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Abstract

The mathematical properties of a nonlinear parabolic equation arising in the modelling
of non-newtonian flows are investigated. The peculiarity of this equation is that it may
degenerate into a hyperbolic equation (in fact a linear advection equation). Depending
on the initial data, at least two situations can be encountered: the equation may have a
unique solution in a convenient class, or it may have infinitely many solutions.

1 Introduction

Modelling the flow of complex fluids is a very intricate problem which is far from being
solved up to now. Besides studies which aim at improving phenomenological rheological
models (purely macroscopic constitutive laws), only a few attempts are made to recover the
rheological behavior of a complex fluid from elementary physical processes arising in its mi-
crostructure.

The mesoscopic model which has been proposed by Hébraud and Lequeux in [3] deals with
simple shear flows of concentrated suspensions. It is obtained by dividing the material in a
large number of mesoscopic elements (“blocks”) with a given shear stress o (o is a real number;
it is in fact an extra-diagonal term of the stress tensor in convenient coordinates) and by
considering the evolution of the probability density p(t,o) which represents the distribution
of stress in the assembly of blocks. Under various assumptions on the evolution of the stresses
of the blocks which will be described below, the equation for the probability density p(t,o)
for a block to be under stress o at time ¢ may be written as:

O = ~b(t) Oy + D(p(t)) 02,p — X1z @ PO ) on (57 xR (L10)
p=>0; (1.1b)
p(0,0) =po(o) (1.1c)




where for f € L'(R), we denote by

(87

D(f)

= — flo)do .
To Jio|>0.

In equation (1.1a), XR\[-o.,0.] denotes the characteristic function of the open set R\ [—o¢, o]
and 0y the Dirac delta function on R. Each term arising in the above equation (1.1a) (HL
equation in short) has a clear physical interpretation. When a block is sheared, the stress of
this block evolves with a variation rate b(t) = Go*(t) proportional to the shear rate ¥(t) (Gy
is an elasticity constant); in this study, the shear rate ¥(t), and therefore the function b(t),
are assumed to be in LIQOC(]R"'). When the modulus of the stress overcomes a critical value o,
the block becomes unstable and may relax into a state with zero stress after a characteristic
relaxation time Ty. This phenomenon induces a rearrangement of the blocks and is modelled
through the diffusion term D(p(t)) 02,p. The diffusion coefficient D(p(t)) is assumed to be
proportional to the amount of stress which has to be redistributed by time unit and the
positive parameter « is supposed to represent the “mechanical fragility” of the material.

In all that follows, the parameters «, T and o, are positive, and the initial data po in (1.1c)
is a given probability density; that is

po >0, poe€L'(R), /Pozl- (1.2)
R

We will be looking for solutions p = p (t,0) in C?(LLNL2) such that o p belongs to L°(LL) to
the nonlinear parabolic partial differential equation (1.1). The subscript o refers to integration
over R with respect to o, whereas the subscript ¢ refers to time integration on [0, 7] for any
T > 0. Note that the average stress in the material is given by

T(t) = /Rap(t, o)do (1.3)

and therefore the above condition on op ensures that the average stress is an essentially
bounded function of time.

Actually in practice, the shear rate is not uniform in the flow and in order to better describe the
coupling between the macroscopic flow and the evolution of the microstructure we introduce
and study in a second paper [1] a micro-macro model. In this model p is also a function of
the macroscopic space variables and the average stress defined by (1.3) is inserted into the
macroscopic equation governing the velocity of the macroscopic flow.

In order to lighten the notation and without loss of generality we assume from now on that
0. =1 and Ty = 1. This amounts to changing the time and stress scales.

The main difficulties one encounters in the mathematical analysis come from the nonlinearity
in the diffusion term and also and even more from the fact that the parabolic equation may
degenerate when the viscosity coefficient D(p) vanishes, and this will be shown to may appear
only when D(py) = 0. This difficulty is illustrated on a simplified example just below and
also in Section 5 where we discuss the existence of stationary solutions in the case when the
shear rate b is a constant.



Let us first of all look at the following simplified model which already includes the difficulties
we are going to face to in the study of equation (1.1). We consider the equation :

O = D(u(t)) &yu;
{u(o,ff) = Ly(®), (1.4)

where x]_; ;[ is the characteristic function of the interval | — 1,1[. The initial condition is
on purpose chosen in such a way that D(u(t = 0)) = 0. The function v = %X},l,l[(a) is a
stationary solution to this equation and for this solution D(u(t)) is identically zero. But it
is not the unique solution to (1.4) in CP(L2) N L°(LL). It is indeed possible to construct
a so-called wvanishing viscosity solution for which D(u(t)) > 0 for all ¢ > 0, and there are
actually infinitely many solutions to this equation. (This statement is obtained as a corollary
of Lemma 4.2 in Section 4 below.)

As far as equation (1.1) is concerned, we show that, in the case when D(pg) = 0 and b = 0,
we may have either a unique or infinitely many solutions, depending on the initial data (see
Proposition 4.1 in Section 4).

On the other hand, we are able to prove the following existence and uniqueness result in the
non-degenerate case when D(pg) > 0 :

Theorem 1.1 Let the initial data py satisfy the conditions

po € L'(R)NL®(R), po>0, / po =1 and/ lo| po < 400, (1.5)
R R

and assume that
D(po) > 0.

Then, for every T > 0, there exists a unique solution p to the system (1.1) in L{(LL NL2)N
L} (H}). Moreover, p € L5, NCHLLNLZ), [ p(t,0)do =1 for allt >0, D(p) € CY and for
every T > 0 there exists a positive constant v(T') such that

min, D(p(t)) = v(T)

Besides op € L{°(LL) so that the average stress 7(t) is well-defined by (1.8) in L$°.
The first step toward the existence proof of solutions to (1.1) will consist in the study of

so-called vanishing viscosity approximations, which are the unique solutions to the family of
equations

Ope = —b(O)dp + (Do) + ) ope — xwrpe + 22D o) (L6
pe > 0; (16b)
p=(0,-) = po (1.6¢)

(recall that we have rescaled the time and stress units to get Ty = 1 and o, = 1). Section 2
below is devoted to the proof of the following



Proposition 1.1 (Existence and uniqueness of vanishing viscosity approximations)
Let T > 0 be given. We assume that the initial data satisfies the same conditions (1.5) as in
the statement of the theorem. Then, for every T' > 0 and 0 < ¢ < 1, there exists a unique
solution p to (1.6) in L°(LyNLZ)NL; (H,). Moreover, p. € Li%NCY(LyNLL), D(p.) € C?,

/R pe=1, (1.7)

«
0 <pe <llpollzg + 4/ p VT, (1.8)

and for every T > 0, there exist positive constants C1(T,py), Co(T,po) and Cs(T,py) which
are independent of € such that

sup /IUIPESCH(T,po), (1.9)
0<t<T JR
sup /pi < Co(T, po) , (1.10)
0<t<T JR
and
T
/0 (e + D(p.)) /R opl? < Co(T,po) - (1.11)

Theorem (1.1) is then proved in Section 3 while the degenerate case is investigated in Section 4.
Lastly, the description of stationary solutions in the constant shear rate case is carried out in
Section 5.

2 The vanishing viscosity approximation

This section is devoted to the proof of Proposition 1.1.

We begin with the following :

Lemma 2.1 (Uniqueness) Let py satisfy (1.2). Then for every T > 0 and 0 < e, there
exists at most one solution p. to (1.6) in L¥°(LL N L2) N LZ(HL). Moreover, p. € CP(L2)
(thus, the initial condition makes sense) and

/R pe=1, (2.1)

for almost every t in [0,T].

Proof of Lemma 2.1: We begin with proving that every solution to (1.6) in L{°(LLNL2)N
L?(H}) satisfies (2.1). We fix R > 1 and we consider a cut-off C? function ¢r = ¢r(c) with
compact support which is equal to 1 when 0 < |o| < R and to 0 when |o| > 2R and such
that

, . _C
Rl < (2.2)



where here and below C denotes a positive constant that is independent of R. Notice that ¢’
is equal to 0 on | — 0o, —2R], on [—R, R| and on [2R, +0o0].

Now, we multiply (1.6a) by ¢r and integrate over [0,¢] x IR to obtain

/R pe(t) én — /R podr = - / b(s) / 8op-(5) dr — / (Do) ) /R 8rp-(5) &
//W|>1 S gr+ - /Dps ) 61 (0) .

We bound from above the terms on the right-hand side as follows. First, we have

[ [omron] < [ 10601 [ .60 10

C/t o
- b(s pe(s) < = s
R, PO < g

thanks to (2.2) and using that p. € L{°(LL) and b € L}. Next,

IN

IA

t t
/0 (D(p:) +¢) | /R Oupe#| < (e +alpelieqy)) /0 100pllz2 |6l z2

Cv't C
>~ R1/2 ||80'p5||L2 = R1/27

thanks again to (2.2), Cauchy-Schwarz’ inequality and since 0,p; is in L%yg. Finally,

0< é/OtD(ps) - /ot/a>1pE¢R = /Ot/wlpa(l — ¢r)
t
e

and the right-hand side goes to 0 as R goes to infinity since p, is in L{°(LL). All this together
yields

IN

/ps(t): lim pe(t) pr = lim /pofﬁR:/po:l,
R R R—o+o0 JR R

R—+o00

for almost every ¢ in [0,7]. In particular, this implies that D(p.) < «.

Let us now argue by contradiction by assuming that there exist two solutions p; and ps to
(1.6a) corresponding to the same initial data py. By subtracting the equations satisfied by p;
and po respectively, we obtain

D(q)

0iq = —b(t) pq + D(q) Dogpr + (D(p2) +€) 0o9q — XRA\[-1,114 + do(o);  (2.3)

q(OaU) =0,

where ¢ = p; — p2. We multiply (2.3) by ¢ and integrate over R with respect to o to obtain,
after integrations by parts,

1d D
5T q + (D(p2) +¢) /|80(I|2 / ¢ = ﬂfJ(t,O)—D(q) / Oop10sq . (2.4)
lo|>1 «a R
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We first remark that since / p1 = / p2 = 1 thanks to (2.1), we get
R R

ID(q)| = o] q| < av2|lqlls
lo|<1

with the help of Cauchy-Schwarz’ inequality. Next, using the Sobolev embedding of H'(IR)
into L*°(IR), we bound from above the terms on the right-hand side in the following way :

D(q
| L q(t,O) - D(q) / 80p180q|
a R
< Valdlze lallss + V3l / 10,1004
R
1
< V2lldllz (lalZs + 1954123 )* + v2alallzs 1011z 19dl 2

1 o? €
< Zlallze + —lallzz 10op1l7: + 5llalz: + €losallz; -
Therefore, comparing with (2.4) we deduce

1d 1 «

2
“ZalZ, < G+ S 10.pu)2 + 2) gl -
2dt||Q||Lg S (5 T 106p1]l72 + 2)||Q||Lg

Finally, by applying the Gronwall lemma, we prove that Hq||%2 < 0, thus ¢ = 0. The unique-
ness of the solution follows. O

Remark 2.1 The same proof shows that if there exists a solution to (1.1) in L°(LL NL2)N
LZ(H}) such that info<i<r D(p(t)) > 0, then it is unique in this space.

We now turn to the existence part in the statement of Proposition 1.1. From now on we fix
a positive constant € < 1. The proof of Proposition 1.1 will be carried out by the Schauder
fixed point theorem. For given positive constants M (> €) and R, we introduce D, j; and Yy
two closed convex subsets of respectively L? and Lig as follows:

Dy = {aELf;aSaSM}
Yp = {p€Li,; p>0, sup / lolp < R}
0<t<T JR
To simplify notation we denote
1 z?
r) = exp(——=) ifn>0;
‘7077( ) /om 1 p ( 27]2) N
¢o = dp -

We first prove the following

Proposition 2.1 Let T > 0 and let pg € L*(R) such that py > 0. Then, for every a in D,
and q in Yr, there exists a unique solution p in L{°(L2) N LZ(H}) to

Op(t,0) = —b{1) dop(1,0) + alt) 92,p(1,0) — Xi-1(0)p(1,0) + 2D dy(0); (250)

p(0,0) =po(o) . (2.5b)



Moreover, p € CP(L2), p is non-negative and

P-SpSPpy, (2.6)
with oo
ptta)=c [ mlo)y oo - o = x(t) do’ (27)
and
+oo
pelto) = [ mlo)e pmlo — o~ x(0)do’ +
to [ Dl o =) + xte) ds. 2.9

where x(t) = f(f b(s)ds. In addition,
i. If po € L*(R), then p is in L{o, and

RVT
VTE'

i. If [ lolpo < +oo (thus po € L'(R)), then |o|p € L°(LY}). More precisely, we have

0 <p<lpollze + (2.9)

2R
sup / lolp < / o] po +ﬁ||b||L2(0,T) Ipollzr + TT3/2 ||b||L2(0,T)
0<t<T JR R

4RVM T3/2

N (2.10)

2 1/2
—(MT
M) lpollzr +
Moreover p € CP(LL) and D(p) € C}.
Proof of Proposition 2.1: Let us first observe that for every ¢ in Yz, D(q) € L since

0 < D(q(t) < a/ lelgsar, (2.11)

for almost every ¢ in [0, 7]. Therefore the source term D(q(t)) §o(o) in (2.5a) is in L{(H )
and the existence and the uniqueness of a solution p € CP(L2) N L?(H}) to the system (2.5)
is well-known (see for example [2]). In particular, the initial condition makes sense. Owing
to the fact that the source term is non -negative, the proof that p > 0 is also standard (see

again [2]).

We now check the pointwise inequality (2.6).
This is ensured by the maximum principle with observing that p_ and p, given respectively
by (2.7) and (2.8) are the unique solutions to the systems

atp_ = — bao.p_ + a/82 p— - p— ;

oo 2.12
Ay o

and (q)

D(q

— 2 5
(9,51).1_ = - baap—l— + a'amrp'i' + T 50(0) ? (2'13)
p+(0,0) = po(o),



respectively. We now turn to the proof of statement 7. and assume that py belongs to L*°(RR).
Then, using the two facts that for every v > 0, [g ¢, =1 and ¢, < ﬁ, (2.9) is easily

deduced from p < py with the help of (2.11) and since a > €.

Suppose now that [ |o|po < +o0. This together with the assumption py € L?(R), guarantees
that pp € L'(R) (see also below). Using (2.6) again, we now have

/R|a|p < /I0|p+
< //po M@m 0') dodo’
/D /wﬁa— )+ X(s) do) ds
- //po(a')|a+0'+x(t)|<pm(a)dada'
/D /|0+ XD o) dor) ds
/R lo1p0(0) dor + x(®)] [lpoll 2 + / I(®) — x(s)] Dlg(s)) ds

2 L1 . ta 12 4
r ([ il + 2 [0 ([0 s @y

since [ o] @ (o) do = (2/m)/2 v and [ ¢, = 1. With the help of (2.11) and observing that
Ix(t) — x(s)] <Vt —s||bllz20,7), we then deduce (2.10).

IN

We now use this bound to check that p € CP(LL) and D(p) € C?. Indeed, for any t, any
sequence t, in [0,7] which converges to t and A > 1, we have

/R Iplta) — p(t)] = /GSA Ip(ta) —p(t)] + /QA [p(t) — p(0)|

< VEA( [ 1ot -p0F) "+ 5 [ 1ol (ot + (o)
< VEA( [ Jpten) = pi0) " £ [ olwen . (21

For any fixed A the first term in the right-hand side goes to 0 as m goes to infinity since
p € C)(L%) and then the second term is arbitrarily small as A goes to infinity. The same
argument yields the continuity of D(p(t)) with respect to t.

¢

The following proposition aims at checking the required assumptions to apply the Schauder
fixed point theorem.

Proposition 2.2 Let T} > 0 be given. We assume that

po € L'(R)NL¥(R), py>0, /P0=1 aﬂd/|0|P0<+OO- (2.16)
R R

8



Let 0 <e <1, R=1+ [glolpo and M =1+ 2c. We define

9 2V1+2a7-2
T = 5 [l + == -

Then, for every T < min(R, ¢), the function T : (a;q) — (D(p) + £;p), with p being the
solution to the system (2.5), maps D. pr X Yg into itself. Moreover T is continuous and
T (Dem % Yg) is relatively compact in L*(0,T) x L.

(2.17)

Proof of Proposition 2.2:
Step 1: 7T is well-defined.

According to Proposition 2.1, p is in CP(LL) and D(p) € CP. We now prove that with our
choice for M ( which ensures that e+D(py) < 1+« < M), D(p)+¢e € D, . For this, we again
use the inequality p < py, the definition (2.8) of p,, the rough estimate f\a\>1 oy < fR oy, =1
and (2.11) to obtain

sup D(p(t)) < sup D(p4+(t)) <a+aRT <2a«a,
0<t<T 0<t<T

for T' < +. It only remains now to check that OiltlET/R lo|p < R. We thus go back to (2.10)
and observe that this condition holds provided

WMt 4R Mt3/?
+ R <1}.
T 3V
Since we already have demanded that ¢t < T < % a sufficient condition is then

) 10V1 4 2«
ﬁ[— 10l 2 0.7,) + EEN.

T < max{t > 05 [1bll 20,2, VE (L + 725) "

| <1,

which reduces to T' < T, with T¢ given by (2.17).

Our next step will consist in establishing a priori bounds on p in L{°(L2) N L (H}).

Step 2: A priori bounds.

If we multiply equation (2.5a) by p and integrate by parts over IR with respect to o we easily
obtain

1d 2 ((I)
53 7o [ 1ok < 2000

Since from the Sobolev embedding of H'(R) into L*°(R) and the bound (2.11) on D(q) we
get

D(q)
29D 0.0 < Ripls
2 2 \s
< Rl + 0,pl2)}
R2 9 2 € 2
< 5 5”17“[,3 + §||8ap||L(2, ’



we may write

1d R? €
S Sl + (@ - 2 lspl3, < 5+ Slell, (218)
We recall that a > ¢ and we apply the Gronwall lemma to obtain
T R?
sup [Ipl2s < T (llpollZs + ——) . (2.19)
0<t<T

We now return to (2.18) and integrate it over [0; 7] to obtain

T R?

Noapl} < lpolliy (1 + £7eT) + =2 (1 4 T ). (2:20)

Step 3: The function T is continuous.

We consider a sequence (a,;qp) in D, pr X Yg such that a,, converges to a strongly in L? and
¢n converges to ¢ strongly in Lt », and we denote T (an;qn) = (D(pn) + €;pn). We have to
prove that p, converges strongly to p in L? . and D(p,) converges to D(p) strongly in L?,
with (D(p) +¢;p) = T (a;q).

In virtue of (2.19) and (2.20), the sequence py, is bounded in L¥°(L2) N L?(H}). Then, d,p,
is bounded in L{°(H; ') and 82,p, is bounded in L2(H_1). Since a,02,p, is bounded in
L?(H, 1Y), b € L? and D(q,)do is bounded in L?(H, 1), 9;p, is bounded in L?(H,'). This
together with the fact that p, is bounded in LQ(H}) implies that, up to a subsequence, p,
converges strongly towards p in L2(L12OC ,) (the convergence being weak in L7(H})) thanks
to a well-known compactness result [4]. In particular, p, converges to p almost everywhere.
Thus p > 0 and by the Fatou’s lemma, [;|o|p < R almost everywhere on [0;T]. Hence p

belongs to Y. We are going to show that the convergence is actually strong in L%}U

t,o

In virtue of (2.9) in Proposition 2.1, we dispose of a uniform a priori bound on p,, in Lg%
(hence also on p). For the strong convergence in L%yg we then argue as follows. For any fixed
positive real number K, we have

T ) T ) T
//Ipn—pl < // lpn — pl +// lpn —
0o /R 0 Jo|<K 0 Jo|>K
2RT

T
L[ sl (ol + o)
0 Jio|<K ’ ’

owing to the fact that p, and p belong to a bounded subset of Yr N L{7. We then conclude
by letting n next K go to infinity.

We now prove that D(p,) converges to D(p) strongly in L?. We shall actually prove that
D(p,) converges to D(p) strongly in L} and then use the fact that D(p,) is bounded in L$°,
in virtue of (2.11) and because py, lies in Yg. Let us fix K > 1. Then, we have

é/OTID(pn) - Dbl = /0 | \o\>1 -7
/OT /1<0<K o — pl + % /T /0>K 71l 1)

T
2RT
-pl+—, (2.21)
/0 /1<o—<K K

10
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because p and p, belong to Yx. Since p, converges to p strongly in L} (L110C7 »)» we conclude
that D(p,) converges to D(p) in L; by letting n next K go to infinity in (2.21).

In order to pass to the limit in the equation satisfied by p,, (thereby proving that (D(p) +
e;p) = T (a;q)), we now observe that the strong convergence of ¢, to ¢ in L%,U, together with
the argument in (2.21) above shows that D(g,) converges to D(q) strongly in L?. It is then
easily proved that p is a weak solution to (1.6a) and since p is in L?(H]}) it is the unique
solution to (2.5) corresponding to a and ¢. In particular, the whole sequence p, converges
and not only a subsequence.

Step 4: T(D. x Yg) is relatively compact.

Let (D(pn) + €;pn) = T (an;,qn) be a sequence in T (D: ps x Yg). We have to prove that we
may extract a subsequence which converges strongly in L? x L%yg. Exactly as for the proof of
the continuity, the a priori estimates (2.19) and (2.20) ensure that the sequence p,, is bounded
in L°(L2) N L#(H}). Since |o|py, is bounded L°(LL), we can mimic the argument in Step 3
above to deduce that up to a subsequence the sequence p,, converges to some p in Yg strongly
in L7 , and that D(p,) converges to D(p) strongly in Lj. &

We are now in position to conclude the proof of Proposition 1.1.

Let Ty > 0 and 0 < ¢ < 1 being given. We are going to prove the existence of a unique
solution on [0; T].

Being given an initial data py which satisfies (1.5), existence of a solution p. is ensured from
Proposition 2.2 by applying the Schauder fixed point theorem on “short” time interval [0; 7T} ]
with 77 = min(z-,7¢) and where Ry = 1+ Jg lolpo . This solution is uniquely defined in virtue
of Lemma 2.1 and we know from (2.1) that [, p.(T1) = 1. Moreover from Proposition 2.1
pe(T1) € L and by construction [; |o|p.(T1) < Ri. Therefore p.(T}) satisfies the same
conditions (2.16) as pg. Then, repeating the same argument we may build a solution to (1.6)
with initial data p.(T1) on [T1; Ty] with Ty = min (g, Te), where Ry = Ry +1 = [g [o] po +2.
Thanks to the uniqueness result (Lemma 2.1), if we now glue this solution to p. at t = T1 we
obtain the unique solution to (1.6) on [0; 7} + T5]. It is now clearly seen that for any integer

n > 1 we may build a solution to (1.6) on [0; Y, .., Tk] with T}, = min ((k—i—fR |a|p0)71; Tc>.
Since Y ) <<, Tk obviously goes to +o00 together with n, existence (and uniqueness) of the
solution p. to (1.6) is obtained on every time interval.

For the proof of (1.8) we argue as for the proof of (2.9) in Proposition 2.1. Defining p;

11



as in (2.8) with a replaced by D(p.) + ¢ and D(q) by D(p.) we obtain

0 < p.<pf

1 t D(p:(s
< ||poy|Loo+a\/7_T (e(t)) ds
0 24/e+ [; D(p:)
|
< ol + = ,/e+/DpE Ve]
< lpollze + \/ D(p.)
<

Ipollze +
\/_

/pg < ”pE”LgO /psa
R R

from which (1.10) follows gathering together (2.1) and (1.8) and, with the notation of the

proposition,
VavT
VT

Then

Ca(T, po) = llpollz~ +

The proof of (1.9) follows the same lines as the proof of (2.14). Indeed, we again use the
pointwise inequality p. < pF and replace D(q) by D(p.) (< «) and a by D(p:) + (< a+1)
n (2.14) and use (2.16) to deduce

21+ 2 21+

sup [ Jolpe < [ Jolpo+ VI (RS 4 Pllsn) + 5792 (14 2 2%) e
0<t<T JR R VT ’ 3 NS

whence (1.9) with C1 (T, pgy) being the quantity in the right-hand side of (2.22).

In order to prove (1.11), we multiply (1.6a) by p., and we integrate by parts over R with
respect to o to obtain

1d
2 dt

[ 0w +e) [ 1o+ [ 2= P oy, 223)

lo|>1 «a

We use the L bound (1.8) to bound the right-hand side and we integrate (2.23) with respect
to t over [0; 7] to deduce (1.11) with

1 o
Co(T o) =l (5 + T) + YE T2,

using that HpoH%g < llpollze [ po- ©

12



3 The non degenerate case: D(py) >0

The main result of this section corresponds to the statement of Theorem 1.1 and fully de-
scribes the issue of existence and uniqueness of solutions to the HL equation (1.1) in the
non-degenerate case. It is summarized in the following :

Proposition 3.1 Let py satisfy (1.5). We assume that D(py) > 0. Then, the HL equation
(1.1) has a unique solution p in C(LZ)NL?(HL) and p is the limit (in L?}lOC(Lg) ﬂCgloc(Lg))
of (pe) when € goes to 0 where p. is the vanishing viscosity solution whose existence and
uniqueness is ensured by Proposition 1.1. Moreover, p € Ly, N CY(LL), op € L°(LL) and
pr = 1. Furthermore, D(p) € CY and for every T > 0 there exists a positive constant v(T)
such that

Og;ignTD(p(t)) >v(T) . (3.1)

We begin with proving the following :

Lemma 3.1 We assume that py satisfies (1.5). Then, if D(pg) > 0, D(p:)(t) > 0 for every
t € [0,T], with pe being the unique solution to (1.6) provided by Proposition 1.1 and, actually,
for every T' > 0 there exists a positive constant v(T') such that

min D(p.(1) = (1), (32

for every 0 < e < 1.

Remark 3.1 Note that this bound from below is independent of €, but it comes out from the
proof that it depends on py and on the shear b.

Proof of Lemma 3.1: The proof relies on the bound from below in (2.6) that we integrate
over |o| > 1 to obtain

- —t ! o !
pozae [ ) ([ e e i) @' 6

!
— o' — x(t
s D ® ~ 0 T X®)

is a Gaussian probability density with mean o’ + x(¢) and squared width 2 fot (D(pe) + €).
Therefore, for every o’ € R\ K, we have

D(p.(t) > o /

lo|>1

Let us define K, = [—1 —x(t),1 — x(t)]. The function o — ¢

?

N —

— o' —x(t)do >
/|U|>1(P 2fot(D(ps)+g)(U o' = x(t))do >

which implies

« «
(3.3) > 5 e T / Po=5 e T / o -
R\Ky lo+x(8)]>1

In the zero shear case (b = 0, thus x = 0) the proof is over and

min D(p(t)) >

=T
D .
0St<T € (o)

N —



In the general case, a strictly positive bound from below is available as long as the support
of pg is not contained in K,. We thus define

t*:inf{t>0;/ pOZO}. (3.4)
o+x(0]>1

Then 0 < ¢* (¢t* possibly even infinite), the support of pg is contained in [—1— x(¢*), 1 — x(¢*)],
and for every T' < %, (3.2) holds for some positive constant v (7T') defined by

_ YT i
n(T) =ge " win /|g+x( o1 (3:5)

It is worth emphasizing that this quantity is independent of €. If t* = 400, the proof is over
and v(T) = v1(T) fits. Let us now examine the case when t* < 400 and T' > %

We go back to (3.3), take ¢ in [4; 7] and denote z = fg(D(pE) + ¢) for shortness. Then

D) = ac” [ 11’:(1**));»0(0') (] oumto =o' ~xw)ds)ar

r /I—X(t*) (o) / e*(ff*ﬂ'*x(t))z/%d i’
= «ae polo o | do
—I—X(t*) ° lo|>1 Qﬁﬁ
a Lto'+x(t) o—0®/4a +00 e 0 /4w .
= d0+/ do | do
\/_ / /oo 2z Lo +x(t) 2VT
«

oo oo t2 /
= — P dt “tdt) d
\/_ / ﬁﬁ +X(t) + ﬁ_‘;ﬁx(” ¢ 7

1 x(t*) 400 ) 400 )
> (o) do’ / e dt + / e dt
1 x(t*) 2—x(t*)+x(t) 24X (£*) —x(t)
NeGID) V2t (t7/2)
+o0o +00
(0% . 42 42
> —e T min e ¥ dt + e dt)] (3.6)
NZS t=/2<t<T \ J2x(t) X 2hx () x(t)

V2t vy (£ /2) NG GID)

since fi;})((t(iz)po 1 and z > ft 2D D(p:) > t*v1(t*/2)/2 thanks to (3.5). The proof of
Lemma 3.1 then follows by defining

v(T) = min(v(T);v2(T)) ,

with v1(T') given by (3.5) and v»(T') being the positive quantity in the right-hand side of
(3.6), that is

a T +oo 5 +o00 9
ve(T) = —e ' min e dt+ e U dt
VT t*/2<t<T 2 x(t*)+x(t) 24X (#*) —x ()

VAt n (et 2) 2205 0 (0% [2)

Proof of Proposition 3.1:
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We first go back to the proof of the bound (1.11) on d,p. and more precisely we look at (2.23)
and observe that in virtue of (3.1)

T
ut) [ [ o < catpn). (3.7)

Let now &, denote any sequence in [0, 1] which goes to 0 as n goes to infinity. To shorten the
notation we denote by p,, instead of p., the corresponding sequence of solutions to (1.6). With
the above bound (3.7) on p,, and (1.10), we know that p, is bounded in L?(H}) independently
of n. Moreover thanks to (2.1) and (1.8) p,, is bounded in L¥°(LL N L) and we also dispose
of a uniform bound on g |o|p, in virtue of (1.9). Therefore arguing exactly as in the proof of
Proposition 2.2 (Step 4) where we have proved that the mapping 7 is relatively compact in
L} x L}, we show that p, converges to some p strongly in L7, and D(p,) converges to D(p)
in L7. Then p is a solution to the initial problem (1.1) in LF(H}) N L°(Ly N L), [pp =1
and [ |o|p < +o00. Moreover,
. %{gTD(p(t)) >v(T) .

This non-degeneracy condition on the viscosity coefficient ensures that there is at most one
solution to (1.1) in LZ(HL) N L(L2) (this follows by an obvious adaptation of the proof of
Lemma 2.1 to this case). Therefore the limiting function p is uniquely defined and does not
depend on the sequence ¢,. Moreover the whole sequence p,, converges to this unique limit
and not only a subsequence. &

As a conclusion of this subsection let us make the following comment which is a byproduct
of Proposition 3.1. Let p be a solution to (1.1) in C(LL N L2), then as soon as D(p(t)) is
positive for some time ¢ it remains so afterwards since the solution can be continued in a
unique way beginning from time t¢.

4 The degenerate case : D(py) =0

Throughout this section we assume that D(py) = 0 and therefore the support of py is included
in [—1;+1]. Assume that we dispose of a solution to (1.1) in CP(LL N L2). We may define
t. € RT U {+oc} by

t*:max{t>0;/0tD(p):0}. (4.1)

According to the comment at the end of the previous section for every t > t., D(p(t)) > 0
while D(p(t)) = 0 for all ¢ in [0;¢.]. On [0;¢,[, the HL equation (1.1) reads

op = —b(t)dsp;
p > 0;
p(0,:) = po;
D(p(t)) = 0.

The above system reduces to

(t,U) = o — (t) ;
{ ] (t) = g(i( forXa,llgin [0;t,] . (4.2)

15



The second equation in (4.2) is compatible with the first one as long as
/ po =0, foralltin[0;t] .
lo+x(t)[>1

Therefore there exists a maximal time interval [0; 7] on which the HL equation may reduce
to a mere transport equation and this is for an intrinsic time 7, (possibly infinite) defined by

Tczinf{t>0;/ p0>0.} . (4.3)
lo+x(8)]>1

Note that 7. is completely determined by the data py and b. If T, = +00, the steady state
p(t,0) = po(oc — x(t)) is a solution of the HL equation for all time. We shall now exhibit
circumstances under which it is not the unique solution. For convenience, we restrict ourselves
to the case when b = 0 (we then have obviously T, = 4+00).

For py € LY(R) N L®(R) such that py > 0, let us denote by F,; the function from R* to R
defined by F,,(0) = D(po) and by

Vz >0, Fp(z) = a / </ po(0")p g0 —a') da') do .
lo|>1 R

Proposition 4.1 Let py satisfy (1.5) and be such that D(pg) =0, then
i. If Fyy satisfies
1
dx
T i, 4.4
/0 Fpy () (44)
then p(t,0) = po(0) is the unique solution to (1.1) in CP(L2) ;

ii. Otherwise, (1.1) has an infinite number of solutions in CP(L2). The set of solutions to
(1.1) is made of the steady state p(t,0) = po(c) and of the functions (gi,); >, defined

by
_ | po(o) if t <o
4t (t,0) = ‘ q(t — to,0) if t >t
where q is the unique solution to (1.1) in CP(L2) such that D(q) > 0 on ]0,+oo[.
Besides,
Pe 24 strongly in L7 .(L2). (4.5)
€— ?

Lemma 4.1 Let py € L*(R) N L®(R) such that
po > 0, / po =1, D(po) = 0.
R

The function Fy is in C°([0,400[) N C*°(]0,+oc[), and is positive on |0,+oc[. In addition,
F, >0 on ]0,+ool.
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Proof of Lemma 4.1: It is easy to check that F,, € C°([0,+oo[) N C*(]0, +00[), and that
F,, > 0 on ]0,+oo[. Since D(pg) = 0, the function pg is supported in [—1,1]. Thus, for any
z>0

Fue) = a [ ([ wohogaslo - oao') do
|o|>1 R
/1 (o") / T ) o
= « o ————do o
P ol>1 2VTVT
1 / —l+o’ —0/4x +oo o—0? /4w .
=[O S s

= L/1 (o) /+OO tht+/+oo “dt | do’ (4.6)
_a\/7_r 71p00 1+70,6 o € o . .

27z 27z

It follows that for any = > 0,

1 1 1 ! (14072 1—o (1—o')2
Fzﬁo(w):a—/ po(a’)( TO R LT >d0'>0.

Nz 4552 ° 42372 ©
¢
Lemma 4.2 Let v > 0 and py € L'(R) N L®(R) such that
po = 0, / po =1, / |U|p0 < 400, D(p()) =0.
R R
Let us consider the problem
— 2 _
{ Orw = D(w(t))05,w — yw (4.7)
U)(O, U) = Po (U)

i. If Fy, satisfies (4.4) then p(t,o) = po(o) is the unique solution to (4.7) in CP(L2);

ii. Otherwise, (4.7) has an infinite number of solutions in CY(L2). The set of solutions to
(4.7) is made of the steady state w(t,o) = po(o) and of the functions (vy,), >, defined
by B

po(o) if t <o

Uty (t,0) = v(t — to,0) if t >t

where v is the unique solution to (4.7) in CP(L2) such that D(v) > 0 on ]0,+oo[.

Corollary 4.1 The initial data py = %X]—l,l[ fulfills the assumptions of the above lemma and

fol % < 400. Therefore there are infinitely many solutions to the equation (1.4) in the
0
introduction.
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Proof of Corollary 4.1: The only point to be checked is that fol de""(jw) < 4o00. With the
0

standard notation erfc(z) = f;oo et dt, and by using (4.6) and symmetry considerations,
simple calculations yield

Fyo(z) = 23\%/5 Oﬁerfc(a)da
2 1 1 _1 1
= ﬁ[erfc(ﬁ)_ﬁﬁe w+§\/5 .

Since erfc(z) ~ %e*ZQ/z for z going to +o0, Fp, () ~ % vz near 0 and the integrability of

1/F,, on [0;1] follows. &
Proof of Lemma 4.2

Let us consider a non-negative function D € C?([0, +oo[, R™"). The unique solution in CP(L?2)
of the problem

{ dywp = D(t)9%, wp — ywp; (4.8)
wp(0,0) = po(0),
is given by
e " po(o) ift <t*;
wp(t,o) = (4.9)
e /Rpo(a')go o D(S)ds(a —0o')do’ ift>t*,

t
where t* = inf{t > 0, / D> 0}. Any solution to (4.7) thus satisfies w = wp,) and
0

therefore
D(w(t)) = D (wpw)(t))

= a/ wD(w)(t,U)dU
lo|>1

- B , —o')do' ) d
N /|f7|>1 (/Rpo(a)go Qf(fD(w(S))ds(U ) U) ’

_ E, (/OtD(w(s))ds> .

It follows that the function D(w) is solution in C°([0, +00[) to the nonlinear integral equation

y(t) = e " E,, (/Oty(s) ds) : (4.10)

On the other hand, if D € C%([0, +oo]) is solution to (4.10) it is easy to check that the
function wp defined by (4.9) is solution to (4.8).

If condition (4.4) is fulfilled, equation (4.10) has a unique solution in C°([0, +o0[) (the constant
function equal to zero) and the steady state w(t,-) = po thus is the unique solution to (4.7)
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in CP(L2); otherwise, the set of solutions to (4.10) is made of the steady state w(t, ) = po
and of the family (yy,)s,>0 with

0 if t <t

Yro(t) = 2(t — to) if t > tg

where the function z is defined on [0, +oo[ by

/Z@) de [ L= i y>0;
o Flz) t, otherwise .
Statement 7. is obtained by denoting by v the solution to (4.8) associated with the function

z(t). ¢

Proof of Proposition 4.1:

The solution p¢ to equation (1.6) satisfies the inequalities
pe (t,0) < pe(t,o) < pf(t, o) almost everywhere

where p_ and p} are defined in C}(L2) by

{ O = (D(pet)) + ) Popr — b ot = (D(pe(t) + ) 2pr + 205,
P (0,0) = po(0); p(0,0) = po(0). :

Therefore on the one hand
¢
D) 2 Dz () = B [ (D) +0) (4.11)

and on the other hand

D(pc(t)) < D(p/ (1))

Fpo (/Ot(D(Pe)JFG)) +/Otw </0>1<P\/m> ds
F,

o (/Ot (D(p.) +e)> -I-é/OtD(pe)(s)ds.

If (4.4) is not fulfilled, using (4.11) and the property that F), is strictly increasing on [0, 4+o0],
we obtain that

IN

D(pe) > #(t)

where z(t) is the function defined in the proof of Lemma 4.2. As for any 0 < ¢ty < T, there
exists 7 > 0 such that z(¢) > n on [ty,T] the same reasoning as in the non-degenerate case
leads to the conclusion that (p) converges up to an extraction to p in D'(]0, +oo[xR) and in
L*([to, T], L*(R)) for any 0 < ty < T < +o00, p being a solution to (1.1) in C°(]0, +oo[, L2)
such that D(p) > 0 on |0, 4o0]. &
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5 Steady states

Throughout this section the shear rate b is assumed to be a given constant and we are looking
for solutions in L!(IR) to the following system :

( D
b 3+ D) 200~ xe 1 2+ dy(0) =0 on (0:T) < R (5.1
pZO,/pzla (5.2)
R
D(p) =« p(o) do (5.3)
lo|>1

Our main results are summarized in the following :
Proposition 5.1 .

i If b =0, any probability density which is compactly supported in [—1;+1] is a solution

o (5.1) which satisfies D(p) = 0. If a < %, these are the only stationary solutions
(and there are infinitely many), whereas when o > % there exists a unique stationary
solution corresponding to a positive value of D, which is explicitly given by (5.4) and

(5.6) below. This solution is even and with exponential decay at infinity.

it If b £ 0, for any a > 0, there exists a unique stationary solution to (5.1), and it
corresponds to a positive value for D, which is implicitly given by (5.7) and (5.8) below.
This solution has exponential decay ot infinity.

Remark 5.1 The statement in the above proposition is already pointed out by Hébraud and
Lequeuz [3].

Proof of Proposition 5.1:

The case when b =0

We first observe that any non-negative function p which is normalized in L'(R) and with
support in [—1; +1] is a solution to the system (5.1) since in that case all terms in equation (5.1)
cancel. We now examine the issue of existence of solutions of (5.1) such that D(p) > 0. For
simplicity we denote D = D(p). For given constant D > 0, it is very easy to calculate
explicitly the solutions of (5.1) on each of the three regions 0 < —1, 0 € [-1;+1] and o > 1.
Using compatibility conditions on IR and the fact that p has to be in L'(IR) one obtains :

;

VD VD <,
2a -
1 \/ 1
2— 2+ if —1<0<0,
« «
p(o) = 1 , \/_ . (5.4)
- D+ if0<o<1,
2« 2«
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The compatibility condition D = D(p) happens to be then automatically satisfied and the
normalization constraint fR p =1 imposes that D solves

D+\/5:a—%. (5.5)

Since D > 0, we immediately reach a contradiction when o < %, whereas when a > %
equation (5.5) admits a unique positive solution; namely
1 Via-1

D = —3 + — (5.6)
The case when b # 0
First of all, we observe that if D = 0 every term in equation (5.1) but bd,p vanish. Thus
p has to be a non-zero constant which is in contradiction with p € L'(IR). So necessarily
D > 0. For given positive constant D, we then solve (5.1) as above and obtain

( arel’ o ifo < -1,
D
age%”—l—aQ—b— if —1<0<0,
a
= 1)
(ag——)eﬁg—l—ag if0<o <1,
ba
L ajel” 7 ifl<o,

with .
ey} FE
3Vt
“a=a (BT et/2D — ge b/2DY’
and

D ,6+ eb/2D
" b (BTet/2D — e b/2DY
It is tedious but easy to check that this function always fulfills the self-consistency condition
D = D(p) and that the normalization condition [ p = 1 reads

D(1+p)+ (B —De /P
b Bt — B e b/D
For any b > 0 (the negative values of b are dealt with by replacing o by —o), the left-hand
side of (5.8) is a continuous function which goes to +00 when D goes to infinity and goes to
zero when D goes to 0. This already ensures the existence of at least one steady state for any
a > 0. Moreover, setting z = % (for example) we may rewrite the left-hand side of (5.8) as

a2

+D=q«. (5.8)

b? N 20% |1+ g5z coth(z/2b) + 5 (2> + 4z)1/?
z z z + (22 + 42)1/2 coth(z/2b)

Next we check that the function f is monotone decreasing (thus, the left-hand side of (5.8)
is increasing with respect to D), whence the uniqueness result. &
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