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RESIDUAL BASED AND HIERARCHICAL A POSTERIORI ERROR ESTIMATES
FOR NONCONFORMING MIXED FINITE ELEMENT METHODS

LINDA EL ALAOUI' AND ALEXANDRE ERN!

Abstract. We consider nonconforming mixed finite element approximations to elliptic problems with
variable coefficients, arising for instance in the modeling of Darcy flows through heterogeneous porous
media. We investigate two types of a posteriori error indicators based on either local residuals or a
two-level hierarchical setting. We prove that all the estimators yield upper and lower bounds for the
numerical error. Finally, we present numerical results illustrating the efficiency of the estimators.

Résumé. Nous considérons des approximations numériques par éléments finis mixtes non-conformes
de problémes elliptiques & coefficients variables, comme ceux rencontrés par exemple dans la modéli-
sation d’écoulements darcéens en milieu poreux hétérogéne. Nous étudions des indicateurs d’erreur
a posteriori de type résidu et de type hiérarchique. Nous montrons que ces estimateurs bornent in-
férieurement et supérieurement ’erreur numérique. Nous présentons enfin des résultats numériques
illustrant P'efficacité de ces estimateurs.
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1. INTRODUCTION

The main motivation for this work is the numerical simulation of subsurface flows in saturated porous
media. In such simulations, it is often critical to achieve highly accurate flow velocity predictions in order to
investigate pollutant transfer by advective, diffusive and dispersive effects. A widely used physical model for
steady subsurface flows in saturated porous media consists of Darcy equations

S EVu=0,
{‘7+ b (1.1)

VJ:f7

where j is the velocity vector, k the hydraulic conductivity, v the hydraulic head (or the pressure up to an
appropriate rescaling) and f the source term resulting from mass sources or sinks. The first equation in (1.1)
is Darcy’s phenomenological law and the second equation expresses mass conservation. Problem (1.1) is posed
on the computational domain €2 and is completed by flux or head conditions on the boundary 0. Elimination
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of the velocity unknown yields the elliptic equation
-V (kVu)=f. (1.2)

Equations (1.1) and (1.2) arise in many other models, the former providing a mixed formulation of the latter.

Problem (1.1) may be cast into several weak formulations. On the one hand, one may consider two symmetric
formulations in which the functional space for the unknowns (j, u) is the same as the trial function space. The
two formulations differ from the fact that either the velocity or the pressure is sought in a space with more
regularity. On the other hand, it is also possible to consider nonsymmetric formulations in which the solution
and trial spaces are different. The present work shall focus on one of such formulations, in which both velocity
and pressure solution spaces have more regularity than the corresponding trial spaces [12,13]. Considering for
the sake of simplicity homogeneous Dirichlet boundary conditions for the pressure and assuming, as is usual in
a posteriori error analysis, that the data f is in L?(12), the weak formulation of (1.1) may be written as

Find (j,u) € Haiv(Q) x H}(£2) such that
Joi a+ [okq-Vu=0  Vqe (L*Q))?, (1.3)
JovV-i= [, fv Vv e L3(Q),

where Hg;, (Q) = {j € (L?(Q))4, V- j € L?(Q) } and d is the space dimension. Flux boundary conditions may
be easily incorporated by considering an appropriate subspace of Hgiy(€2). Elimination of the velocity unknown
readily yields the weak formulation of (1.2) in the form

{ Find u € H}(Q) such that w4

JokVu-Vo= [, fv  VYveHiQ).

From a numerical viewpoint, the weak formulation (1.3) is attractive because one may employ a mixed
finite element method of Petrov-Galerkin type in which the discrete trial functions are localized at the mesh
cells. Therefore, the discrete scheme may be interpreted as a finite volume discretization which simultaneously
conserves mass and allows for an accurate reconstruction of the velocity field at the cell level. Such schemes are
often termed finite volume box schemes. For Darcy equations, the lowest-order finite volume box scheme has
been introduced in [12] and further investigated in [13], while higher-order versions have been derived in [14].

The goal of this work is to derive a posteriori estimates yielding upper and lower bounds for the numerical
error resulting from nonconforming approximations to (1.3) in a Petrov-Galerkin framework. An upper error
bound is important for reliability issues while a lower bound leads to optimal estimates. We shall investigate
residual based and hierarchical error indicators. Since the pioneering work of Babugka and Rheinboldt [7],
extensive theoretical and computational progress has been achieved in the development of a posteriori error
estimates to finite element approximations. For a thorough introduction to residual based a posteriori error
estimates of conforming finite element approximations of elliptic equations, we refer to [19]. Early work on a
posteriori error estimates derived from the use of hierarchical basis functions includes [8,9].

Despite important advances achieved in the last few years, a posteriori estimates for “nonstandard” dis-
cretization methods, such as finite volume methods and nonconforming finite element methods, are not yet fully
developed. On the one hand, recent results on residual based error indicators for Darcy flow simulations are
given in [4], where the symmetric formulation of (1.1) relying on a more regular space for the pressure than
for the velocity is discretized in both conforming and nonconforming finite element settings. A finite volume
interpretation of the degrees of freedom is also given. Additional results on residual based a posteriori estimates
for nonconforming approximations of elliptic problems include [17] where the residuals are weighted by coeffi-
cients depending on a dual problem, [18] where a post-processing term resulting from the nonconformity of the
discrete solution is included in the error indicator and [6] where a general framework for a posteriori estimates
to finite element methods with violated Galerkin orthogonality is derived. On the other hand, the extension
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of hierarchical a posteriori error estimators to a nonconforming setting has been discussed theoretically in [2].
However, applications of this technique to Darcy flows only include the symmetric formulation of the problem
with a more regular velocity space discretized by the conforming Raviart-Thomas element [2, 20].

This paper is organized as follows. In Section 2, we briefly restate the main results concerning the numerical
analysis of the finite volume box scheme considered for the discretization of (1.3). A posteriori error estimates of
residual type are investigated in Section 3. Two estimators are derived, one based on the mixed formulation and
one based on an equivalent primal formulation for the discrete pressure. A posteriori estimates of hierarchical
type are obtained in Section 4. Estimators based on edge bubbles and on element bubbles are investigated.
Numerical results are presented in Section 5. Conclusions are drawn in Section 6.

2. DISCRETIZATION SCHEMES AND A PRIORI ERROR ANALYSIS

In this section we briefly discuss our basic model assumptions. We then present the discretization schemes
for (1.3) and recall the main results concerning their a priori error analysis.

2.1. Model assumptions and notation

Let Q be a bounded polygonal domain in R? with d = 2 or 3. For the sake of simplicity, we restrict our
analysis to isotropic media in which the hydraulic conductivity %k is a scalar. However, we shall address the
case of heterogeneous media in which the coefficient & undergoes either smooth or sharp variations in the
computational domain €. Since the hydraulic conductivity results from the geological properties of the porous
medium, it is reasonable to make the following assumption [3]:

Hypothesis 2.1. There exists a partition Q = Uleﬁl with QN Qy =0 for | # 1, such that k equals a positive
constant k; in each ;.

This hypothesis will always be made implicitly in the rest of this work.

For strongly heterogeneous media, the condition ratio of k evaluated as kmax/kmin, where kmax and kmin
denote respectively the maximum and the minimum value attained by k in 2, is very large. In this case, it is
important from a practical viewpoint that the constants arising in the error estimates be independent of this
ratio. To this purpose, it was shown in [10] that an appropriate norm to measure the error in the pressure
u € H(Q) is the energy norm

I 1/2
lulk,1 = (Z ki |VU||(2),QL> - (2.1)

=1
For a region R, ||-||o,z denotes the L?-norm on R with associated scalar product (-,-)o, g while |- |m r, m = 1,2,
denotes the Sobolev semi-norm of order m over R. For ¢ € L?(2), we shall also make use of the norms
lellero = (X1, ki l¢l13 o,)'/2. In this work, we are also interested in measuring the error on the velocity

since this quantity is essential for accurate contaminant transfer simulation. For j € Hqa;y(£2), we shall consider
the norm

I 1/2
15111 aiv = (Z kG + R ||V-j||%,m> : (2.2)
1=1

Let (73,) be a shape-regular family of triangulations of Q. For the sake of simplicity, we use the terminology
of the 2D case, being understood that in the 3D case, triangles should be replaced by tetrahedra, edges by
faces, etc. In the sequel, we will always make implicitly the following assumption:

Hypothesis 2.2. For all h, the triangulation T}, is compatible with the partition Q = Uleﬁl in the sense that
the interior of any triangle T € Ty, has a nonempty intersection with only one of the subdomains ;.
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For a triangle T' € 7j, let hy be its diameter and set h = maxyeg;, hr. Let &, and 5}'1 denote respectively the
set of edges and internal edges in 7;. For an edge e € &, let h. be its length, and let 7. be the set of elements
in 75 containing e. For an element T € 7j, let &y be the set of edges belonging to T. For e € &, choose a
unit normal vector n.. For a piecewise continuous function ¢ on 7y, [¢]. denotes the jump of ¢ across e in the
direction of n., with the convention that a zero outer value is taken for edges contained in 0f).

Because of hypothesis 2.2, the coefficient % is constant on T and its local value will be denoted by k. For
e € &, such that e = TNT’ with T and 7" in Ty, we set k. = %(k:T + k) and kF = max(kr, kr1).

Finally, ¢ shall always denote a positive constant which neither depends on h nor on the ratio kmax/kmin-

2.2. The finite volume box scheme

We seek the discrete velocity in the Hgiy (2)-conforming Raviart-Thomas finite element space RTo(ﬂ) of
lowest-order and the discrete pressure in the nonconforming Crouzeix-Raviart finite element space

Pr}c,o(Th) ={v, € L*(Q); VT € Ty, Un|r € PY(T); Ve € &, /[vh]edo =0},

€

where P1(T') is the space of polynomials on 7' with degree < 1. The trial functions for the pressure and the
velocity are both taken in the space of piecewise constant functions P°(7},). The resulting nonconforming mixed
finite element discretization of (1.3) corresponds to the finite volume box scheme

Find (jp,un) € RT°(T3) x PL, o(73) such that

nc,0
a(jn, qn) + bn(gn,un) =0 Van € (P°(Ty))4, (2.3)
b(jn,vn) = (f,vn)0 Vo, € P°(Tp),
with the bilinear forms
a(Jns qn) = (Jn,an)oq > 00n,vn) = (V- jn,0h)oos  bu(dn, un) = Z kr(an, Vun)o r - (2.4)
TeT

The numerical analysis of scheme (2.3) has been performed in [13] in the case of constant coefficient k. Fol-
lowing similar arguments, it is easily shown that the discrete problem (2.3) is well posed. Furthermore, it is
straightforward to verify that the discrete pressure uy, is also the unique solution of the problem

Find uj, € P}, ¢(75) such that

Z kr(Vun, Vor)or = (fn,vn)o0  Yon € PI}Q()(’Z';I)7 (2.5)
TET,

with f;, = I1°f, where II° denotes the orthogonal projector from L?(2) onto P°(7;,). Problem (2.5) will be
termed the ‘pressure formulation’.
The discrete problem (2.3) satisfies two important properties:

e the discrete velocity j; may be reconstructed locally from the expression

. 1
VT €Th, jur = —krVuyr+ §(fh7ﬁ11)\T7 (2.6)
where 7} is a piecewise first-order polynomial such that VI' € 7, and Vz = (z1,--- ,zq4) € T, we
have F}L(m) =(x1—Gra,- 24— Gr.a), (Gra,-..,Gr,q) being the coordinates of the center of mass

of triangle T'. For further use, it is convenient to introduce the gyration radius of T given by pr =
|T|+/2H7Tilz|‘01T’ where |T'| is the measure of T'.
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e the discrete velocity j; satisfies the discrete mass conservation equation
V- in=fn. (2.7)

2.3. A priori error analysis

For v € Hj () + P1 ((7s), we introduce the broken energy norm

1/2
|U|k,h = (Z k/’T|VU||3,T> . (2.8)

TeT,

Proposition 2.3. Let (j,u) and (jn,up) be respectively the unique solution of (1.1) and (2.3). Then, there
exists a constant c such that

1/2
clu—upl,, <h (ZTGTh kT|“|§,T) RIS = falli-r0,

S (2.9)
17 = dnlle-1,0 < V2lu —unly p, + 50l fullk-10-

Proof. The proof is similar to the one presented in [12]| for constant coefficient & and we only highlight the

differences arising when k is variable. Since wy solves the nonconforming finite element problem (2.5), we

deduce using classical techniques (see for instance [15]) that

) ) — kr(Vu, Vuy,)o,
|u — upl), , <2 inf |u —wpl|,, +  sup (fh, on)o2 = Xrez, b h)OT.

whepnlc,U(Th) UhePr}c,o(Th) |Uhf|k,h

Using standard interpolation techniques locally on each element 7', the first term in the r.h.s may be estimated
by ch (ZTGTh kT|u|§T) 12, Concerning the second term, we notice that an integration by parts yields

(fr,vn)o,0 — Z kr(Vu, Vur)or = —(f — fa,vn)on — Z kr Opu vy, .

TET TET, oT

The first term in the right member is readily estimated as

(f = foon)oe = (f = fryon —v)00
< N f = falle-10llvn — 0n]lk0
< chllf- fh||k*1,0|vh|k,h ) (2.10)

whereas classical interpolation techniques (see for instance [11]) yield for the second term

1/2
Z kT/ Onuvy < ch <Z kT|U|%T> A
or

TeTh TeT,

Combining the above estimates yields the desired upper bound for the pressure error. Finally, the velocity error
estimate directly follows from the reconstruction property (2.6) since

. _ 1/2
17— dnllk-1,0 < (ZTeTh 2]‘3T|U*uh|%,T+ %lenfhﬂfleg,T)
< \/§|“_uh|k,h+ %hnfh”k*l,o-
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Without any additional regularity assumption on the data f, the only estimate available for the divergence
of the velocity is

IV -G = dn)ll=1,0 < If = Fulle=10- (2.11)

In most applications, it is reasonable to assume that the data is more regular. Typically, we may assume that
the data is H' on the subdomains €,

VI,1<I<L, faq €H (). (2.12)

With this assumption, we readily obtain first-order convergence in the norm |u — up|, , + (|7 — jallx-1,4iv, since
. 1/2
Bllf = falli-r0 < eh? (Sreq, k' 1fR) "

3. A POSTERIORI ANALYSIS OF RESIDUAL TYPE

In this section we establish two a posteriori error indicators of residual type. The first one is obtained from
the mixed formulation (2.3) and the second one from the pressure formulation (2.5). The former presents the
drawback that the constants arising in the estimates may depend on the ratio kmax/kmin, Whereas the latter
yields constants independent from this ratio. The numerical experiments presented in section 5 will show that
for strongly heterogeneous media, both estimators retain their usefulness.

3.1. Preliminary results

Let P.(7y) = Pi.o(7n) N Hg(2) be the conforming finite element space of degree one. In the sequel, we
shall often make use of the following hypothesis introduced in [10].

Hypothesis 3.1. For any two different subdomains Q;, and Q, sharing at least one point, there erists a
connected path going from Q, to £y, through adjacent subdomains such that the function k is monotone along
this path (adjacent means that the corresponding subdomains share an edge).

Note that in the case of dimension d = 2, a sufficient condition for hypothesis 3.1 to hold is that there are at
most 3 subdomains sharing a common point in 2 and at most 2 subdomains sharing a common point on 0.
We consider the two following interpolation operators:

e under hypothesis 3.1, it was proven in [10] that there exists an interpolation operator Zgy : H}(Q) —
P!,(T) such that

Yv € H&(Q), VT € 777,, ||’U 71]3\/1)”011“ < ChT(kT)_1/2|U|k,AT , (31)
Vo e HYQ), Yee&, |lv—Tavolloe < ch2(k5) " |vli.a, | (3.2)

where Ap and A, denote respectively the union of all elements T' € 7; that share at least an edge
with T and one vertex with e and where we have used the notation |v|s A, = ||k'/?Vv|lo.a, and
vle.a, = ||k1/2Vv||0A

e let Zos : P, o(Tn) — P¢o(7n) be the Oswald interpolation operator defined for v in P, ,(7;) as the
unique function in Pcl,o(ﬂ) such that for all vertex s in 7j,

Zosvn(s E v (s

TGT

where 7, is the set of elements in 7, containing s and #(7;) the cardinal of this set. The Oswald
interpolation operator has been considered in [4,16]. Under hypothesis 3.1, it was proven in [3] that
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there exists a constant ¢ such that
1/2
Vo € Paeo(Th),  on — Tosvnly, < | D Feh [l[vnlells. : (3-3)
eegi
3.2. Estimator based on the mixed formulation

Proposition 3.2. Let (j,u) and (jn,un) be respectively the unique solution of (1.8) and (2.3), and let

1/2
1
Puf) = < > kM= fallgr + ZkFPQTIIth%,T) : (3.4)

TET,

Then there exists a constant v independent of h such that

lu—unlp, + 7 = dulle—raw S v |{Po(f)+  inf  Jup —ovnlen | - (3.5)
’ ’UhGPcl’U(Th)

Remark 3.3. The a posteriori error estimate in the right member of (3.5) is the sum of a pre-processing term
only depending on the data f and the mesh 7, plus a post-processing term also depending on the discrete
pressure up.

Proof. Let vj, be an arbitrary function in P, ((7,) and let j, € RT%(T;) be the discrete velocity field. Since
(4,u) is the exact solution of problem (1.3), we have

a(jn —7,9) + bu(g,vn —u) = aljn,q) + bnlg,vn)
= > /(kTVUh+jh)'q
TeT, VT
< 3 B2V + b Gullor kY lallor
TET,
and
b(jh —j,’U) = b(jhav) - (f7v)0751
. /(v-jh—m
TeT, VT
< S KUV G = Fllo B2 llor -
TET,

For (j,u) € Haiy () x H3(Q) and (g,v) € (L?(Q))? x L?(R), consider the bilinear form
B((]v U), (Q7v)) = a(j7 Q) + bh(qvu) + b(]a U) .
Since problem (1.3) is well posed, B satisfies an inf-sup condition of the form

. 1 B((j,u), (g,v))
[ulpn + k-1 aiv < 5 sup : (3.6)
o YT X gwer@paxez) (0lE o + llallz o)/
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for all (j,u) € Haiv(2) x H}(Q), where ) is a constant independent of h but that may depend on the ratio
kmax/kmin. This yields

1/2
. 1 1. _ .
lu—vnlyp, + 17— Jnlle-1,av < 5 kr|lky jn + VUhH(QJ,T + k' 1f =V gl (2J,T .
’ A \re7
h

Since V - ji = f1, and using the triangle inequality, we obtain

1/2
. V2 1.
lu — Uh|k,h + 117 = dnlle-1,0iv < N lun — Uh'i,h +f - fh”ifl,o + Z kTHleJh + v“hH(QJ,T )
TeT)

and using the reconstruction formula (2.6), we obtain the a posteriori estimate (3.5) with the constant v =

V2

- -
A possible choice for vy, in (3.5) is the Oswald interpolate of uy,. This yields the following result.

Corollary 3.4. Let (j,u) and (jn,up) be respectively the unique solution of (1.3) and (2.3). Then, under
hypothesis 3.1, there exists a constant v independent of h such that

lu—unlyp, + 17 = Jnllk-1a0 S v (Tl(f) + 771(%)) ; (3.7)
where
1/2
mun) = | D Feho llfunlel.c : (3.8)
ec&l
Proof. Follows directly from (3.3). O

Finally, we investigate the optimality of the above error estimators.

Proposition 3.5. Let (j,u) and (jn,un) be respectively the unique solution of (1.3) and (2.8). Then, there
exists a constant ¢ such that

':Pl(f) + inf |uh — ’Uh|k h S ':Pl(f) + m(uh) S & |u — uh|]€ h + \/§||j - thk*Hdiv- (39)
un€PLy(Th) ’ ’

Proof. The local reconstruction property (2.6) as well as equations (1.1) and (2.7) yield

Pi(f)

1/2
< S kRN G = inlEr + ks + kTwhn%,T)
TeT,

IN

V2 (117 = nllir aiv + o= unly ) -
Furthermore, it was established in [3] that there exists a constant ¢ such that

Vo € HY(Q), You € Phoo(Th), Ve € & R R onlloe < ¢ S k2o —valir - (3.10)
TeT.

This yields 71 (un) < clu — up|,, ;,, which completes the proof. O
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3.3. Estimators based on the pressure formulation

In this section we first derive an a posteriori error indicator for the pressure and then deduce an a posteriori
error indicator for the velocity.

Proposition 3.6. Let u and u, be respectively the unique solution of (1.4) and (2.5). Then, under hypothesis
3.1, there exists a constant ¢ such that

- <c?P 2 inf - , 3.11
|u “h|k,h <cPo(f) + vhell’rjl,o(Th) |ur, Uh|k,h ( )
where
) 1/2
_ _ -1
Pa(f) = < > 2hikp I f = fll§ e + Rk AalE 2 + 3 > he(k) I[fnmh, - ne]ellﬁ,e> : (3.12)
TET, e€&r

Proof. For all wy, € P}(7T;), we have

Z kr(V(u —unp), th)o,T =(f—rn wh)o,Q )
TET,

and therefore, for all w € HE (), we have

> kr(V(u—up), Vw)yp = > kr(V(u—un), V(w —wn))gr + (f = fawn)oq -
TeT, TeT,

Take wy, = Zgyw. Using classical techniques for residual a posteriori estimates [10,19], we obtain

Y kr(V(u—un),Vw—wp))gr < culy, ( Y Wk I nllgr + kgl — fulld

TETh TeTh

1/2
1 -1
tog 2 k) |[Wuh-ne1e|3,e> -

ecEr

From the reconstruction formula (2.6) and the fact that Ve € &, [jp - ne]e = 0 since j,, € RTO(ﬂ), we deduce

that [kVuy, - nele = 3[fam} - nele. Furthermore, the term (f — frswn)g g is estimated as in (2.10), yielding

o1 k2 Vwllor

(f = fiwn)og < ¢ > hrks?1f = ful

TeT,

1/2
€ (Z h2T k%le_ fh|8,T> |w|kh

TeT,

IN

Therefore, we have

D kr(Viu—un), Vw)y p < ePa(f)|w]y,, -
TeT,

Let vy, be an arbitrary function in P!(7;). Setting w = u — v, we have

lu — Uh|i,h = Z kr(V(u—up), vw)o,T + kr(V(un — vn), vw)o,T )
TeT)
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whence we deduce
lu — Uh|k,h < cPa(f) + un — Uh|k,h .

Finally, the triangle inequality [u — unly ;, < |u—vply , + |un — val, ), yields the desired estimate. O

Corollary 3.7. Let u and up be respectively the unique solution of (1.4) and (2.5). Then, under hypothesis
3.1, there exists a constant c such that

= unly g, < o(Paf) +m(un)) (3.13)

Proof. Directly results from (3.11) upon choosing for v, the Oswald interpolate of wy,. O

We next investigate the optimality of the above error estimators.

Proposition 3.8. Let u and uy be respectively the unigue solution of (1.4) and (2.5). Then, there exists a
constant c such that

P2(f)+  inf )|Uh—vh|k,h < Pa(f) +m(un) SC(|U_Uh|k,h+h||f_thk*1,O) - (3.14)

vh€P} o(Th

Proof. Classical techniques (see for instance [10,19]) show that for all T € 7},, we have

—1 —
SN kD) hen[kTVume]enae3c<|uuh|i,h+ > h%kT1|ffh|3,T> :
TeT,

TeT), e€Er

and

— 2 —
Z hQTk?Tlnth?J,T <c <|“ - “h|k,h + Z h2Tk/’T1||f — fal (2J,T> .
TeT), TeT,

Therefore,

1/2
cPo(f) < Ju—unly, + ( > hrkzt|f - fh|g,T> < fu—wnlyp + RIS = falle-10,

TET,

and using estimate (3.10) to control 7; (up), we obtain the desired result.
Remark 3.9. If f € H'(Q), hllf — fullx-1,0 is one order higher than |u — sl ), since h|lf — fallx-1,0 <
ch?[|V flj-1,0-

One of the attractive features of the finite volume box scheme (2.3) is that velocity error estimates may be
readily deduced from pressure error estimates.

Proposition 3.10. Let (j,u) and (jn,up) be respectively the unique solution of (1.8) and (2.8). Assume that
there exists a pressure error indicator (7, f,un) depending on the mesh Ty, the data f and the discrete pressure
up, such that

Xe (T frun) < = wnly < X" 0(Ths £ un) (3.15)
for some constants x. and x*. Then we have

7 = dnlle,aiv < ﬁ(x*ﬁ(']ﬁ, frun) + Tl(f)) ; (3.16)

and
1 . .
X«1(Zn, frun) + %Tl(f) < 2u—uplyy, + V2|5 = jnllk.div - (3.17)
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Proof. We first prove estimate (3.16). The local reconstruction property (2.6) yields

C 1 _
3= dnlis 0 <2 Y kellVe—wn)ll} r + gobkr Il o
TeTh

Furthermore, we have V - (j — jn) = f — fx. Therefore, we get
IV G =)l 0+ 13 = GuliE- 0 < 2(OC)0(Tas foun)? + P (F?)
yielding estimate (3.16). In order to obtain (3.17), we first notice that

1/2
. 1
P < IV -G =l o+ ( > nglp%nmaT) ,

TeT,

and from the local reconstruction formula (2.6), we deduce

1 .
2Pl < 2(15 = Gl o+ KRV (= wn) 1)
Therefore,
P1(f) <19 (G = gn)llir0+ VE(1 = dnlliso + o= unlyy)
whence we easily deduce (3.17). O

4. A POSTERIORI ANALYSIS OF HIERARCHICAL TYPE

In this section we derive various hierarchical a posteriori error estimates for the pressure error in the framework
of the pressure formulation (2.5). A posteriori error estimates for the velocity may then be easily deduced from
proposition 3.10. On the one hand, we shall establish lower and upper bounds for the pressure error using
classical techniques based on a saturation property and a strengthened Cauchy-Schwarz inequality [2,8]. On
the other hand, using the technique presented in [1], we shall circumvent the need for these properties.

4.1. Preliminaries

Following the framework introduced in [2,8|, the space P, (75) shall be enriched as follows
X = Plo(T) & K, (4.1)
and we shall consider the two following problems:

Find @, € X, such that
Z kT(VUh, vgh)O,T = (fhaﬁh)()@ Yo, € Yh, (4-2)
TeT,

and

Find uy, € X n such that

Z kT(Vah, Vﬁh)O,T = (fhai)\h)QQ — Z /CT(VU}L, Vﬁh)O,T V@\h S )?h; (4'3)
TeT), TeT,

where uy, is the unique solution of the pressure problem (2.5). It is clear that problems (4.2) and (4.3) admit a
unique solution.
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In this work, the space X, will be constructed using bubble functions. For T € 7, with edges e, ¢/, ¢”, let
Ae, T, Aer, T, Aev, 7 be the barycentric coordinates numbered in such a way that A. is associated with the vertex
opposite to e. We consider the conforming edge bubble b¢ and the nonconforming element bubble b7° which
may be defined as follows

bg‘T = ddHe’#e)\e’,T )
Ve € 5;1, e=TnN TI’ b(e:\T’ = ddHe/¢eAe/7T/ ,
bg\(z\Te = 0,
and )
VT ¢ /Th b%C|T = 2- (d + 1) ZeegT )‘e,T ’
" Far = 0.

Note that the nonconforming element bubbles are such that

VI'e€Ty,, Vee€ &, /b‘%C:O. (4.4)

Indeed, in 2D, b%° vanishes at the two Gauss points with edge barycentric coordinates (1 &+ 4/1/3)/2 whereas
in 3D, b7 vanishes at the three Gauss points with face barycentric coordinates (2/3,1/6,1/6). Finally, we
introduce the bubble spaces

Be(Th) = span,ce; (b} and  Bue(Th) = spanger, {65} .

4.2. Hierarchical estimators relying on a saturation property

In this section, we shall make use of the following properties:
Property 4.1 (Saturation property). There exists a constant 5 € (0,1) independent of h and of kmax/kmin
such that

|u—Uh|k7h§ﬁ|u—uh|kﬁh. (4.5)

Property 4.2 (Strengthened Cauchy-Schwarz inequality). There exists a constant v € [0,1) independent of h
and of kmax/kmin Such that

Yo € Pp o(Th), Vw € X, Z kr(Vo, Vw)o 7 < (vl pwly - (4.6)
TeT,

Two hierarchical error estimates are derived in this section, one based on edge bubbles and one based on
element bubbles.

4.2.1. Involving edge bubbles
In this section we choose )A(h = B.(7p).
Proposition 4.3. Let u and uj, be respectively the unique solution of (1.4) and (2.5). Then, under the saturation
property 4.1 and the strengthened Cauchy-Schwarz inequality 4.2, there exists a constant ¢ such that
[u—unly ), < cnaun), (4.7)

where
n2(un) = |ah|k,h' (4.8)
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Proof. The proof extends to the nonconforming case the ideas presented in [8]. For u), € Yh,_ we have the
unique decomposition Ty, = u1 + ug where u; € P), ((7) and uy € Be(7). For vy, € P, o(7n) C X1, we have

T

Z kT(V(ﬂh - uh), VU}L)QT =0,

TET,

and for all vy, € B.(7;), we have

> k(Y@@ = un), Von)gr = Y kr(Vin, Von)g g -
TeTh TeTy

Thus, by taking vy, = u; — up, and U, = us in the above equations, we obtain

@ — unliy, = > kr(Vin, Vua)g r,
TeT,

and from the (standard) Cauchy-Schwarz inequality, we deduce [u;, — Uh|i,h < |unl p|uzly - Furthermore,
using the strengthened Cauchy-Schwarz property 4.2 yields

lug — uh|i1h + |U2|i1h — [an — uh|i7h =2 Z kr(Vua, V(up — “1))0,(2 < 2'y|u2|k1h|uh - u1|k1h )
TeTh

Therefore, we obtain (1 —42)|ug|? , < [@, — un|; , and combining the above inequalities leads to

1

———|up|, 5 -
m| |k,h

|u7uh|k,h < |U*ﬂh|k,h +

Finally, using the saturation property (4.5), we obtain

1 -
U — Up <——F—\up >
| |k,h (1 _ﬁ)m| |k,h
yielding the desired result. 0

In the two-dimensional case, it is relatively straightforward to verify the strengthened Cauchy-Schwarz prop-
erty.

Lemma 4.4. Assume d = 2. Then, there exists a constant v < 1 only depending on the minimum angle of the
triangles in Ty, such that (4.6) is verified.

Proof. (i) For T' € Ty, let B(T') = span < {b¢r} and let

(Vu, Vo)g

max .
uePL(T)weBe(T) || Vullo,r||Vollor

r =

t —1
xr A12A22 Azlz

In [5], it is shown that yr = sup,cps — 77225

, where A1, A12, Aoy, Ass are such that the local stiffness
. _( A A

() and 67 s 4= (4042 ).

(ii) We next verify numerically that there exists a constant 79 < 1 only depending on the minimum angle of

T such that vy < v9. Because of isotropy and scale invariance, we can assume that two of the vertices of

triangle T have coordinates (0,0) and (1,0) and parameterize the triangle T' by its angles («, 3) (see left plot

matrix A, relative to the basis functions of Py
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in figure 1). For each (a,3), we may solve the above eigenvalue problem numerically and thus construct the
function (a,3) — ~r. Again, because of isotropy and scale invariance, the same result is obtained for ~p if
any two angles are taken from the set { a, 8,7 — @ — 8} in whichever order. Therefore, we may restrict our
investigation to the domain

D={(,p);a>2p a+28>m a+p <7}

This domain is depicted in the middle plot of figure 1 as a shaded triangle. Isocontours for the function
(a, B) € D +— ~yp are presented on the right plot in figure 1. The minimum value for v is 0.5 and is attained for
an equilateral triangle (left corner of shaded triangle). Furthermore, we have v < 1 for all (o, 8) and yp — 1
only if (o, ) — (m,0). Since the family of triangulations (73)s is assumed to be shape-regular, the minimum
angle of T' may be uniformly bounded from below by a positive quantity. Therefore, it is possible to bound ~p
from above by a constant 79 < 1 only depending on this minimum angle.

(iii) In order to prove (4.6), consider vy, € Py, ((71) and wy, € Be(7). From the above result, we deduce that

Z kr(Von, Vwn)g < Z kryr|[Vonlorl[Vwnor,
TE€Th TE€Th

and using the Cauchy-Schwarz inequality, we obtain

E kr(Vup, th)oj < <sup 'yT> |vh|k,h|wh|k,h’
TeT; TeTn
h

whence we deduce property 4.2 with the constant v = suprcz, 77 <0 < 1. O

AN A\ e ! |
(0,0) (1,0) /3 /2 T o

FIGURE 1. Left: triangle T' with angles o and 3; middle: domain D (shaded triangle) for pairs
(o, B); right: isocontours of the function (o, 3) € D — 1

Finally, we investigate the optimality of the above error estimators.

Proposition 4.5. Let u and uy be respectively the unique solution of (1.4) and (2.5). Then, there erists a
constant ¢ such that

n2(un) < fu—=unly p +chllf = falle=0- (4.10)
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Proof. Since @y, is the solution of (4.3) and X, is H}(Q)-conforming space, we have

. = 3 / ko (u— w) - Vi, + / (fn— f)in

TET,
= Z/kTVU*Uh) VuhﬁL/(fh*f)(uthuh)
TET,
< u—uplyplunly,, + bl f = falle-10 [Unly g,
yielding the desired estimate. O

Remark 4.6. In dimension d = 2, a straightforward calculation shows that
Xy = {vh € L*(Q); VT € Ty, vp|T € P*(T); Ve € &, /[vh]e =0 and [vy],(me) = 0} ,

where m, is the midpoint of edge e.

4.2.2. Involving element bubbles

In this section we choose X = Buc(Th).

Lemma 4.7. (i) The strengthened Cauchy-Schwarz constant for spaces P, (75) and Bnc(T) is identically 0.
(i) Let W, = uy + ug be the unique decomposition of the solution Ty, of (4.2) with uy € Py, o(Tn) and ug €
Bre(7r). Then uy = uy, is the unique solution of (2.5) and us = Uy, is the unique solution of (4.3).

Proof. (i) Let v, be an arbitrary function in Bnc(75) and vj, an arbitrary function in P, 4(7,). The Green
formula yields

kr(Vup, vvh)o,T =kr Z Vg« Ne /vb,
ecoT €
and the right member vanishes thanks to (4.4). This implies that the strengthened Cauchy-Schwarz constant
for P! ,(7;) and Bnc('Z}L) is simply 0.

nc,0
(i) For all vy, € Bl ((73), we have

(frsvn)o.q = Z kr(Vin, Vo) 1 = Z kr(Vui, Vop)g ¢ + Z kr(Vus, Vor)g 1,
TeTh TeTh TeT),

and by using the first part of the proof, we deduce that

Z kT(vulavvh)o,T = Z (fhavh)o,T Yo € Pco(Th)
TeT), TeT),

Therefore, u; is the unique solution of (2.5) and this in turn implies that ug is the unique solution of (4.3). O

Proposition 4.8. Let u and u, be respectively the unique solution of (1.4) and (2.5). Then, under the saturation
property (4.5), we have

1
1 +5933(f) < fu—unlyp < 7775%3(f) (4.11)
where
,bnc
Ps(f) = <Z ffc . 0.T (4.12)
TET
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Proof. Let wy, be the unique solution of (4.2). From lemma 4.7, we have the decomposition %, = up + Up.
Therefore, we have

Unly,, = [Th — unly ), < Ju—="Tnly g, + |u—unly ), < 1+ 6)lu—unlyy, ,

thanks to the saturation property 4.1. Furthermore, since the constant « for the strengthened Cauchy-Schwarz
inequality is simply 0, we deduce from (4.9) that |u —usl, , < t25[Unl, j,- As a result, we get

1 1
m|“h|k,h <|u uh|kh =71_ |uh|kh’

and in order to conclude the proof, we only need to show that [uyl, , = P3(f). Taking v, = b7 in (4.3) and
using the fact that > 7o, kr(un, U5°), = 0, we get

kr(Viin, Vor)o = (fa: 07 )o
Let @y, = arby’ for some ar € R. Since (Vay, V5°), 1 = ar|b5e|; 1, we obtain

(fn: 070 1
lebnc 2 ’

ar =

showing that [l , = P3(f)- -

Remark 4.9. Since uj;, can be computed without solving problem (4.2), it is straightforward to verify the
saturation property numerically.

Remark 4.10. The a posteriori error estimate (4.11) only involves a pre-processing term.

4.3. Hierarchical estimator circumventing the saturation property

In this section we establish a hierarchical a posteriori error estimator that neither requests property 4.1 nor
property 4.2. We consider the case X}, = B.(7},).

Proposition 4.11. Let v and uy, be respectively the unique solution of (1.4) and (2.5). Then, under hypothesis
3.1, there exists a constant c such that

u—unly,), < (T4( )+ |ah|k,h+vh€}{110(7, [un — valy, h) (4.13)
where
1/2
= (Z ha k| f = fulls kr 18 - + hiky |fh||0T> ; (4.14)
TET,

_ -1
and ETI = ecer (kH) .

Proof. Let I1: H}(Q) — Bc(75) be the interpolation operator defined for v € H}(Q2) as

M=) (ff—;)) be .

e€ér €
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For all v, € PY(T) and v € Hj(f), an integration by parts readily shows that [, Vv, - V(v — IIv) = 0.
Furthermore, for w € H}(Q2), we have

S kr(V(u—un), Vw)yr = > kr(Vu,V(w - Igyw))y ¢ + kr(Vu, VIgyw), ,
TeT, TeT,

— kT(VUh, V(w — IB\/’LU))O T~ kT (Vuh, VIB\/’LU)O T

= Y (fow—Tpvw)y g — kr (Vun, VII(w — Tpvw)), 7
T

+ (f = fry Ievw)g p -

Since 4y, is the solution of problem (4.3) and II(w — Zpyw) € B¢(7}), we have

S kr(V(u—un), Vu)gr = > (frw—Tevw)yy — (fa I(w — Ieyw)), 5

TeT), TeT,
+  kr(Vup, VINw — Igvw))o ¢ + (f = fr, Ievw)g

Furthermore, it is shown in [1] that the operator II verifies the following property: there exists a constant ¢
such that for all v € Hg(Q), ||[Tv|1r < ch_1/2 > ecepllVlloe. Therefore, we deduce from (3.2) that

ke (Viin, VII(w — Tpvw))gp < ckrl|Vanlorhy Y [lw - Tpvwlo.
ecr
~ — —1/2
< ckrllVanlorhs? Y W2k T Pl a,
ecr
< ek IVanlor D lwlka, -
ecEr

Furthermore, since the family (7,);, is shape-regular, there exists a constant ¢ such that for all v € H} (1),
I, < ch ?|Mv||1,7. Therefore, we may write

7 Z |[w —Zpvwlo,e

ecér

> kTP wlk A,
ecér
> lwlka., -

ecEr

(fr M(w = Zpvw)) g <

IN

IN

cky

Similarly, we may write
—1/2
(fsw —Ipvw)y p < cky Phr| fllor Z [wlk,a.

ecEr

7 ) lwlka.

e€fr

and
(f — fr Tovw)gp < k'

Therefore, we get

> k(Y= ), V) p < ¢ (Palf) + il ) ol
TeT,
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Let vy, € P., o(7) and let w = u — vy,. From the identity

wlh = kr(V(u—un), Vw)y 7+ kr(V(un = vn), V) 1
TeT

we readily deduce the desired etimate. O
A possible choice for vy, in (4.13) is the Oswald interpolate of uy,. This yields the following result.

Corollary 4.12. Let u and u, be respectively the unique solution of (1.4) and (2.5). Then, under hypothesis
3.1, there exists a constant c such that

fu = nly g, < ¢ (Palf) +msun)) (4.15)

with
n3(un) = [nly, 5, +m(un) - (4.16)
Proof. Follows directly from (3.3). O

Finally, we investigate the optimality of the above error estimators.

Proposition 4.13. Let u and uy, be respectively the unique solution of (1.4) and (2.5). Then, there exists a
constant ¢ such that

Pa(f)+ inf Jun —wnly, < Palf) +m(un) <c (|U —unly, +RIf - thk*1,0) : (4.17)

'Uhepclyo(Th)

Proof. Classical techniques [10,19] show that for all T' € 7, we have

> hgkpt I falg e + Rk 15 < e D hrkpllfallor + kst (I = fulldr + 1 £al15,7)
TeT, TeTh

< c<|uuhli,h+ > h%k;1|ffh|3,T> )

TeTh

yielding
Pa(f) < ¢ (Ju=unlyp, + Bl = fullero) -
Using estimate (3.10) to control 7, (up), we obtain the desired result. O

5. NUMERICAL RESULTS

In this section we discuss our numerical results. We first consider the case of constant conductivity and then
assess our estimators in the case of heterogeneous media.

5.1. Constant conductivity

As a test problem, we consider the unit 2D square Q = ]O,l[2 with homogeneous Dirichlet boundary
conditions and constant conductivity & = 1. The data f is chosen so that the exact solution of (1.4) is
u(z,y) = sin(27x)sin(2ry). Two families of unstructured triangulations are considered. The first one is a
quasi-uniform triangulation with triangle size h; = ho27%, ho = 0.2 and ¢ = 0,1,2,3,4. The second one is
strongly non-uniform with triangle size near the boundary as before and triangles ten times smaller in the
vicinity of the point (0.5,0.5) located at the center of 2. In the figures below, error indicators and numerical
errors will be plotted as a function of the number of degrees of freedom for the discrete pressure problem, i.e.



TITLE WILL BE SET BY THE PUBLISHER 19

,c\\ 4—F\u—uh|k’h 4 r . i—#\u—uhhc,h
Y o Pr(f) ] s Pq (f)
el ook g () 10t - x I #--xny (up) |
x.. N -0 P2(f) £ - ‘\\\ c—o0 Po(f)
10' Fa S **n0n) 4 r Sy, T een(n)
Lo x .- ] r N Te
. o
S. ~ x

10° -

10" -

FI1GURE 2. Exact error and residual based error indicators as a function of the number of edges
in the mesh; left: quasi-uniform triangulation, right: strongly non-uniform triangulation

the number of edges in the mesh. With a log-log scale, first-order convergence therefore yields slopes of 1/2 for
two-dimensional problems.

Figure 2 presents our numerical results for the residual based error indicators derived in Section 3 and for
the two families of meshes. We present the exact pressure error |u — uy|,, ,, the pre-processing term P1(f) given
by (3.4), the post-processing term 7 (uy) given by (3.8), the pre-processing term Py (f) given by (3.12) and the
velocity error indicator

n(n) = m(un) + P1(f) + Pa2(f),

resulting from Corollary 3.7 and Proposition 3.10 by setting the constants equal to one. We first observe that
the exact pressure error is first-order in the mesh size, in agreement with the a priori error analysis. All the a
posteriori error indicators also exhibit the correct order of convergence. We also notice that the pre-processing
term P;(f) dominates the post-processing term 7;(us). As a result, the exact velocity error ||j — ji|lx-1 div
approximately coincides with the pre-processing term P; (). The effectivity index for the pressure error indicator
1 (up), defined as

1 (un)
| =y,
takes values ranging from 0.60 to 0.86. The effectivity index for the total error indicator based on the mixed
formulation, defined as

I =

m(un) + P1(f)
lu—unlyp, + 17 = nlle—1 aiv
takes values ranging from 0.85 to 0.87. Finally, the effectivity index for the velocity error indicator based on
the pressure formulation, defined as

I, =

m(un) + P1(f) + P2(f)

I3 = - -
’ 17— dnlli-t.aiv

)

takes values ranging from 1.7 to 1.8. These slightly larger values are due to the presence of the pre-processing
term Po(f). Thus, we conclude that although the a posteriori estimate based on the pressure formulation is
interesting for theoretical reasons since it yields constants independent of the ratio kmax/kmin, it presents the
numerical drawback to be less sharp than the estimators based on the mixed formulation.
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6“ T lu —upl, —lu —upl
ek g (up ) * ek g (up )
10t - N w-+ Py (f) N 10' - w-+ Py (f) B
E e e-—-ong(up) E £ T e-—-ong(up) ]
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g *.
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FI1GURE 3. Hierarchical error indicators as a function of the number of edges in the mesh; left:
quasi-uniform triangulation, right: strongly non-uniform triangulation

Figure 3 displays our numerical results for the hierarchical error indicators derived in Section 4 and for the
two families of meshes. We consider the error indicator 72(up) given by (4.8) (based on edge bubbles and a
saturation property), the pre-processing error estimator P3(f) given by (4.12) (based on element bubbles) and
the pre-processing and post-processing error indicators P4(f) and ns(up) given by (4.14) and (4.16) (based
on edge bubbles plus a post-processing term). In all cases, the correct order of convergence is obtained. For
nonconforming element bubbles, the saturation property has been verified numerically. The constant 3 was found
to be equal to 0.82 for the quasi-uniform meshes and to 0.84 for the non-uniform meshes, thereby confirming that
the saturation property is indeed satisfied in this case. Although the saturation property cannot be guaranteed
theoretically for conforming edge bubbles, we notice that the estimator 72 (up) performs well numerically for
both quasi-uniform and non-uniform meshes. For the two estimators relying on the saturation property, the
effectivity indices for the pressure error indicator, defined as

I = n3(un)

= and Is = Ps(/)
lu — Uh|k,h

B lu — Uh|k,h 7

are in the range 0.4 — 0.5 independently of h. The estimator P4(f) 4+ n3(up) has the theoretical advantage of
circumventing the saturation property, but at the expense of numerical effectiveness since the effectivity index
is approximately 10.

5.2. Variable conductivity

As a test problem, we consider the square Q = |—1, 1[2 with homogeneous Dirichlet boundary conditions.
The domain 2 is split into L = 4 four square sub-domains €2; with sides of length 1. Subdomains are numbered
counter-clockwise starting with the upper right one. On each subdomain €2;, the conductivity is set to k; = x!~1.
We consider two cases for parameter x: a mildly varying case where x = 1.2 and a strongly heterogeneous one
where k = 10. Note that the variations of coefficient k& are compatible with hypothesis 3.1. In both cases, the
data f is f(z,y) = 27%sin(7z) sin(my) so that the exact solution is given by u(x,y) = & sin(mz) sin(my).

Numerical results are presented on a family of quasi-uniform, unstructured triangulations with triangle size
hi = ho27% hg = 0.2 and i = 0,1,2,3,4. Note that the triangulations are always compatible with the sub-
domains €);, in agreement with hypothesis 2.2. Figure 4 presents the exact pressure error as well as the same
residual based error estimators as those considered in figure 2. The left plot in figure 4 deals with the mildly
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varying case. We observe that the correct order of convergence is obtained. The right plot of this figure is
concerned with the strongly varying case. No degradation in the effectivity indices is observed, confirming
that the various error estimators are independent of the ratio kmax/kmin- In particular, we notice that the
residual error estimator based on the mixed formulation remains well behaved even if the ratio kmax/kmin is
very large. Furthermore, the only relevant difference between the mildly and strongly varying cases concerns the
error indicator 7; (uy) which for the coarsest meshes and strongly varying coefficient exhibits super-convergence
behavior but takes larger values than those observed in the mildly varying case. This phenomenon is due to the
fact that the pressure jumps are maximal at the sub-domain interfaces where the edge-averaged conductivity

k. may be very large.

10tk *—*\jgi(—f;thuﬁ | [ o *—*J‘#(_f;ihlk‘h ]
C x x J1 B x x Pq
r*. *---% 1 (up) ] RS *---% 1 (up) 1
[ o L 9:7@ P2(f) ] Foko \‘\\ 9:7@ P2(f) ]
N . o-—-on(jn) ] NN o-—-on(jn)
A 10° - -
10° - E [ ]
10" 3
10" - E r 1
| | Ll | | Ll

10 10 10 10 10 10

FI1GURE 4. Exact error and residual based error indicators as a function of the number of edges
in the mesh; left: mildly varying case; right: strongly varying case

Figure 5 presents the same hierarchical error estimators as those considered in figure 3. The same conclusions
as for the residual based estimators may be drawn. Our results show in particular that for the present test
cases, the saturation constant 5 does not depend on the ratio kmax/kmin-

6. CONCLUSIONS

In this paper we have presented a mathematical analysis of various a posteriori error estimates for noncon-
forming mixed finite element approximations to elliptic problems with variable coefficients. Particular attention
was devoted to obtaining upper and lower bounds for the numerical errors valid for strongly heterogeneous
media, such as those encountered in applications dealing with subsurface flows. Two types of error estimators
were investigated based on either local residual evaluations or on a hierarchical setting using higher-order poly-
nomials (conforming edge bubbles or nonconforming element bubbles). Our numerical results involving test
cases with constant, mildly varying and strongly varying coefficients, confirm that all the estimators derived
mathematically retain their usefulness in our numerical applications. Since these estimators may be localized
at the mesh cells, they may be used to refine the mesh adaptively. Engineering applications with adaptive mesh
refinement will be investigated in forthcoming work.

Acknowledgement. The authors are thankful to C. Bernardi (Université Paris VI, France) and J.-P. Croisille (Uni-
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FI1GURE 5. Hierarchical error indicators as a function of the number of edges in the mesh; left:
mildly varying case; right: strongly varying case
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