
Mathematial analysis of a nonlinear paraboli equation arisingin the modelling of non-newtonian owsEri Can�es(a), Isabelle Catto(b) and Yousra Gati(a)(a) CERMICS, Eole Nationale des Ponts et Chauss�ees and INRIA,6 & 8 avenue Blaise Pasal, Cit�e Desartes, 77455 Marne-la-Vall�ee Cedex 2, Frane.(b) CEREMADE, UMR CNRS 7534, Universit�e Paris IX-Dauphine,Plae du Mar�ehal de Lattre de Tassigny, F-75775 Paris Cedex 16, Frane.June 6, 2003AbstratThe mathematial properties of a nonlinear paraboli equation arising in the modellingof non-newtonian ows are investigated. The peuliarity of this equation is that it maydegenerate into a hyperboli equation (in fat a linear advetion equation). Dependingon the initial data, at least two situations an be enountered: the equation may have aunique solution in a onvenient lass, or it may have in�nitely many solutions.1 IntrodutionModelling the ow of omplex uids is a very intriate problem whih is far from beingsolved up to now. Besides studies whih aim at improving phenomenologial rheologialmodels (purely marosopi onstitutive laws), only a few attempts are made to reover therheologial behavior of a omplex uid from elementary physial proesses arising in its mi-rostruture.The mesosopi model whih has been proposed by H�ebraud and Lequeux in [3℄ deals withsimple shear ows of onentrated suspensions. It is obtained by dividing the material in alarge number of mesosopi elements (\bloks") with a given shear stress � (� is a real number;it is in fat an extra-diagonal term of the stress tensor in onvenient oordinates) and byonsidering the evolution of the probability density p(t; �) whih represents the distributionof stress in the assembly of bloks. Under various assumptions on the evolution of the stressesof the bloks whih will be desribed below, the equation for the probability density p(t; �)for a blok to be under stress � at time t may be written as:�tp = �b(t) ��p+D(p(t)) �2��p� �IRn[��;�℄(�)T0 p+ D(p(t))� Æ0(�) on (0;T ) � IR ; (1.1a)p � 0 ; (1.1b)p(0; �) = p0(�) ; (1.1)8>>><>>>:
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where for f 2 L1(IR), we denote byD(f) = �T0 Zj�j>� f(�) d� :In equation (1.1a), �IRn[��;�℄ denotes the harateristi funtion of the open set IRn [��; �℄and Æ0 the Dira delta funtion on IR. Eah term arising in the above equation (1.1a) (HLequation in short) has a lear physial interpretation. When a blok is sheared, the stress ofthis blok evolves with a variation rate b(t) = G0 _(t) proportional to the shear rate _(t) (G0is an elastiity onstant); in this study, the shear rate _(t), and therefore the funtion b(t),are assumed to be in L2lo(IR+). When the modulus of the stress overomes a ritial value �,the blok beomes unstable and may relax into a state with zero stress after a harateristirelaxation time T0. This phenomenon indues a rearrangement of the bloks and is modelledthrough the di�usion term D(p(t)) �2��p. The di�usion oeÆient D(p(t)) is assumed to beproportional to the amount of stress whih has to be redistributed by time unit and thepositive parameter � is supposed to represent the \mehanial fragility" of the material.In all that follows, the parameters �, T0 and � are positive, and the initial data p0 in (1.1)is a given probability density; that isp0 � 0 ; p0 2 L1(IR) ; ZIR p0 = 1 : (1.2)We will be looking for solutions p = p (t; �) in C0t (L1�\L2�) suh that � p belongs to L1t (L1�) tothe nonlinear paraboli partial di�erential equation (1.1). The subsript � refers to integrationover IR with respet to �, whereas the subsript t refers to time integration on [0; T ℄ for anyT > 0. Note that the average stress in the material is given by�(t) = ZIR � p(t; �) d� ; (1.3)and therefore the above ondition on �p ensures that the average stress is an essentiallybounded funtion of time.Atually in pratie, the shear rate is not uniform in the ow and in order to better desribe theoupling between the marosopi ow and the evolution of the mirostruture we introdueand study in a seond paper [1℄ a miro-maro model. In this model p is also a funtion ofthe marosopi spae variables and the average stress de�ned by (1.3) is inserted into themarosopi equation governing the veloity of the marosopi ow.In order to lighten the notation and without loss of generality we assume from now on that� = 1 and T0 = 1. This amounts to hanging the time and stress sales.The main diÆulties one enounters in the mathematial analysis ome from the nonlinearityin the di�usion term and also and even more from the fat that the paraboli equation maydegenerate when the visosity oeÆient D(p) vanishes, and this will be shown to may appearonly when D(p0) = 0. This diÆulty is illustrated on a simpli�ed example just below andalso in Setion 5 where we disuss the existene of stationary solutions in the ase when theshear rate b is a onstant. 2



Let us �rst of all look at the following simpli�ed model whih already inludes the diÆultieswe are going to fae to in the study of equation (1.1). We onsider the equation :� �tu = D(u(t)) �2��u ;u(0; �) = 12�℄�1;1[(�) ; (1.4)where �℄�1;1[ is the harateristi funtion of the interval ℄ � 1; 1[. The initial ondition ison purpose hosen in suh a way that D(u(t = 0)) = 0. The funtion u = 12�℄�1;1[(�) is astationary solution to this equation and for this solution D(u(t)) is identially zero. But itis not the unique solution to (1.4) in C0t (L2�) \ L1t (L1�). It is indeed possible to onstruta so-alled vanishing visosity solution for whih D(u(t)) > 0 for all t > 0, and there areatually in�nitely many solutions to this equation. (This statement is obtained as a orollaryof Lemma 4.2 in Setion 4 below.)As far as equation (1.1) is onerned, we show that, in the ase when D(p0) = 0 and b � 0,we may have either a unique or in�nitely many solutions, depending on the initial data (seeProposition 4.1 in Setion 4).On the other hand, we are able to prove the following existene and uniqueness result in thenon-degenerate ase when D(p0) > 0 :Theorem 1.1 Let the initial data p0 satisfy the onditionsp0 2 L1(IR) \ L1(IR) ; p0 � 0 ; ZIR p0 = 1 andZIR j�j p0 < +1 ; (1.5)and assume that D(p0) > 0 :Then, for every T > 0, there exists a unique solution p to the system (1.1) in L1t (L1� \L2�)\L2t (H1�). Moreover, p 2 L1t;� \C0t (L1� \L2�), RIR p(t; �) d� = 1 for all t > 0, D(p) 2 C0t and forevery T > 0 there exists a positive onstant �(T ) suh thatmin0�t�T D(p(t)) � �(T ) :Besides � p 2 L1t (L1�) so that the average stress �(t) is well-de�ned by (1.3) in L1t .The �rst step toward the existene proof of solutions to (1.1) will onsist in the study ofso-alled vanishing visosity approximations, whih are the unique solutions to the family ofequations�tp" = � b(t) ��p" + (D(p"(t)) + ") �2��p" � �IRn[�1;1℄ p" + D(p"(t))� Æ0(�) ; (1.6a)p" � 0 ; (1.6b)p"(0; �) = p0 (1.6)8>>><>>>:(reall that we have resaled the time and stress units to get T0 = 1 and � = 1). Setion 2below is devoted to the proof of the following3



Proposition 1.1 (Existene and uniqueness of vanishing visosity approximations)Let T > 0 be given. We assume that the initial data satis�es the same onditions (1.5) as inthe statement of the theorem. Then, for every T > 0 and 0 < " � 1, there exists a uniquesolution p" to (1.6) in L1t (L1�\L2�)\L2t (H1�). Moreover, p" 2 L1t;�\C0t (L1�\L2�) , D(p") 2 C0t ,ZIR p" = 1 ; (1.7)0 � p" � kp0kL1� +r�� pT ; (1.8)and for every T > 0, there exist positive onstants C1(T; p0), C2(T; p0) and C3(T; p0) whihare independent of " suh that sup0�t�T ZIR j�j p" � C1(T; p0) ; (1.9)sup0�t�T ZIR p2" � C2(T; p0) ; (1.10)and Z T0 �"+D(p")� ZIR j��p"j2 � C3(T; p0) : (1.11)Theorem (1.1) is then proved in Setion 3 while the degenerate ase is investigated in Setion 4.Lastly, the desription of stationary solutions in the onstant shear rate ase is arried out inSetion 5.2 The vanishing visosity approximationThis setion is devoted to the proof of Proposition 1.1.We begin with the following :Lemma 2.1 (Uniqueness) Let p0 satisfy (1.2). Then for every T > 0 and 0 < ", thereexists at most one solution p" to (1.6) in L1t (L1� \ L2�) \ L2t (H1�). Moreover, p" 2 C0t (L2�)(thus, the initial ondition makes sense) andZIR p" = 1 ; (2.1)for almost every t in [0; T ℄.Proof of Lemma 2.1: We begin with proving that every solution to (1.6) in L1t (L1� \L2�)\L2t (H1�) satis�es (2.1). We �x R > 1 and we onsider a ut-o� C2 funtion �R = �R(�) withompat support whih is equal to 1 when 0 � j�j � R and to 0 when j�j � 2R and suhthat j�0Rj � CR ; (2.2)4



where here and below C denotes a positive onstant that is independent of R. Notie that �0is equal to 0 on ℄�1; �2R℄, on [�R; R℄ and on [2R; +1[.Now, we multiply (1.6a) by �R and integrate over [0; t℄� IR to obtainZIR p"(t)�R � ZIR p0 �R = �Z t0 b(s) ZIR ��p"(s)�R � Z t0 �D(p"(s)) + "� ZIR ��p"(s)�0R� Z t0 Zj�j>1 p"(s)�R + 1� Z t0 D(p"(s))�R(0) :We bound from above the terms on the right-hand side as follows. First, we have��� Z t0 b(s)ZIR ��p"(s)�R��� � Z t0 j b(s) jZIR p"(s) j�0R j� CR Z t0 j b(s) j ZR�j�j�2R p"(s) � CR ;thanks to (2.2) and using that p" 2 L1t (L1�) and b 2 L1t . Next,Z t0 �D(p") + "� jZIR ��p" �0j � ("+ � kp"kL1t (L1�)) Z t0 k��p"kL2� k�0RkL2�� CptR1=2 k��p"kL2t;� � CR1=2 ;thanks again to (2.2), Cauhy-Shwarz' inequality and sine ��p" is in L2t;�. Finally,0 � 1� Z t0 D(p") � Z t0 Zj�j>1 p" �R = Z t0 Zj�j>1 p" ( 1 � �R )� Z t0 Zj�j>R p" ;and the right-hand side goes to 0 as R goes to in�nity sine p" is in L1t (L1�). All this togetheryields ZIR p"(t) = limR!+1ZIR p"(t)�R = limR!+1ZIR p0 �R = ZIR p0 = 1 ;for almost every t in [0; T ℄. In partiular, this implies that D(p") � � .Let us now argue by ontradition by assuming that there exist two solutions p1 and p2 to(1.6a) orresponding to the same initial data p0. By subtrating the equations satis�ed by p1and p2 respetively, we obtain�tq = � b(t) ��q + D(q) �2��p1 + (D(p2) + ") �2��q � �IRn[�1;1℄ q + D(q)� Æ0(�) ; (2.3)q(0; �) = 0 ;8><>:where q = p1 � p2. We multiply (2.3) by q and integrate over IR with respet to � to obtain,after integrations by parts,12 ddt ZIR q2 + (D(p2) + ") ZIR j��qj2 + Zj�j>1 q2 = D(q)� q(t; 0)�D(q) ZIR ��p1��q : (2.4)5



We �rst remark that sine ZIR p1 = ZIR p2 = 1 thanks to (2.1), we getjD(q)j = � �� Zj�j<1 q�� � �p2 kqkL2� ;with the help of Cauhy-Shwarz' inequality. Next, using the Sobolev embedding of H1(IR)into L1(IR), we bound from above the terms on the right-hand side in the following way :j D(q)� q(t; 0) �D(q) ZIR ��p1��q j� p2 kqkL2� kqkL1� + p2� kqkL2� ZIR j��p1��qj� p2 kqkL2� � kqk2L2� + k��qk2L2� �12 + p2� kqkL2� k��p1kL2�k��qkL2�� 1" kqk2L2� + �2" kqk2L2� k��p1k2L2� + "2kqk2L2� + "k��qk2L2� :Therefore, omparing with (2.4) we dedue12 ddtkqk2L2� � �1" + �2" k��p1k2L2� + "2 �kqk2L2� :Finally, by applying the Gronwall lemma, we prove that kqk2L2� � 0, thus q = 0. The unique-ness of the solution follows. }Remark 2.1 The same proof shows that if there exists a solution to (1.1) in L1t (L1� \L2�)\L2t (H1�) suh that inf0�t�T D(p(t)) > 0, then it is unique in this spae.We now turn to the existene part in the statement of Proposition 1.1. From now on we �xa positive onstant " � 1. The proof of Proposition 1.1 will be arried out by the Shauder�xed point theorem. For given positive onstants M(� ") and R, we introdue D";M and YRtwo losed onvex subsets of respetively L2t and L2t;� as follows:D";M = fa 2 L2t ; " � a �MgYR = fp 2 L2t;�; p � 0 ; sup0�t�T ZIR j�j p � R g:To simplify notation we denote8<: '�(x) = 1p2� � exp �� x22 �2 � if � > 0 ;'0 = Æ0 :We �rst prove the followingProposition 2.1 Let T > 0 and let p0 2 L2(IR) suh that p0 � 0. Then, for every a in D";Mand q in YR, there exists a unique solution p in L1t (L2�) \ L2t (H1�) to�tp(t; �) = � b(t) ��p(t; �) + a(t) �2��p(t; �) � �IRn[�1;1℄(�) p(t; �) + D(q)� Æ0(�) ; (2.5a)p(0; �) = p0(�) : (2.5b)8><>: 6



Moreover, p 2 C0t (L2�), p is non-negative andp� � p � p+ ; (2.6)with p�(t; �) = e�t Z +1�1 p0(�0)'q2 R t0 a (� � �0 � �(t)) d�0 (2.7)and p+(t; �) = Z +1�1 p0(�0)'q2 R t0 a (� � �0 � �(t)) d�0 ++1� Z t0 D(q(s))'q2 R ts a (� � �(t) + �(s)) ds ; (2.8)where �(t) = R t0 b(s) ds. In addition,i. If p0 2 L1(IR), then p is in L1t;� and0 � p � kp0kL1 + R pTp�p" : (2.9)ii. If RIR j�j p0 < +1 ( thus p0 2 L1(IR)), then j�j p 2 L1t (L1�). More preisely, we havesup0�t�T ZIR j�j p � ZIR j�j p0 +pT kbkL2(0;T ) kp0kL1 + 2R3 T 3=2 kbkL2(0;T )+ 2p� (M T �1=2 kp0kL1 + 4RpM3p� T 3=2 : (2.10)Moreover p 2 C0t (L1�) and D(p) 2 C0t .Proof of Proposition 2.1: Let us �rst observe that for every q in YR, D(q) 2 L1t sine0 � D(q(t)) � �Zj�j>1 j�j q � �R ; (2.11)for almost every t in [0; T ℄. Therefore the soure term D(q(t)) Æ0(�) in (2.5a) is in L1t (H�1� )and the existene and the uniqueness of a solution p 2 C0t (L2�) \ L2t (H1�) to the system (2.5)is well-known (see for example [2℄). In partiular, the initial ondition makes sense. Owingto the fat that the soure term is non -negative, the proof that p � 0 is also standard (seeagain [2℄).We now hek the pointwise inequality (2.6).This is ensured by the maximum priniple with observing that p� and p+ given respetivelyby (2.7) and (2.8) are the unique solutions to the systems� �tp� = � b ��p� + a �2��p� � p� ;p�(0; �) = p0(�) ; (2.12)and 8<: �tp+ = � b ��p+ + a �2��p+ + D(q)� Æ0(�) ;p+(0; �) = p0(�) ; (2.13)7



respetively. We now turn to the proof of statement i. and assume that p0 belongs to L1(IR).Then, using the two fats that for every � > 0, RIR '� = 1 and '� � 1p2� � , (2.9) is easilydedued from p � p+ with the help of (2.11) and sine a � ".Suppose now that RIR j�j p0 < +1. This together with the assumption p0 2 L2(IR), guaranteesthat p0 2 L1(IR) (see also below). Using (2.6) again, we now haveZIR j�j p � ZIR j�j p+� ZIR ZIR p0(�0) j�j'q2 R t0 a (� � �(t)� �0) d�d�0+1� Z t0 D(q(s))� ZIR j�j'q2 R ts a (� � �(t) + �(s)) d�� ds= ZIR ZIR p0(�0) j� + �0 + �(t)j'q2 R t0 a (�) d�d�0+1� Z t0 D(q(s))� ZIR j� + (�(t)� �(s))j'q2 R ts a (�) d�� ds� ZIR j�j p0(�) d� + j�(t)j kp0kL1 + 1� Z t0 j�(t)� �(s)jD(q(s)) ds+ 2p� � Z t0 a�1=2 kp0kL1 + 2�p� Z t0 D(q(s)) � Z ts a�1=2 ds ; (2.14)sine RIR j�j'�(�) d� = (2=�)1=2 � and RIR '� = 1. With the help of (2.11) and observing thatj�(t)� �(s)j � pt� s kbkL2(0;T ), we then dedue (2.10).We now use this bound to hek that p 2 C0t (L1�) and D(p) 2 C0t . Indeed, for any t, anysequene tn in [0; T ℄ whih onverges to t and A > 1, we haveZIR ��p(tn)� p(t)�� = Zj�j�A ��p(tn)� p(t)��+ Zj�j�A ��p(tn)� p(t)��� p2A�ZIR ��p(tn)� p(t)��2�1=2 + 1A ZIR j�j �jp(tn)j+ jp(t)j�� p2A�ZIR ��p(tn)� p(t)��2�1=2 + 2A sup0�t�T ZIR j�j jp(t)j : (2.15)For any �xed A the �rst term in the right-hand side goes to 0 as n goes to in�nity sinep 2 C0t (L2�) and then the seond term is arbitrarily small as A goes to in�nity. The sameargument yields the ontinuity of D(p(t)) with respet to t. }The following proposition aims at heking the required assumptions to apply the Shauder�xed point theorem.Proposition 2.2 Let Tf > 0 be given. We assume thatp0 2 L1(IR) \ L1(IR) ; p0 � 0 ; ZIR p0 = 1 andZIR j�j p0 < +1 : (2.16)8



Let 0 < " � 1, R = 1 + RIR j�j p0 and M = 1 + 2�. We de�neT = 925 h kbkL2(0;Tf ) + 2p1 + 2�p� i� 2 : (2.17)Then, for every T � min � 1R ;T�, the funtion T : (a; q) 7! �D(p) + " ; p�, with p being thesolution to the system (2.5), maps D";M � YR into itself. Moreover T is ontinuous andT (D";M � YR) is relatively ompat in L2(0; T )� L2t;�.Proof of Proposition 2.2:Step 1: T is well-de�ned.Aording to Proposition 2.1, p is in C0t (L1�) and D(p) 2 C0t . We now prove that with ourhoie forM ( whih ensures that "+D(p0) � 1+� �M), D(p)+" 2 D";M : For this, we againuse the inequality p � p+, the de�nition (2.8) of p+, the rough estimate Rj�j>1 '� � RIR '� = 1and (2.11) to obtain sup0�t�T D(p(t)) � sup0�t�T D(p+(t)) � �+ �RT � 2� ;for T � 1R . It only remains now to hek that sup0�t�T ZIR j�j p � R. We thus go bak to (2.10)and observe that this ondition holds providedT � maxft > 0 ; kbkL2(0;Tf )pt (1 + 2R3 t�+ 2pM tp� + 4RpM t3=23p� � 1g :Sine we already have demanded that t � T � 1R a suÆient ondition is thenpT h53 kbkL2(0;Tf ) + 10p1 + 2�3p� i � 1 ;whih redues to T � T with T given by (2.17).Our next step will onsist in establishing a priori bounds on p in L1t (L2�) \ L2t (H1�).Step 2: A priori bounds.If we multiply equation (2.5a) by p and integrate by parts over IR with respet to � we easilyobtain 12 ddt ZIR p2 + a ZIR j��pj2 � D(q)� p(t; 0) :Sine from the Sobolev embedding of H1(IR) into L1(IR) and the bound (2.11) on D(q) weget jD(q)� p(t; 0)j � R kpkL1�� R �kpk2L2� + k��pk2L2�� 12� R22 " + "2kpk2L2� + "2k��pk2L2� ;9



we may write 12 ddtkpk2L2� + (a� "2) k��pk2L2� � R22 " + "2kpk2L2� : (2.18)We reall that a � " and we apply the Gronwall lemma to obtainsup0�t�T kpk2L2� � e" T � kp0k2L2� + T R2" � : (2.19)We now return to (2.18) and integrate it over [0;T ℄ to obtain" k��pk2L2t;� � kp0k2L2� (1 + " T e"T ) + T R2" (1 + " T e"T ): (2.20)Step 3: The funtion T is ontinuous.We onsider a sequene (an; qn) in D";M � YR suh that an onverges to a strongly in L2t andqn onverges to q strongly in L2t;�, and we denote T (an; qn) = (D(pn) + "; pn). We have toprove that pn onverges strongly to p in L2t;� and D(pn) onverges to D(p) strongly in L2t ,with (D(p) + " ; p) = T (a; q).In virtue of (2.19) and (2.20), the sequene pn is bounded in L1t (L2�) \ L2t (H1�). Then, ��pnis bounded in L1t (H�1� ) and �2��pn is bounded in L2t (H�1� ). Sine an�2��pn is bounded inL2t (H�1� ), b 2 L2t and D(qn)Æ0 is bounded in L2t (H�1� ), �tpn is bounded in L2t (H�1� ). Thistogether with the fat that pn is bounded in L2t (H1�) implies that, up to a subsequene, pnonverges strongly towards p in L2t (L2lo;�) (the onvergene being weak in L2t (H1�)) thanksto a well-known ompatness result [4℄. In partiular, pn onverges to p almost everywhere.Thus p � 0 and by the Fatou's lemma, RIR j�j p � R almost everywhere on [0;T ℄. Hene pbelongs to YR. We are going to show that the onvergene is atually strong in L2t;�.In virtue of (2.9) in Proposition 2.1, we dispose of a uniform a priori bound on pn in L1t;�(hene also on p). For the strong onvergene in L2t;� we then argue as follows. For any �xedpositive real number K, we haveZ T0 ZIR jpn � pj2 � Z T0 Zj�j�K jpn � pj2 + Z T0 Zj�j>K jpn � pj2� Z T0 Zj�j�K jpn � pj2 + �kpnkL1t;� + kpkL1t;��2RTK ;owing to the fat that pn and p belong to a bounded subset of YR \ L1t;�. We then onludeby letting n next K go to in�nity.We now prove that D(pn) onverges to D(p) strongly in L2t . We shall atually prove thatD(pn) onverges to D(p) strongly in L1t and then use the fat that D(pn) is bounded in L1t ,in virtue of (2.11) and beause pn lies in YR. Let us �x K > 1. Then, we have1� Z T0 jD(pn)�D(p)j = Z T0 �� Zj�j>1(pn � p) ��� Z T0 Z1<j�j<K jpn � pj + 1K Z T0 Zj�j>K j�j �jpnj+ jpj�� Z T0 Z1<j�j<K jpn � pj + 2RTK ; (2.21)10



beause p and pn belong to YR. Sine pn onverges to p strongly in L1t (L1lo;�), we onludethat D(pn) onverges to D(p) in L1t by letting n next K go to in�nity in (2.21).In order to pass to the limit in the equation satis�ed by pn (thereby proving that (D(p) +" ; p) = T (a; q)), we now observe that the strong onvergene of qn to q in L2t;�, together withthe argument in (2.21) above shows that D(qn) onverges to D(q) strongly in L2t . It is theneasily proved that p is a weak solution to (1.6a) and sine p is in L2t (H1�) it is the uniquesolution to (2.5) orresponding to a and q. In partiular, the whole sequene pn onvergesand not only a subsequene.Step 4: T (D" � YR) is relatively ompat.Let (D(pn) + " ; pn) = T (an; ; qn) be a sequene in T (D";M � YR). We have to prove that wemay extrat a subsequene whih onverges strongly in L2t �L2t ;�. Exatly as for the proof ofthe ontinuity, the a priori estimates (2.19) and (2.20) ensure that the sequene pn is boundedin L1t (L2�) \ L2t (H1�). Sine j�j pn is bounded L1t (L1�), we an mimi the argument in Step 3above to dedue that up to a subsequene the sequene pn onverges to some p in YR stronglyin L2t ;� and that D(pn) onverges to D(p) strongly in L2t . }We are now in position to onlude the proof of Proposition 1.1.Let Tf > 0 and 0 < " � 1 being given. We are going to prove the existene of a uniquesolution on [0;Tf ℄.Being given an initial data p0 whih satis�es (1.5), existene of a solution p" is ensured fromProposition 2.2 by applying the Shauder �xed point theorem on \short" time interval [0;T1℄with T1 = min( �R1 ; T) and where R1 = 1+RIR j�jp0 . This solution is uniquely de�ned in virtueof Lemma 2.1 and we know from (2.1) that RIR p"(T1) = 1. Moreover from Proposition 2.1p"(T1) 2 L1� and by onstrution RIR j�j p"(T1) � R1. Therefore p"(T1) satis�es the sameonditions (2.16) as p0. Then, repeating the same argument we may build a solution to (1.6)with initial data p"(T1) on [T1;T2℄ with T2 = min � 1R2 ; T�, where R2 = R1+1 = RIR j�j p0+2.Thanks to the uniqueness result (Lemma 2.1), if we now glue this solution to p" at t = T1 weobtain the unique solution to (1.6) on [0;T1 + T2℄. It is now learly seen that for any integern � 1 we may build a solution to (1.6) on [0;P1�k�n Tk℄ with Tk = min��k+RIR j�j p0��1;T�.Sine P1�k�n Tk obviously goes to +1 together with n, existene (and uniqueness) of thesolution p" to (1.6) is obtained on every time interval.For the proof of (1.8) we argue as for the proof of (2.9) in Proposition 2.1. De�ning p+"
11



as in (2.8) with a replaed by D(p") + " and D(q) by D(p") we obtain0 � p" � p+"� kp0kL1 + 1�p� Z t0 D�p"(s)�2q"+ R ts D(p") ds� kp0kL1 + 1�p� hs"+ Z t0 D(p")�p"i� kp0kL1 + 1�p� sZ t0 D(p")� kp0kL1 + p�pTp� :Then ZIR p2" � kp"kL1� ZIR p" ;from whih (1.10) follows gathering together (2.1) and (1.8) and, with the notation of theproposition, C2(T; p0) = kp0kL1 + p�pTp� :The proof of (1.9) follows the same lines as the proof of (2.14). Indeed, we again use thepointwise inequality p" � p+" and replae D(q) by D(p") (� �) and a by D(p") + " (� �+ 1)in (2.14) and use (2.16) to deduesup0�t�T ZIR j�j p" � ZIR j�j p0 +pT �2p1 + �p� + kbkL2(0;T )�+ 23 T 3=2 �1 + 2p1 + �p� � ; (2.22)whene (1.9) with C1(T; p0) being the quantity in the right-hand side of (2.22).In order to prove (1.11), we multiply (1.6a) by p"; and we integrate by parts over IR withrespet to � to obtain12 ddt ZIR p2" + �D(p") + "� ZIR j��p"j2 + Zj�j>1 p2" = D(p")� p"(t; 0) : (2.23)We use the L1 bound (1.8) to bound the right-hand side and we integrate (2.23) with respetto t over [0;T ℄ to dedue (1.11) withC3(T; p0) = kp0kL1�12 + T ) + p�p� T 3=2 ;using that kp0k2L2� � kp0kL1 RIR p0. }
12



3 The non degenerate ase: D(p0) > 0The main result of this setion orresponds to the statement of Theorem 1.1 and fully de-sribes the issue of existene and uniqueness of solutions to the HL equation (1.1) in thenon-degenerate ase. It is summarized in the following :Proposition 3.1 Let p0 satisfy (1.5). We assume that D(p0) > 0. Then, the HL equation(1.1) has a unique solution p in C0t (L2�)\L2t (H1�) and p is the limit (in L2t;lo(L2�)\C0t;lo(L2�))of (p�) when � goes to 0 where p" is the vanishing visosity solution whose existene anduniqueness is ensured by Proposition 1.1. Moreover, p 2 L1t;� \ C0t (L1�), � p 2 L1t (L1�) andRIR p = 1. Furthermore, D(p) 2 C0t and for every T > 0 there exists a positive onstant �(T )suh that min0�t�T D(p(t)) � �(T ) : (3.1)We begin with proving the following :Lemma 3.1 We assume that p0 satis�es (1.5). Then, if D(p0) > 0, D(p")(t) > 0 for everyt 2 [0; T ℄, with p" being the unique solution to (1.6) provided by Proposition 1.1 and, atually,for every T > 0 there exists a positive onstant �(T ) suh thatmin0�t�T D(p"(t)) � �(T ) ; (3.2)for every 0 < " � 1.Remark 3.1 Note that this bound from below is independent of ", but it omes out from theproof that it depends on p0 and on the shear b.Proof of Lemma 3.1: The proof relies on the bound from below in (2.6) that we integrateover j�j > 1 to obtainD(p"(t)) � � Zj�j>1 p�" � � e�t ZIR p0(�0)� Zj�j>1 'q2 R t0 (D(p")+")(���0��(t)) d�� d�0 : (3.3)Let us de�ne K� = [�1� �(t); 1 � �(t) ℄. The funtion � 7! 'q2 R t0 (D(p")+")(� � �0 � �(t))is a Gaussian probability density with mean �0 + �(t) and squared width 2 R t0 (D(p") + ").Therefore, for every �0 2 IR nK�, we haveZj�j>1 'q2 R t0 (D(p")+")(� � �0 � �(t)) d� � 12 ;whih implies (3.3) � �2 e�T ZIRnK� p0 = �2 e�T Zj�+�(t)j>1 p0 :In the zero shear ase (b � 0, thus � � 0) the proof is over andmin0�t�T D(p(t)) � 12e�TD(p0) :13



In the general ase, a stritly positive bound from below is available as long as the supportof p0 is not ontained in K�. We thus de�net� = inf nt > 0 ;Zj�+�(t)j>1 p0 = 0o : (3.4)Then 0 < t� (t� possibly even in�nite), the support of p0 is ontained in [�1��(t�); 1��(t�)[,and for every T < t�2 , (3.2) holds for some positive onstant �1(T ) de�ned by�1(T ) = �2 e�T min0�t�T Zj�+�(t)j>1 p0: (3.5)It is worth emphasizing that this quantity is independent of ". If t� = +1, the proof is overand �(T ) = �1(T ) �ts. Let us now examine the ase when t� < +1 and T � t�2 .We go bak to (3.3), take t in [ t�2 ;T ℄ and denote x = R t0 (D(p") + ") for shortness. ThenD(p"(t)) � � e�T Z 1��(t�)�1��(t�) p0(�0)� Zj�j>1 'p2x(� � �0 � �(t)) d�� d�0= � e�T Z 1��(t�)�1��(t�) p0(�0) Zj�j>1 e�(���0��(t))2=4x2p�px d�! d�0= �p�e�T Z 1��(t�)�1��(t�) p0(�0) Z �1+�0+�(t)�1 e��2=4x2px d� + Z +11+�0+�(t) e��2=4x2px d�! d�0= �p�e�T Z 1��(t�)�1��(t�) p0(�0)  Z +11+�0+�(t)2px e�t2 dt+ Z +11��0��(t)2px e�t2 dt! d�0� �p�e�T  Z 1��(t�)�1��(t�) p0(�0) d�0! 0�Z +12��(t�)+�(t)p2 t� �1(t�=2) e�t2 dt+ Z +12+�(t�)��(t)p2 t� �1(t�=2) e�t2 dt1A� �p�e�T mint�=2�t�T 0�Z +12��(t�)+�(t)p2 t� �1(t�=2) e�t2 dt+ Z +12+�(t�)��(t)p2 t� �1(t�=2) e�t2 dt1A ; (3.6)sine R 1��(t�)�1��(t�) p0 = 1 and x � R t�=20 D(p") � t� �1(t�=2)=2 thanks to (3.5). The proof ofLemma 3.1 then follows by de�ning�(T ) = min(�1(T ); �2(T )) ;with �1(T ) given by (3.5) and �2(T ) being the positive quantity in the right-hand side of(3.6), that is�2(T ) = �p�e�T mint�=2�t�T 0�Z +12��(t�)+�(t)p2 t� �1(t�=2) e�t2 dt+ Z +12+�(t�)��(t)2p2 t� �1(t�=2) e�t2 dt1A : }Proof of Proposition 3.1: 14



We �rst go bak to the proof of the bound (1.11) on ��p" and more preisely we look at (2.23)and observe that in virtue of (3.1)�(T ) Z T0 ZIR j�� p"j2 � C3(T; p0) : (3.7)Let now "n denote any sequene in [0; 1℄ whih goes to 0 as n goes to in�nity. To shorten thenotation we denote by pn instead of p"n the orresponding sequene of solutions to (1.6). Withthe above bound (3.7) on pn and (1.10), we know that pn is bounded in L2t (H1�) independentlyof n. Moreover thanks to (2.1) and (1.8) pn is bounded in L1t (L1� \L1� ) and we also disposeof a uniform bound on RIR j�jpn in virtue of (1.9). Therefore arguing exatly as in the proof ofProposition 2.2 (Step 4) where we have proved that the mapping T is relatively ompat inL2t �L2t;� we show that pn onverges to some p strongly in L2t;� and D(pn) onverges to D(p)in L2t . Then p is a solution to the initial problem (1.1) in L2t (H1�) \ L1t (L1� \ L1� ), RIR p = 1and RIR j�j p < +1. Moreover, inf0�t�T D(p(t)) � �(T ) :This non-degeneray ondition on the visosity oeÆient ensures that there is at most onesolution to (1.1) in L2t (H1�) \ L1t (L2�) (this follows by an obvious adaptation of the proof ofLemma 2.1 to this ase). Therefore the limiting funtion p is uniquely de�ned and does notdepend on the sequene "n. Moreover the whole sequene pn onverges to this unique limitand not only a subsequene. }As a onlusion of this subsetion let us make the following omment whih is a byprodutof Proposition 3.1. Let p be a solution to (1.1) in C0t (L1� \ L2�), then as soon as D(p(t)) ispositive for some time t it remains so afterwards sine the solution an be ontinued in aunique way beginning from time t.4 The degenerate ase : D(p0) = 0Throughout this setion we assume that D(p0) = 0 and therefore the support of p0 is inludedin [�1;+1℄. Assume that we dispose of a solution to (1.1) in C0t (L1� \ L2�). We may de�net� 2 IR+ [ f+1g by t� = maxnt > 0 ;Z t0 D(p) = 0o : (4.1)Aording to the omment at the end of the previous setion for every t > t�, D(p(t)) > 0while D(p(t)) = 0 for all t in [0; t�℄. On [0; t�[, the HL equation (1.1) reads8>><>>: �t p = �b(t) ��p ;p � 0 ;p(0; �) = p0 ;D(p(t)) = 0 :The above system redues to� p(t; �) = p0�� � �(t)� ;D(p(t)) = 0 ; for all t in [0; t�℄ : (4.2)15



The seond equation in (4.2) is ompatible with the �rst one as long asZj�+�(t)j>1 p0 = 0 ; for all t in [0; t�℄ :Therefore there exists a maximal time interval [0;T℄ on whih the HL equation may redueto a mere transport equation and this is for an intrinsi time T (possibly in�nite) de�ned byT = inf(t > 0 ; Zj�+�(t)j>1 p0 > 0 :) : (4.3)Note that T is ompletely determined by the data p0 and b. If T = +1, the steady statep(t; �) = p0(� � �(t)) is a solution of the HL equation for all time. We shall now exhibitirumstanes under whih it is not the unique solution. For onveniene, we restrit ourselvesto the ase when b � 0 (we then have obviously T = +1).For p0 2 L1(IR)\L1(IR) suh that p0 � 0, let us denote by Fp0 the funtion from IR+ to IR+de�ned by Fp0(0) = D(p0) and by8x > 0; Fp0(x) = � Zj�j>1�ZIR p0(�0)'p2x(� � �0) d�0� d� :Proposition 4.1 Let p0 satisfy (1.5) and be suh that D(p0) = 0, theni. If Fp0 satis�es Z 10 dxFp0(x) = +1; (4.4)then p(t; �) = p0(�) is the unique solution to (1.1) in C0t (L2�) ;ii. Otherwise, (1.1) has an in�nite number of solutions in C0t (L2�). The set of solutions to(1.1) is made of the steady state p(t; �) = p0(�) and of the funtions (qt0)t0�0 de�nedby qt0(t; �) = ���� p0(�) if t � t0q(t� t0; �) if t > t0where q is the unique solution to (1.1) in C0t (L2�) suh that D(q) > 0 on ℄0;+1[.Besides, p��!�!0 q strongly in L2t;lo(L2�): (4.5)Lemma 4.1 Let p0 2 L1(IR) \ L1(IR) suh thatp0 � 0; ZIR p0 = 1; D(p0) = 0:The funtion F0 is in C0([0;+1[) \ C1(℄0;+1[), and is positive on ℄0;+1[. In addition,F 0p0 > 0 on ℄0;+1[. 16



Proof of Lemma 4.1: It is easy to hek that Fp0 2 C0([0;+1[) \ C1(℄0;+1[), and thatFp0 > 0 on ℄0;+1[. Sine D(p0) = 0, the funtion p0 is supported in [�1; 1℄. Thus, for anyx > 0 Fp0(x) = � Zj�j>1�ZIR p0(�0)'p2x(� � �0) d�0� d�= �Z 1�1 p0(�0) Zj�j>1 e�(���0)2=4x2p�px d�! d�0= �Z 1�1 p0(�0) Z �1+�0�1 e��2=4x2p�pxd� + Z +11+�0 e��2=4x2p�pxd�! d�0= � 1p� Z 1�1 p0(�0) Z +11+�02px e�t2 dt+ Z +11��02px e�t2 dt! d�0 : (4.6)It follows that for any x > 0,F 0p0(x) = � 1p� Z 1�1 p0(�0)�1 + �04x3=2 e� (1+�0)24x + 1� �04x3=2 e� (1��0)24x � d�0 > 0 : }Lemma 4.2 Let  � 0 and p0 2 L1(IR) \ L1(IR) suh thatp0 � 0; ZIR p0 = 1; ZIR j�jp0 < +1; D(p0) = 0:Let us onsider the problem � �tw = D(w(t))�2��w � ww(0; �) = p0(�): (4.7)i. If Fp0 satis�es (4.4) then p(t; �) = p0(�) is the unique solution to (4.7) in C0t (L2�);ii. Otherwise, (4.7) has an in�nite number of solutions in C0t (L2�). The set of solutions to(4.7) is made of the steady state w(t; �) = p0(�) and of the funtions (vt0)t0�0 de�nedby vt0(t; �) = ���� p0(�) if t � t0v(t� t0; �) if t > t0where v is the unique solution to (4.7) in C0t (L2�) suh that D(v) > 0 on ℄0;+1[.Corollary 4.1 The initial data p0 = 12�℄�1;1[ ful�lls the assumptions of the above lemma andR 10 dxFp0 (x) < +1. Therefore there are in�nitely many solutions to the equation (1.4) in theintrodution.
17



Proof of Corollary 4.1: The only point to be heked is that R 10 dxFp0(x) < +1. With thestandard notation erf(z) � R +1z e�t2 dt, and by using (4.6) and symmetry onsiderations,simple alulations yieldFp0(x) = 2�pxp� Z 1px0 erf(�) d�= 2�p� �erf� 1px�� 12 px e� 1x + 12 px� :Sine erf(z) � 12e�z2=z for z going to +1, Fp0(x) � �p� px near 0 and the integrability of1=Fp0 on [0; 1℄ follows. }Proof of Lemma 4.2Let us onsider a non-negative funtion D 2 C0([0;+1[; IR+). The unique solution in C0t (L2�)of the problem � �twD = D(t)�2��wD � wD;wD(0; �) = p0(�); (4.8)is given by wD(t; �) = �������� e�t p0(�) if t � t� ;e�t ZIR p0(�0)'q2 R t0 D(s) ds(� � �0) d�0 if t > t� ; (4.9)where t� = inf�t > 0; Z t0 D > 0�. Any solution to (4.7) thus satis�es w = wD(w) andtherefore D(w(t)) = D �wD(w)(t)�= �Zj�j>1wD(w)(t; �) d�= �e�t Zj�j>1�ZIR p0(�0)'q2 R t0 D(w(s)) ds(� � �0) d�0� d�= e�t Fp0 �Z t0 D(w(s)) ds� :It follows that the funtion D(w) is solution in C0([0;+1[) to the nonlinear integral equationy(t) = e�t Fp0 �Z t0 y(s) ds� : (4.10)On the other hand, if D 2 C0([0;+1[) is solution to (4.10) it is easy to hek that thefuntion wD de�ned by (4.9) is solution to (4.8).If ondition (4.4) is ful�lled, equation (4.10) has a unique solution in C0([0;+1[) (the onstantfuntion equal to zero) and the steady state w(t; �) = p0 thus is the unique solution to (4.7)18



in C0t (L2�); otherwise, the set of solutions to (4.10) is made of the steady state w(t; �) = p0and of the family (yt0)t0�0 withyt0(t) = ���� 0 if t � t0z(t� t0) if t > t0where the funtion z is de�ned on [0;+1[ byZ z(t)0 dxF (x) = ( 1�e�t ; if  > 0 ;t ; otherwise .Statement ii. is obtained by denoting by v the solution to (4.8) assoiated with the funtionz(t). }Proof of Proposition 4.1:The solution p� to equation (1.6) satis�es the inequalitiesp�� (t; �) � p�(t; �) � p+� (t; �) almost everywherewhere p�� and p+� are de�ned in C0t (L2�) by� �tp�� = (D(p�(t)) + �) �2��p�� � p�� ;p�� (0; �) = p0(�) ; 8<: �tp+� = (D(p�(t)) + �) �2��p+� + D(p�)� Æ0 ;p�� (0; �) = p0(�):Therefore on the one handD(p�(t)) � D(p�� (t)) = e�t Fp0 �Z t0 (D(p�) + �)� (4.11)and on the other handD(p�(t)) � D(p+� (t)) = Fp0 �Z t0 (D(p�) + �)�+ Z t0 D(p�)(s)�  Zj�j>1 'q2 R ts (D(p�)+�)! ds� Fp0 �Z t0 (D(p�) + �)�+ 1� Z t0 D(p�)(s) ds:If (4.4) is not ful�lled, using (4.11) and the property that Fp0 is stritly inreasing on [0;+1[,we obtain that D(p�) � z(t)where z(t) is the funtion de�ned in the proof of Lemma 4.2. As for any 0 < t0 � T , thereexists � > 0 suh that z(t) � � on [t0; T ℄ the same reasoning as in the non-degenerate aseleads to the onlusion that (p�) onverges up to an extration to p in D0(℄0;+1[�IR) and inL2([t0; T ℄; L2(IR)) for any 0 < t0 < T < +1, p being a solution to (1.1) in C0(℄0;+1[; L2�)suh that D(p) > 0 on ℄0;+1[. }
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5 Steady statesThroughout this setion the shear rate b is assumed to be a given onstant and we are lookingfor solutions in L1(IR) to the following system :�b ��p+D(p) �2��p� �IRn[�1;1℄ p+ D(p)� Æ0(�) = 0 on (0;T ) � IR ; (5.1)p � 0 ;ZIR p = 1 ; (5.2)D(p) = � Zj�j>1 p(�) d� : (5.3)
8>>>>>><>>>>>>:Our main results are summarized in the following :Proposition 5.1 .i If b � 0, any probability density whih is ompatly supported in [�1;+1℄ is a solutionto (5.1) whih satis�es D(p) = 0. If � � 12 , these are the only stationary solutions(and there are in�nitely many), whereas when � > 12 there exists a unique stationarysolution orresponding to a positive value of D, whih is expliitly given by (5.4) and(5.6) below. This solution is even and with exponential deay at in�nity.ii If b 6� 0, for any � > 0, there exists a unique stationary solution to (5.1), and itorresponds to a positive value for D, whih is impliitly given by (5.7) and (5.8) below.This solution has exponential deay at in�nity.Remark 5.1 The statement in the above proposition is already pointed out by H�ebraud andLequeux [3℄.Proof of Proposition 5.1:The ase when b � 0We �rst observe that any non-negative funtion p whih is normalized in L1(IR) and withsupport in [�1;+1℄ is a solution to the system (5.1) sine in that ase all terms in equation (5.1)anel. We now examine the issue of existene of solutions of (5.1) suh that D(p) > 0. Forsimpliity we denote D = D(p). For given onstant D > 0, it is very easy to alulateexpliitly the solutions of (5.1) on eah of the three regions � < �1, � 2 [�1;+1℄ and � > 1.Using ompatibility onditions on IR and the fat that p has to be in L1(IR) one obtains :

p(�) =
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

pD2� e (1+�)=pD if � � �1 ;12� � + pD + 12� if � 1 � � � 0 ;� 12� � + pD + 12� if 0 � � � 1 ;pD2� e(1� �)=pD if 1 � � : (5.4)
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The ompatibility ondition D = D(p) happens to be then automatially satis�ed and thenormalization onstraint RIR p = 1 imposes that D solvesD +pD = �� 12 : (5.5)Sine D � 0, we immediately reah a ontradition when � < 12 , whereas when � > 12equation (5.5) admits a unique positive solution; namelyD = �12 + p4� � 12 : (5.6)The ase when b 6� 0First of all, we observe that if D = 0 every term in equation (5.1) but b ��p vanish. Thusp has to be a non-zero onstant whih is in ontradition with p 2 L1(IR). So neessarilyD > 0. For given positive onstant D, we then solve (5.1) as above and obtain
p(�) = 8>>>>>>>>><>>>>>>>>>:

a1 e �+ � if � � �1 ;a2e bD � + a2 � Db� if � 1 � � � 0 ;�a2 � Db��e bD � + a2 if 0 � � � 1 ;a1 e�� � if 1 � � ; (5.7)
with �� = b2D � 12rb2 + 4DD2 ;a1 = e 12q b2D2+ 4D� ��+eb=2D � ��e�b=2D� ;and a2 = D�+eb=2D�b ��+eb=2D � ��e�b=2D� :It is tedious but easy to hek that this funtion always ful�lls the self-onsisteny onditionD = D(p) and that the normalization ondition RIR p = 1 readsDb (1 + �+) + (�� � 1) e�b=D�+ � �� e�b=D +D = � : (5.8)For any b > 0 (the negative values of b are dealt with by replaing � by ��), the left-handside of (5.8) is a ontinuous funtion whih goes to +1 when D goes to in�nity and goes tozero when D goes to 0. This already ensures the existene of at least one steady state for any� > 0. Moreover, setting z = b2D (for example) we may rewrite the left-hand side of (5.8) asf(z) = b2z + 2 b2z "1 + 12bz oth(z=2b) + 12b (z2 + 4z)1=2z + (z2 + 4z)1=2 oth(z=2b) # :Next we hek that the funtion f is monotone dereasing (thus, the left-hand side of (5.8)is inreasing with respet to D), whene the uniqueness result. }Aknowledgements. We would like to thank Philippe Coussot for pointing out the H�ebraud-Lequeux equation to us. We also warmly thank Claude Le Bris for stimulating disussions.21
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