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Un shéma en volumes-�nis non-struturés entré detype Glerkin disontinu pour la résolution des équationsde Maxwell tridimensionnelles en milieu hétérogèneRésumé : Nous présentons une nouvelle méthode de Galerkin Disontinue appliquée à larésolution numérique des équations de Maxwell en maillages non struturés. La méthoderepose sur le hoix d'une base loale de fontions, une formulation entrée pour approherles intégrales de surfae et un shéma saute-mouton d'ordre deux. Nous montrons que laméthode onserve une enérgie disrète et une ondition su�sante de stabilité est démontréepour une large lasse de fontions de base.Mots-lés : életromagnétisme, volumes �nis, Galerkin disontinu, �ux entrés, shémasaute-mouton, stabilité L2, maillage non struturé, ondition limite absorbante



A Disontinous Galerkin FVTD method for 3D Maxwell equations 31 IntrodutionThe DG (Disontinuous Galerkin) methods enjoy a renewed favor nowadays and are nowused in many and various appliations [1℄ as people disover the abilities of these methodsto handle ompliated geometries and meshes, to ahieve a high order of auray by simplyhoosing suitable basis funtions, to allow a wide range for time integration shemes and lastbut not least to remain highly parallelizable at the end. Obviously this has a ost in timeand memory on omputers espeially if we don't take are of the way the surfae integralsare evaluated and of the time sheme used. So we have already developed a DG methodfor the Maxwell equations on triangular meshes using a Gauss quadrature formula and athree step Runge-Kutta sheme whih lead to a very ostly sheme hardly extensible to thethree-dimensional ase [5℄.We present here a new formulation onsidering the spei� haraters of the systemto be solved, namely the time domain Maxwell equations. Sine we want to preserve theonservation of the disrete analog of the eletromagneti energy, we hoose a leap-frogsheme for the time integration as it is the ase for the Yee sheme whih remains the mostused in CEM although its severe restrition to Cartesian grids. We also deide to give upthe Gauss quadrature formula whose omplexity and ost grow with the auray and thespae dimension and we simply evaluate the surfae integrals via a entered mean of tangent�elds on either side of the surfae, the �elds being projeted on the loal basis funtions.We dress the outline of the method in the general ase in the �rst setion of this paper,then we analyze the stability of the resulting sheme and the onservation of a disrete energyin the two following setions. A su�ient stability ondition is proved when the system isprovided with one of the two lassial boundary onditions, a perfet metalli ondition ona material surfae and an absorbing one on the arti�ial boundary delimiting the numerialdomain. The fourth setion deals with the partiular ase of tetrahedral meshes using theloal P1 (pieewise a�ne) basis funtions. The resulting sheme was implemented and somenumerial results are presented and ompared with the exat solutions. Let us note thatusing pieewise onstant funtions as a basis (P0), will result in a entered �nite volumesheme whih was already presented and studied [3, 4℄.We onsider in this paper Maxwell equations in three spae dimensions for heterogeneousanisotropi linear media with no soure. The eletri permittivity tensor ��"(x) and themagneti permeability tensor ���(x) are varying in spae and both symmetri positive de�nite.The eletri �eld ~E = t(Ex; Ey; Ez) and the magneti �eld ~H = t(Hx; Hy; Hz) verify8>><>>: ��"� ~E�t = ~rot ~H;���� ~H�t = � ~rot~E: (1)
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4 Piperno & FezouiThese equations are set and solved on a bounded polyhedral domain 
 of R3 . Everywhereon the domain boundary �
 (of unitary outwards normal ~~n), a boundary ondition is setwhih is either metalli (~n � ~E = ~0, on �
m) or absorbing (~n � ~E = �� ~n � �~n� ~H�,on �
a, where we assume the medium is isotropi, i.e. ��" = �I3 ��� = �I3 and the loal lightspeed  is given by ��2 = 1). Examples of suh frameworks are given on Figure 1).
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RCS of a wing Cavity resonanceFigure 1: Domains 
 and orresponding boundaries.2 The new Disontinuous Galerkin FVTD method2.1 IntrodutionWe assume we dispose of a partition of the polyhedral domain 
 into a �nite number ofpolyhedra (eah one having a �nite number of faes). For eah polyhedron Ti, alled "�nitevolume" or "ell", Vi denotes its volume, and ��"i and ���i are respetively the loal eletripermittivity and magneti permeability tensors of the medium, whih ould be varying insidethe ell Ti. We all interfae between two �nite volumes their intersetion, whenever it is apolyhedral surfae. For eah internal interfae aik = TiT Tk, we denote by ~nik the integralover the interfae of the unitary normal, oriented from Ti towards Tk. The same de�nitionsare extended to boundary interfaes (in the intersetion of the domain boundary �
mS �
awith a �nite volume), the index k orresponding to a �titious ell outside the domain. Wedenote by ~~nik = t(~nikx; ~niky ; ~nikz) the normalized normals ~~nik = ~nik=k~nikk.Finally, we denote by Vi the set of indies of the neighboring �nite volumes of the �nitevolume Ti (having an interfae in ommon). We also de�ne the perimeter Pi of Ti byPi =Pk2Vi k~nikk. We have the following geometrial property for all �nite volumes,Xk2Vi ~nik = 0: (2)
INRIA



A Disontinous Galerkin FVTD method for 3D Maxwell equations 52.2 The spatial disretizationInside eah �nite volume, the numerial unknowns of the method are related to the orthog-onal (in the sense of the lassial L2 salar produt) projetion of the eletri and magneti�elds on a hosen set of vetor basis funtions ~'ij ; 1 � j � di, where di denotes the numberof loal salar degrees of freedom inside the �nite volume Ti. The approximation is allowedto be disontinuous aross element boundaries.We now derive the spatial disretization. Taking (1), dot-multiplying by a given basisfuntion ~'ij , and integrating over Ti yields8>>><>>>: ZTi t~'ij ��"i � ~E�t = ZTi ~rot ~H:~'ij ;ZTi t~'ij ���i � ~H�t = � ZTi ~rot~E:~'ij :Using the identity ~rot ~X:~ = ~rot~ : ~X � div(~ � ~X), we get8>>><>>>: ZTi t~'ij ��"i � ~E�t = ZTi ~rot~'ij : ~H � Z�Ti(~'ij � ~H):~~n;ZTi t~'ij ���i � ~H�t = � ZTi ~rot~'ij : ~E + Z�Ti(~'ij � ~E):~~n: (3)If we denote by ~Ei and ~Hi respetively the anonial L2-orthogonal projetions of the �elds~E and ~H on Span(~'ij ; 1 � j � di) inside the �nite volume Ti, verifying the property8~' 2 Span(~'ij ; 1 � j � di); ZTi ~Ei:~' = ZTi ~E:~'; ZTi ~Hi:~' = ZTi ~H:~';then, in equations (3), ~Ei and ~Hi (and their time-derivative) an be diretly used to evaluatevolume integrals. For boundary integrals, sine no ontinuity is imposed on the �elds, someadditional approximations have to be done. We hoose here to use ompletely entered�uxes, i.e. k 2 Vi; 8x 2 aik; ~E(x)! ~Ei(x) + ~Ek(x)2 ; ~H(x)! ~Hi(x) + ~Hk(x)2 :The �elds ~Ei and ~Hi are then deomposed the following way:8x in Ti; ~Ei(x; t) = X1�j�di Eij(t) ~'ij(x); ~Hi(x; t) = X1�j�diHij(t) ~'ij(x): (4)Inside eah ontrol volume, the �elds ~Ei and ~Hi an now be represented using a hosennumber of salar values Eil and Hil, for 1 � l � di. We will now denote by Ei the olumnRR n° 4733



6 Piperno & Fezoui(Eil)1�l�di . Finally, this leads to8>>>><>>>>: �M �i �Ei�t �j = ZTi ~rot~'ij : ~Hi � Xk2Vi Zaik (~'ij � ~Hi + ~Hk2 ):~~nik!;�M�i �Hi�t �j = � ZTi ~rot~'ij :~Ei + Xk2Vi Zaik (~'ij � ~Ei + ~Ek2 ):~~nik!; (5)where the j subsripts denote the jth omponent of vetors, the �elds ~Ei and ~Hi are givenin (4) in funtions of salar degrees of freedom, and M �i and M�i are square matries of sizedi, given by (M �i )jl = ZTi t~'ij ��"i~'il; 1 � j; l � di;(M�i )jl = ZTi t~'ij ���i~'il; 1 � j; l � di: (6)It is lear that the matries M �i and M�i are symmetri and de�nite positive, beause thetensors ��"i and ���i are symmetri de�nite positive, and the basis funtions ~'ij are assumedlinearly independent.We shall now prove an energy onservation property for the ordinary di�erential sys-tem (5) (the semi-disretized in spae Maxwell equations). Let us �rst de�ne the followingeletromagneti energies:De�nition 2.1 We onsider the following eletromagneti energies inside eah �nite volumeand in an arbitrary onneted group G of �nite volumes:(i) 8i; E i = 12ZTi �t~Ei��"i~Ei + t ~Hi���i ~Hi� = 12 �tEiM �iEi + tHiM�i Hi�,(ii) EG =Xi2G E i .
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A Disontinous Galerkin FVTD method for 3D Maxwell equations 7We aim at evaluating the energy EG time-derivative. Inside eah �nite volume, equation (5)yields: �E i�t = tEiM �i �Ei�t + tHiM�i �Hi�t= X1�j�diEij "ZTi ~rot~'ij : ~Hi � Xk2Vi Zaik (~'ij � ~Hi + ~Hk2 ):~~nik!#� X1�j�diHij "ZTi ~rot~'ij :~Ei � Xk2Vi Zaik (~'ij � ~Ei + ~Ek2 ):~~nik!#= ZTi ~rot~Ei: ~Hi � Xk2Vi Zaik (~Ei � ~Hi + ~Hk2 ):~~nik!� ZTi ~rot~Hi:~Ei + Xk2Vi Zaik(~Hi � ~Ei + ~Ek2 ):~~nik!= 12 ZTi � ~rot~Ei: ~Hi + ~rot~Hi:~Ei�� 12 Xk2Vi �Zaik ~Ei � ~Hk:~~nik��12 ZTi � ~rot~Ei: ~Hi + ~rot~Hi:~Ei�� 12 Xk2Vi�Zaik ~Ek � ~Hi:~~nik�= �Xk2Vi Zaik ~Ei � ~Hk + ~Ek � ~Hi2 :~~nik! :In the expression of �EG�t derived from the de�nition of EG , all terms orresponding to in-terfaes aik internal to the group G vanish. Only boundary terms are onserved, and thissimply leads to:�EG�t = � boundaryXfaes aik Zaik ~~nik: ~Ei(x) � ~Hk(x) + ~Ek(x) � ~Hi(x)2 ! : (7)This expression is a disrete version of Poynting's theorem. We reall here that the ele-tromagneti energy E in the ontinuous ase (Maxwell system with no urrent) is given byE = 1=2(t~E��" ~E + t~H ��� ~H), and veri�es the following onservation equation: �E�t + div~P = 0,where ~P is Poynting's vetor given by ~P = ~E � ~H. Integrating the onservation equationfor E over any losed volume V with a regular boundary �V yields Poynting's theorem:ZV �E�t dv + Z�V~P � ~~n ds = 0:For example, for a given metalli avity, sine ~E�~~n = 0 at the boundary, Poynting's theoremyields that the eletromagneti energy is exatly onserved in the avity.RR n° 4733



8 Piperno & Fezoui2.3 Weak treatment of boundary onditionsThe metalli and absorbing onditions are dealt with in a weak sense by taking some valuesfor the �elds ~E and ~H inside the �titious �nite volume beyond the boundary fae. Inthe two ases, aik denotes a boundary fae between a boundary ell Vi and its �titiousneighbour Vk. For an absorbing boundary fae aik, the �titious disrete values will bedetailed in the sequel. For a metalli boundary fae aik , we use �titious disrete values Ekjand Hkj , for 1 � j � dk suh that� 8x 2 aik; ~Hk(x) = ~Hi(x) (ontinuity of the magneti �eld through aik);� 8x 2 aik; ~Ek(x) = �~Ei(x) (i.e. ~Ei(x) + ~Ek(x) = ~0): (8)If only metalli boundary onditions are used the energy is exatly onserved, as stated bythe following lemma.Lemma 2.1 For solutions of the semi-disretized Maxwell equations (5) with metalli bound-aries only (the values given in (8) are used), the disrete eletromagneti energy de�ned inDe�nition (2.1) for the whole �nite volume partition G is exatly onserved, i.e. �EG�t = 0.Proof: This is a diret onsequene of (7) where all boundary faes aik are metalli andverify ~Ei(x) + ~Ek(x) � 0 and ~Hi(x) � ~Hk(x).2.4 The time disretizationWe propose to use a leap-frog time disretization. This kind of time sheme has bothadvantages to be expliit and to be free of time-dissipation. In the sequel, supersripts referto time stations and �t is the �xed time-step. The unknowns related to the eletri �eldare approximated at integer time-stations tn = n�t and are denoted by Enij . The unknownsrelated to the magneti �eld are approximated at half-integer time-stations tn+1/2 = (n +1=2)�t and are denoted by Hn+1/2ij . All de�nitions for Eni , Hn+1/2i , ~Eni , and ~Hn+1/2i aresimilarly extended. The time sheme diretly derives from equation (5) and an be written:�M �i En+1i �Eni�t �j = ZTi ~rot~'ij : ~Hn+1/2i � Xk2Vi Zaik(~'ij � ~Hn+1/2i + ~Hn+1/2k2 ):~~nik; (9)�M�i Hn+3/2i �Hn+1/2i�t �j = � ZTi ~rot~'ij :~En+1i + Xk2Vi Zaik(~'ij � ~En+1i + ~En+1k2 ):~~nik: (10)For the treatment of boundary onditions, the �titious values of �elds are simply de-dued from previous expressions (in the time-ontinuous ase). For example, for a metalliboundary fae aik, we useMetalli boundary: 8x 2 aik; ~Enk (x) = �~Eni (x); ~Hn+1/2k (x) = ~Hn+1/2i (x): (11)For absorbing boundary onditions, this will de detailed in a spei� sheme in setion 4.INRIA



A Disontinous Galerkin FVTD method for 3D Maxwell equations 93 A su�ient stability ondition for metalli avitiesWe aim at giving and proving a su�ient ondition for the L2-stability of the new Galerkin-Disontinuous sheme (9-10) with only metalli boundary onditions. We use the same kindof energy approah as in [2℄, where a quadrati form plays the role of a Lyapunov funtionof the whole set of numerial unknowns.3.1 A disrete energyWe �rst propose the following disrete energies, diretly derived from De�nition 2.1 :De�nition 3.1 For a omplete polyhedral �nite volume partition G of the domain 
 withonly metalli boundary onditions (�
 = �
m), we onsider the following eletromagnetienergies inside eah �nite volume and in the whole domain:(i) 8i; Eni = 12ZTi �t~Eni ��"i~Eni + t ~Hn-1/2i ���i ~Hn+1/2i � = 12 �tEni M �iEni + tHn-1/2i M�i Hn+1/2i �,(ii) En =Xi2G Eni .It is absolutely not obvious why the disrete energy En should be a positive de�nitequadrati form of all numerial unknowns We notie here that the situation is quite di�erentfrom the proof of the L2-stability of the �rst-order upwind �nite-volume sheme of [2℄, wherethe energy was obviously a positive de�nite quadrati form of all unknowns. At the sametime, the energy proposed here depends expliitly on the numerial sheme, sine it an beonly written as a quadrati form of all unknowns (Eni ;Hn-1/2i ) through the use of the seondpart of the sheme (9-10) with metalli boundary values (11).In the following, we shall prove that the proposed energy is onserved through a timestep and that it is a positive de�nite quadrati form of all unknowns under a CFL-like ondition on the time-step �t. This will yield the proof that the sheme (9-10) withmetalli boundary values (11) is L2-stable under a ondition on �t.3.2 Conservation of the disrete energyLemma 3.1 Using the sheme (9)-(10) for an arbitrary onneted group G of �nite volumes,the variation during one time step of the disrete eletromagneti energy inside the group,de�ned in De�nition 3.1 is given byEn+1G = EnG +�t boundaryXfaes aik Zaik ~~nik: ~En+1/2i (x)� ~Hn+1/2k (x) + ~En+1/2k (x) � ~Hn+1/2i (x)2 ! ;with the onvention ~En+1/2i (x) � (~Eni (x) + ~En+1i (x))=2.
RR n° 4733



10 Piperno & FezouiProof: The ordinary di�erential system (5) an be formally seen as a system of the form8><>: SXn+1 �Xn�t = UY n+1/2;T Y n+3/2 � Y n+1/2�t = V Xn+1;where S and T are squared symmetri de�nite positive matries, and U and V are retangularmatries. The disrete eletromagneti energy inside the group, de�ned in De�nition 3.1 isalso equal to Fn = (tXnSXn + tY n-1/2TY n+1/2)=2. It is elementary to prove thatFn+1 = Fn +�t tY n+1/2 �V + tU�Xn+1/2;with Xn+1/2 = (Xn +Xn+1)=2, whih leads after rewriting to the result of the lemma.Lemma 3.2 Using the sheme (9)-(10)-(11), the total disrete eletromagneti energy de-�ned in De�nition 3.1 is exatly onserved, i.e. En+1 = En .Proof: This is a diret onsequene of Lemma 3.1 for the ordinary di�erential system (5)-(8),beause all boundaries are metalli (the proof is as simple as the one in the time-ontinuousase).3.3 De�nite positivity of the disrete energyIn order to prove that our sheme is stable, we �nally show that the disrete energy En ,under some stability ondition on �t, is a positive de�nite quadrati form of the numerialunknowns Hn-1/2i and Eni . This will lead to the stability result of this setion. We �rst needsome elementary de�nitions.De�nition 3.2 Sine the basis funtions ~'ij ; 1 � j � di are linearly independent, and sinethe tensors ��"i and ���i are symmetri positive de�nite, there exists two positive onstants �iand �i suh that8~X 2 Span(~'ij ; 1 � j � di); ZTit ~X��"i ~X � �ik~Xk2Ti ; ZTit ~X���i ~X � �ik~Xk2Ti : (12)We have denoted by k~XkTi the L2 norm of the vetor �eld ~X over Ti, i.e. k~Xk2Ti = RTik~Xk2.The same notation will also be used for L2 norm of vetor �elds over interfaes aik.De�nition 3.3 We also assume some regularity of the basis funtions ~'ij ; 1 � j � di.More preisely, we assume that for any �nite volume Ti, there exists onstants �i and �ik(k 2 Vi) suh that8~X 2 Span(~'ij ; 1 � j � di); k ~rot~XkTi � �iPiVi k~XkTi ; (13)8~X 2 Span(~'ij ; 1 � j � di); k~Xk2aik � �ikk~nikkVi k~Xk2Ti : (14)
INRIA



A Disontinous Galerkin FVTD method for 3D Maxwell equations 11Lemma 3.3 Using the sheme (9)-(10)-(11), under assumptions of De�nitions 3.2 and 3.3,the loal disrete eletromagneti energy Eni de�ned in De�nition 3.1 veri�es,Eni � �i2 k~Eik2Ti + �i2 k~Hik2Ti � �iPi�t2Vi k~HikTik~EikTi��t8 Xk2Vi ��ikk~nikkVi k~Hik2Ti + �kik~nikkVk k~Ekk2Tk� :In the above expression, if the fae aik is a metalli boundary fae, then we set by onventionk~EkkTk � k~EikTi , k~HkkTk � k~HikTi , �ki � �ik, Vk � Vi, �k � �i, and �k � �i.Proof: We get bak to the de�nition of the disrete energy inside a �nite volume Eni . Wehave Eni = 12 tEni M �iEni + 12 tHn-1/2i M�i Hn+1/2i= 12 tEni M �iEni + 12 tHn-1/2i M�i Hn-1/2i � �t2 Xni ; withXni = X1�j�di tHn-1/2ij  ZTi ~rot~'ij :~Eni � Xk2Vi Zaik(~'ij � ~Eni + ~Enk2 ):~~nik!= ZTi ~rot~Hn-1/2i :~Eni � Xk2Vi Zaik(~Hn-1/2i � ~Eni + ~Enk2 ):~~nik= 12 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �� 12 Xk2Vi Zaik(~Hn-1/2i � ~Enk ):~~nik:In the sequel of this proof, we omit the supersripts n and n-1/2 respetively in eletri andmagneti variables. We have the following identities:jXni j � 12 ����ZTi ~rot~Hi:~Ei����+ 12 ����ZTi ~rot~Ei: ~Hi����+ 12 Xk2Vi Zaik 1p�i�k kp�i ~Hi �p�k~Ekk� 12k ~rot~HikTik~EikTi + 12k ~rot~EikTik~HikTi + 14 Xk2Vi�r�i�k k~Hik2aik +r �k�i k~Ekk2aik�� �iPiVi k~HikTik~EikTi + 14 Xk2Vi��ikk~nikkp�iVip�k k~Hik2Ti + �kik~nikkp�kVkp�i k~Ekk2Tk�This expression is also valid when the onsidered �nite volume has a metalli boundary fae,beause of the onvention in the lemma and beause of (11). To onlude the proof, thelower bounds in De�nition 3.2 yield the result given in the lemma.
RR n° 4733



12 Piperno & FezouiLemma 3.4 Using the sheme (9)-(10)-(11), under assumptions of De�nitions 3.2 and 3.3,the total disrete eletromagneti energy En de�ned in De�nition 3.1 is a positive de�nitequadrati form of all unknowns if8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi :Proof: Following the result of the previous lemma, using the de�nition of Pi =Pk2Vi k~nikk,we an split E i the following way:Eni � Xk2Vi k~nikk� �i2Pi k~Eik2Ti +� �i2Pi � �ik�tp�i8Vip�k � k~Hik2Ti��i�t2Vi k~HikTik~EikTi � �ki�tp�k8Vkp�i k~Ekk2Tk� :At this point, we hoose to use an upper bound for the term k~HikTik~EikTi whih mightlead to sub-optimal lower bounds for the energy (and then to a slightly too severe stabilitylimit for the sheme). Anyway, this stability limit is only su�ient, and not really lose toneessary. We use the inequalityk~HikTik~EikTi � p�i2p�i k~Hik2Ti + p�i2p�i k~Eik2Ti :We then an sum up the lower bounds for the E i to obtainEn � internalXfaes aik k~nikkWik +metalli boundaryXfaes aik k~nikkZik; with (15)Wik =� �i2Pi� �ik�tp�i8Vip�k � �i�tp�i4Vip�i � k~Eik2Ti +� �i2Pi� �ik�tp�i8Vip�k � �i�tp�i4Vip�i � k~Hik2Ti +� �k2Pk � �ki�tp�k8p�iVk � �k�tp�k4Vkp�k �k~Ekk2Tk+� �k2Pk � �ki�tp�k8Vkp�i � �k�tp�k4Vkp�k �k~Hkk2TkZik =� �i2Pi � �ik�tp�i8Vip�i � �i�tp�i4Vip�i � k~Eik2Ti +� �i2Pi � �ik�tp�i8Vip�i � �i�tp�i4Vip�i � k~Hik2TiFinally, all quadrati forms are positive de�nite if8i;8k 2 Vi; 8>><>>: �i2Pi � �ik�tp�i8Vip�k � �i�tp�i4Vip�i > 0;�i2Pi � �ik�tp�i8Vip�k � �i�tp�i4Vip�i > 0;
INRIA



A Disontinous Galerkin FVTD method for 3D Maxwell equations 13whih is equivalent to the ondition given in the lemma. Under that ondition, all quadratiforms are positive de�nite, and the energy En as well. The reader an hek that thisondition also inludes the treatment of metalli boundaries. This result leads the mainresult of this setion:Theorem 3.1 Using the sheme (9)-(10)-(11) on arbitrary �nite volumes as desribed inthis setion (with metalli boundary onditions only), under assumptions of De�nitions 3.2and 3.3, the energy En de�ned in De�nition 3.1 is onserved through iterations. It is alsoa positive de�nite quadrati form of all unknowns (Eni ;Hn-1/2i ), and therefore the sheme isL2-stable, if the time step �t is suh that8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi(with the onvention that k should be replaed by i in the above formula for metalli boundaryinterfaes aik).Remark 3.1 CFL nature of this su�ient stability ondition.The above stability ondition is CFL-type, as the parameters �i and �ik are dimensionless,the fration Vi=Pi has the dimension of a length and gives an approximate for the loal sizeof the �nite volume, and �nally, 1=p�i�i has the dimension of a wave speed (it is indeed anupper bound for the loal wave speed in the heterogeneous anisotropi medium).4 A stable sheme with absorbing boundary onditionsIn this setion, we deal with absorbing boundary onditions. We aim at proposing some weaktreatment for an absorbing boundary and proving a su�ient ondition for the L2-stability ofthe new Galerkin-Disontinuous sheme (9-10) with both metalli and absorbing boundaries.We use again the same energy approah as previously: we show that some disrete energy,playing the role of a Lyapunov funtion of the whole set of numerial unknowns under somepositivity ondition, is non-inreasing.4.1 Weak treatment of absorbing boundariesIn the following, a �rst-order Silver�Müller absorbing ondition is used on the absorbingboundary �
a. We reall we have assumed that the medium is isotropi near the absorbingboundary �
a (then the permeability and permittivity tensors ��" and ��� are salars). Usingthe wave speed  = 1=p��, the Silver�Müller absorbing ondition an be written~~n�E = �� ~~n� �~~n�H� ; ~~n�H = � ~~n� �~~n�E� ;
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14 Piperno & Fezouiwhere ~~n is the outgoing unitary normal. This boundary ondition is exat for outgoing planewaves (with a wave vetor ollinear with ~~n). This ondition is a �rst-order approximation,asymptotially orret when the �titious absorbing boundary is far enough.In view of the absorbing boundary ondition above, we propose the following �titious�elds ~Hn+1/2k and ~En+1k over an absorbing interfae aik between the real �nite volume Ti andits �titious neighbour Tk (these �elds are used in the sheme (9)-(10) for the absorbinginterfae aik):Absorbing boundary: 8x 2 aik; � ~Hn+1/2k (x) = i�i ~~nik � ~Eni (x);~En+1k (x) = �i�i ~~nik � ~Hn+1/2i (x); (16)where i = 1=p�i�i is the loal wave speed (reall the medium is assumed isotropi near theabsorbing boundary).Remark 4.1 Validity and origin of these absorbing boundary �elds.� these de�nitions only on aik of the �titious �elds are su�ient in view of the shemewritten as in (9)-(10) (after time disretization);� these de�nitions do not have the same form as the absorbing boundary onditionsabove. Anyway, the loser form ~~nik � ~Hn+1/2k (x) = i�i ~~nik � �~~nik � ~Eni (x)� (for in-stane) is equivalent beause �titious �elds are always ross-multiplied by the loalnormal;� the reader an hek that the �elds ~Eni (x) and ~Hn+1/2i (x) are available when the bound-ary �uxes are needed to advane them in time. One an also notie that the proposedformulae are time-inonsistent. They probably lead to only �rst-order aurate ab-sorbing boundary onditions.� among many possible hoies, the origin of these �uxes is not really obvious. In fat,these values orrespond to upwind �uxes at the absorbing boundary, based on thehyperboli nature of the global six-omponent Maxwell system.If metalli and absorbing boundary onditions are used, then we an give the variation ofthe total eletromagneti energy given in De�nition (3.1). This is the result of the followinglemma.Lemma 4.1 Using the sheme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi near absorbing boundaries, the variation ofthe disrete eletromagneti energy de�ned in De�nition 3.1 through a time-step is given byEn+1 = En � �t2 absorbingXfaes aik Zaik " i�i�~~nik � ~Hn+1/2i � : ~~nik � ~Hn-1/2i + ~Hn+1/2i2 !+i�i�~~nik � ~Eni � : ~~nik � ~Eni + ~En+1i2 !# :
INRIA



A Disontinous Galerkin FVTD method for 3D Maxwell equations 15Proof: This is a diret onsequene of Lemma 3.1. We just have to use the de�nitions of�titious �elds near absorbing boundaries given in (16) and the result of the lemma is found.We an point out here that the disrete energy is not anymore onserved (this is naturalsine we want waves to go out). It is probably non-inreasing for very small time steps, butsome additional work has to be done to prove it is non-inreasing for all time steps.4.2 De�nition of a non-inreasing orreted disrete energyWe propose to orret the disrete energy En proposed in De�nition (3.1). Let us thenintrodue the loal and global orreted disrete energies Fni and Fn .De�nition 4.1 For a omplete polyhedral �nite volume partition G of the domain 
 withmetalli or absorbing boundary onditions, we de�ne the following orreted eletromagnetienergies:(i) 8i; Fni = 12 ZTi �t~Eni ��"i~Eni + t ~Hn-1/2i ���i ~Hn+1/2i �+�t8 absorbingXfaes aikZaik �i�i ~~nik � ~Hn-1/2i 2 � i�i ~~nik � ~Eni 2�(ii) Fn =Xi2G Fni .The physial meaning of this orreted disrete energies is not straightforward. Corretionterms are only related to absorbing boundaries (whih means that Fn = En if there arenone). The additional terms probably �nd their origin in the temporal inonsisteny ofboundary numerial �uxes. We an now prove that the disrete energy Fn is non-inreasing.Lemma 4.2 Using the sheme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi near absorbing boundaries, the orreteddisrete energy Fn de�ned in De�nition 4.1 is non-inreasing. More preisely, the variation�F = Fn+1 � Fn is given by�F = ��t2 absorbingXfaes aikZaik 0�i�i ~~nik � ~Hn-1/2i + ~Hn+1/2i2 2 + i�i ~~nik � ~Eni + ~En+1i2 21A � 0:Proof. The proof is elementary. We simply add terms deriving from Fn � En , Fn+1 � En+1and from the result of Lemma 4.1. We have�F = (Fn+1 �En+1 )+(En+1 �En )+(En �Fn ) = �t absorbingXfaes aikZaik (i�iAik + i�iBik) ; with
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16 Piperno & FezouiAik = 18 ~~nik � ~Hn+1/2i 2� 12 �~~nik � ~Hn+1/2i �: ~~nik � ~Hn-1/2i + ~Hn+1/2i2 !� 18 ~~nik � ~Hn-1/2i 2= �12 ~~nik � ~Hn-1/2i + ~Hn+1/2i2 !2 ; andBik = �18 ~~nik � ~En+1i 2 � 12 �~~nik � ~Eni � : ~~nik � ~Eni + ~En+1i2 !+ 18 ~~nik � ~Eni 2= �12 ~~nik � ~Eni + ~En+1i2 !2 ;whih simply leads to the result of the lemma.4.3 De�nite positivity of the orreted disrete energyIn order to prove that our sheme is stable when used with both metalli and absorbingboundary onditions, we �nally show that the orreted disrete energy Fn , under somestability ondition on �t, is a positive de�nite quadrati form of the numerial unknownsHn-1/2i and Eni . This will lead to the stability result of this setion.Lemma 4.3 Using the sheme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi near absorbing boundaries, the loal disreteeletromagneti energy Fni de�ned in De�nition 4.1 veri�es,Fni � �i2 k~Eik2Ti + �i2 k~Hik2Ti � �iPi�t2Vi k~HikTik~EikTi��t8 Xk2Vi��ikk~nikkVi k~Hik2Ti + �kik~nikkVk k~Ekk2Tk� :In the above expression, if the fae aik is a boundary fae, then we set by onventionk~EkkTk � k~EikTi , k~HkkTk � k~HikTi , �ki � �ik, Vk � Vi, �k � �i, and �k � �i.
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A Disontinous Galerkin FVTD method for 3D Maxwell equations 17Proof: We get bak to the de�nition of the orreted disrete energy inside a �nite volumeFni . We haveFni = 12 tEni M �iEni + 12 tHn-1/2i M�i Hn+1/2i+�t8 absorbingXfaes aikZaik �i�i ~~nik � ~Hn-1/2i 2 � i�i ~~nik � ~Eni 2�= 12 tEni M �iEni + 12 tHn-1/2i M�i Hn-1/2i � �t2 Xni + �t8 Yni ; withYni = absorbingXfaes aikZaik �i�i ~~nik � ~Hn-1/2i 2 � i�i ~~nik � ~Eni 2�Xni = X1�j�di tHn-1/2ij  ZTi ~rot~'ij :~Eni � Xk2Vi Zaik(~'ij � ~Eni + ~Enk2 ):~~nik!= ZTi ~rot~Hn-1/2i :~Eni � Xk2Vi Zaik(~Hn-1/2i � ~Eni + ~Enk2 ):~~nik= 12 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �� 12 Xk2Vi Zaik(~Hn-1/2i � ~Enk ):~~nik= 12 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �� 12 internalXfaes aikZaik(~Hn-1/2i � ~Enk ):~~nik+12 metalliXfaes aikZaik (~Hn-1/2i � ~Eni ):~~nik � 12 absorbingXfaes aikZaik(~Hn-1/2i � ~Enk ):~~nik :Combining terms in Xni and Yni deriving from absorbing boundary faes, we getFni = 12 tEni M �iEni + 12 tHn-1/2i M�i Hn+1/2i � �t4 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �+�t4 internalXfaes aikZaik (~Hn-1/2i � ~Enk ):~~nik � �t4 metalliXfaes aikZaik(~Hn-1/2i � ~Eni ):~~nik��t8 absorbingXfaes aikZaik �i�i ~~nik � ~Hn-1/2i 2 + i�i ~~nik � ~Eni 2� :
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18 Piperno & FezouiIn the sequel of this proof, we omit the supersripts n and n-1/2 respetively in eletri andmagneti variables. We have the following lower bound:Fni � �i2 k~Eik2Ti + �i2 k~Hik2Ti � �t�iPi2Vi k~HikTik~EikTi��t8 Xk2Vi��ikk~nikkp�iVip�k k~Hik2Ti + �kik~nikkp�kVkp�i k~Ekk2Tk� :This expression is valid for all �nite volumes, beause of the onventions in the lemma andbeause of the treatments of boundary onditions (11) and (16). This onludes the proofof the lemma.Lemma 4.4 Using the sheme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi near absorbing boundaries, the orreted totaldisrete eletromagneti energy Fn de�ned in De�nition 4.1 is a positive de�nite quadratiform of all unknowns if8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi :Proof: The proof is exatly the same as in the metalli ase. Under the ondition of thelemma (whih is the same as in the metalli ase), the orreted energy is positive de�nite.We get the following stability result.Theorem 4.1 Using the sheme (9)-(10)-(11)-(16) on arbitrary �nite volumes as desribedin this setion, under assumptions of De�nitions 3.2 and 3.3, and assuming the materialis isotropi near absorbing boundaries, the orreted energy Fn de�ned in (4.1) is non-inreasing through iterations. It is also a positive de�nite quadrati form of all unknowns(Eni ;Hn-1/2i ), and therefore the sheme is L2-stable, if the time step �t is suh that8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi(with the onvention that k should be replaed by i in the above formula for metalli boundaryinterfaes aik).5 Partiular ases on tetrahedral meshes5.1 Classial �nite volumes on tetrahedral meshesFor tetrahedral disretizations of the omputing domain, a lassial �nite volume shemebased on a leap-frog time-sheme and entered �uxes has been proposed [3℄. This work is apartiular ase of the more general formulation proposed in this paper, with the followingpartiular hoies: INRIA



A Disontinous Galerkin FVTD method for 3D Maxwell equations 19� the �nite volumes are the tetrahedra themselves;� for eah �eld, three basis funtions have been hosen, whih are the onstant vetor�elds ~ex, ~ey, and ~ez. Therefore, we have 8i 2 G; di = 3;� the material is heterogeneous, isotropi, with onstant eletromagneti parametersinside eah �nite volume (i.e. 8x 2 Ti; ��"i(x) = ��iI; ���i(x) = ��iI);� metalli and absorbing boundary onditions are enfored in a weak sense, with thesame hoies for boundary �uxes.For this partiular hoies, in the general framework proposed in this paper, the material isindeed isotropi near absorbing boundaries and assumptions of De�nitions 3.2 and 3.3 areveri�ed with� 8i 2 G; �i = 0;� 8i 2 G; �i = ��i; �i = ��i;� 8i 2 G;8k 2 Vi; �ik = 1;With these parameters, Theorems 3.1 and 4.1 imply that the �nite volume method proposedin [3℄ has a dereasing disrete orreted total eletromagneti energy, whih is a positivede�nite quadrati form of all unknowns, and therefore the sheme is stable, if8i;8k 2 Vi; �tp�i�i �max�r �i�k ;r �i�k�� < 4ViPi :This ondition is equivalent to� 8 boundary interfae aik; �t < 4p�i�iVi=Pi;8 internal interfae aik; �t < 4min (p�i�k;p�i�k)min (Vi=Pi; Vk=Pk) ;whih is slightly more severe than the ondition obtained in the less general ontext of [3℄,whih is equivalent to� 8 boundary interfae aik; �t < 4p�i�iVi=Pi;8 internal interfae aik; �t < 4min (p�i�k;p�i�k)p(Vi=Pi):(Vk=Pk):5.2 A P1-DG FVTD method on tetrahedral meshesInside eah tetrahedron, the basis vetor �elds are simply P1 �elds inside the tetrahedron.This leads to twelve degrees of freedom for eah �eld inside eah tetrahedron (three ompo-nents times four P1 salar basis funtions). Therefore, we have 8i 2 G; di = 12; Di�erenthoies an be made onerning the P1 basis funtions inside tetrahedra. We have tried twodi�erent implementations where, inside tetrahedron Ti, the P1 basis vetor �elds were of theform ~'ij(x) = 'ij(x):~eu (where ~eu is ~ex, ~ey, or ~ez), where the 'ij areRR n° 4733



20 Piperno & Fezoui� either the P1 salar basis funtions equal to 0 on aij and 1 on the other vertex;� or the P1 salar basis funtion equal to 1 on aij and -1 on the other vertex.In both ases, We have hosen to limit a �rst implementation where the material is homoge-neous and isotropi inside eah tetrahedron. Beause of this simple hoie, for both hoiesof P1 basis funtions onsidered, exat integrations were performed for volume integrals overtetrahedra and surfae integrals over interfaes. The seond hoie was onsidered beauseexat surfae integrals at �rst sight were less CPU-expensive using Gauss quadrature rulesbased on values on the enters of edges.Lemma 5.1 For both hoies, assumptions of De�nitions 3.2 and 3.3 are veri�ed with thesame values (beause the span of both families of basis �elds are idential), whih are:(i) 8i 2 G; �2i = 209 maxj2Vi(k~nijk)Pi ;(ii) 8i 2 G;8k 2 Vi; �ik = 8=3;Proof: Let us onsider the standard P1 salar basis funtions 'ij (equal to 0 on aij and 1on the other vertex). We have the following elementary integrals:ZTi'ij'ij0 = (1 + Æjj0 )Vi=20;Zaik'ij'ij0 = (1� Ækj)(1� Ækj0 )(1 + Æjj0 )k~nikk=12:(i) derives from the fat that if a P1 vetor �eld writes ~X = Pj2Vi ~Xij 'ij , then we havek~Xk2Ti � Vi20 Xj2Vi k ~Xijk2 beause of the �rst equation above. At the same time,k ~rot~Xk2Ti = 19Vi 0�Xj2Vi ~nij � ~Xij1A2 = P 2i9Vi 0�Xj2Vi k~nijkPi ~~nij � ~Xij1A2� P 2i9Vi Xj2Vi k~nijkPi �~~nij � ~Xij�2 � Pi9Vi maxj2Vi (k~nijk)Xj2Vi k ~Xijk2Then the �rst assumption of De�nitions 3.3 is veri�ed for �i given in the lemma.(ii) derives from the fat that �ik should be the smallest onstant suh that0BB� 0 0 0 00 2 1 10 1 2 10 1 1 2 1CCA � 3�ik5 0BB� 2 1 1 11 2 1 11 1 2 11 1 1 2 1CCA ;
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A Disontinous Galerkin FVTD method for 3D Maxwell equations 21whih leads to �ik = 8=3.These results lead to the following su�ient stability ondition for our P1 DisontinuousGalerkin FVTD method on unstrutured tetrahedral meshes:8i;8j 2 Vi; �tp�i�i 244p53 smaxj2Vi(k~nijk)Pi + 83 max�r�i�j ;r �i�j�35 < 4ViPi :Remark 5.1 A simpli�ed version for heterogeneous media.It is easy to see that maxj2Vi(k~nijk) � Pi=2 beause if k~nij0k = maxj2Vi(k~nijk), thenPi � k~nij0k = Xj2Vi;j 6=j0 k~nijk �  Xj2Vi;j 6=j0 ~nij = k � ~nij0k = k~nij0k:Then the stability limit an be simpli�ed into8i;8j 2 Vi; �tp�i�i "4p53p2 + 83 max�r�i�j ;r �i�j�# < 4ViPi :Remark 5.2 Comparison with lassial �nite volumes for homogeneous media.For homogeneous media, the above stability ondition redues to8i;8j 2 Vi; �tp�i�i "4p53p2 + 83# < 4ViPi :This means that, theoretially, the limit possible time step for our P1 Disontinuous GalerkinFVTD method on unstrutured tetrahedral meshes will be smaller than the limit time stepadmissible with lassial �nite volumes by a fator of 4p53p2 + 83 , roughly equal to 4:7. We annotie that if tetrahedra are assumed quite equilateral, then maxj2Vi(k~nijk) ' Pi=4 and theredution fator is theoretially lose to 4:1.6 Numerial resultsWe selet two resonant avities, a ubi one and a spherial one, sine the exat solutionsare known for these geometries allowing us to appreiate the numerial results at any pointand time in the avity.
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22 Piperno & Fezoui6.1 The ubi avityWe ompute the (1; 1; 1) mode whih is a standing wave of 0.260 GHz frequeny in a ubeof 1 m of side. We use an unstrutured grid of 16464 tetrahedra and 3375 nodes whih gives13 points per wavelength. We plot on Figure 2 the time evolution at a �xed point in theavity of the z-omponent of the eletri �eld during twelve periods. One an see that theDisontinuous Galerkin (P1-DG) solution ompares well with the exat one. The Figure 3
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Figure 2: P1-DG, P0, and exat solutions: �rst twelve periods (omponent Ez).shows a zoom on the last two periods of the P1-DG and exat �elds with now the P0 (�nitevolume) solution whih obviously has a higher rate of dispersion error. Let us reall that the�nite volume sheme has the same order of dispersion error as the Yee sheme [5℄. The overallL2-error on the eletromagneti �eld (E;H) of the P1-DG and P0 approximate solutions areplotted on Figure 4. The errors are inreasing in time beause of the dispersion and thelevel of dispersion is a lot smaller for the P1-DG method. Figure 5 shows the ontours of theEx and Hz omponents for the exat and P1-DG solutions in the ut plane z = 0. Figure 6and Figure 7 show the ontours respetively of the �elds (Ex; Ey ; Ez) and (Hx; Hy; Hz) forthe exat and P1-DG solutions in the ut plane x+ y + z = 1:5.
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A Disontinous Galerkin FVTD method for 3D Maxwell equations 23
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Figure 3: P1-DG, P0, and exat solutions: zoom after ten periods (omponent Ez).
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Figure 4: L2-error on (E;H) for P1-DG and P0 approximate solutions in funtion of thetime.
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A Disontinous Galerkin FVTD method for 3D Maxwell equations 25
P1-DG

Ex,  min = -0.7667,  max = 0.7667

exact

Ex,  min = -0.7797,  max = 0.7797

P1-DG

Hz,  min = -0.3379,  max = 0.3350

exact

Hz,  min = -0.3599,  max = 0.3599Figure 5: P1-DG and exat solutions: Ex and Hz ontours in plane z = 0.
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26 Piperno & Fezoui
P1-DG

Ex,  min = -0.4851,  max = 0.4849

exact

Ex,  min = -0.4949,  max = 0.4947

P1-DG

Ey,  min = -0.0011,  max = 0.0011

exact

Ey,  min = 0,  max = 0

P1-DG

Ez,  min = -0.4849,  max = 0.4851

exact

Ez,  min = -0.4947,  max = 0.4949Figure 6: P1-DG and exat solutions: (Ex; Ey; Ez) ontours in plane x+ y + z = 1:5.INRIA



A Disontinous Galerkin FVTD method for 3D Maxwell equations 27
P1-DG

Hx,  min = -0.0385,  max = 0.3350

exact

Hx,  min = -0.0423,  max = 0.3599

P1-DG

Hy,  min = -0.6710,  max = 0.0760

exact

Hy,  min = -0.7197,  max = 0.0845

P1-DG

Hz,  min = -0.0385,  max = 0.3350

exact

Hz,  min = -0.0423,  max = 0.3599Figure 7: P1-DG and exat solutions: (Hx; Hy; Hz) ontours in plane x+ y + z = 1:5.RR n° 4733



28 Piperno & Fezoui6.2 The spherial avityWe hoose here to ompute the lowest (0; 1; 1) TE mode in a spherial avity of radius 1m. The resonant frequeny is 0.21 GHz and the mesh is made of 82000 tetrahedra and15000 nodes whih orresponds to an average of 12 points per wavelength. We ompare onFigure 8 the time evolution of the Hz omponent of the exat and omputed magneti �eldduring seven periods. One may see again that the two solutions ompare very well. These
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Figure 8: P1-DG approximate solution vs. exat solution: �rst seven periods (omponentHz).solutions are ompared to the P0 approximate solution on Figure 9 and the gain in aurayin favour of the P1-DG solution is obvious. Figure 10 shows ontours of the omputed andexat magneti �eld respetively in the plane z = 0.7 ConlusionWe presented a new formulation of a P1 Disontinuous Galerkin method applied to the timedomain Maxwell's equations. One may say that it is a simpli�ed formulation when it isompared with the methods found in the literature (see [1℄ for example). The new methodmay also be viewed as a straightforward extension of a entered �nite volume sheme asthe one introdued in [5℄. We proved that the method is stable under a CFL like onditionINRIA
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Figure 9: P1-DG, P0, and exat solutions: zoom after �ve periods (omponent Hz).
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30 Piperno & Fezouiand also that a disrete energy is onserved. Some numerial simulations were performedand the results ompared with the analyti solutions. One an notie that the numerialresults are enouraging, beause good auray is obtained with few points per wavelength.Higher order of auray in time (possibility of a fourth-order aurate sheme onservingan energy) and in spae (why not try P2 basis funtions) might lead to interesting results.However, due to the limitation on the time-step and the high number of degrees of freedom(24 times the number of ells for tetrahedra and P1 DG), the method may be onsidered asvery ostly in time an memory when ompared to the �nite volume sheme for example butfortunately the method is highly parallelizable and we expet a very good e�ieny. At thesame time, the DG methods are very �exible, sine the funtional basis is loal in eah �nitevolume or element. One an imagine to restrit the P1-DG method to some loal zones withomplex isolines and use a P0 method or even a Yee sheme in the vauum for example.Another possibility would be to adaptively restrit some degrees of freedom in partiularsub-domains.Referenes[1℄ B. Cokburn, G. E. Karniadakis, and C.-W. Shu, editors. Disontinuous Galerkin meth-ods. Theory, omputation and appliations., volume 11 of Leture Notes in ComputationalSiene and Engineering. Springer-Verlag, Berlin, 2000.[2℄ S. Piperno. L2-stability of the upwind �rst order �nite volume sheme for the maxwellequation in two and three dimensions on arbitrary unstrutured meshes. RAIRO Modél.Math. Anal. Numér., 34(1):139�158, 2000.[3℄ S. Piperno, M. Remaki, and L. Fezoui. A non-di�usive �nite volume sheme for the 3dmaxwell equations on unstrutured meshes. SIAM J. Numer. Anal., 39(6):2089�2108,2002.[4℄ M. Remaki. A new �nite volume sheme for solving Maxwell's system. COMPEL,19(3):913�931, 2000.[5℄ M. Remaki and L. Fezoui. Une méthode de Galerkin Disontinu pour la résolutiondes équations de Maxwell en milieu hétérogène. Tehnial Report RR-3501, INRIA,September 1998.
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A Disontinous Galerkin FVTD method for 3D Maxwell equations 31
P1-DG

Ex,  min = -1.108,  max = 1.108

exact

Ex,  min = -1.143,  max = 1.143

P1-DG

Ey,  min = -1.109,  max = 1.109

exact

Ey,  min = -1.143,  max = 1.143

P1-DG

Hz,  min = -0.8242,  max = 2.453

exact

Hz,  min = -0.8131,  max = 2.424Figure 10: P1-DG and exat solutions: Ex, Ey , and Hz ontours in plane z = 0.RR n° 4733
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