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tThe mathemati
al properties of a nonlinear paraboli
 equation arising in the modellingof non-newtonian 
ows are investigated. The pe
uliarity of this equation is that it maydegenerate into a hyperboli
 equation (in fa
t a linear adve
tion equation). Dependingon the initial data, at least two situations 
an be en
ountered: the equation may have aunique solution in a 
onvenient 
lass, or it may have in�nitely many solutions.1 Introdu
tionModelling the 
ow of 
omplex 
uids is a very intri
ate problem whi
h is far from beingsolved up to now. Besides studies whi
h aim at improving phenomenologi
al rheologi
almodels (purely ma
ros
opi
 
onstitutive laws), only a few attempts are made to re
over therheologi
al behavior of a 
omplex 
uid from elementary physi
al pro
esses arising in its mi-
rostru
ture.The mesos
opi
 model whi
h has been proposed by H�ebraud and Lequeux in [3℄ deals withsimple shear 
ows of 
on
entrated suspensions. It is obtained by dividing the material in alarge number of mesos
opi
 elements (\blo
ks") with a given shear stress � (� is a real number;it is in fa
t an extra-diagonal term of the stress tensor in 
onvenient 
oordinates) and by
onsidering the evolution of the probability density p(t; �) whi
h represents the distributionof stress in the assembly of blo
ks. Under various assumptions on the evolution of the stressesof the blo
ks whi
h will be des
ribed below, the equation for the probability density p(t; �)for a blo
k to be under stress � at time t may be written as:�tp = �b(t) ��p+D(p(t)) �2��p� �IRn[��
;�
℄(�)T0 p+ D(p(t))� Æ0(�) on (0;T ) � IR ; (1.1a)p � 0 ; (1.1b)p(0; �) = p0(�) ; (1.1
)8>>><>>>:
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where for f 2 L1(IR), we denote byD(f) = �T0 Zj�j>�
 f(�) d� :In equation (1.1a), �IRn[��
;�
℄ denotes the 
hara
teristi
 fun
tion of the open set IRn [��
; �
℄and Æ0 the Dira
 delta fun
tion on IR. Ea
h term arising in the above equation (1.1a) (HLequation in short) has a 
lear physi
al interpretation. When a blo
k is sheared, the stress ofthis blo
k evolves with a variation rate b(t) = G0 _
(t) proportional to the shear rate _
(t) (G0is an elasti
ity 
onstant); in this study, the shear rate _
(t), and therefore the fun
tion b(t),are assumed to be in L2lo
(IR+). When the modulus of the stress over
omes a 
riti
al value �
,the blo
k be
omes unstable and may relax into a state with zero stress after a 
hara
teristi
relaxation time T0. This phenomenon indu
es a rearrangement of the blo
ks and is modelledthrough the di�usion term D(p(t)) �2��p. The di�usion 
oeÆ
ient D(p(t)) is assumed to beproportional to the amount of stress whi
h has to be redistributed by time unit and thepositive parameter � is supposed to represent the \me
hani
al fragility" of the material.In all that follows, the parameters �, T0 and �
 are positive, and the initial data p0 in (1.1
)is a given probability density; that isp0 � 0 ; p0 2 L1(IR) ; ZIR p0 = 1 : (1.2)We will be looking for solutions p = p (t; �) in C0t (L1�\L2�) su
h that � p belongs to L1t (L1�) tothe nonlinear paraboli
 partial di�erential equation (1.1). The subs
ript � refers to integrationover IR with respe
t to �, whereas the subs
ript t refers to time integration on [0; T ℄ for anyT > 0. Note that the average stress in the material is given by�(t) = ZIR � p(t; �) d� ; (1.3)and therefore the above 
ondition on �p ensures that the average stress is an essentiallybounded fun
tion of time.A
tually in pra
ti
e, the shear rate is not uniform in the 
ow and in order to better des
ribe the
oupling between the ma
ros
opi
 
ow and the evolution of the mi
rostru
ture we introdu
eand study in a se
ond paper [1℄ a mi
ro-ma
ro model. In this model p is also a fun
tion ofthe ma
ros
opi
 spa
e variables and the average stress de�ned by (1.3) is inserted into thema
ros
opi
 equation governing the velo
ity of the ma
ros
opi
 
ow.In order to lighten the notation and without loss of generality we assume from now on that�
 = 1 and T0 = 1. This amounts to 
hanging the time and stress s
ales.The main diÆ
ulties one en
ounters in the mathemati
al analysis 
ome from the nonlinearityin the di�usion term and also and even more from the fa
t that the paraboli
 equation maydegenerate when the vis
osity 
oeÆ
ient D(p) vanishes, and this will be shown to may appearonly when D(p0) = 0. This diÆ
ulty is illustrated on a simpli�ed example just below andalso in Se
tion 5 where we dis
uss the existen
e of stationary solutions in the 
ase when theshear rate b is a 
onstant. 2



Let us �rst of all look at the following simpli�ed model whi
h already in
ludes the diÆ
ultieswe are going to fa
e to in the study of equation (1.1). We 
onsider the equation :� �tu = D(u(t)) �2��u ;u(0; �) = 12�℄�1;1[(�) ; (1.4)where �℄�1;1[ is the 
hara
teristi
 fun
tion of the interval ℄ � 1; 1[. The initial 
ondition ison purpose 
hosen in su
h a way that D(u(t = 0)) = 0. The fun
tion u = 12�℄�1;1[(�) is astationary solution to this equation and for this solution D(u(t)) is identi
ally zero. But itis not the unique solution to (1.4) in C0t (L2�) \ L1t (L1�). It is indeed possible to 
onstru
ta so-
alled vanishing vis
osity solution for whi
h D(u(t)) > 0 for all t > 0, and there area
tually in�nitely many solutions to this equation. (This statement is obtained as a 
orollaryof Lemma 4.2 in Se
tion 4 below.)As far as equation (1.1) is 
on
erned, we show that, in the 
ase when D(p0) = 0 and b � 0,we may have either a unique or in�nitely many solutions, depending on the initial data (seeProposition 4.1 in Se
tion 4).On the other hand, we are able to prove the following existen
e and uniqueness result in thenon-degenerate 
ase when D(p0) > 0 :Theorem 1.1 Let the initial data p0 satisfy the 
onditionsp0 2 L1(IR) \ L1(IR) ; p0 � 0 ; ZIR p0 = 1 andZIR j�j p0 < +1 ; (1.5)and assume that D(p0) > 0 :Then, for every T > 0, there exists a unique solution p to the system (1.1) in L1t (L1� \L2�)\L2t (H1�). Moreover, p 2 L1t;� \C0t (L1� \L2�), RIR p(t; �) d� = 1 for all t > 0, D(p) 2 C0t and forevery T > 0 there exists a positive 
onstant �(T ) su
h thatmin0�t�T D(p(t)) � �(T ) :Besides � p 2 L1t (L1�) so that the average stress �(t) is well-de�ned by (1.3) in L1t .The �rst step toward the existen
e proof of solutions to (1.1) will 
onsist in the study ofso-
alled vanishing vis
osity approximations, whi
h are the unique solutions to the family ofequations�tp" = � b(t) ��p" + (D(p"(t)) + ") �2��p" � �IRn[�1;1℄ p" + D(p"(t))� Æ0(�) ; (1.6a)p" � 0 ; (1.6b)p"(0; �) = p0 (1.6
)8>>><>>>:(re
all that we have res
aled the time and stress units to get T0 = 1 and �
 = 1). Se
tion 2below is devoted to the proof of the following3



Proposition 1.1 (Existen
e and uniqueness of vanishing vis
osity approximations)Let T > 0 be given. We assume that the initial data satis�es the same 
onditions (1.5) as inthe statement of the theorem. Then, for every T > 0 and 0 < " � 1, there exists a uniquesolution p" to (1.6) in L1t (L1�\L2�)\L2t (H1�). Moreover, p" 2 L1t;�\C0t (L1�\L2�) , D(p") 2 C0t ,ZIR p" = 1 ; (1.7)0 � p" � kp0kL1� +r�� pT ; (1.8)and for every T > 0, there exist positive 
onstants C1(T; p0), C2(T; p0) and C3(T; p0) whi
hare independent of " su
h that sup0�t�T ZIR j�j p" � C1(T; p0) ; (1.9)sup0�t�T ZIR p2" � C2(T; p0) ; (1.10)and Z T0 �"+D(p")� ZIR j��p"j2 � C3(T; p0) : (1.11)Theorem (1.1) is then proved in Se
tion 3 while the degenerate 
ase is investigated in Se
tion 4.Lastly, the des
ription of stationary solutions in the 
onstant shear rate 
ase is 
arried out inSe
tion 5.2 The vanishing vis
osity approximationThis se
tion is devoted to the proof of Proposition 1.1.We begin with the following :Lemma 2.1 (Uniqueness) Let p0 satisfy (1.2). Then for every T > 0 and 0 < ", thereexists at most one solution p" to (1.6) in L1t (L1� \ L2�) \ L2t (H1�). Moreover, p" 2 C0t (L2�)(thus, the initial 
ondition makes sense) andZIR p" = 1 ; (2.1)for almost every t in [0; T ℄.Proof of Lemma 2.1: We begin with proving that every solution to (1.6) in L1t (L1� \L2�)\L2t (H1�) satis�es (2.1). We �x R > 1 and we 
onsider a 
ut-o� C2 fun
tion �R = �R(�) with
ompa
t support whi
h is equal to 1 when 0 � j�j � R and to 0 when j�j � 2R and su
hthat j�0Rj � CR ; (2.2)4



where here and below C denotes a positive 
onstant that is independent of R. Noti
e that �0is equal to 0 on ℄�1; �2R℄, on [�R; R℄ and on [2R; +1[.Now, we multiply (1.6a) by �R and integrate over [0; t℄� IR to obtainZIR p"(t)�R � ZIR p0 �R = �Z t0 b(s) ZIR ��p"(s)�R � Z t0 �D(p"(s)) + "� ZIR ��p"(s)�0R� Z t0 Zj�j>1 p"(s)�R + 1� Z t0 D(p"(s))�R(0) :We bound from above the terms on the right-hand side as follows. First, we have��� Z t0 b(s)ZIR ��p"(s)�R��� � Z t0 j b(s) jZIR p"(s) j�0R j� CR Z t0 j b(s) j ZR�j�j�2R p"(s) � CR ;thanks to (2.2) and using that p" 2 L1t (L1�) and b 2 L1t . Next,Z t0 �D(p") + "� jZIR ��p" �0j � ("+ � kp"kL1t (L1�)) Z t0 k��p"kL2� k�0RkL2�� CptR1=2 k��p"kL2t;� � CR1=2 ;thanks again to (2.2), Cau
hy-S
hwarz' inequality and sin
e ��p" is in L2t;�. Finally,0 � 1� Z t0 D(p") � Z t0 Zj�j>1 p" �R = Z t0 Zj�j>1 p" ( 1 � �R )� Z t0 Zj�j>R p" ;and the right-hand side goes to 0 as R goes to in�nity sin
e p" is in L1t (L1�). All this togetheryields ZIR p"(t) = limR!+1ZIR p"(t)�R = limR!+1ZIR p0 �R = ZIR p0 = 1 ;for almost every t in [0; T ℄. In parti
ular, this implies that D(p") � � .Let us now argue by 
ontradi
tion by assuming that there exist two solutions p1 and p2 to(1.6a) 
orresponding to the same initial data p0. By subtra
ting the equations satis�ed by p1and p2 respe
tively, we obtain�tq = � b(t) ��q + D(q) �2��p1 + (D(p2) + ") �2��q � �IRn[�1;1℄ q + D(q)� Æ0(�) ; (2.3)q(0; �) = 0 ;8><>:where q = p1 � p2. We multiply (2.3) by q and integrate over IR with respe
t to � to obtain,after integrations by parts,12 ddt ZIR q2 + (D(p2) + ") ZIR j��qj2 + Zj�j>1 q2 = D(q)� q(t; 0)�D(q) ZIR ��p1��q : (2.4)5



We �rst remark that sin
e ZIR p1 = ZIR p2 = 1 thanks to (2.1), we getjD(q)j = � �� Zj�j<1 q�� � �p2 kqkL2� ;with the help of Cau
hy-S
hwarz' inequality. Next, using the Sobolev embedding of H1(IR)into L1(IR), we bound from above the terms on the right-hand side in the following way :j D(q)� q(t; 0) �D(q) ZIR ��p1��q j� p2 kqkL2� kqkL1� + p2� kqkL2� ZIR j��p1��qj� p2 kqkL2� � kqk2L2� + k��qk2L2� �12 + p2� kqkL2� k��p1kL2�k��qkL2�� 1" kqk2L2� + �2" kqk2L2� k��p1k2L2� + "2kqk2L2� + "k��qk2L2� :Therefore, 
omparing with (2.4) we dedu
e12 ddtkqk2L2� � �1" + �2" k��p1k2L2� + "2 �kqk2L2� :Finally, by applying the Gronwall lemma, we prove that kqk2L2� � 0, thus q = 0. The unique-ness of the solution follows. }Remark 2.1 The same proof shows that if there exists a solution to (1.1) in L1t (L1� \L2�)\L2t (H1�) su
h that inf0�t�T D(p(t)) > 0, then it is unique in this spa
e.We now turn to the existen
e part in the statement of Proposition 1.1. From now on we �xa positive 
onstant " � 1. The proof of Proposition 1.1 will be 
arried out by the S
hauder�xed point theorem. For given positive 
onstants M(� ") and R, we introdu
e D";M and YRtwo 
losed 
onvex subsets of respe
tively L2t and L2t;� as follows:D";M = fa 2 L2t ; " � a �MgYR = fp 2 L2t;�; p � 0 ; sup0�t�T ZIR j�j p � R g:To simplify notation we denote8<: '�(x) = 1p2� � exp �� x22 �2 � if � > 0 ;'0 = Æ0 :We �rst prove the followingProposition 2.1 Let T > 0 and let p0 2 L2(IR) su
h that p0 � 0. Then, for every a in D";Mand q in YR, there exists a unique solution p in L1t (L2�) \ L2t (H1�) to�tp(t; �) = � b(t) ��p(t; �) + a(t) �2��p(t; �) � �IRn[�1;1℄(�) p(t; �) + D(q)� Æ0(�) ; (2.5a)p(0; �) = p0(�) : (2.5b)8><>: 6



Moreover, p 2 C0t (L2�), p is non-negative andp� � p � p+ ; (2.6)with p�(t; �) = e�t Z +1�1 p0(�0)'q2 R t0 a (� � �0 � �(t)) d�0 (2.7)and p+(t; �) = Z +1�1 p0(�0)'q2 R t0 a (� � �0 � �(t)) d�0 ++1� Z t0 D(q(s))'q2 R ts a (� � �(t) + �(s)) ds ; (2.8)where �(t) = R t0 b(s) ds. In addition,i. If p0 2 L1(IR), then p is in L1t;� and0 � p � kp0kL1 + R pTp�p" : (2.9)ii. If RIR j�j p0 < +1 ( thus p0 2 L1(IR)), then j�j p 2 L1t (L1�). More pre
isely, we havesup0�t�T ZIR j�j p � ZIR j�j p0 +pT kbkL2(0;T ) kp0kL1 + 2R3 T 3=2 kbkL2(0;T )+ 2p� (M T �1=2 kp0kL1 + 4RpM3p� T 3=2 : (2.10)Moreover p 2 C0t (L1�) and D(p) 2 C0t .Proof of Proposition 2.1: Let us �rst observe that for every q in YR, D(q) 2 L1t sin
e0 � D(q(t)) � �Zj�j>1 j�j q � �R ; (2.11)for almost every t in [0; T ℄. Therefore the sour
e term D(q(t)) Æ0(�) in (2.5a) is in L1t (H�1� )and the existen
e and the uniqueness of a solution p 2 C0t (L2�) \ L2t (H1�) to the system (2.5)is well-known (see for example [2℄). In parti
ular, the initial 
ondition makes sense. Owingto the fa
t that the sour
e term is non -negative, the proof that p � 0 is also standard (seeagain [2℄).We now 
he
k the pointwise inequality (2.6).This is ensured by the maximum prin
iple with observing that p� and p+ given respe
tivelyby (2.7) and (2.8) are the unique solutions to the systems� �tp� = � b ��p� + a �2��p� � p� ;p�(0; �) = p0(�) ; (2.12)and 8<: �tp+ = � b ��p+ + a �2��p+ + D(q)� Æ0(�) ;p+(0; �) = p0(�) ; (2.13)7



respe
tively. We now turn to the proof of statement i. and assume that p0 belongs to L1(IR).Then, using the two fa
ts that for every � > 0, RIR '� = 1 and '� � 1p2� � , (2.9) is easilydedu
ed from p � p+ with the help of (2.11) and sin
e a � ".Suppose now that RIR j�j p0 < +1. This together with the assumption p0 2 L2(IR), guaranteesthat p0 2 L1(IR) (see also below). Using (2.6) again, we now haveZIR j�j p � ZIR j�j p+� ZIR ZIR p0(�0) j�j'q2 R t0 a (� � �(t)� �0) d�d�0+1� Z t0 D(q(s))� ZIR j�j'q2 R ts a (� � �(t) + �(s)) d�� ds= ZIR ZIR p0(�0) j� + �0 + �(t)j'q2 R t0 a (�) d�d�0+1� Z t0 D(q(s))� ZIR j� + (�(t)� �(s))j'q2 R ts a (�) d�� ds� ZIR j�j p0(�) d� + j�(t)j kp0kL1 + 1� Z t0 j�(t)� �(s)jD(q(s)) ds+ 2p� � Z t0 a�1=2 kp0kL1 + 2�p� Z t0 D(q(s)) � Z ts a�1=2 ds ; (2.14)sin
e RIR j�j'�(�) d� = (2=�)1=2 � and RIR '� = 1. With the help of (2.11) and observing thatj�(t)� �(s)j � pt� s kbkL2(0;T ), we then dedu
e (2.10).We now use this bound to 
he
k that p 2 C0t (L1�) and D(p) 2 C0t . Indeed, for any t, anysequen
e tn in [0; T ℄ whi
h 
onverges to t and A > 1, we haveZIR ��p(tn)� p(t)�� = Zj�j�A ��p(tn)� p(t)��+ Zj�j�A ��p(tn)� p(t)��� p2A�ZIR ��p(tn)� p(t)��2�1=2 + 1A ZIR j�j �jp(tn)j+ jp(t)j�� p2A�ZIR ��p(tn)� p(t)��2�1=2 + 2A sup0�t�T ZIR j�j jp(t)j : (2.15)For any �xed A the �rst term in the right-hand side goes to 0 as n goes to in�nity sin
ep 2 C0t (L2�) and then the se
ond term is arbitrarily small as A goes to in�nity. The sameargument yields the 
ontinuity of D(p(t)) with respe
t to t. }The following proposition aims at 
he
king the required assumptions to apply the S
hauder�xed point theorem.Proposition 2.2 Let Tf > 0 be given. We assume thatp0 2 L1(IR) \ L1(IR) ; p0 � 0 ; ZIR p0 = 1 andZIR j�j p0 < +1 : (2.16)8



Let 0 < " � 1, R = 1 + RIR j�j p0 and M = 1 + 2�. We de�neT
 = 925 h kbkL2(0;Tf ) + 2p1 + 2�p� i� 2 : (2.17)Then, for every T � min � 1R ;T
�, the fun
tion T : (a; q) 7! �D(p) + " ; p�, with p being thesolution to the system (2.5), maps D";M � YR into itself. Moreover T is 
ontinuous andT (D";M � YR) is relatively 
ompa
t in L2(0; T )� L2t;�.Proof of Proposition 2.2:Step 1: T is well-de�ned.A

ording to Proposition 2.1, p is in C0t (L1�) and D(p) 2 C0t . We now prove that with our
hoi
e forM ( whi
h ensures that "+D(p0) � 1+� �M), D(p)+" 2 D";M : For this, we againuse the inequality p � p+, the de�nition (2.8) of p+, the rough estimate Rj�j>1 '� � RIR '� = 1and (2.11) to obtain sup0�t�T D(p(t)) � sup0�t�T D(p+(t)) � �+ �RT � 2� ;for T � 1R . It only remains now to 
he
k that sup0�t�T ZIR j�j p � R. We thus go ba
k to (2.10)and observe that this 
ondition holds providedT � maxft > 0 ; kbkL2(0;Tf )pt (1 + 2R3 t�+ 2pM tp� + 4RpM t3=23p� � 1g :Sin
e we already have demanded that t � T � 1R a suÆ
ient 
ondition is thenpT h53 kbkL2(0;Tf ) + 10p1 + 2�3p� i � 1 ;whi
h redu
es to T � T
 with T
 given by (2.17).Our next step will 
onsist in establishing a priori bounds on p in L1t (L2�) \ L2t (H1�).Step 2: A priori bounds.If we multiply equation (2.5a) by p and integrate by parts over IR with respe
t to � we easilyobtain 12 ddt ZIR p2 + a ZIR j��pj2 � D(q)� p(t; 0) :Sin
e from the Sobolev embedding of H1(IR) into L1(IR) and the bound (2.11) on D(q) weget jD(q)� p(t; 0)j � R kpkL1�� R �kpk2L2� + k��pk2L2�� 12� R22 " + "2kpk2L2� + "2k��pk2L2� ;9



we may write 12 ddtkpk2L2� + (a� "2) k��pk2L2� � R22 " + "2kpk2L2� : (2.18)We re
all that a � " and we apply the Gronwall lemma to obtainsup0�t�T kpk2L2� � e" T � kp0k2L2� + T R2" � : (2.19)We now return to (2.18) and integrate it over [0;T ℄ to obtain" k��pk2L2t;� � kp0k2L2� (1 + " T e"T ) + T R2" (1 + " T e"T ): (2.20)Step 3: The fun
tion T is 
ontinuous.We 
onsider a sequen
e (an; qn) in D";M � YR su
h that an 
onverges to a strongly in L2t andqn 
onverges to q strongly in L2t;�, and we denote T (an; qn) = (D(pn) + "; pn). We have toprove that pn 
onverges strongly to p in L2t;� and D(pn) 
onverges to D(p) strongly in L2t ,with (D(p) + " ; p) = T (a; q).In virtue of (2.19) and (2.20), the sequen
e pn is bounded in L1t (L2�) \ L2t (H1�). Then, ��pnis bounded in L1t (H�1� ) and �2��pn is bounded in L2t (H�1� ). Sin
e an�2��pn is bounded inL2t (H�1� ), b 2 L2t and D(qn)Æ0 is bounded in L2t (H�1� ), �tpn is bounded in L2t (H�1� ). Thistogether with the fa
t that pn is bounded in L2t (H1�) implies that, up to a subsequen
e, pn
onverges strongly towards p in L2t (L2lo
;�) (the 
onvergen
e being weak in L2t (H1�)) thanksto a well-known 
ompa
tness result [4℄. In parti
ular, pn 
onverges to p almost everywhere.Thus p � 0 and by the Fatou's lemma, RIR j�j p � R almost everywhere on [0;T ℄. Hen
e pbelongs to YR. We are going to show that the 
onvergen
e is a
tually strong in L2t;�.In virtue of (2.9) in Proposition 2.1, we dispose of a uniform a priori bound on pn in L1t;�(hen
e also on p). For the strong 
onvergen
e in L2t;� we then argue as follows. For any �xedpositive real number K, we haveZ T0 ZIR jpn � pj2 � Z T0 Zj�j�K jpn � pj2 + Z T0 Zj�j>K jpn � pj2� Z T0 Zj�j�K jpn � pj2 + �kpnkL1t;� + kpkL1t;��2RTK ;owing to the fa
t that pn and p belong to a bounded subset of YR \ L1t;�. We then 
on
ludeby letting n next K go to in�nity.We now prove that D(pn) 
onverges to D(p) strongly in L2t . We shall a
tually prove thatD(pn) 
onverges to D(p) strongly in L1t and then use the fa
t that D(pn) is bounded in L1t ,in virtue of (2.11) and be
ause pn lies in YR. Let us �x K > 1. Then, we have1� Z T0 jD(pn)�D(p)j = Z T0 �� Zj�j>1(pn � p) ��� Z T0 Z1<j�j<K jpn � pj + 1K Z T0 Zj�j>K j�j �jpnj+ jpj�� Z T0 Z1<j�j<K jpn � pj + 2RTK ; (2.21)10



be
ause p and pn belong to YR. Sin
e pn 
onverges to p strongly in L1t (L1lo
;�), we 
on
ludethat D(pn) 
onverges to D(p) in L1t by letting n next K go to in�nity in (2.21).In order to pass to the limit in the equation satis�ed by pn (thereby proving that (D(p) +" ; p) = T (a; q)), we now observe that the strong 
onvergen
e of qn to q in L2t;�, together withthe argument in (2.21) above shows that D(qn) 
onverges to D(q) strongly in L2t . It is theneasily proved that p is a weak solution to (1.6a) and sin
e p is in L2t (H1�) it is the uniquesolution to (2.5) 
orresponding to a and q. In parti
ular, the whole sequen
e pn 
onvergesand not only a subsequen
e.Step 4: T (D" � YR) is relatively 
ompa
t.Let (D(pn) + " ; pn) = T (an; ; qn) be a sequen
e in T (D";M � YR). We have to prove that wemay extra
t a subsequen
e whi
h 
onverges strongly in L2t �L2t ;�. Exa
tly as for the proof ofthe 
ontinuity, the a priori estimates (2.19) and (2.20) ensure that the sequen
e pn is boundedin L1t (L2�) \ L2t (H1�). Sin
e j�j pn is bounded L1t (L1�), we 
an mimi
 the argument in Step 3above to dedu
e that up to a subsequen
e the sequen
e pn 
onverges to some p in YR stronglyin L2t ;� and that D(pn) 
onverges to D(p) strongly in L2t . }We are now in position to 
on
lude the proof of Proposition 1.1.Let Tf > 0 and 0 < " � 1 being given. We are going to prove the existen
e of a uniquesolution on [0;Tf ℄.Being given an initial data p0 whi
h satis�es (1.5), existen
e of a solution p" is ensured fromProposition 2.2 by applying the S
hauder �xed point theorem on \short" time interval [0;T1℄with T1 = min( �R1 ; T
) and where R1 = 1+RIR j�jp0 . This solution is uniquely de�ned in virtueof Lemma 2.1 and we know from (2.1) that RIR p"(T1) = 1. Moreover from Proposition 2.1p"(T1) 2 L1� and by 
onstru
tion RIR j�j p"(T1) � R1. Therefore p"(T1) satis�es the same
onditions (2.16) as p0. Then, repeating the same argument we may build a solution to (1.6)with initial data p"(T1) on [T1;T2℄ with T2 = min � 1R2 ; T
�, where R2 = R1+1 = RIR j�j p0+2.Thanks to the uniqueness result (Lemma 2.1), if we now glue this solution to p" at t = T1 weobtain the unique solution to (1.6) on [0;T1 + T2℄. It is now 
learly seen that for any integern � 1 we may build a solution to (1.6) on [0;P1�k�n Tk℄ with Tk = min��k+RIR j�j p0��1;T
�.Sin
e P1�k�n Tk obviously goes to +1 together with n, existen
e (and uniqueness) of thesolution p" to (1.6) is obtained on every time interval.For the proof of (1.8) we argue as for the proof of (2.9) in Proposition 2.1. De�ning p+"
11



as in (2.8) with a repla
ed by D(p") + " and D(q) by D(p") we obtain0 � p" � p+"� kp0kL1 + 1�p� Z t0 D�p"(s)�2q"+ R ts D(p") ds� kp0kL1 + 1�p� hs"+ Z t0 D(p")�p"i� kp0kL1 + 1�p� sZ t0 D(p")� kp0kL1 + p�pTp� :Then ZIR p2" � kp"kL1� ZIR p" ;from whi
h (1.10) follows gathering together (2.1) and (1.8) and, with the notation of theproposition, C2(T; p0) = kp0kL1 + p�pTp� :The proof of (1.9) follows the same lines as the proof of (2.14). Indeed, we again use thepointwise inequality p" � p+" and repla
e D(q) by D(p") (� �) and a by D(p") + " (� �+ 1)in (2.14) and use (2.16) to dedu
esup0�t�T ZIR j�j p" � ZIR j�j p0 +pT �2p1 + �p� + kbkL2(0;T )�+ 23 T 3=2 �1 + 2p1 + �p� � ; (2.22)when
e (1.9) with C1(T; p0) being the quantity in the right-hand side of (2.22).In order to prove (1.11), we multiply (1.6a) by p"; and we integrate by parts over IR withrespe
t to � to obtain12 ddt ZIR p2" + �D(p") + "� ZIR j��p"j2 + Zj�j>1 p2" = D(p")� p"(t; 0) : (2.23)We use the L1 bound (1.8) to bound the right-hand side and we integrate (2.23) with respe
tto t over [0;T ℄ to dedu
e (1.11) withC3(T; p0) = kp0kL1�12 + T ) + p�p� T 3=2 ;using that kp0k2L2� � kp0kL1 RIR p0. }
12



3 The non degenerate 
ase: D(p0) > 0The main result of this se
tion 
orresponds to the statement of Theorem 1.1 and fully de-s
ribes the issue of existen
e and uniqueness of solutions to the HL equation (1.1) in thenon-degenerate 
ase. It is summarized in the following :Proposition 3.1 Let p0 satisfy (1.5). We assume that D(p0) > 0. Then, the HL equation(1.1) has a unique solution p in C0t (L2�)\L2t (H1�) and p is the limit (in L2t;lo
(L2�)\C0t;lo
(L2�))of (p�) when � goes to 0 where p" is the vanishing vis
osity solution whose existen
e anduniqueness is ensured by Proposition 1.1. Moreover, p 2 L1t;� \ C0t (L1�), � p 2 L1t (L1�) andRIR p = 1. Furthermore, D(p) 2 C0t and for every T > 0 there exists a positive 
onstant �(T )su
h that min0�t�T D(p(t)) � �(T ) : (3.1)We begin with proving the following :Lemma 3.1 We assume that p0 satis�es (1.5). Then, if D(p0) > 0, D(p")(t) > 0 for everyt 2 [0; T ℄, with p" being the unique solution to (1.6) provided by Proposition 1.1 and, a
tually,for every T > 0 there exists a positive 
onstant �(T ) su
h thatmin0�t�T D(p"(t)) � �(T ) ; (3.2)for every 0 < " � 1.Remark 3.1 Note that this bound from below is independent of ", but it 
omes out from theproof that it depends on p0 and on the shear b.Proof of Lemma 3.1: The proof relies on the bound from below in (2.6) that we integrateover j�j > 1 to obtainD(p"(t)) � � Zj�j>1 p�" � � e�t ZIR p0(�0)� Zj�j>1 'q2 R t0 (D(p")+")(���0��(t)) d�� d�0 : (3.3)Let us de�ne K� = [�1� �(t); 1 � �(t) ℄. The fun
tion � 7! 'q2 R t0 (D(p")+")(� � �0 � �(t))is a Gaussian probability density with mean �0 + �(t) and squared width 2 R t0 (D(p") + ").Therefore, for every �0 2 IR nK�, we haveZj�j>1 'q2 R t0 (D(p")+")(� � �0 � �(t)) d� � 12 ;whi
h implies (3.3) � �2 e�T ZIRnK� p0 = �2 e�T Zj�+�(t)j>1 p0 :In the zero shear 
ase (b � 0, thus � � 0) the proof is over andmin0�t�T D(p(t)) � 12e�TD(p0) :13



In the general 
ase, a stri
tly positive bound from below is available as long as the supportof p0 is not 
ontained in K�. We thus de�net� = inf nt > 0 ;Zj�+�(t)j>1 p0 = 0o : (3.4)Then 0 < t� (t� possibly even in�nite), the support of p0 is 
ontained in [�1��(t�); 1��(t�)[,and for every T < t�2 , (3.2) holds for some positive 
onstant �1(T ) de�ned by�1(T ) = �2 e�T min0�t�T Zj�+�(t)j>1 p0: (3.5)It is worth emphasizing that this quantity is independent of ". If t� = +1, the proof is overand �(T ) = �1(T ) �ts. Let us now examine the 
ase when t� < +1 and T � t�2 .We go ba
k to (3.3), take t in [ t�2 ;T ℄ and denote x = R t0 (D(p") + ") for shortness. ThenD(p"(t)) � � e�T Z 1��(t�)�1��(t�) p0(�0)� Zj�j>1 'p2x(� � �0 � �(t)) d�� d�0= � e�T Z 1��(t�)�1��(t�) p0(�0) Zj�j>1 e�(���0��(t))2=4x2p�px d�! d�0= �p�e�T Z 1��(t�)�1��(t�) p0(�0) Z �1+�0+�(t)�1 e��2=4x2px d� + Z +11+�0+�(t) e��2=4x2px d�! d�0= �p�e�T Z 1��(t�)�1��(t�) p0(�0)  Z +11+�0+�(t)2px e�t2 dt+ Z +11��0��(t)2px e�t2 dt! d�0� �p�e�T  Z 1��(t�)�1��(t�) p0(�0) d�0! 0�Z +12��(t�)+�(t)p2 t� �1(t�=2) e�t2 dt+ Z +12+�(t�)��(t)p2 t� �1(t�=2) e�t2 dt1A� �p�e�T mint�=2�t�T 0�Z +12��(t�)+�(t)p2 t� �1(t�=2) e�t2 dt+ Z +12+�(t�)��(t)p2 t� �1(t�=2) e�t2 dt1A ; (3.6)sin
e R 1��(t�)�1��(t�) p0 = 1 and x � R t�=20 D(p") � t� �1(t�=2)=2 thanks to (3.5). The proof ofLemma 3.1 then follows by de�ning�(T ) = min(�1(T ); �2(T )) ;with �1(T ) given by (3.5) and �2(T ) being the positive quantity in the right-hand side of(3.6), that is�2(T ) = �p�e�T mint�=2�t�T 0�Z +12��(t�)+�(t)p2 t� �1(t�=2) e�t2 dt+ Z +12+�(t�)��(t)2p2 t� �1(t�=2) e�t2 dt1A : }Proof of Proposition 3.1: 14



We �rst go ba
k to the proof of the bound (1.11) on ��p" and more pre
isely we look at (2.23)and observe that in virtue of (3.1)�(T ) Z T0 ZIR j�� p"j2 � C3(T; p0) : (3.7)Let now "n denote any sequen
e in [0; 1℄ whi
h goes to 0 as n goes to in�nity. To shorten thenotation we denote by pn instead of p"n the 
orresponding sequen
e of solutions to (1.6). Withthe above bound (3.7) on pn and (1.10), we know that pn is bounded in L2t (H1�) independentlyof n. Moreover thanks to (2.1) and (1.8) pn is bounded in L1t (L1� \L1� ) and we also disposeof a uniform bound on RIR j�jpn in virtue of (1.9). Therefore arguing exa
tly as in the proof ofProposition 2.2 (Step 4) where we have proved that the mapping T is relatively 
ompa
t inL2t �L2t;� we show that pn 
onverges to some p strongly in L2t;� and D(pn) 
onverges to D(p)in L2t . Then p is a solution to the initial problem (1.1) in L2t (H1�) \ L1t (L1� \ L1� ), RIR p = 1and RIR j�j p < +1. Moreover, inf0�t�T D(p(t)) � �(T ) :This non-degenera
y 
ondition on the vis
osity 
oeÆ
ient ensures that there is at most onesolution to (1.1) in L2t (H1�) \ L1t (L2�) (this follows by an obvious adaptation of the proof ofLemma 2.1 to this 
ase). Therefore the limiting fun
tion p is uniquely de�ned and does notdepend on the sequen
e "n. Moreover the whole sequen
e pn 
onverges to this unique limitand not only a subsequen
e. }As a 
on
lusion of this subse
tion let us make the following 
omment whi
h is a byprodu
tof Proposition 3.1. Let p be a solution to (1.1) in C0t (L1� \ L2�), then as soon as D(p(t)) ispositive for some time t it remains so afterwards sin
e the solution 
an be 
ontinued in aunique way beginning from time t.4 The degenerate 
ase : D(p0) = 0Throughout this se
tion we assume that D(p0) = 0 and therefore the support of p0 is in
ludedin [�1;+1℄. Assume that we dispose of a solution to (1.1) in C0t (L1� \ L2�). We may de�net� 2 IR+ [ f+1g by t� = maxnt > 0 ;Z t0 D(p) = 0o : (4.1)A

ording to the 
omment at the end of the previous se
tion for every t > t�, D(p(t)) > 0while D(p(t)) = 0 for all t in [0; t�℄. On [0; t�[, the HL equation (1.1) reads8>><>>: �t p = �b(t) ��p ;p � 0 ;p(0; �) = p0 ;D(p(t)) = 0 :The above system redu
es to� p(t; �) = p0�� � �(t)� ;D(p(t)) = 0 ; for all t in [0; t�℄ : (4.2)15



The se
ond equation in (4.2) is 
ompatible with the �rst one as long asZj�+�(t)j>1 p0 = 0 ; for all t in [0; t�℄ :Therefore there exists a maximal time interval [0;T
℄ on whi
h the HL equation may redu
eto a mere transport equation and this is for an intrinsi
 time T
 (possibly in�nite) de�ned byT
 = inf(t > 0 ; Zj�+�(t)j>1 p0 > 0 :) : (4.3)Note that T
 is 
ompletely determined by the data p0 and b. If T
 = +1, the steady statep(t; �) = p0(� � �(t)) is a solution of the HL equation for all time. We shall now exhibit
ir
umstan
es under whi
h it is not the unique solution. For 
onvenien
e, we restri
t ourselvesto the 
ase when b � 0 (we then have obviously T
 = +1).For p0 2 L1(IR)\L1(IR) su
h that p0 � 0, let us denote by Fp0 the fun
tion from IR+ to IR+de�ned by Fp0(0) = D(p0) and by8x > 0; Fp0(x) = � Zj�j>1�ZIR p0(�0)'p2x(� � �0) d�0� d� :Proposition 4.1 Let p0 satisfy (1.5) and be su
h that D(p0) = 0, theni. If Fp0 satis�es Z 10 dxFp0(x) = +1; (4.4)then p(t; �) = p0(�) is the unique solution to (1.1) in C0t (L2�) ;ii. Otherwise, (1.1) has an in�nite number of solutions in C0t (L2�). The set of solutions to(1.1) is made of the steady state p(t; �) = p0(�) and of the fun
tions (qt0)t0�0 de�nedby qt0(t; �) = ���� p0(�) if t � t0q(t� t0; �) if t > t0where q is the unique solution to (1.1) in C0t (L2�) su
h that D(q) > 0 on ℄0;+1[.Besides, p��!�!0 q strongly in L2t;lo
(L2�): (4.5)Lemma 4.1 Let p0 2 L1(IR) \ L1(IR) su
h thatp0 � 0; ZIR p0 = 1; D(p0) = 0:The fun
tion F0 is in C0([0;+1[) \ C1(℄0;+1[), and is positive on ℄0;+1[. In addition,F 0p0 > 0 on ℄0;+1[. 16



Proof of Lemma 4.1: It is easy to 
he
k that Fp0 2 C0([0;+1[) \ C1(℄0;+1[), and thatFp0 > 0 on ℄0;+1[. Sin
e D(p0) = 0, the fun
tion p0 is supported in [�1; 1℄. Thus, for anyx > 0 Fp0(x) = � Zj�j>1�ZIR p0(�0)'p2x(� � �0) d�0� d�= �Z 1�1 p0(�0) Zj�j>1 e�(���0)2=4x2p�px d�! d�0= �Z 1�1 p0(�0) Z �1+�0�1 e��2=4x2p�pxd� + Z +11+�0 e��2=4x2p�pxd�! d�0= � 1p� Z 1�1 p0(�0) Z +11+�02px e�t2 dt+ Z +11��02px e�t2 dt! d�0 : (4.6)It follows that for any x > 0,F 0p0(x) = � 1p� Z 1�1 p0(�0)�1 + �04x3=2 e� (1+�0)24x + 1� �04x3=2 e� (1��0)24x � d�0 > 0 : }Lemma 4.2 Let 
 � 0 and p0 2 L1(IR) \ L1(IR) su
h thatp0 � 0; ZIR p0 = 1; ZIR j�jp0 < +1; D(p0) = 0:Let us 
onsider the problem � �tw = D(w(t))�2��w � 
ww(0; �) = p0(�): (4.7)i. If Fp0 satis�es (4.4) then p(t; �) = p0(�) is the unique solution to (4.7) in C0t (L2�);ii. Otherwise, (4.7) has an in�nite number of solutions in C0t (L2�). The set of solutions to(4.7) is made of the steady state w(t; �) = p0(�) and of the fun
tions (vt0)t0�0 de�nedby vt0(t; �) = ���� p0(�) if t � t0v(t� t0; �) if t > t0where v is the unique solution to (4.7) in C0t (L2�) su
h that D(v) > 0 on ℄0;+1[.Corollary 4.1 The initial data p0 = 12�℄�1;1[ ful�lls the assumptions of the above lemma andR 10 dxFp0 (x) < +1. Therefore there are in�nitely many solutions to the equation (1.4) in theintrodu
tion.
17



Proof of Corollary 4.1: The only point to be 
he
ked is that R 10 dxFp0(x) < +1. With thestandard notation erf
(z) � R +1z e�t2 dt, and by using (4.6) and symmetry 
onsiderations,simple 
al
ulations yieldFp0(x) = 2�pxp� Z 1px0 erf
(�) d�= 2�p� �erf
� 1px�� 12 px e� 1x + 12 px� :Sin
e erf
(z) � 12e�z2=z for z going to +1, Fp0(x) � �p� px near 0 and the integrability of1=Fp0 on [0; 1℄ follows. }Proof of Lemma 4.2Let us 
onsider a non-negative fun
tion D 2 C0([0;+1[; IR+). The unique solution in C0t (L2�)of the problem � �twD = D(t)�2��wD � 
wD;wD(0; �) = p0(�); (4.8)is given by wD(t; �) = �������� e�
t p0(�) if t � t� ;e�
t ZIR p0(�0)'q2 R t0 D(s) ds(� � �0) d�0 if t > t� ; (4.9)where t� = inf�t > 0; Z t0 D > 0�. Any solution to (4.7) thus satis�es w = wD(w) andtherefore D(w(t)) = D �wD(w)(t)�= �Zj�j>1wD(w)(t; �) d�= �e�
t Zj�j>1�ZIR p0(�0)'q2 R t0 D(w(s)) ds(� � �0) d�0� d�= e�
t Fp0 �Z t0 D(w(s)) ds� :It follows that the fun
tion D(w) is solution in C0([0;+1[) to the nonlinear integral equationy(t) = e�
t Fp0 �Z t0 y(s) ds� : (4.10)On the other hand, if D 2 C0([0;+1[) is solution to (4.10) it is easy to 
he
k that thefun
tion wD de�ned by (4.9) is solution to (4.8).If 
ondition (4.4) is ful�lled, equation (4.10) has a unique solution in C0([0;+1[) (the 
onstantfun
tion equal to zero) and the steady state w(t; �) = p0 thus is the unique solution to (4.7)18



in C0t (L2�); otherwise, the set of solutions to (4.10) is made of the steady state w(t; �) = p0and of the family (yt0)t0�0 withyt0(t) = ���� 0 if t � t0z(t� t0) if t > t0where the fun
tion z is de�ned on [0;+1[ byZ z(t)0 dxF (x) = ( 1�e�
t
 ; if 
 > 0 ;t ; otherwise .Statement ii. is obtained by denoting by v the solution to (4.8) asso
iated with the fun
tionz(t). }Proof of Proposition 4.1:The solution p� to equation (1.6) satis�es the inequalitiesp�� (t; �) � p�(t; �) � p+� (t; �) almost everywherewhere p�� and p+� are de�ned in C0t (L2�) by� �tp�� = (D(p�(t)) + �) �2��p�� � p�� ;p�� (0; �) = p0(�) ; 8<: �tp+� = (D(p�(t)) + �) �2��p+� + D(p�)� Æ0 ;p�� (0; �) = p0(�):Therefore on the one handD(p�(t)) � D(p�� (t)) = e�t Fp0 �Z t0 (D(p�) + �)� (4.11)and on the other handD(p�(t)) � D(p+� (t)) = Fp0 �Z t0 (D(p�) + �)�+ Z t0 D(p�)(s)�  Zj�j>1 'q2 R ts (D(p�)+�)! ds� Fp0 �Z t0 (D(p�) + �)�+ 1� Z t0 D(p�)(s) ds:If (4.4) is not ful�lled, using (4.11) and the property that Fp0 is stri
tly in
reasing on [0;+1[,we obtain that D(p�) � z(t)where z(t) is the fun
tion de�ned in the proof of Lemma 4.2. As for any 0 < t0 � T , thereexists � > 0 su
h that z(t) � � on [t0; T ℄ the same reasoning as in the non-degenerate 
aseleads to the 
on
lusion that (p�) 
onverges up to an extra
tion to p in D0(℄0;+1[�IR) and inL2([t0; T ℄; L2(IR)) for any 0 < t0 < T < +1, p being a solution to (1.1) in C0(℄0;+1[; L2�)su
h that D(p) > 0 on ℄0;+1[. }
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5 Steady statesThroughout this se
tion the shear rate b is assumed to be a given 
onstant and we are lookingfor solutions in L1(IR) to the following system :�b ��p+D(p) �2��p� �IRn[�1;1℄ p+ D(p)� Æ0(�) = 0 on (0;T ) � IR ; (5.1)p � 0 ;ZIR p = 1 ; (5.2)D(p) = � Zj�j>1 p(�) d� : (5.3)
8>>>>>><>>>>>>:Our main results are summarized in the following :Proposition 5.1 .i If b � 0, any probability density whi
h is 
ompa
tly supported in [�1;+1℄ is a solutionto (5.1) whi
h satis�es D(p) = 0. If � � 12 , these are the only stationary solutions(and there are in�nitely many), whereas when � > 12 there exists a unique stationarysolution 
orresponding to a positive value of D, whi
h is expli
itly given by (5.4) and(5.6) below. This solution is even and with exponential de
ay at in�nity.ii If b 6� 0, for any � > 0, there exists a unique stationary solution to (5.1), and it
orresponds to a positive value for D, whi
h is impli
itly given by (5.7) and (5.8) below.This solution has exponential de
ay at in�nity.Remark 5.1 The statement in the above proposition is already pointed out by H�ebraud andLequeux [3℄.Proof of Proposition 5.1:The 
ase when b � 0We �rst observe that any non-negative fun
tion p whi
h is normalized in L1(IR) and withsupport in [�1;+1℄ is a solution to the system (5.1) sin
e in that 
ase all terms in equation (5.1)
an
el. We now examine the issue of existen
e of solutions of (5.1) su
h that D(p) > 0. Forsimpli
ity we denote D = D(p). For given 
onstant D > 0, it is very easy to 
al
ulateexpli
itly the solutions of (5.1) on ea
h of the three regions � < �1, � 2 [�1;+1℄ and � > 1.Using 
ompatibility 
onditions on IR and the fa
t that p has to be in L1(IR) one obtains :

p(�) =
8>>>>>>>>>>>>><>>>>>>>>>>>>>:

pD2� e (1+�)=pD if � � �1 ;12� � + pD + 12� if � 1 � � � 0 ;� 12� � + pD + 12� if 0 � � � 1 ;pD2� e(1� �)=pD if 1 � � : (5.4)
20



The 
ompatibility 
ondition D = D(p) happens to be then automati
ally satis�ed and thenormalization 
onstraint RIR p = 1 imposes that D solvesD +pD = �� 12 : (5.5)Sin
e D � 0, we immediately rea
h a 
ontradi
tion when � < 12 , whereas when � > 12equation (5.5) admits a unique positive solution; namelyD = �12 + p4� � 12 : (5.6)The 
ase when b 6� 0First of all, we observe that if D = 0 every term in equation (5.1) but b ��p vanish. Thusp has to be a non-zero 
onstant whi
h is in 
ontradi
tion with p 2 L1(IR). So ne
essarilyD > 0. For given positive 
onstant D, we then solve (5.1) as above and obtain
p(�) = 8>>>>>>>>><>>>>>>>>>:

a1 e �+ � if � � �1 ;a2e bD � + a2 � Db� if � 1 � � � 0 ;�a2 � Db��e bD � + a2 if 0 � � � 1 ;a1 e�� � if 1 � � ; (5.7)
with �� = b2D � 12rb2 + 4DD2 ;a1 = e 12q b2D2+ 4D� ��+eb=2D � ��e�b=2D� ;and a2 = D�+eb=2D�b ��+eb=2D � ��e�b=2D� :It is tedious but easy to 
he
k that this fun
tion always ful�lls the self-
onsisten
y 
onditionD = D(p) and that the normalization 
ondition RIR p = 1 readsDb (1 + �+) + (�� � 1) e�b=D�+ � �� e�b=D +D = � : (5.8)For any b > 0 (the negative values of b are dealt with by repla
ing � by ��), the left-handside of (5.8) is a 
ontinuous fun
tion whi
h goes to +1 when D goes to in�nity and goes tozero when D goes to 0. This already ensures the existen
e of at least one steady state for any� > 0. Moreover, setting z = b2D (for example) we may rewrite the left-hand side of (5.8) asf(z) = b2z + 2 b2z "1 + 12bz 
oth(z=2b) + 12b (z2 + 4z)1=2z + (z2 + 4z)1=2 
oth(z=2b) # :Next we 
he
k that the fun
tion f is monotone de
reasing (thus, the left-hand side of (5.8)is in
reasing with respe
t to D), when
e the uniqueness result. }A
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