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Abstract

The micro-macro simulations of polymeric fluids couple the mass and momentum
conservation equations at the macroscopic level, with a stochastic differential equa-
tion which models the evolution of the polymer configurations at the microscopic
level (Brownian dynamics simulation). Accordingly, the system is discretized by a fi-
nite element method coupled with a Monte Carlo method. All the discrete variables
are random, and the accuracy of the result highly depends on the variance of these
random variables. We give here some elements of numerical analysis on the crucial
issue of variance reduction in order to get results of a better quality for a given
computational cost. The present analytical study only deals with a one dimensional
case, but nevertheless gives a track for computational strategies that may apply to
the more physically relevant two and three dimensional cases.
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1 Introduction and motivation

1.1 Micro-macro models of dilute solutions

In this paper, we focus on some micro-macro models of dilute solutions of poly-
mers. Let us introduce briefly these models which now give rise to a lively and
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expanding field of computational simulation for non-Newtonian fluid dynam-
ics (we refer the reader to [1,2,4,6,14] for some comprehensive surveys of the
physical background). For the “macroscopic” part, the evolution of the veloc-
ity u and the pressure p is described by the momentum and mass conservation
equations:

ρ

(

∂u

∂t
+ u · ∇u

)

= ηs∆u −∇p+ div (τ p) , (1)

div (u) = 0 , (2)

where τ p is an extra-stress tensor, due to the contribution of polymers. In
order to derive the expression of this extra-stress tensor, one can use kinetic
models of polymers. We deal here with the “dumbbell” model (a particu-
lar case of the Rouse model) in which a polymer is described by two beads
linked by a spring (see Figure 1). The expression of the entropic force F in
the spring, in term of the so-called end-to-end vector X, can have more or
less complicated expression, depending on the effects taken into account (ex-
cluded volume effects, finite extensibility of the polymer,...). We deal here
with two types of forces (but our method is likely to apply to other cases
of forces): a linear force: F(X) = FHOOK(X) = HX (model of “Hookean
dumbbells”) or a non-linear force which takes into account the finite ex-
tensibility of the polymer (described by the non-dimensional parameter b):
F(X) = FFENE(X) = H X

1− ||X||2

bkBT/H

(model of “FENE dumbbells”). The “mi-

croscopic” part of the model is the description of the evolution of the end-
to-end vector X through a stochastic partial differential equation (Brownian
dynamics simulation):

dX + u · ∇Xdt=

(

∇uX − 2

ζ
F(X)

)

dt+

√
2σ

ζ
dWt, (3)

where ζ is a friction coefficient, σ2 = 2kBTζ (T is the temperature) and Wt

is a standard (multi-dimensional) Brownian motion. The expression of this
extra-stress tensor τ p is then given by an expectation of a function of the
configurations of the polymers (this is the Kramers expression):

τ p =nIE(X⊗ F(X)) − nkBT Id, (4)

where n denotes the concentration of polymers.

It is to be noted that the “Hookean dumbbell” model described by equations
(1), (2), (3) and (4), with F = FHOOK is equivalent to the famous Oldroyd-B
model, which is usually written in a purely macroscopic differential or integral
form (see [2] page 72). On the other hand, no closed differential or integral
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X

Fig. 1. The polymer (in dashed line) is modeled by a “dumbbell”: two beads linked
by a spring. The vector X which goes from one bead to the other is called the
end-to-end vector.

equations on τ p have been found to be equivalent to the more realistic FENE
model. Being more general than the purely macroscopic approach, the micro-
macro approach seems all the more promising.

Once the system (1)-(4) is non-dimensionalised, it has the following form:

Re

(

∂u

∂t
+ u · ∇u

)

= (1 − ǫ)∆u −∇p+ div (τ p) , (5)

div (u)= 0 , (6)

τ p =
ǫ

We
(µIE(X⊗ F(X)) − Id) , (7)

dX + u · ∇Xdt=
(

∇uX − 1

2We
F(X)

)

dt+
1√

Weµ
dWt, (8)

with the following non-dimensional numbers:

Re =
ρUL

η
, We =

λU

L
, ǫ =

ηp

η
, µ =

L2H

kbT
, (9)

and the following non-dimensional forces:

FHOOK(X) = X , FFENE(X) =
X

1 − µ||X||2
b

. (10)

The numbers U and L denote the characteristic velocity and length, while λ
(a relaxation time of the polymers) and ηp (the viscosity associated to the
polymers) are defined by λ = ζ

4H
and ηp = nkBTλ.

This problem can be discretized by the so-called CONNFFESSIT method
(see [10]), coupling a finite element method to discretize equations (5)-(6),
standard Euler schemes in time for (5) and (8), and a Monte Carlo method
to approximate the stress τ p in (7). Compared with a deterministic approach
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which solves directly the Fokker-Planck equation associated to (8), the conver-
gence of this stochastic approach scales efficiently with respect to the number
of springs in the Rouse chain. However, the leading error in this kind of dis-
cretization is a statistical error due to the Monte Carlo method, and depends
on the variance of the variables. Our aim here is to study the dependency of
these variances in terms of the numerical parameters of the discretization.

More precisely, many authors (see Halin, Lielens, Keunings and Legat in [7]
or Bonvin and Picasso in [3]) have observed that using a Brownian motion
in (8) which does not depend on space, rather than a collection of Brownian
motions uncorrelated from one Lagrangian trajectory to another, leads on the
discretized problem to a reduction of the variance of the velocity u but also
to an increase of the variance of the stress τ p. After a discussion about the
space-dependency of the Brownian motion in Section 2, we analyze in Sec-
tion 3 this problem in the case of a pure shear flow. The momentum and mass
conservation equations then reduce to a scalar heat equation (see Eq. (14)
below). We then completely analyze the case of the long time behavior of the
variances for Hookean dumbbells and recover by our analysis the observations
mentioned above. We are also able to propose a strategy to reduce the vari-
ance on the stress in the shear flow case, at a given computational cost, by
choosing an ad hoc correlation in space for the Brownian motion. In Section 4,
we numerically test our strategy for Hookean and FENE springs in the one-
dimensional case, leaving for the future numerical tests in dimensions 2 and 3.
Other related issues are also addressed in this paper, such as the dependency
of the variances in terms of the boundary conditions (see Remark 7) and the
space step (see Section 5), or the dependency of the bias upon the number of
realizations (see Section 5).

Remark 1 Let us note that we do not consider in this paper other variance
reduction methods like control variate methods or importance sampling meth-
ods, see [10,13,14] about these subjects.

2 The dependency of the Brownian motion in space

As mentioned above, the main subject of the present work is the dependency
upon the space variable of the Brownian motion Wt. Let us look at this ques-
tion from different viewpoints: the modeling viewpoint, that of the numerical
simulations, and the mathematical viewpoint.
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2.1 The modeling viewpoint

We recall that the derivation of (8) from kinetic theory requires that the
Brownian motion on one bead of the dumbbell is independent of the Brown-
ian motion which acts on the other bead (completely uncorrelated Brownian
motion in space, see e.g. [14]). The modeling step therefore pushes forward the
uncorrelated framework. Note however that this simple presentation is a little
bit controversial in itself, as it may also seem quite natural that some kind of
correlation in space between the Brownian motions appears (see [7] page 394).
Indeed, the Brownian motion seen by a particle convected on one trajectory
of the flow is somewhat correlated, at least at a sufficiently small scale, to an-
other Brownian motion seen by a particle which follows a trajectory “close to
the first one” (see Figure 2). The notion of “trajectory dependent” Brownian
motion, that we will introduce and develop later in this section, is thus likely
to be relevant. In the following, we will not discuss further the modeling and
physical aspects of the correlation in space of the Brownian motions used. We
rather focus on the numerical counterparts of these correlations.

2.2 The numerical viewpoint

Historically, the first of the two currently adopted approaches for the numer-
ical simulation of (5)-(8) namely the CONNFFESSIT method, mimicked the
modeling viewpoint. This method couples the macro-scale simulation with the
Lagrangian approach for the micro-scale The first simulations (performed first
on the start-up of a shear flow problem) accordingly made use of completely
uncorrelated in space Brownian motions (see [10]). When the state of the art
went to 2D simulations (see [11]), a Lagrangian computation of (8) was natu-
rally adopted. In this framework, the authors used one Brownian motion per
trajectory, all of them being independent from one another. Therefore, we may
think of a collection of uncorrelated Brownian motions labelled by Lagrangian
trajectories.

The second approach is the Eulerian one. It consisted in introducing the notion
of configuration fields (see [8]): the end-to-end vector Xt is seen as an Eulerian
variable that explicitly depends on the space variable x. Equation (8) may
then be solved in an Eulerian setting, which greatly simplifies the numerical
implementation of the CONNFFESSIT method (no dumbbell tracking, no
problem of dumbbell deletion or dumbbell relocation). In this approach, it is of
course easier to take Brownian motions not depending on space. Nevertheless,
one can imagine to keep the Brownian motions of the Lagrangian approach
(a collection of uncorrelated Brownian motions labelled by the trajectories),
for example by using a characteristic method to solve (8), but this road was
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not followed. In fact, the use of configuration fields together with Brownian
motions not depending on space has revealed to be a very efficient method
to reduce variance of the velocity u. In spite of the fact that the modeling
issue is not settled, the use of a Brownian motion not depending on space
on the discretized system can be seen as a pure numerical trick, that leads
to a reduction of the variance of the velocity u. Intuitively, this fact may be
understood, since in (5), a derivative with respect to x of the stress is involved.
But the situation is not so clear either. What is indeed counterintuitive (see
Halin, Lielens, Keunings and Legat in [7] page 397 or Bonvin and Picasso in [3]
page 197) is the fact that, contrary to what happens for the velocity field, the
variance on the stress τ p increases when one goes from uncorrelated Brownian
motions to a Brownian not depending on x. Despite the lack of a theoretical
understanding of this phenomenon, experts of the field seem to agree in the
numerical simulations on the use of Brownian motions not depending on space,
mainly because it leads to less noisy results in space, and because it greatly
reduces the variance on the velocity. The state of the art of the numerical
simulations seems to stay today on this point: use a Brownian motion not
depending on space (see [8,15]).

Fig. 2. Trajectories of two dumbbells, ending in two different cells: does each dumb-
bell “sees” the same noise, as is represented on this figure ?

2.3 The mathematical viewpoint

Let us now turn to mathematics. It is to be made precise at once that it
is not straightforward to give a sense to the Eulerian system (5)-(8) at the
continuous level with a Brownian motion depending on space. There are three
ways to avoid the treatment of this delicate question. The first is to stay at
the continuous level and turn to the Lagrangian form of (8) with Brownian
motions depending on the trajectory. The second is to go at the discrete level:
once being discretized in space, it is easy to give a proper meaning to (5)-(8),
and to play with the dependence in space of the Brownian motion. A third
way is to treat the shear flow case. Let us details these three approaches.
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The continuous level

Let us introduce the Lagrangian form of (8), namely

dX̃t(x) =
(

∇u(c(0,x, t))X̃t(x) − 1

2We
F(X̃t(x))

)

dt+
1√

Weµ
dW̃x

t , (11)

where X̃t(x) = Xt(c(0,x, t)) and











d
dt
c(s,x, t) = u(t, c(s,x, t)),

c(s,x, s) = x.
(12)

We suppose here that the velocity field u(t,x) is smooth enough to define the
characteristics. The stress τ̃ p defined by (7), is then obtained by the following
formula:

τ̃ p(t,x) =
ǫ

We

(

µIE
(

X̃t(c(t,x, 0)) ⊗ F(X̃t(c(t,x, 0)))
)

− Id
)

. (13)

Notice that the stochastic differential equations (11) indexed by x are rigor-
ously defined and are not coupled in space by (13).

Let us now consider a smooth solution (u, τ p) of (5)-(8) obtained with a
Brownian motion which does not depend on the space variable, and asigns to
each trajectory obtained by solving (12) a Brownian motion. Since the law of
X̃ (solution of (11)) is not influenced by the way the Brownian motions depend
on the trajectory, we have τ̃ p = τ p. Therefore, (u, τ p) will remain a solution to
(5)-(8), whatever the dependency of the Brownian motions on the trajectory
is. In other words, we have proved that the continuous solution (u, τ p) does
not depend on the the way the Brownian motions depend on the trajectory,
provided that the solution of the problem is unique and smooth enough.

The discrete level

Once the system (5)-(8) is discretized in space (say, by a finite element method,
to fix the ideas), it is easy to give a proper meaning to (8) with a Brownian
motion depending on space being understood that we in fact deal with a
Brownian motion which depends polynomialy on the space variable (i.e. a
discrete-in-space Brownian motion). Then, once one approaches the expecta-
tion (7) by an empirical mean, the results (and in particular their variances)
may depend on the way the Brownian motion depends on trajectories.

If one considers that the scheme converges in the limit of the space step h and
the time step δt go to zero, and the number of realizations goes to infinity,
two questions then arise: May the limit depend on the dependency in space
of the Brownian motions used ? What is the “best dependency” as far as the
variance of the results is concerned ?
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To the best of our knowledge, the first question is open: note for instance
that contrary to the shear flow case, in a general geometry, the “discrete”
streamlines themselves may be influenced by the dependency in space of the
Brownian motion. As was pointed out in [15] (page 259), by using Brownian
motions not depending on space, “completely unphysical correlations in the
random forces at different positions are introduced”. This crucial point would
need further investigations.

Concerning the second question about the variance of the results, we have
already pointed out that using a Brownian motion not depending on space
leads to a reduction of the variance of the velocity u, but an increasing of that
on τ p. Thus the natural question arises to find the best correlation in space,
for the discrete-in-space Brownian, that will lead in fine to the least variance
in the result for both u and τ p.

The case of the shear flow

Let us now concentrate on the shear flow case, which will be the framework
of the rest of this article. In this special geometry (see Figure 3 below), the
transport term u · ∇X vanishes on the left hand side of (8). Therefore, the
streamlines are fixed, and one can then rigorously define, at the continuous
level, the stochastic differential equation (8) for Brownian motions indexed by
the space variable y. A given stochastic differential equation at macro point y
does not interact with another one, at point y′ 6= y, since (7) is a point-wise
expectation. Therefore, the continuous solution (u, τ p) does not depend on
the way the Brownian motions depend on the space variable y (see Remark 8
in [9]).

Once the system is discretized, in the case of a shear flow and for Hookean
dumbbells, we have shown in [9] that the convergence of the CONNFFESSIT
scheme towards the unique continuous solution (u, τp) holds, whatever the
correlation in space of the discrete-in-space Brownian motions is.

One aim in Section 3 is to contribute to the understanding of all the above
observations and remarks. For this purpose, we consider a simple case, namely
the start-up of shear flow problem which has been considered as a test case
in many papers (see [10,15,3]). In this simple geometry, the Lagrangian and
the Eulerian formulations are the same. The classical approaches adopted in
the literature therefore amount in this case to the following alternative: the
Brownian motions in each cells of the space discretization are either the same
or completely uncorrelated. One could imagine to use other correlations in
space of the Brownian motions, and this will be investigated in Section 3.
It would even be possible to introduce correlations in space different from
one time-step to another, but we have not considered this possibility in the
following.
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3 Explicit computations of variances in a simple case

3.1 A simple model: the pure shear flow

In order to simplify the problem and enable explicit computations, we con-
sider in the following a simple geometry of the flow namely a pure shear flow
(see Figure 3). Due to this special geometry, the velocity becomes a one-

0

1 u=0

u=1

in
fl

ow

ou
tf

lo
w

y

Fig. 3. Velocity profile in a shear flow of a dilute solution of polymers.

dimensional variable: u(t,x) = (u(t, y), 0), with the notation x = (x, y), and
therefore the convective derivative u.∇ is zero. One can thus show that the
mass and momentum conservation equations reduce to a scalar heat equation.
In addition to the above simplification of the geometry, we consider Hookean
dumbbells. In the following, in order to simplify the notation, we choose the
following values for the non-dimensional numbers: Re = 1/2, We = 1, ǫ = 1/2,
µ = 1. Thus, the system (5)-(8) can be written in the following form:

∂u

∂t
(t, y)=

∂2u

∂y2
(t, y) +

∂ IE(YtXt(y))

∂y
, (14)

dXt(y)=

(

∂u(t, y)

∂y
Yt −

Xt(y)

2

)

dt+ dWt(y) , (15)

dYt =−Yt

2
dt+ dVt , (16)

where we have adopted the following notation for the components of X and
Wt: X = (X, Y ) and Wt = (Wt, Vt). The system of equations is supplied with
the following boundary and initial conditions:

u(0, y) = 0, X0 ∼ N (0, 1), Y0 ∼ N (0, 1), (X0 and Y0 independent),

u(t, 0) = v(t) = vmin(1, 10 t/T ) , u(t, 1) = 0,

where T denotes the final time of the simulation and v is a constant denoting
the velocity on the boundary, after a transition period in time of length T/10.
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Note that, as explained in Section 2, we may let the Brownian motion Wt

depend on space, and more precisely (see discussion above in Section 2) on
trajectory. In the case that we consider, namely a shear flow, one can simply
label the Brownian motions by the space variable y. The question is therefore
how to define a process (Wt(y))t≥0,y∈(0,1). We impose the following constraints
on the process (Wt(y))t≥0,y∈(0,1):

a) The process (t, y) →Wt(y) is a Gaussian process,
b) For a fixed y ∈ (0, 1), t→Wt(y) is a Brownian motion,
c) The covariance in space IE(Wt(x)Wt(y)) does not depend on the time vari-

able t.

Constraint b) is natural. We impose a) and c) in order to simplify and en-
able explicit computations. These assumptions clearly restrict the field of all
possible Wt(y) but we nevertheless believe they are general enough. Note that
because of assumption a), the process Wt(y) is completely determined by its
covariance function.

We have chosen not to let the Brownian motion Vt depend on space since
the process Yt defined by (16) can be computed independently of the other
unknowns u and X (see formula (24)). This point is of course specific to the
Hookean case and will be modified in the FENE case (see Eq. (40) below).

3.2 The discretized problem

The CONNFFESSIT method applied to discretize system (14)-(16) can be
written in the following way: assuming un

h, Xj
h,n and Y j

n are known, find un+1
h ∈

Vh such that, for all v ∈ Vh,

1

δt

∫

y
(un+1

h − un
h)v=−

∫

y

∂un+1
h

∂y

∂v

∂y

−
∫

y
τh,n

∂v

∂y

, (17)

τh,n =
1

R

R
∑

j=1

Xj
h,nY

j
n , (18)

Xj
h,n+1 −Xj

h,n =

(

∂un+1
h

∂y
Y j

n − 1

2
Xj

h,n

)

δt+
(

W j
h,tn+1

−W j
h,tn

)

, (19)

Y j
n+1 − Y j

n =−1

2
Y j

n δt+
(

V j
tn+1

− V j
tn

)

. (20)

The indices n and j respectively denote the time index and the realization
index: we indeed consider R trajectories of the random variables Xh,n and
Yn (1 ≤ j ≤ R). The time interval (0, T ) is divided into N intervals, δt =
T/N and tn = n δt. The subscript h indicates that we are considering space
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τ

U0 = v

u

UI = 0

Xt : IP0

δy

yI = 1

y0 = 0

u : IP1

τh,n = 1
R

∑R
j=1(X

j,n
h Y j,n)

Fig. 4. Discretization of u and τ .

discretized variables. The random variables τh,n (or more precisely 1
2
τh,n) are

approximations of the off-diagonal component of the stress τ p. The space
of discretization Vh is a finite element space. In the following, we consider
Vh = IP1, the space of continuous piecewise affine functions on a mesh of
I cells of the interval (0, 1): (y0 = 0, y1, ..., yI = 1). The random variables

Xj
h,n, τh,n and

(

W j
h,tn+1

−W j
h,tn

)

j,n
belong therefore naturally to the space

∂yVh (in our case, ∂yIP1 = IP0, see Figure 4). We can therefore associate

to the piecewise constant in space functions Xj
h,n and

(

W j
h,tn+1

−W j
h,tn

)

j,n

two vectors whose components are the values of these random variables on
each cell (yi−1, yi) of the mesh:

(

Xj
i,n

)

1≤i≤I
and

(

W j
i,tn+1

−W j
i,tn

)

1≤i≤I
. Let us

make precise that for 1 ≤ j ≤ R, the processes
(

W j
1,t, ...,W

j
I,t, V

j
t

)

0≤t≤T
are

independent and identically distributed Gaussian processes whose components
are standard Brownian motions, the last one being independent from the first I
ones. For a mathematical analysis of the system (14)-(16), and the convergence
of the CONNFFESSIT method in this case, we refer to [9,12,5].

We now want to introduce some notation to make precise the dependency on
space of the space-discretized Brownian motion W j

h,t. Throughout this section,
we will omit the superscript j which denotes the realization index, since the
law of W j

h,t does not depend on j.

Since we choose a correlation in space which does not depend on time, the
parameter we will consider in the following is the correlation matrix in space
K defined by

Kl,m =
1

t
IE(Wl,tWm,t), (21)

where 1 ≤ l ≤ I and 1 ≤ m ≤ I denote two cell indices. With a slight abuse of
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notation, we denote by Wt the I-dimensional process whose components are
Wi,t: Wt = (W1,t, ...,WI,t), and thus, K = 1

t
Cov(Wt) = 1

t
IE(Wt⊗Wt), where ⊗

denotes the tensorial product (for two vectors a and b in IRd, a⊗ b is the d×d
matrix whose components are (ai bj)1≤i≤d, 1≤j≤d).

If the components of Wt are independent, then K = Id and if the components
of Wt are the same (Wt is not depending on space), then K = J , where J
henceforth denotes the matrix with all components equal to 1.

In practice, in order to build the Brownian motion Wt = (W1,t, ...,WI,t), we
consider a I-dimensional Brownian motion W t (whose components are inde-
pendent 1-dimensional Brownian motions) and compute W as an image by a
linear application of W : Wt = NW t (N is a I × I matrix such that each line
has an Euclidean norm equal to one). Therefore, K = N(tN). To construct a
Brownian motion not depending on space, one can take N such that Ni,j = δ1,j

and thus K = J (δ denotes the Kronecker function). To build uncorrelated
Brownian motions in space, one can consider N = Id and thus K = Id.

In our simple case, one can consider that the correlation in space matrix K is
just a numerical parameter. Indeed, we have shown (see Remark 8 in [9]) that
whatever the correlation in space is, the scheme converges towards a unique
solution (u(t, y), IE(YtXt(y)). Therefore, the matrix K (or N) can be seen as
another numerical parameter, that can be used to reduce the prefactor in the
error O(1/

√
R) due to the Monte Carlo discretization (R denotes the number

of realizations).

Note that in our numerical simulations (see Section 4), the spatial correlation
of the initial variables is the same as the spatial correlation of the Brownian
motions.

This simple problem presents the behavior already noticed in more compli-
cated geometry: when one goes from K = Id (uncorrelated Brownian motions
in space) to K = J (a Brownian motion not depending on space), the vari-
ance on the velocity un

h decreases but the variance on the stress τh,n increases
(see Section 4 and the curves labelled ’Wt(y)’ and ’Wt’ on Figure 6).

Remark 2 One important remark is that the counterintuitive reduction of
variance on the stress when one takes Brownian motions completely uncorre-
lated in space is intimately due to the coupling (in a probabilistic sense) between
the variables u and X, or in other terms to the nonlinearity of the problem. If
one performs the same simulation, but uses a pre-computed deterministic ve-
locity u in (15), then the variance on τ is not reduced. Let us make precise this
point. First observe that one can compute explicitly the expectations IE(Xh,nYn)
in the simple case of a shear flow, and use this deterministic computations to
obtain a deterministic velocity un

h. One can then use this deterministic velocity
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in the computation of the stress with a Monte Carlo method in (18)-(20) and
check that, whatever the correlation in space is, the variance obtained on τ for
long time is about 0.058, which is what we obtained in the worst case for the
coupled system (see the curve labelled ’Wt’ on Figure 6).

Remark 3 In [7], the authors have proposed the following explanation for the
unexpected behavior of the variance on the stress: with Brownian motions not
depending on space (and accordingly initial random variables not depending on
space), the initial equilibrium distribution may not be correctly sampled. We
have performed the computation with initial random variables uncorrelated in
space and Brownian motions not depending on space and observed the same
large variance on the stress, which seems to indicate, at least in the simple
case considered here, that the major role is played by the space correlation of
the Brownian motions and not by the initial value of the random variables.

3.3 Dependency of the variance in term of the correlation in space

3.3.1 Computation of the variances

In the following, we want to explicitly compute the variances of the velocity
and the stress solutions of the system (14)-(16). In order to enable explicit
computations, we make the following simplifications:

• we focus on the long-time behavior of the system (14)-(16),

• accordingly to the previous assumption, we take
∂u

∂t
= 0 in (14),

• we consider only the space and Monte Carlo discretized system (no dis-
cretization in time),

• we consider only one dumbbell (i.e. one realization: R = 1).

We have checked all the conclusions we draw on this simplified case by numer-
ical experiments on the long-time behavior of the time-dependent problem,
for both Hookean and FENE dumbbells (see Section 4 below).

Taking into account these simplifications, we consider, instead of (14)-(16),
the following system of equations:

−∂
2u(t, y)

∂y2
=
∂ IE(YtXt(y))

∂y
, (22)

dXt(y)=

(

∂u(t, y)

∂y
Yt −

Xt(y)

2

)

dt+ dWt(y), (23)

Yt = e−
t
2Y0 +

∫ t

0
e

s−t
2 dVs. (24)
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Accordingly to Section 3.2, we consider a IP1 discretization in space on a
uniform grid with I intervals (the space step is δy = 1/I). Since we consider
only one dumbbell, we obtain the following discretization of (22)-(24), written
in an algebraic form:

−MU(t) =YtBXt + b′
1, (25)

dXt =
(

YtCU(t) + Yt b
′
2 −

Xt

2

)

dt+ dWt, (26)

where Y is a process with value in IR defined by (24), U is a vector of size
(I−1) (because u(y = 0) and u(y = 1) are known) and Xt is now a IRI-valued
process (the i − th components is the value of the discretization of Xt in cell
(yi−1, yi)). Accordingly, Wt is now a process with value in IRI . The matrices
M , B and C are respectively of size (I−1)×(I−1), (I−1)×I and I×(I−1).
One can easily check that, should the grid be uniform or not:

BC = M. (27)

Here, we use a uniform grid in space and we obtain the finite differences ma-
trices:

M =
1

δy2





























−2 1 0 . . . 0

1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1

0 . . . 0 1 −2





























, B =
1

δy





















−1 1 0 . . . 0

0 −1 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −1 1





















,

C = −tB =
1

δy





























1 0 . . . 0

−1 1 . . . 0
...

. . .
. . .

...

0 . . . −1 1

0 . . . 0 −1





























.

The vectors b′
1 and b′

2, of respective size (I−1) and I, depend on the boundary
conditions on u: b′

1 = (v/δy2, 0, . . . , 0), b′
2 = (−v/δy, 0, . . . , 0).

We therefore have:

U(t) =−YtM
−1BXt + b1, (28)

dXt =
(

−(Yt)
2CM−1BXt + Yt b2 −

Xt

2

)

dt+ dWt, (29)
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where b1 = −M−1b′
1 and b2 = −CM−1b′

1 + b′
2 are two vectors depending on

the boundary conditions on u. What can be easily checked is that Bb2 = 0.

The aim of the remaining of this section is to analyze the covariance of the
random variables U (the velocity) and YtXt (the stress) in function of the
covariance K in space of Wt (see Eq. 21). We first remark that the covariance
of U can be expressed in function of the covariance of YtXt:

Cov(U(t)) = IE(U(t) ⊗ U(t)) − IE(U(t)) ⊗ IE(U(t)),

=(M−1B) Cov(YtXt)
t(M−1B). (30)

Let us explain how we can compute Cov(YtXt) = IE(YtXt⊗YtXt)−IE(YtXt)⊗
IE(YtXt). First, from (29), one can compute the following expression of X:

Xt = exp
(
∫ t

0
A(s) ds

)

X0 +
∫ t

0
exp

(
∫ t

s
A(u) du

)

b2Ys ds

+
∫ t

0
exp

(
∫ t

s
A(u) du

)

dWs, (31)

where

A(s) = −CM−1B(Ys)
2 − 1

2
Id.

Note that A(t) is a random matrix, which is (Y0, (Vs)s≤t)-measurable. The
last term in equation (31) makes sense since (Y0, V ) (and therefore Y ) is
independent from W .

The main Lemma that will be used in the sequel to compute the variances is
the following:

Lemma 1 The matrix CM−1B can be decomposed as follows:

CM−1B = Id − P,

where Id is the identity matrix of size I×I and P is the matrix of a projection
on Ker(B).

Proof: The proof uses the fact that BC = M (see (27)). A simple computation
shows that:

(Id − CM−1B)(Id − CM−1B) = (Id − CM−1B),

and thus P = Id − CM−1B is a projector. Besides, it is clear that Ker(B) ⊂
{x, P (x) = x}. The converse inclusion is also easy to prove: if x is such that
P (x) = x, then CM−1Bx = 0 and therefore, by multiplying on the left by B,

15



one obtains Bx = 0. In a uniform in space mesh setting, one obtains P = δyJ
where J is the I × I matrix with all components equal to 1. ♦

Using A(s) = (Ys)
2P−

(

1
2

+ (Ys)
2
)

Id and the fact that, by Lemma 1, P n = P ,

one obtains the following expression of exp
(

∫ t
s A(u) du

)

:

exp
(
∫ t

s
A(u) du

)

= a(s, t)Id + b(s, t)P, (32)

where

a(s, t) = exp
(

−t− s

2

)

exp
(

−
∫ t

s
(Yu)

2 du
)

,

and

b(s, t) = exp
(

−t− s

2

)(

1 − exp
(

−
∫ t

s
(Yu)

2 du
))

.

This leads to the following expression of YtXt (using the fact that Pb2 = b2):

YtXt =Yt

(

a(0, t)Id + b(0, t)P
)

X0 + Yt

∫ t

0

(

a(s, t) + b(s, t)
)

Ys ds b2

+Yt

∫ t

0

(

a(s, t)Id + b(s, t)P
)

dWs. (33)

Remark 4 These first computations allow us to explain the dependency of
the variances upon the correlation in space of the Brownian motion as fol-
lows, at least in the particular case K = Id or K = J . When the Brownian
motions are completely uncorrelated in space (K = Id), one computes in the
velocity equation (25) the difference between two independent random variables
divided by the space step. It is therefore natural that this induces a variance
much more important than in the case of a uniform in space Brownian mo-
tion (K = J). On the contrary, when we consider the equation (33) verified
by Xt, we observe that the term

∫ t
0 b(s, t)P dWs (we recall that P = δyJ) in-

duces more variance in the case of a Brownian motion not depending on space
for the same reason that, if Gi are i independent Gaussian random variables,
Var

(

∑I
i=1G

i
)

< Var
(

∑I
i=1G

1
)

. Indeed, in the case of completely uncorrelated
Brownian motions in space, the term PdWs = δyJdWs leads to a sum of in-
dependent random variables, whose variance is less than a sum of one single
random variable.

We now turn to the computation of Cov(YtXt). Using the independence of X0,
(Ys)s≤t, and (Ws)s≤t, we check that the covariance between any two different
terms of the right-hand-side of (33) is null. Therefore, we obtain the following
expression of Cov(YtXt):
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Cov(YtXt) = IE(a(0, t)2Y 2
t ) IE(X0 ⊗X0) + IE(b(0, t)2Y 2

t )P IE(X0 ⊗X0)
tP

+IE(a(0, t)b(0, t)Y 2
t )

(

P IE(X0 ⊗X0) + IE(X0 ⊗X0)
tP
)

+IE
(
∫ t

0
exp

(

−t− s

2

)

(YsYt − IE (YsYt)) ds
)2

b2 ⊗ b2

+
∫ t

0
IE(a(s, t)2Y 2

t ) dsK +
∫ t

0
IE(b(s, t)2Y 2

t ) ds PKtP

+
∫ t

0
IE(a(s, t)b(s, t)Y 2

t ) ds (PK +KtP ). (34)

We now want to take the limit t −→ ∞ in each of the terms of (34).

Using the fact that a(0, t) ≤ exp
(

− t
2

)

and b(0, t) ≤ exp
(

− t
2

)

, one can see
that the part of the covariance of YtXt which depends on the initial condition
X0 goes to zero in the limit t→ ∞.

One can exactly compute (using the fact that IE(Y 2
t ) = 1 and IE(YsYt) =

e−
|s−t|

2 ) the part of the covariance of YtXt which depends on b2. We obtain:

IE
(
∫ t

0
exp

(

−t− s

2

)

(YsYt − IE (YsYt)) ds
)2

=4 exp(−2t) (− exp(t)(1 + t) + 4 exp(2t) − 4 exp(−3t/2) + 1) (35)

which tends to 16 when t goes to ∞.

One can also show that the other terms in the expression (34) of the covariance
of YtXt have a limit when t → ∞. Indeed, the sum of the three last terms
of (34) writes :

It(K+PKtP −PK−KtP )+Jt(PK+KtP −2PKtP )+(1− exp(−t))PKtP

where

It =
∫ t

0
exp(−t+ s)IE

(

exp
(

−2
∫ t

s
(Yu)

2 du
)

Y 2
t

)

ds

and

Jt =
∫ t

0
exp(−t+ s)IE

(

exp
(

−
∫ t

s
(Yu)

2 du
)

Y 2
t

)

ds.

Clearly, It and Jt are smaller than 1 − exp(−t). Hence, it is enough to check
that these terms are increasing to conclude that they have finite limits as
t→ ∞, respectively denoted by α and β.

To prove that It is increasing, one can compute the following expression of It
(by using the change of variable r = t − s and the fact that, by stationarity,
(Yu)t−r≤u≤t and (Yu)0≤u≤r have the same law):
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It =
∫ t

0
exp(−t+ s)IE

(

exp
(

−2
∫ t

s
Y 2

u du
)

Y 2
t

)

ds

=
∫ t

0
exp(−r)IE

(

exp
(

−2
∫ t

t−r
Y 2

u du
)

Y 2
t

)

dr

=
∫ t

0
exp(−r)ψ(r) dr

where ψ(r) = IE (exp (−2
∫ r
0 (Yu)

2 du)Y 2
r ) is a positive function. Using the same

arguments, we obtain for Jt:

Jt =
∫ t

0
exp(−r)IE

(

exp
(

−
∫ r

0
(Yu)

2 du
)

Y 2
r

)

.

These expressions clearly demonstrate that I and J are increasing.

This shows that, in the limit t→ ∞, Cov(YtXt) = 16 b2⊗b2+α1K+α2(K
tP+

PK) + α3PK
tP , and thus (since P =t P ),

lim
t→∞

Cov(YtXt) = 16 b2 ⊗ b2 + α1K + α2(KP + PK) + α3PKP, (36)

where α1 = α, α2 = β − α and α3 = 1 − 2β + α are three positive constants.

Using (30) and the fact that BP = 0 et Bb2 = 0, we obtain:

lim
t→∞

Cov(U(t)) = α1M
−1BK t(M−1B). (37)

Remark 5 One can compute numerically the values of αi, i = 1, 2, 3. We
have found α ≃ 0.26 and β ≃ 0.39. Therefore α1 ≃ 0.26, α2 ≃ 0.13 and
α3 ≃ 0.48. Notice also that α1 + 2α2 + α3 = 1, which will be used later on.

Remark 6 All the computations we have made in this section can also be done
with a mesh with non-constant space-steps. In particular, Lemma 1 holds with
any mesh in space.

Remark 7 One can notice that the variance on the velocity is not influenced
by the value of the boundary condition v on the velocity. This is not the case
for the stress. In our simple case, since b2 is a constant vector in space which
is proportional to v, we observe that the variance on YtXt is uniformly in space
influenced by v, and behaves like v2 when v → ∞. The boundary condition on
the velocity therefore influences in the same manner the variance on the stress,
at all points of the domain.

3.3.2 Analysis of the cases K = Id and K = J

On the basis of the main two results of the previous section (namely (36)
and (37)), we can explain the way the variances on U and Y X vary when ones
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t −→ ∞ Cov(YtXt) (stress) Cov(U(t)) (velocity)

Wt 16b2 ⊗ b2 + J 0

Wt(y) 16b2 ⊗ b2 + α1Id + (1 − α1)δyJ −α1M
−1

Fig. 5. Variances of u and τ (for long time) for a Brownian motion not depending
on space (Wt) and for Brownian motions uncorrelated in space (Wt(y)). Notice
that the covariance matrices of the stress (resp. of the velocity) are of size I × I
(resp. (I − 1) × (I − 1)) where I = 1/δy.

goes from completely uncorrelated Brownian motions in space (K = Id) to a
Brownian motion not depending on space (K = J).

In the case of a completely uncorrelated Brownian motion, we have K = Id
and we obtain Cov(YtXt) = 16b2 ⊗ b2 + α1Id + (2α2 + α3)δyJ = 16b2 ⊗ b2 +
α1Id + (1 − α1)δyJ and Cov(U(t)) = −α1M

−1.

In the case of a Brownian motion not depending on space, we have K = J
and we obtain Cov(YtXt) = 16b2 ⊗b2 +(α1 +2α2 +α3)J = 16b2 ⊗b2 +J and
Cov(U(t)) = 0 (since BJ = 0).

Table 5 summarizes the results we have obtained. These results corroborate
the behavior of the numerical experiments and the observations of the authors
in [3,7]. In particular, if one considers the variance of Y X at a point in the
middle of the flow, one obtains C(b2)+1 with Wt and C(b2)+α1+(1−α1)δy ≃
C(b2) + 0.26 + 0.74δy with Wt(y) (where C(b2) denotes a constant which
depends on b2): the variance reduces with a Brownian which depends on space
(since δy < 1). Note also (see off-diagonal terms) the strong correlation which
is introduced between the variables, at different point in space, when one uses
a Brownian motion not depending on space.

3.3.3 Analysis of other correlation matrices K

We now want to further investigate the dependency of the variances in terms
of K. What is of interest is the traces of these covariance matrices (renormal-
ized by the number of cells), which measures the variance of the whole variable
in space:

δy tr (Cov(YtXt)) =α1 + 16δy ||b2||2 + (2α2 + α3)δy ||PN ||2,
=α1 + 16δy ||b2||2 + (1 − α1)δy ||PN ||2,

δy tr (Cov(U(t))) = α1δy ||M−1BN ||2,
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where ||.|| denotes the Frobenius or Euclidean norm and N is the matrix such
that K = N(tN) (see Section 3.2: N is a I × I matrix such that each line has
a norm equal to one). We have obtained these expressions using some simple
properties like tr (EF ) = tr (FE) for any matrices E and F , or P 2 = P . From
these expressions of the variances, we can deduce the following:

• The minimum of the variance on U is zero and is obtained if and only if
the Brownian motion does not depend on space. Indeed, ||M−1BN || = 0
implies BN = 0, which implies that each line of N is the same.

• The minimum of the variance on YtXt is α1 + 16δy ||b2||2. It is attained
if and only if PN = 0 (and this is not the case with a Brownian motion
not depending on space). This is equivalent to the fact that the sum of the
components within each column of the matrix N is zero.

Let us now try to determine among all covariances matrices K such that the
variance on YtXt is minimum, the one that leads to a variance on U(t) that is
minimum.

Variance reduction using only one Brownian motion in space.

In a first step, we solve this question in the case when we use only one Brownian
motion in space to construct K, in order to keep the same computational
cost as in the case of a Brownian motion not depending on space. In other
words, we can only choose +Wt or −Wt in each cell of the mesh. We can
then state the following result: in case I is even, using only one Brownian
in space, the covariance matrix K defined by Ki,j = (−1)i+j is such that,
among all K possible such that the variance on Xt is minimum, the variance
on U(t) is minimum. To prove this result, one has to notice that we obtain
all the admissible covariance matrices K = N(tN) with the matrices N of the
following form: the first column equal to ǫ = (ǫ1, ..., ǫI) and zero elsewhere,
with ǫi = ±1, and

∑I
i=1 ǫi = 0. The variance on U is then minimal if and

only of the norm of M−1Bǫ is minimal. But this vector ν = M−1Bǫ can
also be interpreted as the solution in IP1 of the finite element discretization
of the following problem: ∂2r

∂y2 = ∂ǫ
∂y

, where y ∈ (0, 1), with zero Dirichlet

boundary conditions r(0) = r(1) = 0. Since the finite element solution is
equal to the non-discretized solution, it is then obvious that the minimum
of the norm of ν = M−1Bǫ is obtained, for example, with an oscillatory ǫ
(ǫ = (1,−1, 1,−1, ...)). We have plotted on Figure 6 the results obtained on
the initial problem (14-16) in this case of an oscillatory-in-space Brownian
motion (see the curves labelled ’+/- Wt’).

This result is interesting since it shows that, if the aim is to reduce the variance
on YtXt, one can further reduce the variances on both U(t) and YtXt, compared
with the case of an uncorrelated Brownian motion (compare the curves labelled
’+/- Wt’ and ’Wt(y)’ on Figure 6), and this using only one Brownian motion
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in space.

Remark 8 One could argue that the reduction of variance on the stress ob-
tained by using Brownian motions uncorrelated in space is due to a kind of law
of large numbers: we introduce more random numbers and therefore we reduce
the variance, with of course more costly simulations. We have shown in this
section that this argument does not hold, since the variance on Y X can even
be more reduced, using only one Brownian motion in space.

Remark 9 This reduction of variance using an oscillatory Brownian mo-
tion in space reminds us of the antithetic variables method, classically used
in Monte Carlo simulations to reduce the variance.

Variance reduction using arbitrarily many Brownian motions.

In a second step, we allow for the use of an arbitrary number of Brownian
motions. We can reformulate the minimization problem we consider in the
following:
Minimize tr (M−1BK(tB)(tM−1)) among the matrices K such that:

• K is a symmetric matrix of size I × I,
• K is positive,
• ∀i, Ki,i = 1,
• tr (KP ) = 0 (we recall that P is the orthogonal projector on the vector of

size I: (1, ..., 1)).

This problem has a solution, since we minimize a linear function on a bounded
convex closed set. We have solved this problem with the function ’lmisolver’ of
Scilab. We have used the covariance matrix obtained to construct a Brownian
motion and perform a simulation on the initial time-dependent problem (14)-
(16). The results plotted on Figure 6 show that we have indeed further reduced
the variance on U(t), with an optimal variance on YtXt.

4 Numerical simulations

4.1 Hookean dumbbells

We here present some simple numerical experiments performed in the case of
a pure shear flow with Hookean dumbbells on a uniform mesh (see Eq. (17)-
(20)). The numerical parameters are: the number of cells I, the number of time
step N , the number of realizations R, and the number of independent tests
NbTest we have performed in order to estimate the variances. The physical
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parameters in all the simulations are: v = 1 (velocity on the boundary), T = 5
(final time of the simulation), ǫ = 0.9, Re = 0.1, We = 0.5.

We can observe that, replacing a Brownian motion not depending on y (see
the curves labelled ’Wt’ on Figure 6) by Brownian motions completely uncor-
related in space (see the curves labelled ’Wt(y)’ on Figure 6) results into:

• an increase of the variance of u (velocity) (the variance is multiplied by a
factor of 250 for short times and 106 for long times: in fact, in case of a
Brownian motion not depending on space, we have observed on our simple
case that the variance on u seems to tend to zero as t goes to infinity),

• a decrease of the variance of τ (stress) (the variance is divided by about 5
for short times and 2 for long times).

We here observe, in our simple geometry, the same behaviour as other au-
thors already noticed in more complex flows (see [3,7]) which legitimates a
throughfull study of the 1D case.

We have also plotted on Figure 6 the results obtained with an oscillatory-in-
space Brownian motion, and with the optimized covariance matrix.

4.2 FENE dumbbells

In the FENE case, the equations (14)-(16) become:

∂u

∂t
(t, y)=

∂2u

∂y2
(t, y) +

∂

∂y
IE

(

Xt(y)Yt(y)

1 − (Xt(y)2 + Yt(y)2)/b

)

, (38)

dXt(y)=

(

∂u(t, y)

∂y
Yt(y) −

1

2

Xt(y)

1 − (Xt(y)2 + Yt(y)2)/b

)

dt+ dWt(y) ,(39)

dYt(y)=−1

2

Yt(y)

1 − (Xt(y)2 + Yt(y)2)/b
dt+ dVt(y) , (40)

One can notice that we may now let the Brownian motion Vt which acts on
Yt depends on space, since Yt naturally depends on space.

Because of the nonlinear drift in the stochastic differential equations (39)-(40),
we are not able to conduct the arguments of Section 3, even for this simple
geometry. However, we have tested our three main correlations in space inves-
tigated in the Hookean dumbbell case, in the FENE framework (see Figure 7):
Brownian motion not depending on space, uncorrelated Brownian motions in
space, and oscillatory Brownian motion in space. In our simulations, the pa-
rameter b is equal to 20. Let us make precise the oscillatory Brownian motion
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Fig. 6. Variances of u and τ (versus time) for different correlations
in space: solid-line=Wt: a Brownian motion not depending on space ;
long-dashed-line=Wt(y): completely uncorrelated Brownian motions in space ;
short-dashed-line=+/-Wt: an oscillatory Brownian motion in space ; dot-
ted-line=Wt optim: results obtained with an optimized correlation matrix.
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we consider: from one cell to another, we have taken alternatively (Wt, Vt) or
(−Wt, Vt).

For example (see Figure 7), if one uses an oscillatory Brownian motion in
space instead of a Brownian motion not depending on space, for short time
(t = 0.12), the variance on the velocity is only multiplied by 3 but the variance
on the stress is divided by 6, and is even better than for uncorrelated Brownian
motions in space, which yet corresponds to a more costly simulation.

We can then draw the following conclusion: using only one Brownian motion
in space (and therefore at a fixed computational cost), one can reduce the
variance on τ compared to the case of a Brownian motion not depending on
space, by using an oscillatory Brownian motion in space.

5 Related issues

5.1 Dependency of the variances with respect to the space step δy

In Table 8, we give the dependency of the variances of YtXt and U(t) for long
time in our simple case. To derive this results, we have used the fact that
b2 = O(1) and M−1 = O(δy). These last results can be numerically checked

by observing that b2 = (−1,−1, ...,−1) and (M−1)i,i = − i(I−i)
I3 .

Remark 10 In case of uncorrelated Brownian motions in space, we observe
that the velocity becomes deterministic in the limit δy → 0. This can be for-
mally explained in our simple case by the fact that the velocity is an integral
over the space of YtXt: therefore, a kind of law of large numbers occurs when
δy → 0.

5.2 Some remarks concerning the bias

The problem we consider is non-linear in the Mc Kean sense, since all the
dumbbells are coupled through the velocity. Therefore, the law of each dumb-
bell depends on the total number of dumbbells R : to stress this depen-
dency, we denote (Xj,R

t , Y j,R
t ) the end-to-end vector of the j-th dumbbell

and XY
R

t = 1
R

∑R
j=1X

j,R
t Y j,R

t the estimated stress. In general, this estimated

stress is biased i.e. IE(XY
R

t ) = IE(Xj,R
t Y j,R

t ) 6= IE(XtYt), where (Xt, Yt) is
solution of (15)-(16). From a numerical point of view, one may compute the
empirical mean of the estimated stress over NbTest independent experiments

1
NbTest

∑NbTest
k=1 XY

R,k

t , with the same number R of dumbbells.
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Fig. 7. In the case of FENE dumbbells: variances of u and τ versus time for
different correlations in space: solid-line=Wt: a Brownian motion not depending
on space ; long-dashed-line=Wt(y): completely uncorrelated Brownian motions in
space ; short-dashed-line=+/-Wt: an oscillatory Brownian motion in space.
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t −→ ∞ δy tr (Cov(YtXt)) (stress) δy tr (Cov(U(t))) (velocity)

Wt O(1) 0

Wt(y) O(1) O(δy)

Fig. 8. Dependency of the variances of u and τ (for long time) with respect to δy.

The error induced on the stress can be decomposed as follows:

IE(XtYt) −
1

NbTest

NbTest
∑

k=1

XY
R,k

t =
(

IE(XtYt) − IE
(

XY
R

t

))

+

(

IE
(

XY
R

t

)

− 1

NbTest

NbTest
∑

k=1

XY
R,k

t

)

.

The second term is the statistical error induced by the Monte Carlo method.
The first term is a deterministic error, called the bias, which comes from the
fact that the random variables Xj,R

t et Y j,R
t are coupled (through the velocity).

We have numerically observed a bias which is O
(

1
R

)

(see the values obtained

for t = 0.1 on Figure 9), which seems to be usual for this kind of coupling. In
order to underline this dependency, we have performed a huge number of in-
dependent tests (NbTest = 10 000 000) to distinguish between the bias (which

is typically O
(

1
R

)

) and the statistical error (which is typically O
(

1√
R

)

for one

single test). We also observe that for long time, the bias vanishes.

From this numerical observation, one can give an answer to the following clas-
sical question: in order to reduce the variance on the result, is it preferable to
increase the number of dumbbells (R) or the number of tests (NbTest) ? Since

the bias is O
(

1
R

)

and the statistical error is O
(

1√
R NbTest

)

, it does not make
sense to choose NbTest such that NbTest >> R. Note that this conclusion
also holds when one takes into account the computational cost for it is linear
in both R and NbTest, since there are no complex interactions between the
dumbbells.

The fact that the statistical error dominates the bias also shows the importance
of understanding the variance of the results.

6 Conclusions

In this paper, we have explained what kind of dependency in space of the
Brownian motion is natural to adopt in the micro-macro modeling of poly-
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Fig. 9. Error between the estimator of τ and its exact value, at y = 0.5, in the
Hookean dumbbell case.

meric fluids, namely some Brownian motions dependent in space through the
Lagrangian trajectories of the flow.

We have then considered the pure shear flow for one single Hookean dumbbell
in the long time limit and we have been able to prove on this simple case that:

a The variance on the velocity u is minimum when one considers a Brownian
motion which is constant in space,

b The use of uncorrelated Brownian motions in space is not the best correla-
tion in space to consider, if one wants to reduce the variance on the stress τ ;
the use of an oscillatory-in-space Brownian motion is optimal as far as the
variance on the stress is concerned,

c It is possible to reduce the variance on τ , compared to a Brownian motion
which is constant in space, and this with the same computational cost.

On the simple case of a shear flow with Hookean dumbbells, we have checked
by numerical experiments that point (c) above holds on the time-dependent
problem, which validates our approach. We have also verified point (c) in the
FENE case.
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This analysis has shown the importance, for the variance of the results, of the
interplay between the correlation matrix in space of the Brownian motions at
the microscopic level and the matrices of the discretization of the differential
operators at the macroscopic level.

As byproducts of our analysis, we have shown that:

• on our simple case and in the long time limit, the boundary condition does
not influence the variance on the velocity but influences the variance on the
stress, in the same manner at all points of the domain,

• on our simple case and in the long time limit, when one uses uncorrelated
Brownian motions in space, the variance on the velocity goes to zero when
the space-step δy goes to zero,

• since we have numerically observed that the bias is O
(

1
R

)

and the statistical

error is O
(

1√
R NbTest

)

, where R denotes the number of dumbbells in each cell
and NbTest the number of independent tests performed with R dumbbells,
it does not make sense to choose NbTest such that NbTest >> R.

We have summarized these conclusions in Table 10.
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