ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMAIQUE

A centered Discontinuous Galerkin Finite Volume
scheme for the 3D heterogeneous Maxwell equations
on unstructured meshes

Serge Piperno — Loula Fezoui

N° 4733
Février 2003

THEME 4

apport
derecherche







SOPHIA ANTIPOLIS

% I N R I A

A centered Discontinuous Galerkin Finite Volume
scheme for the 3D heterogeneous Maxwell equations on
unstructured meshes

Serge Piperno , Loula Fezoui*

Théme 4 — Simulation et optimisation
de systémes complexes
Projet Caiman

Rapport de recherche n°® 4733 — Février 2003 — 31 pages

Abstract: A Discontinuous Galerkin method is applied here to the numerical solution of
the time-domain Maxwell’s equations on unstructured meshes. The method relies on the
choice of a local basis of functions, a centered mean approximation for the surface integrals
and a second-order leap-frog scheme for advancing in time. The method is proved to be
stable for a large class of basis functions and a discrete analog of the electromagnetic energy
is also conserved.

Key-words: electromagnetism, finite volume methods, discontinuous Galerkin, centered
fluxes, leap-frog time scheme, L? stability, unstructured meshes, absorbing boundary condi-
tion

* CERMICS, INRIA, BP93, F-06902 Sophia-Antipolis Cedex, Serge.Piperno@sophia.inria.fr

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis € ¢Beance)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65



Un schéma en volumes-finis non-structurés centré de
type Glerkin discontinu pour la résolution des équations
de Maxwell tridimensionnelles en milieu hétérogéne

Résumé : Nous présentons une nouvelle méthode de Galerkin Discontinue appliquée & la
résolution numérique des équations de Maxwell en maillages non structurés. La méthode
repose sur le choix d’une base locale de fonctions, une formulation centrée pour approcher
les intégrales de surface et un schéma saute-mouton d’ordre deux. Nous montrons que la
méthode conserve une enérgie discréte et une condition suffisante de stabilité est démontrée
pour une large classe de fonctions de base.

Mots-clés : électromagnétisme, volumes finis, Galerkin discontinu, flux centrés, schéma
saute-mouton, stabilité L?, maillage non structuré, condition limite absorbante



A Discontinous Galerkin FVTD method for 8D Mazwell equations 3

1 Introduction

The DG (Discontinuous Galerkin) methods enjoy a renewed favor nowadays and are now
used in many and various applications [1] as people discover the abilities of these methods
to handle complicated geometries and meshes, to achieve a high order of accuracy by simply
choosing suitable basis functions, to allow a wide range for time integration schemes and last
but not least to remain highly parallelizable at the end. Obviously this has a cost in time
and memory on computers especially if we don’t take care of the way the surface integrals
are evaluated and of the time scheme used. So we have already developed a DG method
for the Maxwell equations on triangular meshes using a Gauss quadrature formula and a
three step Runge-Kutta scheme which lead to a very costly scheme hardly extensible to the
three-dimensional case [5].

We present here a new formulation considering the specific characters of the system
to be solved, namely the time domain Maxwell equations. Since we want to preserve the
conservation of the discrete analog of the electromagnetic energy, we choose a leap-frog
scheme for the time integration as it is the case for the Yee scheme which remains the most
used in CEM although its severe restriction to Cartesian grids. We also decide to give up
the Gauss quadrature formula whose complexity and cost grow with the accuracy and the
space dimension and we simply evaluate the surface integrals via a centered mean of tangent
fields on either side of the surface, the fields being projected on the local basis functions.

We dress the outline of the method in the general case in the first section of this paper,
then we analyze the stability of the resulting scheme and the conservation of a discrete energy
in the two following sections. A sufficient stability condition is proved when the system is
provided with one of the two classical boundary conditions, a perfect metallic condition on
a material surface and an absorbing one on the artificial boundary delimiting the numerical
domain. The fourth section deals with the particular case of tetrahedral meshes using the
local Py (piecewise affine) basis functions. The resulting scheme was implemented and some
numerical results are presented and compared with the exact solutions. Let us note that
using piecewise constant functions as a basis (Pg), will result in a centered finite volume
scheme which was already presented and studied [3, 4].

We consider in this paper Maxwell equations in three space dimensions for heterogeneous
anisotropic linear media with no source. The electric permittivity tensor £(x) and the
magnetic permeability tensor fi(z) are varying in space and both symmetric positive definite.
The electric field E = t(EI7 E,, E.) and the magnetic field H = t(Hx7 H,, H,) verify

) SR
58— = I'Otl;.[7
L (1)
_OH B
— = —rotE.
n
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4 Piperno & Fezoui

These equations are set and solved on a bounded polyhedral domain Q of R?. Everywhere
on the domain boundary 9 (of unitary outwards normal 7), a boundary condition is set

which is either metallic (7 x E = 0, on 99,,) or absorbing (7 x E = —cu i x (ﬁ X I-_f),
on 09,, where we assume the medium is isotropic, i.e. £ = ell3 i = pl3 and the local light
speed c is given by euc? = 1). Examples of such frameworks are given on Figure 1).

5%n

80 - 3Q,

RCS of a wing Cavity resonance

Figure 1: Domains 2 and corresponding boundaries.

2 The new Discontinuous Galerkin FVTD method

2.1 Introduction

We assume we dispose of a partition of the polyhedral domain Q into a finite number of
polyhedra (each one having a finite number of faces). For each polyhedron 7;, called "finite
volume" or "cell", V; denotes its volume, and &; and [i; are respectively the local electric
permittivity and magnetic permeability tensors of the medium, which could be varying inside
the cell 7;. We call interface between two finite volumes their intersection, whenever it is a
polyhedral surface. For each internal interface a;, = 7; () 7k, we denote by ;. the integral
over the interface of the unitary normal, oriented from 7; towards 7. The same definitions
are extended to boundary interfaces (in the intersection of the domain boundary 99, |J 99,
with a finite volume), the index k corresponding to a fictitious cell outside the domain. We
denote by rie = t(ﬁim, Tliky, k=) the normalized normals Trip = ik /|| Tk ||-

Finally, we denote by V; the set of indices of the neighboring finite volumes of the finite
volume 7; (having an interface in common). We also define the perimeter P; of 7; by
P; =3 ey, lIflik|l. We have the following geometrical property for all finite volumes,

INRIA



A Discontinous Galerkin FVTD method for 8D Mazwell equations 5

2.2 The spatial discretization

Inside each finite volume, the numerical unknowns of the method are related to the orthog-
onal (in the sense of the classical L? scalar product) projection of the electric and magnetic
fields on a chosen set of vector basis functions J;;,1 < j < d;, where d; denotes the number
of local scalar degrees of freedom inside the finite volume 7;. The approximation is allowed
to be discontinuous across element boundaries.

We now derive the spatial discretization. Taking (1), dot-multiplying by a given basis
function F;;, and integrating over 7; yields

.. _OE .
. PiiSigr = Tift ij )

L _0H o
/ t@ijﬂiﬁ = —/ rotE.Gi;.
7; 7T;

i

]
€

Using the identity rStX.i/? = rSti/?.X — diV(i/; X X), we get

_OE . - R
/ t(ﬁijéi— :/ I‘Ot(ﬁij.H —/ (931] X H).ﬁ,
T ot g, T

. _9H . ..
/ t(pij,u,iﬁ = —/ I‘Ot(pi]'.E +/ (991']' X E)’I’L
T T; :

i

(3)

If we denote by ]*_:",i and IfL- respectively the canonical L?-orthogonal projections of the fields
E and H on Span(@i;, 1 < j < d;) inside the finite volume 7;, verifying the property

viespan(ps, 1<i<d), [ Bup= [ Ba [ fg= [ fa
7T; 7T; 7T; 7T;

then, in equations (3), E; and H; (and their time-derivative) can be directly used to evaluate
volume integrals. For boundary integrals, since no continuity is imposed on the fields, some
additional approximations have to be done. We choose here to use completely centered
fluxes, i.e.

k eV, Yz € ai, E’(x)—> , I‘—i(x)—>

|+
| +

The fields E; and H; are then decomposed the following way:

Vz in 7;, Ei(az,t): Z Ei;(t) Zij(x), ﬁi(%t): Z Hij(t) Bij(z). (4)

1<j<d; 1<j<d;

Inside each control volume, the fields Ei and IfL- can now be represented using a chosen
number of scalar values E;; and H;, for 1 <[ < d;. We will now denote by E; the column

RR n® 4733



6 Piperno & Fezoui

(Eil)lglgdi . Finally, this leads to

eaEl _ - o 13 N ﬁl + I_‘ik -
<Mi ot >j = /Tl rotgoij.Hi - Z (/aik((pij X 72 )nlk>,

kEV;

L (5)
OH; - o . _E, +E; -
<M: W) = — /TL I‘Ot(pij.Ei + Z (/L”k (991']' X T).nm),

J keV;

where the 7 subscripts denote the jth component of vectors, the fields E; and H, are given
in (4) in functions of scalar degrees of freedom, and M{ and M/ are square matrices of size
d;, given by

(M), = / 'GyEidu, 1< 4,1 < d;,
P (6)
(M), = /T GijiPu, 1 < J,l < d;.

It is clear that the matrices M¢ and M! are symmetric and definite positive, because the
tensors &; and fi; are symmetric definite positive, and the basis functions ;; are assumed
linearly independent.

We shall now prove an energy conservation property for the ordinary differential sys-
tem (5) (the semi-discretized in space Maxwell equations). Let us first define the following
electromagnetic energies:

Definition 2.1 We consider the following electromagnetic energies inside each finite volume
and in an arbitrary connected group G of finite volumes:

t —

o o o 1
(i) Vi, E; = %/ (tEiéiEi + HﬂH) =3 (‘E;M{E; + '"H;M!H,),
T;

(i) Bg = ) E;.

1€G
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A Discontinous Galerkin FVTD method for 8D Mazwell equations 7

We aim at evaluating the energy Eg time-derivative. Inside each finite volume, equation (5)
yields:

— B o, M
ot ot T BT

= Z Eij / I“Gt(ﬁ”ﬁl — Z (
T kEV;

1<5<d;

— Z Hl [/7:r6t¢1]E1—

5 ﬁl + ﬁk -
(Fij % T)-nm
ik

I
|
A/
—
=
X
=
K
v |+
=
=
X
Fl
Su
s
~_

In the expression of agitg derived from the definition of Eg, all terms corresponding to in-
terfaces a;; internal to the group G vanish. Only boundary terms are conserved, and this
simply leads to:

08 _ N[, B x Buw) + Bule) x Huto)
ot - o ik - D) .

(7)

faces a;1.

This expression is a discrete version of Poynting’s theorem. We recall here that the elec-
tromagnetic energy £ in the continuous case (Maxwell system with no current) is given by

to_ ot o S
& = 1/2(EEE + HiH), and verifies the following conservation equation: % + divP = 0,
where P is Poynting’s vector given by P=ExH. Integrating the conservation equation
for £ over any closed volume V' with a regular boundary 0V yields Poynting’s theorem:

/a—gdv—l— P.-ids=0.
v ot av

For example, for a given metallic cavity, since E xii =0 at the boundary, Poynting’s theorem
yields that the electromagnetic energy is exactly conserved in the cavity.

RR n® 4733



8 Piperno & Fezoui

2.3 Weak treatment of boundary conditions

The metallic and absorbing conditions are dealt with in a weak sense by taking some values
for the fields E and H inside the fictitious finite volume beyond the boundary face. In
the two cases, a;; denotes a boundary face between a boundary cell V; and its fictitious
neighbour Vj. For an absorbing boundary face a;;, the fictitious discrete values will be
detailed in the sequel. For a metallic boundary face a;i, we use fictitious discrete values Ey;
and Hy;, for 1 < j < dj, such that

o Vx € a, ﬁk(x) = ﬁl(x) (continuity of the magnetic field through a;;),

o Vi € ay,, Ep(z) = —Ej(z) (ie. Ei(z)+ Ex(z) =0). ®)

If only metallic boundary conditions are used the energy is exactly conserved, as stated by
the following lemma.

LeEMMA 2.1 For solutions of the semi-discretized Mazwell equations (5) with metallic bound-
aries only (the values given in (8) are used), the discrete electromagnetic energy defined in

Definition (2.1) for the whole finite volume partition G is exactly conserved, i.e. <% = 0.

Proof: This is a direct consequence of (7) where all boundary faces a;; are metallic and
verify E;(z) + Ex(z) = 0 and H;(z) = Hy(z).

2.4 The time discretization

We propose to use a leap-frog time discretization. This kind of time scheme has both
advantages to be explicit and to be free of time-dissipation. In the sequel, superscripts refer
to time stations and At is the fixed time-step. The unknowns related to the electric field
are approximated at integer time-stations {"™ = nAt and are denoted by E7:. The unknowns
related to the magnetic field are approximated at half-integer time-stations ™ *? = (n +
1/2)At and are denoted by H,; "*. All definitions for E}, H} "7, E?, and H'*? are
similarly extended. The time scheme directly derives from equation (5) and can be written:

En+1 — E? = 2n12 - I—-in+12 + I—-i’rnl+12 =
MiZ——— 1) = /rotgoij.Hi V2 Z / (Fij x ——r—E—NAi,, (9)
At j T kev; ik 2
HP %% _ g T L U EMTLLET L
(Mf‘#) = —/Trotgoij.E?H + Z / (Fij x %).mk- (10)
J i key; ¥ dik

For the treatment of boundary conditions, the fictitious values of fields are simply de-
duced from previous expressions (in the time-continuous case). For example, for a metallic
boundary face a;, we use

METALLIC BOUNDARY:  Vz € ay, By(z) = —EX(z), H} "*(z) = H (). (11)

For absorbing boundary conditions, this will de detailed in a specific scheme in section 4.

INRIA



A Discontinous Galerkin FVTD method for 8D Mazwell equations 9

3 A sufficient stability condition for metallic cavities

We aim at giving and proving a sufficient condition for the L2-stability of the new Galerkin-
Discontinuous scheme (9-10) with only metallic boundary conditions. We use the same kind
of energy approach as in [2], where a quadratic form plays the role of a Lyapunov function
of the whole set of numerical unknowns.

3.1 A discrete energy

We first propose the following discrete energies, directly derived from Definition 2.1 :

Definition 3.1 For a complete polyhedral finite volume partition G of the domain Q@ with
only metallic boundary conditions (002 = 9, ), we consider the following electromagnetic
energies inside each finite volume and in the whole domain:
6 vi, B =3 [ (BB ) = L (B H M),
T;
(ii) B* = > E}.
i€g

It is absolutely not obvious why the discrete energy E™ should be a positive definite
quadratic form of all numerical unknowns We notice here that the situation is quite different
from the proof of the L2-stability of the first-order upwind finite-volume scheme of [2], where
the energy was obviously a positive definite quadratic form of all unknowns. At the same
time, the energy proposed here depends explicitly on the numerical scheme, since it can be
only written as a quadratic form of all unknowns (E?, H!""?) through the use of the second
part of the scheme (9-10) with metallic boundary values (11).

In the following, we shall prove that the proposed energy is conserved through a time
step and that it is a positive definite quadratic form of all unknowns under a CFL-
like condition on the time-step At. This will yield the proof that the scheme (9-10) with
metallic boundary values (11) is L2-stable under a condition on At.

3.2 Conservation of the discrete energy

LEMMA 3.1 Using the scheme (9)-(10) for an arbitrary connected group G of finite volumes,
the variation during one time step of the discrete electromagnetic energy inside the group,
defined in Definition 3.1 is given by

Egtt = E§ + At

bouid:m”y< - E;(L+1/2(x) % I:I’Zﬂ/e(x) + EZ+1/2(33) % I?I?“/Q(a:))
Nik. )
2
@ik

faces a;y,

with the convention B™***(z) = (Er(z) + B (x))/2.

RR n® 4733



10 Piperno & Fezoui

Proof: The ordinary differential system (5) can be formally seen as a system of the form

Xn+1 —_Xn
SE—— T =Uyne
At ’
Yy ntsz _ yntiz
T— = VX",
At

where S and T are squared symmetric definite positive matrices, and U and V are rectangular
matrices. The discrete electromagnetic energy inside the group, defined in Definition 3.1 is
also equal to F™ = (X"SX™ + 'Yy " 1?)/2. It is elementary to prove that
Frtl — pn + At tyn+12 (V —f—tU) X nt1e
)
with X2 = (X" + X"*1)/2, which leads after rewriting to the result of the lemma.

LEMMA 3.2 Using the scheme (9)-(10)-(11), the total discrete electromagnetic energy de-
fined in Definition 3.1 is exactly conserved, i.e. E*t! = E".

Proof: This is a direct consequence of Lemma 3.1 for the ordinary differential system (5)-(8),
because all boundaries are metallic (the proof is as simple as the one in the time-continuous
case).

3.3 Definite positivity of the discrete energy

In order to prove that our scheme is stable, we finally show that the discrete energy E",
under some stability condition on At, is a positive definite quadratic form of the numerical
unknowns H}""* and E?. This will lead to the stability result of this section. We first need
some elementary definitions.

Definition 3.2 Since the basis functions @;5, 1 < j < d; are linearly independent, and since
the tensors & and fi; are symmetric positive definite, there exists two positive constants €;
and p; such that

— = . to>_ =2 3112 to_ o2 112
VX € Span(@ij, 1 <j<d;), | X&X>¢€|X|7, | XiiX > il X7, (12)
T; T;

X[

We have denoted by || X||7. the L? norm of the vector field X over T;, i.e. ||X||QTI =/
The same notation will also be used for L norm of vector fields over interfaces ;.

Definition 3.3 We also assume some regularity of the basis functions @;;, 1 < j < d;.
More precisely, we assume that for any finite volume T;, there exists constants c; and B
(k € V;) such that

OéiPi
Vi

vX € Span(@ij, 1<j<d;), |roX|r < =Xz, (13)

ik —

= " : = Birlliikll | <
VK € Span(@y, 1< <d) KN, < 2T gy (14)

INRIA



A Discontinous Galerkin FVTD method for 8D Mazwell equations 11

LeEMMA 3.3 Using the scheme (9)-(10)-(11), under assumptions of Definitions 3.2 and 3.3,
the local discrete electromagnetic energy E defined in Definition 3.1 verifies,
> aZP At

(3 i

2
ol

At Bkl ikl e 12 Bmllnmﬂ = o

Wi e
8
8

keV;

In the above_expression, if the face a;i, is a metallic boundary face, then we set by convention
1Bl = 1Edll7, [Hellz = 1Hillz, Bei = Bie, Vi = Vi, e = €, and puy, = .
Proof: We get back to the definition of the discrete energy inside a finite volume E!. We

have

1 1
E’Zn = gtE?leE? + EtII?-IZIMiHH?712
1 1 N VAN
= ;E?MEE? + ;H?J"JW{LH[“ — —X”

17

n trrno12 - o5 Tn o ]:j?.{_]:j? -
oo 3 ([t T [ o)
i ik

with

1<5<d; * key;
n-12 @An n-1/2 -’? EZL =
= rotH E! Z H B 4
kEV; 2

1 2 n-1/2 = =
- /(rotH’” E? + rotEr H™ ) -S> / 2% BY).fig.

2

T keVL

In the sequel of this proof, we omit the superscripts n and n-1/2 respectively in electric and
magnetic variables. We have the following identities:

1 b o 1 - N N
X < = tH;.E; - H; % -E;.
x| < Z/T H+2‘/ﬁ 1 k;/\/rnml N
1 - — 1 - = — 1 1223 €L = 2
< §||rotHz—||:n||Ez—||:n + SSBill B+ 5 3 (/2 82,
keV;
Bik || kII\/u < Brall Tl
< SN+ 3 (P P 6

keV; Vi Y Vi Y
This expression is also valid when the considered finite volume has a metallic boundary face,

because of the convention in the lemma and because of (11). To conclude the proof, the
lower bounds in Definition 3.2 yield the result given in the lemma.

RR n® 4733



12 Piperno & Fezoui

LEMMA 3.4 Using the scheme (9)-(10)-(11), under assumptions of Definitions 3.2 and 3.3,
the total discrete electromagnetic energy E™ defined in Definition 3.1 is a positive definite
quadratic form of all unknowns if

. At i 6i>:| 4V,
Vi,Vk € V;, —— |2a; + [Bix max —aa/— ] <
VEilti [ Bt <\/ e\ €x P,

Proof: Following the result of the previous lemma, using the definition of P; = ), -, |||l
we can split E; the following way:

pi  BiueAt/ug\ | 5
> ) Il < <2P- - W) IH: |17,
kEV; [ P k
a@At
H; E; E
S ML B — SR B, ).

At this E;||7. which might
lead to sub-optimal lower bounds for the energy (and then to a slightly too severe stability
limit for the scheme). Anyway, this stability limit is only sufficient, and not really close to
necessary. We use the inequality

H ||z |Eill5 < H E;||%=.
(1 H[| 7 (| E|| 2\/—” \/E_H I7;

We then can sum up the lower bounds for the E; to obtain

internal metallic boundary
E' > Y [l Wi + > 75| Zix, with (15)
faces a;p faces a;p

(& BiuAtye  aAbE (22 i BikAt/ie AL/ 5o
Wi = 55— =17 -~ 1Bz + | 55— - —— ) IHill7, +
2P 8Viyimk Vil 2P, 8Vi/er  4Vi/e
e Brdtyer  apAty/er TR i Brilty/e  ar At/ A
2P, 8ymVi 4V LT \2P, 8Vi/e AN 7
g (& _ Budb/E  aidtye B2 pi BaAtyim aAt /i VL2
w=\ep T sViym | Wi 2R T suve | Ve T

Finally, all quadratic forms are positive definite if

€ BaAtye azAt\/a

. ) 3E T sVivm Wiym
ViK€V § L N e
oF,  SViJer | AViJe

> 0,

INRIA



A Discontinous Galerkin FVTD method for 8D Mazwell equations 13

which is equivalent to the condition given in the lemma. Under that condition, all quadratic
forms are positive definite, and the energy E® as well. The reader can check that this
condition also includes the treatment of metallic boundaries. This result leads the main
result of this section:

THEOREM 3.1 Using the scheme (9)-(10)-(11) on arbitrary finite volumes as described in
this section (with metallic boundary conditions only), under assumptions of Definitions 8.2
and 3.3, the energy E* defined in Definition 3.1 is conserved through iterations. It is also
a positive definite quadratic form of all unknowns (E*, H"?), and therefore the scheme is
L%-stable, if the time step At is such that

. At 1’5 €; )} 4V;
Vi,Vk € V;, —— [2a; + [; max — 1/ <
VEilti [ O <V e\ €x P

(with the convention that k should be replaced by i in the above formula for metallic boundary
interfaces a; ).

REMARK 3.1 CFL nature of this sufficient stability condition.

The above stability condition is CFL-type, as the parameters «; and §;; are dimensionless,
the fraction V;/P; has the dimension of a length and gives an approximate for the local size
of the finite volume, and finally, 1/,/€;/t; has the dimension of a wave speed (it is indeed an
upper bound for the local wave speed in the heterogeneous anisotropic medium).

4 A stable scheme with absorbing boundary conditions

In this section, we deal with absorbing boundary conditions. We aim at proposing some weak
treatment for an absorbing boundary and proving a sufficient condition for the L?-stability of
the new Galerkin-Discontinuous scheme (9-10) with both metallic and absorbing boundaries.
We use again the same energy approach as previously: we show that some discrete energy,
playing the role of a Lyapunov function of the whole set of numerical unknowns under some
positivity condition, is non-increasing.

4.1 Weak treatment of absorbing boundaries

In the following, a first-order Silver-Miiller absorbing condition is used on the absorbing
boundary 092,. We recall we have assumed that the medium is isotropic near the absorbing
boundary 99, (then the permeability and permittivity tensors £ and fi are scalars). Using
the wave speed ¢ = 1/,/u€, the Silver-Miiller absorbing condition can be written

ﬁxE:—cuﬁx(ﬁxH), fixH:ceﬁx(ﬁxE),

RR n® 4733



14 Piperno & Fezoui

where 7 is the outgoing unitary normal. This boundary condition is exact for outgoing plane
waves (with a wave vector collinear with 7). This condition is a first-order approximation,
asymptotically correct when the fictitious absorbing boundary is far enough.

In view of the absorbing boundary condition above, we propose the following fictitious
fields I-_iz "2 and E‘Z“ over an absorbing interface a;; between the real finite volume 7; and
its fictitious neighbour 7 (these fields are used in the scheme (9)-(10) for the absorbing
interface a;i):

12 = "n
ABSORBING BOUNDARY: VYV € aj, { I:.IfH () = ciei ik x Ea(f)l’z (16)
E;. 7 (2) = —cipi i x HY (),

where ¢; = 1/,/i;€; is the local wave speed (recall the medium is assumed isotropic near the
absorbing boundary).

REMARK 4.1 Vaulidity and origin of these absorbing boundary fields.

e these definitions only on a;; of the fictitious fields are sufficient in view of the scheme
written as in (9)-(10) (after time discretization);

e these definitions do not have the same form as the absorbing boundary conditions
above. Anyway, the closer form n; x Hy "*(z) = cie; ng X (7 x EM(x)) (for in-
stance) is equivalent because fictitious fields are always cross-multiplied by the local
normal;

e the reader can check that the fields E?(z) and H"'**(z) are available when the bound-
ary fluxes are needed to advance them in time. One can also notice that the proposed
formulae are time-inconsistent. They probably lead to only first-order accurate ab-
sorbing boundary conditions.

e among many possible choices, the origin of these fluxes is not really obvious. In fact,
these values correspond to upwind fluxes at the absorbing boundary, based on the
hyperbolic nature of the global six-component Maxwell system.

If metallic and absorbing boundary conditions are used, then we can give the variation of
the total electromagnetic energy given in Definition (3.1). This is the result of the following
lemma.

LEMMA 4.1 Using the scheme (9)-(10)-(11)-(16), under assumptions of Definitions 3.2
and 3.3, and assuming the material is isotropic near absorbing boundaries, the variation of
the discrete electromagnetic energy defined in Definition 3.1 through a time-step is given by

bsorbing = B
. . At S, - H4HPT
E 1= E® — 7 Z [ Ci g (nik X HZ +1/2) . (nik X %
faces agp, ¢k
> = . Er+EM!
+Ci€; (’flik X E?) . (’flm X %)] .

INRIA



A Discontinous Galerkin FVTD method for 8D Mazwell equations 15

Proof: This is a direct consequence of Lemma 3.1. We just have to use the definitions of
fictitious fields near absorbing boundaries given in (16) and the result of the lemma is found.
We can point out here that the discrete energy is not anymore conserved (this is natural
since we want waves to go out). It is probably non-increasing for very small time steps, but
some additional work has to be done to prove it is non-increasing for all time steps.

4.2 Definition of a non-increasing corrected discrete energy

We propose to correct the discrete energy E™ proposed in Definition (3.1). Let us then
introduce the local and global corrected discrete energies F;' and F".

Definition 4.1 For a complete polyhedral finite volume partition G of the domain  with
metallic or absorbing boundary conditions, we define the following corrected electromagnetic

energies:

1 L
(i) Vi, F* = _/ (‘Bpady +
2 ),

bsorbing
At
+§ Z / y <Ciui

faces ai.” @
(i) F* = Fr.
1€G

- - 2 - —
ik X H?rl/g — Ci€; |[Tvir X E;L

)

The physical meaning of this corrected discrete energies is not straightforward. Correction
terms are only related to absorbing boundaries (which means that F* = E" if there are
none). The additional terms probably find their origin in the temporal inconsistency of
boundary numerical fluxes. We can now prove that the discrete energy F"* is non-increasing.

LEMMA 4.2 Using the scheme (9)-(10)-(11)-(16), under assumptions of Definitions 3.2
and 3.3, and assuming the material is isotropic near absorbing boundaries, the corrected

discrete energy I defined in Definition 4.1 is non-increasing. More precisely, the variation
AF =F*tt — " s given by

2 2

bsorbing
At
AF=—— > / Cili

faces a;p,” ¢k

- H;L-I/2 + H?+1/2 o E? + E;H»l
Nk X f + Ci€; || X f < 0.

Proof. The proof is elementary. We simply add terms deriving from F* — E*, Frtl — Ertl
and from the result of Lemma 4.1. We have

absorbing
AF = (IEW-H —Ert! ) + (En+1 — En) + (En —IEW) = At Z (CiﬂiAik + CifiBik) , with

faces a; "~ @iF
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1 /> = - ﬁn_lz'l'ﬁnﬂz 12 = 2
(’nm x H” 12). L L ‘ Nik X H?rl’z

A = ‘nmXH?lz —3 : Ay X —————| - ¢
1 o H712+H?+12
= —5 Nik X ( 2 5 and
1 » 1/ a2 (=  Er+EM! Ll =2
B, = —g Nip X E?+1H - = (n@-k X El) Nip X f + g ‘ Nik X Ei
S 2
IR Y P E? + EI'f!
2 ik 2 )

which simply leads to the result of the lemma.

4.3 Definite positivity of the corrected discrete energy

In order to prove that our scheme is stable when used with both metallic and absorbing
boundary conditions, we finally show that the corrected discrete energy F™, under some
stability condition on At, is a positive definite quadratic form of the numerical unknowns
H™'? and EP. This will lead to the stability result of this section.

LeEMMA 4.3 Using the scheme (9)-(10)-(11)-(16), under assumptions of Definitions 3.2
and 3.3, and assuming the material is isotropic near absorbing boundaries, the local discrete
electromagnetic energy B} defined in Definition 4.1 verifies,

€= [TE . a; PiAL | - -
F > éllEiHZTnLEZHHJ%— 12{/1_ IH:ll7 |1 E:ll 7,
At Biellill vz n2 L Brill@inll = 2
- ——||H;||57 + ———||Ex .
s ;( v IHillz + == B,

In the above expression, if the face a;, is a boundary face, then we set by convention
1Bkl = 1Edllz, Hellz = 1Hillz, Bei = Bie, Vi = Vi, e = €, and puy, = pui.
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Proof: We get back to the definition of the corrected discrete energy inside a finite volume
F?. We have

1 1 5 1
F o= 5'E{ME} + 3 HIUMIHL
bsorbi
Ata sor mg T Nt
+? Cilb; nlk X H — C;€; k X E
faces @i
1 . , At At .
= _tE;LM;E;L H’”-M”H”1 - —XI'+ —Y”, with
2 2 8
absorblng 9 9
Y = / <cl,ul ik X Hn V2 e T x En >
faces a;z
P B . Er+Ep
X? = Z Hi]- 1, (/ rOthij.E? — Z / (@ij X Tk).nik>
1<j<d; T key; ¥ @ik
E" + Er
- /rotH””E” Z/ (H2x 2~k J; kY i
kEV; -
1 > XIn-12 @n - Hn fFn-12 1 n-12 ony =
= 2 (xtEy > By + rotEy H ) - S [ @B
T kev; ¥ o
1 1 internal
- 5/ (rtE; By +rGtBrHI™) =5 Y [ (H < B
“T faces a; ik
1 metallic 1 absorbing
+§ Z (I‘I?l2 X E?)’fllk — 5 Z (I‘I?l2 X Ez’)’fllk
faces a;,” 4% faces a;y,” ik

Combining terms in X7* and Y} deriving from absorbing boundary faces, we get

1 1 At - o .
Fy o= 'EPME] + SHVMUH] - T/ (xSt} By + rotEy H )
’]'IE
i 1 metallic
At internal o . . At Lo . .
-f—Z Z (Hii1~ X EZ)TLM — T Z (Hirl’_ X E?)nlk
faces a;)” ik faces a; ik
absorbmg
At n-1/2 n
_§ Cillg nzk X H + Ci€; 7,k X E
faces a;y,
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In the sequel of this proof, we omit the superscripts n and n-1/2 respectively in electric and
magnetic variables. We have the following lower bound:
AtaiPi
2v;
At Bikllar || /11 | 5 Brillin |l vVer o
<7IIH1‘II% + = [E||7, ) -
kEV;

(18| [ B4 |

7 -

€ = . AT
B> GBI + S -

8 Viver Ve/Tii

8
This expression is valid for all finite volumes, because of the conventions in the lemma and
because of the treatments of boundary conditions (11) and (16). This concludes the proof
of the lemma.

LEMMA 4.4 Using the scheme (9)-(10)-(11)-(16), under assumptions of Definitions 3.2
and 3.3, and assuming the material is isotropic near absorbing boundaries, the corrected total
discrete electromagnetic energy F* defined in Definition 4.1 is a positive definite quadratic
form of all unknowns if

At [ [e 4V;
Vi, Vk € V;, —— |:20éi + (i1 max < u—, 6—>:| < .
JEilli e\ €k P;

Proof: The proof is exactly the same as in the metallic case. Under the condition of the
lemma (which is the same as in the metallic case), the corrected energy is positive definite.
We get the following stability result.

THEOREM 4.1 Using the scheme (9)-(10)-(11)-(16) on arbitrary finite volumes as described
in this section, under assumptions of Definitions 8.2 and 3.3, and assuming the material
is isotropic near absorbing boundaries, the corrected energy F™ defined in (4.1) is non-
increasing through iterations. It is also a positive definite quadratic form of all unknowns
(E?, H!""*), and therefore the scheme is L*-stable, if the time step At is such that

. At 1’5 €; )} 4V;
Vi,Vk € V;, —— |2a; + [ max —/— <
VEilki [ O <V e\ e P;

(with the convention that k should be replaced by i in the above formula for metallic boundary
interfaces ;).

5 Particular cases on tetrahedral meshes

5.1 Classical finite volumes on tetrahedral meshes

For tetrahedral discretizations of the computing domain, a classical finite volume scheme
based on a leap-frog time-scheme and centered fluxes has been proposed [3]. This work is a
particular case of the more general formulation proposed in this paper, with the following
particular choices:
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e the finite volumes are the tetrahedra themselves;

e for each field, three basis functions have been chosen, which are the constant vector
fields €, €, and €. Therefore, we have Vi € G, d; = 3;

e the material is heterogeneous, isotropic, with constant electromagnetic parameters
inside each finite volume (i.e. Vo € 7;, &;(x) = &1, fa;(x) = @;1);

e metallic and absorbing boundary conditions are enforced in a weak sense, with the
same choices for boundary fluxes.

For this particular choices, in the general framework proposed in this paper, the material is
indeed isotropic near absorbing boundaries and assumptions of Definitions 3.2 and 3.3 are
verified with

e Vie g, a; =0;
o Vie(, € =&, pi = [i;;
e Vic G VEEYV;, Bi=1,

With these parameters, Theorems 3.1 and 4.1 imply that the finite volume method proposed
in [3] has a decreasing discrete corrected total electromagnetic energy, which is a positive
definite quadratic form of all unknowns, and therefore the scheme is stable, if

Vi vk € Vi, —or [max (Jﬂ,,/i)] <Y
VEilti i\ €x P

This condition is equivalent to

V boundary interface a;;,, At < 4\/€;u;V;/P;,
V internal interface a;,, At < 4min (\/€;1k,/fri€x) min (V;/P;, Vi, /Py) ,

which is slightly more severe than the condition obtained in the less general context of [3],
which is equivalent to

V boundary interface a;,, At < 4\/€;1;V;/ P,
V internal interface a;,, At < 4min (v/€pir, Vitier) / (Vi) P;).(Vi/ Py).

5.2 A P;-DG FVTD method on tetrahedral meshes

Inside each tetrahedron, the basis vector fields are simply P, fields inside the tetrahedron.
This leads to twelve degrees of freedom for each field inside each tetrahedron (three compo-
nents times four P; scalar basis functions). Therefore, we have Vi € G, d; = 12; Different
choices can be made concerning the P; basis functions inside tetrahedra. We have tried two
different implementations where, inside tetrahedron 7;, the Py basis vector fields were of the
form @;(x) = pij(x).€, (where &, is €, €, or €,), where the ¢;; are
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20 Piperno & Fezoui

e cither the IP; scalar basis functions equal to 0 on a;; and 1 on the other vertex;
e or the IP; scalar basis function equal to 1 on a;; and -1 on the other vertex.

In both cases, We have chosen to limit a first implementation where the material is homoge-
neous and isotropic inside each tetrahedron. Because of this simple choice, for both choices
of IP; basis functions considered, exact integrations were performed for volume integrals over
tetrahedra and surface integrals over interfaces. The second choice was considered because
exact surface integrals at first sight were less CPU-expensive using Gauss quadrature rules
based on values on the centers of edges.

LeMMA 5.1 For both choices, assumptions of Definitions 3.2 and 3.3 are verified with the
same values (because the span of both families of basis fields are identical), which are:

9 b ’

(i) Vi € G,Vk € Vi, Bir =8/3;

(i) Vie G, a? =

Proof: Let us consider the standard P scalar basis functions ¢;; (equal to 0 on a,; and 1
on the other vertex). We have the following elementary integrals:

/T@ij%'j' = (14 0;57)Vi/20,

/ iy = (1= 85)(1 = By )1+ 857l /12

i

—

1) derives from the fact that if a P; vector field writes X = Xi; @i, then we have
J J

JEVi

2 Vi > . .
X[ > 2 Z | X;;|* because of the first equation above. At the same time,

JEV:
2 2
7|12 1 — T Piz ||ﬁij|| 2 v
lrotXllz, = 5y Yoty x Xy | = o B i X Xij
v \Jjevi b \jev: !
p? sl (= N o B - 2 2
Sy p (e Ke) < gumaaa 3 1%l
ASR 4 JeVi

Then the first assumption of Definitions 3.3 is verified for a; given in the lemma.
(7i) derives from the fact that 3;; should be the smallest constant such that

< 3Bk
- 5

o O O O
== N O
=N = O
N == O
— =N
i
=N =
N — = =
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which leads to B, = 8/3.

These results lead to the following sufficient stability condition for our P; Discontinuous
Galerkin FVTD method on unstructured tetrahedral meshes:

At 4v/5 ey (|75 8 i i 4V;
NV P e 1l | 8 (I Fe_>] W
Giﬂi[ 3 Pl' 3 Hj €5 J Pl'

REMARK 5.1 A simplified version for heterogeneous media.

It is easy to see that max;ey, (||7:5]]) < Pi/2 because if |75, || = max;ey, (||7:5]]), then
P—|lill = > Mgl > | Y gl =1 =il = lits, .
JEVi,j#Jo JEVi,j#J0

Then the stability limit can be simplified into

At 45 8 i i 4V;
Vi,Vj €V, ——— —\/_+—rnax< Hi i) <
Ve |3v2 3 i\ € P;

REMARK 5.2 Comparison with classical finite volumes for homogeneous media.

For homogeneous media, the above stability condition reduces to

At |45 8 4V;
Vi,VjeV, — |—=+ = ==,
’ VER: [3v2 3] T B

This means that, theoretically, the limit possible time step for our IP; Discontinuous Galerkin
FVTD method on unstructured tetrahedral meshes will be smaller than the limit time step

admissible with classical finite volumes by a factor of % + %, roughly equal to 4.7. We can

notice that if tetrahedra are assumed quite equilateral, then max;ey, (||7i;]|) ~ P;/4 and the
reduction factor is theoretically close to 4.1.

6 Numerical results
We select two resonant cavities, a cubic one and a spherical one, since the exact solutions

are known for these geometries allowing us to appreciate the numerical results at any point
and time in the cavity.
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6.1 The cubic cavity

We compute the (1,1,1) mode which is a standing wave of 0.260 GHz frequency in a cube
of 1 m of side. We use an unstructured grid of 16464 tetrahedra and 3375 nodes which gives
13 points per wavelength. We plot on Figure 2 the time evolution at a fixed point in the
cavity of the z-component of the electric field during twelve periods. One can see that the
Discontinuous Galerkin (P;-DG) solution compares well with the exact one. The Figure 3

04 Electric field component Ez

P1:DG —
Xact
0.3} i

0.2}

0.1}

_0_4 1 1 1 1 1
0 2 4 6 8 10 12

Figure 2: P1-DG, Py, and exact solutions: first twelve periods (component E.).

shows a zoom on the last two periods of the P1-DG and exact fields with now the Py (finite
volume) solution which obviously has a higher rate of dispersion error. Let us recall that the
finite volume scheme has the same order of dispersion error as the Yee scheme [5]. The overall
L?-error on the electromagnetic field (E, H) of the P;-DG and P, approximate solutions are
plotted on Figure 4. The errors are increasing in time because of the dispersion and the
level of dispersion is a lot smaller for the P;-DG method. Figure 5 shows the contours of the
E, and H, components for the exact and P;-DG solutions in the cut plane z = 0. Figure 6
and Figure 7 show the contours respectively of the fields (Ey, Ey, E.) and (H,, Hy, H) for
the exact and P;-DG solutions in the cut plane x +y + z = 1.5.
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04 Electric field component Ez

P1-DG —

10 105 11 115 12

Figure 3: P;-DG, Py, and exact solutions: zoom after ten periods (component E.).
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(E,H) L2 error
0.18 . ; .

' P1-DG —
0.16 | PO

0.14
0.12

0.1
0.08
0.06
0.04 ¢

0.02| |
o it -

0 2 4 6 8 10 12

Figure 4: L?-error on (E,H) for P;-DG and P, approximate solutions in function of the
time.
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P1-DG

Ex, min =-0.7667, max = 0.7667

Ex, min=-0.7797, max = 0.7797

P1-DG

Hz, min =-0.3379, max = 0.3350

exact

Hz, min =-0.3599, max = 0.3599

Figure 5: P;-DG and exact solutions: E, and H, contours in plane z = 0.
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P1-DG

e

Ex, min =-0.4851, max = 0.4849

exact

Ex, min =-0.4949, max = 0.4947

P1-DG

Ey, min =-0.0011, max = 0.0011

exact

Ey, min=0, max=0

P1-DG

Ez, min =-0.4849, max = 0.4851

exact

Ez, min =-0.4947, max = 0.4949

Figure 6: P;-DG and exact solutions: (E;, Ey, E.) contours in plane x +y + z = 1.5.
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P1-DG

\ 3

<

Hx, min =-0.0385, max = 0.3350

exact

\

=

Hx, min =-0.0423, max = 0.3599

P1-DG

Hy, min =-0.6710, max = 0.0760

exact

et

Hy, min =-0.7197, max = 0.0845

P1-DG

g

—

Hz, min =-0.0385, max = 0.3350

exact

£

=

Hz, min =-0.0423, max = 0.3599

Figure 7: P;-DG and exact solutions: (H,, Hy, H.) contours in plane x +y + z = 1.5.
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6.2 The spherical cavity

We choose here to compute the lowest (0,1,1) TE mode in a spherical cavity of radius 1
m. The resonant frequency is 0.21 GHz and the mesh is made of 82000 tetrahedra and
15000 nodes which corresponds to an average of 12 points per wavelength. We compare on
Figure 8 the time evolution of the H, component of the exact and computed magnetic field
during seven periods. One may see again that the two solutions compare very well. These

r Magnetic field component Hz

F;l- R
exaqat —

0.5 .

-1.5

0 2 4 6 8 10

Figure 8: P;-DG approximate solution vs. exact solution: first seven periods (component
H,).

solutions are compared to the Py approximate solution on Figure 9 and the gain in accuracy
in favour of the P;-DG solution is obvious. Figure 10 shows contours of the computed and
exact magnetic field respectively in the plane z = 0.

7 Conclusion

We presented a new formulation of a P; Discontinuous Galerkin method applied to the time
domain Maxwell’s equations. One may say that it is a simplified formulation when it is
compared with the methods found in the literature (see [1] for example). The new method
may also be viewed as a straightforward extension of a centered finite volume scheme as
the one introduced in [5]. We proved that the method is stable under a CFL like condition
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Magnetic field component Hz

15 . . . . .
P1-DG —
exact —
1 PO —

7 75 8 85 9 95 10

-1.5

Figure 9: P;-DG, Py, and exact solutions: zoom after five periods (component H.).
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and also that a discrete energy is conserved. Some numerical simulations were performed
and the results compared with the analytic solutions. One can notice that the numerical
results are encouraging, because good accuracy is obtained with few points per wavelength.
Higher order of accuracy in time (possibility of a fourth-order accurate scheme conserving
an energy) and in space (why not try P2 basis functions) might lead to interesting results.
However, due to the limitation on the time-step and the high number of degrees of freedom
(24 times the number of cells for tetrahedra and P; DG), the method may be considered as
very costly in time an memory when compared to the finite volume scheme for example but
fortunately the method is highly parallelizable and we expect a very good efficiency. At the
same time, the DG methods are very flexible, since the functional basis is local in each finite
volume or element. One can imagine to restrict the P;-DG method to some local zones with
complex isolines and use a Py method or even a Yee scheme in the vacuum for example.
Another possibility would be to adaptively restrict some degrees of freedom in particular
sub-domains.
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P1-DG

Ex, min=-1.108, max = 1.108

exact

Ex, min =-1.143, max = 1.143

P1-DG

Ey, min =-1.109, max = 1.109

exact

Ey, min =-1.143, max = 1.143

P1-DG

Hz, min =-0.8242, max = 2.453

exact

Hz, min=-0.8131, max = 2.424

Figure 10: P;-DG and exact solutions: E,, E,, and H_ contours in plane z = 0.
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