the sense of D'(IR?), and (51) is trivially satisfied.

Suppose now that ¢” is bounded. Then we can extract a subsequence, still denoted by ¢,
that converges to some real constant ¢, and therefore ¢"¢7¢% converges in L} (R?), say.

loc

Equation (51) follows. The final two steps are devoted to the proof of the orthonormality
condition (52).

Step 3

We here prove, that, up to a rotation, we may always assume without loss of generality
that

G102 = 0. (55)
R3

If the constant c is different from 0 in (51) then we have, integrating this equation over
the whole space, ¢ / ¢102 = 0 and (55) follows. In order to make this rigorous, since
3

R

(51) only holds in the sense of distributions, say, we introduce a smooth cut-off function
Xr which has value 1 on the ball Bg, 0 outside the ball Bg,; and has values in [0, 1] on
B N Bri1, with ||xg|lcr < 1. Then we write

< bl xr> = — / V1V s — / 6,V Vn
R3 R3

= — | V&V — / (xeV$1V2 + $:Vd1 Vxr).

Br B%QBR+1
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As R goes to infinity, the first term goes to / V¢,V ¢y, while the second one goes to
R3

zero using the Cauchy-Schwarz inequality and observing that both ¢; are H'(IR®) while
X is uniformly bounded in C*.

On the other hand, suppose now ¢ = 0 in (51). We then replace (¢1,ds) by (¢1, d2)

defined by:
b1 _( cosf sind 1
QB; ~ \ —sinf cosf 02

For any 6, the following conditions are satisfied

~2
/ i <1,1<4,j<2
AR3

G105 — MGy =0
EHF(¢1) ¢2) = EHF(¢17 ¢2)a

We then choose 6 such that we precisely have

(56)

b1da = 0.
RS

In this manner, all the properties satisfied by (¢1, ¢2) are shared by ((;1, qug) with in addi-
tion orthogonality. From now on, we forget the notation ¢; and simply use ¢;, considering

that (55) is satisfied. We also know that / #7 < 1 and there remains now to prove that
R3
both ¢; are of unit norm.

Step 4

We argue by contradiction and intend to show that
¢ <1,

say, cannot hold.
For brevity, we denote in this proof by

D = D(¢7,¢35) — D(¢162, p1¢2),

(which, we recall, is a nonnegative quantity), and for i =1, 2,

1 A
A= [ VaP -2
R3 ||
1

V Jrs @2
el (o 290, [}

With the above notations,

and, when it makes sense, a; = . In addition, we recall the notation

EHF(¢1a ¢2) = A1+ Ay + D,
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while the orthonormal family (o4 ¢, az¢2) (in view of (55)) has energy

EHF(O[1¢1, 012052) = O[%Al + OJ%AQ + OA%OJ%D.

To begin with, we rule out the case when one, or both, of the ¢; is identically zero.
Suppose e.g. ¢; = 0. Then

TOFP > BHE (g, ) = Ay > (/ ¢§)I > 1,
RS

which contradicts (47). We now can suppose that both «; are well defined. We remark
that we have a; > 1 and thus, by definition of I, a?A; > I, for i = 1,2.

Suppose we have
A2+(1%D2 0 or A1+OJ§DZO

Then, assuming for instance that the first assertion holds, we have
E"(¢1,¢2) = A1+ A3+ D
> A 1-—=)A
> A+ ( a2) 2

> (= 1— =) T
> Grat-)
> T,
because I < 0 and ) )
1 1 1 ot +as5—1
S+ 5(l- =)= 55— <1
a1 Oy Q9 63185

since o; > 1. Clearly, since
ETT (¢, ¢5) < IOFP

this contradicts (47). On the other hand, suppose we have
Ay +aiD <0 and A; +a3D < 0.
Then

E" (11, 0005) = aiA;+a5(Az +aiD)
< oA+ Ay + 02D
since ap > 1
< A +A,+D
sincea; > l,and A1 + D < A, + oz%D <0,
= EHF(¢1, ¢2)
< [JOEP
and again we reach a contradiction because E#F (c11, ciado) should be greater than or
equal to IOFP for it satisfies the contraints. This concludes the proof. &

Proof of Theorem 4.2
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We now indicate the slight modifications needed in the arguments of the proof of Theo-

rem 4.1 in order to apply to the minimization problem JOEF,

For Step 1, we only remark that the pair (¢1,,) indeed satisfies all the constraints of

problem JOEP and therefore we have

JOEP < T < 0. (57)

—_

In Step 2, considering a minimizing sequence (¢7, @%) for JOPP we may as above assume
it weakly converges in H' to some (¢, ¢;) which satisfies EHF(¢1,¢2) < JOEP gnd

(/ $i9;) < (6;5), 1<4,7<2. We next pass to the limit in the condition
R3

wen®), [erverse ([ e - ([ ve)). 69

which will conclude the proof of Step 2. For this purpose, we first simply use the fact

that ¢7 strongly converges locally, say in L? . So all integrals in (58) converge for ¢

fixed. Next, two cases may occur. Either the weak limit ¢, of ¢7 is identically zero, and
therefore the condition

wenw), [ atvopze( [ et ([ vay). (59)
R? R? R®
is trivially satisfied, for any c¢. Or, ¢; # 0, and therefore we may find some v € D(RR?)

such that
[ wrd- ([ va)o
R3 R3

| atvur
| wrat= ([ ven”

which shows that ¢” is a bounded sequence. We thus may assume it converges, to some
¢ > 0, and pass to the limit in each term of (58) to obtain (59).

Therefore, we have

limsupc” <

In addition, we may also pass to the limit in the commutation condition to obtain
$2A¢1 — 91APy = ch1 .
This concludes Step 2.

For Step 3, we only make the following additionnal comment.

When ¢ # 0, we have as above, by integration, ng d1¢o = 0, and Step 3 is completed. In
the case ¢ = 0, condition (59) is indeed empty, as the integral of a nonnegative function is

always nonnegative. Therefore, (¢1, ¢2) may be replaced by ((;1’ 52), so that / b1y = 0,
R3
keeping the property that (59) is satisfied, again with ¢ = 0.
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For Step 4, we remark the following. If condition (59) is satisfied by ¢; for some ¢ > 0,
then aq¢; also satifies it, whenever aq > 1. Indeed, it suffices to remark that

af/qusﬂwF > cof (/stzqﬁ—(/st?)Q)
c ( V? (ay¢1)* — iQ (/ ¢(041¢1)2)2>
(/ 2 (01 h1)? / P(ardr)? )

since a; > 1. Therefore we can make use of the same argument as in Step 4 of the proof
of Theorem 4.1 without modification. O

v

v

5 Penalized form of the OEP problem

The weak forms of the OEP problems (8) and (17) introduced above in (20) and (26) may
be considered, from a certain point of view, as too weak. We shall see in Section 6 that, at
least formally and in the simple radial case, they can be shown to be “equivalent” (note
the quotes !) to the original problem in the “strong” form. Nevertheless, it remains that
from a rigorous viewpoint we are not able to show the equivalence and therefore other
tracks for giving a sense (8) and (17) may be pursued. One of such track is a penalization
strategy, where one introduces a control on the potential W in order to be able to pass to
the limit in minimizing sequences. From the computational standpoint, such a strategy
is not surprising and is efficient in many other settings.

In view of the above motivation, we introduce, for any ¢ > 0, the following penalized
version of problem (8)

I9PP = inf{E"F(¢1,¢2) + € (||ullx + ||V||Y)>/3¢i¢j =0y, 1<14,5 <2,
R
¢; € H'(R?), such that for some A\;,\; €R, p€ X,V eEY

1 Z 1
(—=A— — + pu*x— 2 + V) ¢; = \ib; in the sense of D'(R?) },

27 af
(60)

In this definition, the functional space X is, for instance, chosen to be L” for some
1 < p < 3/2 and the functional space Y as LY for, say, ¢ = 3/2. Of course, our choice is
arbitrary, and other functional spaces could be chosen, provided they satisfy some tech-
nical assumptions that allow for the arguments that will follow in this section. However,
we do not want to enter such technicalities. Our purpose is only to show that such a

penalized problem is well posed. The point is that the class of potentials W (according
Z
|| ||

V, contains some reasonable potentials, relevant from the application viewpoint, so far as
we can judge. Of course, such a form is reminiscent of the form of the Fock potential.

to the notation of (8)) that we have chosen, namely —— + p* — + V, with such y and
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The same penalization technique can be applied to (17) and it leads to the formulation

JOEP = nf{ET (61, 0) + = (Jullx + IVI), [ oy = by, 1< 05 <2
R

¢i c Hl(Rg), such that ((bl, Al)(resp. (¢2, )\2))

is the first (resp. a second) eigenvector/eigenvalue of the operator

1 Z 1
_EA_W+M*W+V for somep € X, V €Y}, (61)
x x

oep joEP,C joEP,C jOEP
I’I"E ) IE I ? JT‘E

Like in the previous sections, the minimizations problems N g
bl

7

JOEP ’C, JTO,EEP ’C, with self-explanatory notations, can be defined accordingly.

In this section, we begin by studying the problem I 60 EP For all the other “usual” prob-
lems I9FF, IEOEP’C, Iro,gEP’C, the proofs basically follow the same lines and the result of
Theorem 5.1 below holds mutatis mutandis. For brevity, we skip all of them. Next, we
study problem JSO EP " Our proof can be extended (but we do not do so) to the complex

oepP,C oep 70EP,C
Js Jrs ’ Jrs :

valued case , and the radial cases

Theorem 5.1 For Z > 2 (neutral atom or positive ion), the minimization problem (60)
admits a minimizer.

Proof of Theorem 5.1

The proof mimicks that of Theorem 4.1, so we will only give an outline of it and detail
the differences.
Step 1 consists in showing that

I°FP < (62)

as defined by the right-hand side of (47), and this property is a straightforward con-
sequence of the fact that (iq,19) defined by (48) satifies the constraints of (60) (with
p=V =0),and E#F(1;,1,) < I as shown in (50).

Step 2. We consider a minimizing sequence (¢, #5), associated with functions p™ and V™
respectively in X = LP and Y = L?. As the Hartree-Fock energy is bounded from above,
we may assume (@7, d45) weakly converges to a limit (¢1,#2) in (H')2. In addition, due
to the penalty term, the functions p" and V" may also be assumed to weakly converge in
X and Y respectively. In view of the eigenvalue equation

1 A 1
(-3A = St V) 6] = N
2" "l T R

the eigenvalues

”—1 n2_ £ )2 n i n\2 n\2
=g [vae= [ St [ g+ [ vien

are also bounded (each of the last three terms of the right-hand side can indeed be treated
by Hélder type inequalities, the conditions 1 < p < 3/2 and ¢ = 3/2 playing here a role),
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and therefore may be assumed to also converge, to some )\;, as n goes to infinity. By
Solobev compact imbeddings, we have the local strong convergences of ¢ in L" (at least)
for 1 < r < 6, and therefore it is then easy to pass to the limit locally in the equations to
obtain

1 A
(~5A— Tt ux

1
5 7] — 4+ V) ¢i = Aigs. (63)

||
As a consequence of the weak convergence in H!, we have / ¢i¢; < 1 in the sense of
R3

symmetric matrices, and there now remains to prove the orthonormality constraint on
(¢1, ¢2) to conclude the proof.

Step 3 is exactly the same as that in the proof of Theorem 4.1, Ay — A; playing the role
of ¢, of course.

Step 4 also is in the same vein. Indeed, the only three ingredients that are used are (a)

the orthogonality / o102 = 0 as produced by Step 3, (b) the property that
RS

IPE0 > B (61, ¢2) + e (lellx + [V IIy)

due to the weak convergences at hand, and (c) the fact that I°*F < I as remarked
in Step 1. Note also that the penalty term, being nonnegative and independent of the
norm of ¢; does not perturbate the various inequalities involved in the argument. This
concludes the proof. &

Remark 5.2 [t is unfortunately not known whether
lim JOFP = JOEP. (64)
e—0

We now turn to the proof of

Theorem 5.3 For Z > 2 (neutral atom or positive ion), the minimization problem JOFF
defined by (61) admits a minimizer.

Proof of Theorem 5.3
We again refer to the 4 steps of the proof of Theorem 4.1. Step 1 is of course unchanged
!

as (wlzl, wQZ') are the first two eigenfunctions of —A — ﬂ Next, we need to make some
x

slight modifications of the argument. Consider a miminizing sequence denoted as above.
Since ¢ is the first eigenfunction of the operator —A + W™, where for brevity we denote
by

Z 1

Wh=——+u"%—+V", (65)

|z |z
we may assume (in view of the regularity of W™, which is in L¥?(R?) + L*(IR?)), that
@7 > 0 everywhere. In addition, we use the argument of Section 2, formula (24), to claim
that, A} being the second eigenvalue of —A + W™, we have

((—%A FWN,0) = AT [ 6% (05 - XD) (/RS 0% - (/RS 9(/5?)2) (66)
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for any function 6 € D(R?).

This being done, we pass to the weak limits in the minimizing sequence to obtain some
w, V., é;, A (as in Step 3) such that

(—%A+W) bi = Aig; (67)

where of course W = + pkx —

- \
¢" > 0, and, for any 6 € D(R3),

((—%AJFW)@,H) Y /R 0> > (A2 — M) (/R 6% — (/Rg 9¢1)2> (68)

as a consequence of (66). We then rule out the case when one the ¢; is identically zero

using JOFP < I and arguing as above. Therefore, we deduce ¢; > 0 by Harnack inequality

1
on (67), and thus ¢, is the ground state of —§A + W (as W € L¥2(R?) + L®(RR?), the

ground state is non-degenerate). We now turn to Ay and ¢o, which we know is not zero.
We know Ay > A{. Suppose Ay = Ai. Then ¢ = a¢; for some constant «, because of
again the nondegeneracy of the ground state. In fact, a # 0 because ¢ Z 0. The fact

+ V. Moreover, we have ¢; > 0 as a consequence of

that ¢i¢; < 1 in the sense of symmetric matrices writes

(= L) (- L) = (o).

in general and thus in the present case

1—(1+0%) [ 4 >0.
RS

On the other hand, the Hartree-Fock energy then takes the particular form

EHF(¢1; ¢2) = EHF(¢1, 04¢1

(1+0a?) ( / V|2 - )
> (1+a2)</RS¢%)I

> 1.

We reach a contradiction since by weak convergence EZF (¢, o) < JOEP < I. Therefore,
we necessarily have the situation when Ay > A; and ¢, is a (possibly not normalized)
eigenstate associated to Ay. It then follows using (68) and the argument of Section 2 that
Ao is the second eigenvalue. It also follows that ¢1¢0> = 0 and then we enter Step 4

R3
directly. The proof can then be pursued. &
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6 Do the weak formulations OEP allow to recover
the OEP problems?

We present in this final section an argument that shows that the minimizer (¢y, ¢2) of the

weakly formulated problem JOFF indeed satisfies the “strong constraints” stated in (17),
in some sense at least. Unfortunately, our proof only applies to the radial case (i.e. to

problem JOFEFP together with its complex valued analogue, that we do not detail here for
brevity).

Let us briefly describe our purpose. A pair (¢1, ¢2) that satifies the commutation condition

P2AP1 — p1 APy = c1o

formally satisfies the set of “equations”

2
—lAfﬁl n (¢1A¢1 +2¢2A¢22 + C¢2)¢1 -0
] $ A(pQSib 1¢+Aq;52)+ #2 (69)
1 1 20Q2 T CPy _
—§A¢2 + ( 262 + 62) )</52 = ¢y

1
and thus formally is a pair of eigenvectors of the same Schrodinger type operator —§A+W

P1AP1 + P Ady + ¢
2(61 + 63)
statement is twofold. First, we have to prove we may legitimately divide by the density
p = ¢ + ¢3, and second that the potential W is regular enough for the product W,
and W, to be given a sense. The two facts are of course closely intertwinned as any

information on W gives information on the set of zeros of the ¢;.

with W =

. The difficulty to give a rigorous sense to this formal

In the case of the JOEP problem, we are not able to reach this goal. On the other hand,

we can provide rigorous arguments for the JOEP problem (at least in the radial case) by
making use of inequality (23). For technical reasons, our proof is limited to the cases
when Z > 4, but our result probably holds true for Z = 2 and Z = 3.

We begin by stating three lemmas, the proofs of which are postponed until the statement
of our main result in Proposition 6.4 below.

Lemma 6.1 Let us assume that Z > 4 and consider a minimizer (¢1, ¢2) of JOEP (the
existence of which is stated in Theorem 4.2). The non negative constant ¢ arising in
conditions (19) and (23) is positive.

Lemma 6.2 For any minimizer (¢1, ¢2) of JOEP such that the constant c arising in
conditions (19) and (23) is positive, the functions ¢1 and ¢o are continuous (except possibly
at the origin) and the set of points {x € R*, / ¢1(x) # 0} is conner.

As ¢; is radially symmetric and continuous, the support of ¢; therefore is either the
whole space IR?, or a ball, or the complement of a ball, or a hollow ball. It also follows
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from Lemma 6.2 that ¢; does not change its sign, and therefore we may suppose that
¢ is positive. Our second lemma asserts that we may always assume, without loss of
generality, that ¢s is also supported in Supp ¢;.

Lemma 6.3 Let us assume that Z > 4 (or that Z = 2 or Z = 3 and that there ezists
a minimizer of JOFF for which the constant ¢ arising in conditions (19) and (23) is

positive). Then there exists a solution of JOEP still denoted by (¢p1, ¢2), such that ¢ >0
and Supp ¢o C Supp ¢ .

Collecting these three lemmas, we show

Proposition 6.4 (Radial case). Let us assume that Z > 4 (or that Z = 2 or Z = 3

——

and that there exists a minimizer of JOPF for which the constant ¢ arising in conditions

(19) and (23) is positive). Let (¢1, ¢2) be a solution JOFF satisfying the properties set
in Lemma 6.3. Let us denote by p(z) = ¢1(2)? + ¢o(z)? the electronic density and by
Q={z eR’, p(z) > 0}. Then the potential

G1AG1 + PaAgs + ¢
W = 2p
+00 elsewhere

n )

is in H™Y(w) for any open set w CC §, and so are the products W¢, and Wy, In this
sense, the system

1
—=A¢p1 +We¢ =0
c
—§A¢2 + Weo = §¢2

holds in w CC €.

As we shall only work in this section with radially symmetric functions, say ¢, we shall
often make the slight abuse of notations consisting in denoting by ¢(r) the single value
#(z) for any = € R? such that |z| = r.

Proof of Lemma 6.1. Assume that ¢ = 0. For £ = 1,2, let us denote by {Qf}ierk the
family of the connex components of the open set ¢ # 0 (the functions ¢, are continuous
except possibly at the origin). Of course, the domains Q¥ are radially symmetric for so
are the functions ¢;. The relation ¢poAp; — @1 Ay = 0 involves that ¢V — @1 Vo is
divergence-free and therefore that ¢ V@ — 1 Vo = 0 since we deal with radial symmetric
functions. Therefore, ¢ and ¢, are proportional on each domain one of them at least has
no zero. It follows that for any (i1, i2) € Z; X I, either Q; NQZ =0 or Q] = Q2. Let us
denote by {€;},.; the family obtained by merging the two families {Q;} },.; and {Q7},., .
For any i € Z, there exists a function 1; € Hg(€;) and two real constants o; and §; such
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that Y =1, and ¢ = au1;, o = Bik; on Q;. A simple calculation shows that
Q;

1 9 1 9 Z , Z ,
B o) 2 5 [ Vel [ 96 = [ [

- 2 g2y (1 2 Z?)
= Yt (5[ wur- [ Zu

1€

> ) (af + BN (Hy)

i€T
where \;(Hy*) denotes the ground state of the self-adjoint operator defined on H?(£2;) N

H() by HE'6 = — A6 o
Z ol =1, Z B =1, Z a;3; = 0. It is a straightforward consequence of the Courant-
icT i€T i€T

Fischer formulae that Q C € involves A\ (HY) > A\ (HY); in addition, it is well known
that any eigenvector of HSZ% which is positive on €); is the ground state. It follows that
the restriction to B, (resp. to E:O) with 7o = 2/Z of the second radial eigenvector of

HE® (which takes the value 0 for 7 = ry only) is the ground state of H?“O (resp. of H;”’);

thus A (H2"0) = A (HE™) = —22/8.

¢. In addition the constraints / ¢i¢; = 0;; now read
R3

Let us first examine the situation when ¢;(ro) = ¢o(ro) = 0. In this case, for any i € Z,
either Q; C B,, or €; C Bio and therefore )\, (Hy') > —7Z2/8. Consequently, in virtue of
inequality (57),

72 72
EHF(¢1,¢2) > —Z > —7 =1 > JOEP,

We reach a contradiction. Therefore, there exists iy € Z such that the sphere |z| = rg
belongs to €2;,, and as €2;, is radial symmetric, there exist two constants 0 < a < b < 400
such that Q;, = B, N B,". By convention A\ (H2°) = 400 and A;(H.*™ ) = 0. For any
i € T, either Q; C B, or Q; C B, . Therefore

77 (61,62) > (0, + B2)M (%) + (2= (o, + 82)) min (M (HE), M(H))

Both \;(HZ*) and Al(Hgi”c) being greater than —Z?%/8, it is necessary that A\;(£;,) <

—7?%/8 (otherwise BT (¢y, ¢p9) > —Z?/4 and (¢1, ¢2) cannot be a minimizer of JOEP).
As

. max (af +47)=1
2iez %=L Yier Bi =1 Xiez @ifi=0

we obtain
EF (61, 6) = M) +min (A (HE), M (HL))

M (9ig) + A (HE), M () + M ()

= min

v

(
min (Al(HJZBT) F(HE), M (By) + Al(HEC)) .
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for Q;, C B, and €, C By. Finally,
E™ (1, ¢9) > min (Fz(a), Fz(b)) -

where the function F is defined as Fy(R) = A\, (H?) +)\1(H§_Rc). By a scaling argument,
it is easy to check that F;(R) = Z*F,(ZR); thus

EHF(¢1,¢2) 2 Z2min (Fl(ZCL), Fl(Zb)) .

By making use of the inequality

nf F(R)>A=—220_T (70)
0<R<too | T84 40
) 137 .
with n = 750 (see Remark 6.5 below), we obtain that for any Z > 4,
B (¢, ¢o) > Z* inf Fi(R) > _op +nZ — gyf > JOEP,
T T T 0<R<4o0 8 50 =
We again reach a contradiction and the proof of the Lemma is completed. &

Remark 6.5 We have to point out that inequality (70) has been established numerically.
Denoting by 1, (resp. R,) the lowest (resp. the highest) zero of the n-th radial eigen-

1
function of the operator —§A T on L*(R?), we have for any R < ry, M\ (HP?) >
T

1 1 1 Bac 1 1 1
M| —2A— — ) =——, and >Ry, M(HPR ) > Ay | —2A - — ) = ——.
( 5 |33|) 5z 0N forany R> R,, \{(H " ) > ( 5 m) 57
Therefore
1 1
n In],  Fi(R) 2 —5 — 5—.
VR ¢ [rn, Ry] 1 (R) 5 " 92

The RHS of the above inequality is greater than A for any integer n > 3. Therefore,
Fi(R) > A for R ¢ [r3, Rs]. In the range [r3, R3] we have used a numerical evaluation of
the function Fi(R); we have first sampled the range [1.9,7.1] (r3 ~ 1.902 and Rz ~ 7.098)
with a length step 0.001, then search for the global minimum around the point R ~ 4.566
by dichotomy; the numerical evaluation of the function Fi(R) for a given value of R

v(r) = Xv(r) first on Hy(0, R)
to get M\ (HP?), then on HY (R, Ryaz) with Rasee = 200 to get A\ (HBR ) (the value for

Ryrar has been chosen such that the value of the ground state of H , which is known
analytically, vanishes at the machine precision for r > Ry, ); for this purpose we have
used a spectral Galerkin approzimation in the Fourier basis with 103 elements. We have
obtained Fi(R) > —0.5681 and A < —0.5789. Although the Galerkin approximation
provides upper bounds of the eigenvalues whereas lower bounds are needed, it is reasonable
to be confident in the numerical lower bound since the numerical values of M (H?) at the
check points R =1y =2 and R=r3 = 9/2 — 3/2V/3 and of)\l(HBR ) at R= Ry =2 and
R=R;=9/2+ 3/2\/§ are equal to the analytical ones up to 1075,

was obtained by solving the eigenvalue equation —v"(r) —

32



Proof of Lemma 6.2. Since ¢; is a radially symmetric function in H'(IR?), ¢; is contin-
uous except maybe at the origin. Clearly, since ¢; # 0 we may consider some xy such that
o1(xo) # 0, and, say, ¢1(xo) > 0. Let 7o = |xo|. By continuity, we may consider the largest
0 < a < 1y and the largest 0 < 8 < +o0 such that ¢; > 0 on By _, N By 4. Clearly,
if o — a > 0 then ¢1(rg — a) = 0, and if § < 400 then ¢1(rg + §) = 0. Suppose that
ro—a > 0 and 1o+ 3 < +oo (otherwise the following proof is even simpler, since no cut-off
is needed at the origin, and/or the cut-off at infinity can be treated likewise). The idea is
to consider a sequence of radially symmetric functions v, € D(R3) such that 1, goes to
the characteristic function of By, ,NB;, . This can easily be done for instance by setting
Yn(r)=0forany r <rg—aorr >ro+p, tp(r) =1forany ro—a++ <r<ro+5—=,

1
0<tu(r)<lforrg—a<r<rg—a++torr+p8—+<r<rg+p, and —||th)lc

n
uniformly bounded with respect to n. Then we pass to the limit in

2 2 2 2 2\ 2
[amanpze([ wo- ([ we?) ()
2 2\2
ozc( / o ¢7 — ( / C anaﬁl)), (72)

ro—o ro—o

in order to obtain

which clearly implies, since ¢ > 0 (cf. Lemma 6.1),

2 __
/ ¢1 - ]-7
BSy_oNBrgts

and therefore concludes the proof: the total mass of ¢? being one, ¢, is therefore supported
in the connex set By _, N By, 5.
In order to go from (71) to (72), we simply have to remark that for any function such

as ¢ in HY(IR?), we have
a+t 8(251
—d

1 9 1/2 a+t dr 1/2
(E/BGMB&'WI') L%

1 L\ 21 Vi
- (= v ) —0(vA),
<47r/3a+mg‘ )" Lo

and therefore, applying this to a =g — a and t = 1/n,

ro—a—f—% ro—a—f—%
[ awnp < ow [T e
T T

0—Q& 0—Q&

1
< Cn? <—/
47 Byo—at1/nNBS, -

= o(1),

indeed goes to zero as n goes to infinity. The same applies to the cut-off at ry + 8 and
the proof of the Lemma is completed. &

(p1(a+1) — ¢p1(a)] =

IN

, V2 4
Vo) o)

@
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Proof of Lemma 6.3. We now intend to show that we may always assume, without loss
of generality, that ¢, is also supported in Supp @1, that we henceforth denote by B,, N By
where 71 = inf{r, ¢;1(r) > 0} and ro, = sup{r, ¢1(r) > 0}, where we recall that r; may
be zero, and ro may be +o00. We for instance show that we may always assume ¢o(r) = 0,
when r > 75 and 7y < +00 (the same arguments can be used to show that we can assume
that ¢o(r) = 0, when r < r; and r; > 0).

To begin with, we make some remarks.

By definition of 75, we know that ¢;(r) = 0 for r > ry. Changing ¢, into —¢, if necessary,
we may always assume ¢o(r2) > 0. Moreover, we may then change ¢, into the function,
still denoted by ¢,

bo(r) = { ¢o(r), whenr <7y, (73)

|do|(r), whenr > o,

without changing anything in the properties of the pair (¢, ¢2). If ¢ = 0 on [re, +00],
the proof is finished; so we henceforth assume that ¢, # 0, ¢ > 0 on [re, +00.

On the set r > ry, we have the Euler-Lagrange equation

%Cbz + (7 % i)% = —Xo@s. (74)

1
—ZAdy —
5002 =

Equation (74) can be obtained directly on the minimization problem by considering vari-
ations of ¢ only on the set r > r, that keep c fixed (the constraints (19) and (23) do not
play any role for ¢; = 0 on this open set). It follows from (74) that A¢, € L*(Bf,) and
that, together from the nonnegativity of ¢, on the same set, we have

¢o(r) > 0, when r > 7y,

by Harnack inequality.
Clearly, two cases may occur: ¢o(re) = 0 or ¢a(re) > 0.

We first show that necessarily ¢o(r3) = 0. Let us argue by contradiction and assume
¢2(r2) > 0. Then the strict positivity of ¢, already true for r > r, can be slightly extended
around 79, by continuity of ¢». More precisely, we may find an interval [ry — 1,79 + 7],
n > 0, where ¢, is bounded below, away from zero by a constant ¢ > 0. On such an
interval (upon which ¢o > a > 0), we may write the commutation condition as

—div (93 Vf) +co3 f =0
1

with f = — > 0. We are now allowed to use Harnack inequality to conclude that
2

sup <« inf
[ra—n/4,r2] ! [r2—n/4,r2] f

for some positive constant a. As we have assumed ¢(r9) > 0, f(r2) = 0 and then f =0
on [ry — n/4, 15, which contradicts the definition of ro as sup {r, ¢:(r) > 0}.

We are now in the situation when ¢o(r2) = 0, and of course, for r > 7y, ¢1(r) = 0 and
¢o(r) > 0. Let us decompose the Hartree-Fock energy of (¢1, ¢2) as follows

EHF(¢1a ¢2) = Al + A'I‘2 + A'I'g + Da (75)
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with

=5 [ Iva - —asl

A, == 2_ 2
T2 2/3 | ¢2| |‘¢2

T2

1 Z—1
Ao == 2_ 2 g2
2 Q/TC |V¢2| |.’L" QSZ

Z — Z

(note the ( 7] instead of the ﬂ because the potential generated by ¢; is accounted

x x
for), and

D= // ¢F (x // Pa2(2)d1(y )¢2(y).

Bry X Bry |an - y\ By, X By, |z —y|
We recall that ¢ > 0 on B—mc; thus we have ¢> > 0, and we may introduce y =
Be,

I
Tor, 9%

We next consider pairs of the form (¢, bo = s s,, + B2 B;“Q) which automatically satisfy

the constraints of problem JOFF as soon as we impose

of [ g+ =1

Br, Be,
We have
EHF(¢17 d/;Z) = Al + 052 Arg + /62 Arg + Ck2 D
= EHF(d)la ¢2) + (042 - 1)(A7‘2 + D — ,UArg)'
The case when #2 = 1 can be excluded for it involves that ¢, is entirely supported in

BC
B¢, and therefore that P2 A¢1 — P1A¢o = 0; this is not possible in virtue of Lemma 6.1.
Thus, we may now choose « first such that o? — 1 > 0, and next such that o> —1 < 0
(note both cases are possible precisely when 0 < #2 < 1). This shows that necessarily
Bg,
Ay + D — pAre = 0, otherwise we would contradict the fact that (¢1, ¢2) is a minimizer.

But then this shows that, for any  and 3 we have E¥¥ (¢, ¢5) = E#¥ (¢, ¢3), and there-
fore in particular we may choose 5 = 0, and leave the Hartree-Fock energy unchanged.
Consequently, it is indeed possible to assume that ¢ vanishes outside B,,. <

Proof of Proposition 6.4. Let w CC Q. As p > 0 on 2, there exists some positive
constant a such that p > a on w. It follows that f; = 2t belongs to H!(w); indeed,
fi € L*(w) and g
V| i 1207V d1 + 20102V |

a p?

3 1
—|Voi| + =Vl
a a

Vfi] <

IN
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The same results holds for fy = @ Therefore
p

2
W= (f1A¢1 + foAy + c‘%) e H'(w).

Moreover, fi¢; and fy¢; also are in H'(w), since a simple calculation shows that

3

5z Vol +19¢s).

4 1
IV(f11)| < %Ww + %'VM’ [V (f291)] <

The product W¢,; then is well defined in H~!(w). Similarly, W¢, € H ' (w). &
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