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Un s
héma en volumes-�nis non-stru
turés 
entré detype Glerkin dis
ontinu pour la résolution des équationsde Maxwell tridimensionnelles en milieu hétérogèneRésumé : Nous présentons une nouvelle méthode de Galerkin Dis
ontinue appliquée à larésolution numérique des équations de Maxwell en maillages non stru
turés. La méthoderepose sur le 
hoix d'une base lo
ale de fon
tions, une formulation 
entrée pour appro
herles intégrales de surfa
e et un s
héma saute-mouton d'ordre deux. Nous montrons que laméthode 
onserve une enérgie dis
rète et une 
ondition su�sante de stabilité est démontréepour une large 
lasse de fon
tions de base.Mots-
lés : éle
tromagnétisme, volumes �nis, Galerkin dis
ontinu, �ux 
entrés, s
hémasaute-mouton, stabilité L2, maillage non stru
turé, 
ondition limite absorbante



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 31 Introdu
tionThe DG (Dis
ontinuous Galerkin) methods enjoy a renewed favor nowadays and are nowused in many and various appli
ations [1℄ as people dis
over the abilities of these methodsto handle 
ompli
ated geometries and meshes, to a
hieve a high order of a

ura
y by simply
hoosing suitable basis fun
tions, to allow a wide range for time integration s
hemes and lastbut not least to remain highly parallelizable at the end. Obviously this has a 
ost in timeand memory on 
omputers espe
ially if we don't take 
are of the way the surfa
e integralsare evaluated and of the time s
heme used. So we have already developed a DG methodfor the Maxwell equations on triangular meshes using a Gauss quadrature formula and athree step Runge-Kutta s
heme whi
h lead to a very 
ostly s
heme hardly extensible to thethree-dimensional 
ase [5℄.We present here a new formulation 
onsidering the spe
i�
 
hara
ters of the systemto be solved, namely the time domain Maxwell equations. Sin
e we want to preserve the
onservation of the dis
rete analog of the ele
tromagneti
 energy, we 
hoose a leap-frogs
heme for the time integration as it is the 
ase for the Yee s
heme whi
h remains the mostused in CEM although its severe restri
tion to Cartesian grids. We also de
ide to give upthe Gauss quadrature formula whose 
omplexity and 
ost grow with the a

ura
y and thespa
e dimension and we simply evaluate the surfa
e integrals via a 
entered mean of tangent�elds on either side of the surfa
e, the �elds being proje
ted on the lo
al basis fun
tions.We dress the outline of the method in the general 
ase in the �rst se
tion of this paper,then we analyze the stability of the resulting s
heme and the 
onservation of a dis
rete energyin the two following se
tions. A su�
ient stability 
ondition is proved when the system isprovided with one of the two 
lassi
al boundary 
onditions, a perfe
t metalli
 
ondition ona material surfa
e and an absorbing one on the arti�
ial boundary delimiting the numeri
aldomain. The fourth se
tion deals with the parti
ular 
ase of tetrahedral meshes using thelo
al P1 (pie
ewise a�ne) basis fun
tions. The resulting s
heme was implemented and somenumeri
al results are presented and 
ompared with the exa
t solutions. Let us note thatusing pie
ewise 
onstant fun
tions as a basis (P0), will result in a 
entered �nite volumes
heme whi
h was already presented and studied [3, 4℄.We 
onsider in this paper Maxwell equations in three spa
e dimensions for heterogeneousanisotropi
 linear media with no sour
e. The ele
tri
 permittivity tensor ��"(x) and themagneti
 permeability tensor ���(x) are varying in spa
e and both symmetri
 positive de�nite.The ele
tri
 �eld ~E = t(Ex; Ey; Ez) and the magneti
 �eld ~H = t(Hx; Hy; Hz) verify8>><>>: ��"� ~E�t = ~rot ~H;���� ~H�t = � ~rot~E: (1)
RR n° 4733



4 Piperno & FezouiThese equations are set and solved on a bounded polyhedral domain 
 of R3 . Everywhereon the domain boundary �
 (of unitary outwards normal ~~n), a boundary 
ondition is setwhi
h is either metalli
 (~n � ~E = ~0, on �
m) or absorbing (~n � ~E = �
� ~n � �~n� ~H�,on �
a, where we assume the medium is isotropi
, i.e. ��" = �I3 ��� = �I3 and the lo
al lightspeed 
 is given by ��
2 = 1). Examples of su
h frameworks are given on Figure 1).
Ωm
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RCS of a wing Cavity resonanceFigure 1: Domains 
 and 
orresponding boundaries.2 The new Dis
ontinuous Galerkin FVTD method2.1 Introdu
tionWe assume we dispose of a partition of the polyhedral domain 
 into a �nite number ofpolyhedra (ea
h one having a �nite number of fa
es). For ea
h polyhedron Ti, 
alled "�nitevolume" or "
ell", Vi denotes its volume, and ��"i and ���i are respe
tively the lo
al ele
tri
permittivity and magneti
 permeability tensors of the medium, whi
h 
ould be varying insidethe 
ell Ti. We 
all interfa
e between two �nite volumes their interse
tion, whenever it is apolyhedral surfa
e. For ea
h internal interfa
e aik = TiT Tk, we denote by ~nik the integralover the interfa
e of the unitary normal, oriented from Ti towards Tk. The same de�nitionsare extended to boundary interfa
es (in the interse
tion of the domain boundary �
mS �
awith a �nite volume), the index k 
orresponding to a �
titious 
ell outside the domain. Wedenote by ~~nik = t(~nikx; ~niky ; ~nikz) the normalized normals ~~nik = ~nik=k~nikk.Finally, we denote by Vi the set of indi
es of the neighboring �nite volumes of the �nitevolume Ti (having an interfa
e in 
ommon). We also de�ne the perimeter Pi of Ti byPi =Pk2Vi k~nikk. We have the following geometri
al property for all �nite volumes,Xk2Vi ~nik = 0: (2)
INRIA



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 52.2 The spatial dis
retizationInside ea
h �nite volume, the numeri
al unknowns of the method are related to the orthog-onal (in the sense of the 
lassi
al L2 s
alar produ
t) proje
tion of the ele
tri
 and magneti
�elds on a 
hosen set of ve
tor basis fun
tions ~'ij ; 1 � j � di, where di denotes the numberof lo
al s
alar degrees of freedom inside the �nite volume Ti. The approximation is allowedto be dis
ontinuous a
ross element boundaries.We now derive the spatial dis
retization. Taking (1), dot-multiplying by a given basisfun
tion ~'ij , and integrating over Ti yields8>>><>>>: ZTi t~'ij ��"i � ~E�t = ZTi ~rot ~H:~'ij ;ZTi t~'ij ���i � ~H�t = � ZTi ~rot~E:~'ij :Using the identity ~rot ~X:~ = ~rot~ : ~X � div(~ � ~X), we get8>>><>>>: ZTi t~'ij ��"i � ~E�t = ZTi ~rot~'ij : ~H � Z�Ti(~'ij � ~H):~~n;ZTi t~'ij ���i � ~H�t = � ZTi ~rot~'ij : ~E + Z�Ti(~'ij � ~E):~~n: (3)If we denote by ~Ei and ~Hi respe
tively the 
anoni
al L2-orthogonal proje
tions of the �elds~E and ~H on Span(~'ij ; 1 � j � di) inside the �nite volume Ti, verifying the property8~' 2 Span(~'ij ; 1 � j � di); ZTi ~Ei:~' = ZTi ~E:~'; ZTi ~Hi:~' = ZTi ~H:~';then, in equations (3), ~Ei and ~Hi (and their time-derivative) 
an be dire
tly used to evaluatevolume integrals. For boundary integrals, sin
e no 
ontinuity is imposed on the �elds, someadditional approximations have to be done. We 
hoose here to use 
ompletely 
entered�uxes, i.e. k 2 Vi; 8x 2 aik; ~E(x)! ~Ei(x) + ~Ek(x)2 ; ~H(x)! ~Hi(x) + ~Hk(x)2 :The �elds ~Ei and ~Hi are then de
omposed the following way:8x in Ti; ~Ei(x; t) = X1�j�di Eij(t) ~'ij(x); ~Hi(x; t) = X1�j�diHij(t) ~'ij(x): (4)Inside ea
h 
ontrol volume, the �elds ~Ei and ~Hi 
an now be represented using a 
hosennumber of s
alar values Eil and Hil, for 1 � l � di. We will now denote by Ei the 
olumnRR n° 4733



6 Piperno & Fezoui(Eil)1�l�di . Finally, this leads to8>>>><>>>>: �M �i �Ei�t �j = ZTi ~rot~'ij : ~Hi � Xk2Vi Zaik (~'ij � ~Hi + ~Hk2 ):~~nik!;�M�i �Hi�t �j = � ZTi ~rot~'ij :~Ei + Xk2Vi Zaik (~'ij � ~Ei + ~Ek2 ):~~nik!; (5)where the j subs
ripts denote the jth 
omponent of ve
tors, the �elds ~Ei and ~Hi are givenin (4) in fun
tions of s
alar degrees of freedom, and M �i and M�i are square matri
es of sizedi, given by (M �i )jl = ZTi t~'ij ��"i~'il; 1 � j; l � di;(M�i )jl = ZTi t~'ij ���i~'il; 1 � j; l � di: (6)It is 
lear that the matri
es M �i and M�i are symmetri
 and de�nite positive, be
ause thetensors ��"i and ���i are symmetri
 de�nite positive, and the basis fun
tions ~'ij are assumedlinearly independent.We shall now prove an energy 
onservation property for the ordinary di�erential sys-tem (5) (the semi-dis
retized in spa
e Maxwell equations). Let us �rst de�ne the followingele
tromagneti
 energies:De�nition 2.1 We 
onsider the following ele
tromagneti
 energies inside ea
h �nite volumeand in an arbitrary 
onne
ted group G of �nite volumes:(i) 8i; E i = 12ZTi �t~Ei��"i~Ei + t ~Hi���i ~Hi� = 12 �tEiM �iEi + tHiM�i Hi�,(ii) EG =Xi2G E i .

INRIA



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 7We aim at evaluating the energy EG time-derivative. Inside ea
h �nite volume, equation (5)yields: �E i�t = tEiM �i �Ei�t + tHiM�i �Hi�t= X1�j�diEij "ZTi ~rot~'ij : ~Hi � Xk2Vi Zaik (~'ij � ~Hi + ~Hk2 ):~~nik!#� X1�j�diHij "ZTi ~rot~'ij :~Ei � Xk2Vi Zaik (~'ij � ~Ei + ~Ek2 ):~~nik!#= ZTi ~rot~Ei: ~Hi � Xk2Vi Zaik (~Ei � ~Hi + ~Hk2 ):~~nik!� ZTi ~rot~Hi:~Ei + Xk2Vi Zaik(~Hi � ~Ei + ~Ek2 ):~~nik!= 12 ZTi � ~rot~Ei: ~Hi + ~rot~Hi:~Ei�� 12 Xk2Vi �Zaik ~Ei � ~Hk:~~nik��12 ZTi � ~rot~Ei: ~Hi + ~rot~Hi:~Ei�� 12 Xk2Vi�Zaik ~Ek � ~Hi:~~nik�= �Xk2Vi Zaik ~Ei � ~Hk + ~Ek � ~Hi2 :~~nik! :In the expression of �EG�t derived from the de�nition of EG , all terms 
orresponding to in-terfa
es aik internal to the group G vanish. Only boundary terms are 
onserved, and thissimply leads to:�EG�t = � boundaryXfa
es aik Zaik ~~nik: ~Ei(x) � ~Hk(x) + ~Ek(x) � ~Hi(x)2 ! : (7)This expression is a dis
rete version of Poynting's theorem. We re
all here that the ele
-tromagneti
 energy E in the 
ontinuous 
ase (Maxwell system with no 
urrent) is given byE = 1=2(t~E��" ~E + t~H ��� ~H), and veri�es the following 
onservation equation: �E�t + div~P = 0,where ~P is Poynting's ve
tor given by ~P = ~E � ~H. Integrating the 
onservation equationfor E over any 
losed volume V with a regular boundary �V yields Poynting's theorem:ZV �E�t dv + Z�V~P � ~~n ds = 0:For example, for a given metalli
 
avity, sin
e ~E�~~n = 0 at the boundary, Poynting's theoremyields that the ele
tromagneti
 energy is exa
tly 
onserved in the 
avity.RR n° 4733



8 Piperno & Fezoui2.3 Weak treatment of boundary 
onditionsThe metalli
 and absorbing 
onditions are dealt with in a weak sense by taking some valuesfor the �elds ~E and ~H inside the �
titious �nite volume beyond the boundary fa
e. Inthe two 
ases, aik denotes a boundary fa
e between a boundary 
ell Vi and its �
titiousneighbour Vk. For an absorbing boundary fa
e aik, the �
titious dis
rete values will bedetailed in the sequel. For a metalli
 boundary fa
e aik , we use �
titious dis
rete values Ekjand Hkj , for 1 � j � dk su
h that� 8x 2 aik; ~Hk(x) = ~Hi(x) (
ontinuity of the magneti
 �eld through aik);� 8x 2 aik; ~Ek(x) = �~Ei(x) (i.e. ~Ei(x) + ~Ek(x) = ~0): (8)If only metalli
 boundary 
onditions are used the energy is exa
tly 
onserved, as stated bythe following lemma.Lemma 2.1 For solutions of the semi-dis
retized Maxwell equations (5) with metalli
 bound-aries only (the values given in (8) are used), the dis
rete ele
tromagneti
 energy de�ned inDe�nition (2.1) for the whole �nite volume partition G is exa
tly 
onserved, i.e. �EG�t = 0.Proof: This is a dire
t 
onsequen
e of (7) where all boundary fa
es aik are metalli
 andverify ~Ei(x) + ~Ek(x) � 0 and ~Hi(x) � ~Hk(x).2.4 The time dis
retizationWe propose to use a leap-frog time dis
retization. This kind of time s
heme has bothadvantages to be expli
it and to be free of time-dissipation. In the sequel, supers
ripts referto time stations and �t is the �xed time-step. The unknowns related to the ele
tri
 �eldare approximated at integer time-stations tn = n�t and are denoted by Enij . The unknownsrelated to the magneti
 �eld are approximated at half-integer time-stations tn+1/2 = (n +1=2)�t and are denoted by Hn+1/2ij . All de�nitions for Eni , Hn+1/2i , ~Eni , and ~Hn+1/2i aresimilarly extended. The time s
heme dire
tly derives from equation (5) and 
an be written:�M �i En+1i �Eni�t �j = ZTi ~rot~'ij : ~Hn+1/2i � Xk2Vi Zaik(~'ij � ~Hn+1/2i + ~Hn+1/2k2 ):~~nik; (9)�M�i Hn+3/2i �Hn+1/2i�t �j = � ZTi ~rot~'ij :~En+1i + Xk2Vi Zaik(~'ij � ~En+1i + ~En+1k2 ):~~nik: (10)For the treatment of boundary 
onditions, the �
titious values of �elds are simply de-du
ed from previous expressions (in the time-
ontinuous 
ase). For example, for a metalli
boundary fa
e aik, we useMetalli
 boundary: 8x 2 aik; ~Enk (x) = �~Eni (x); ~Hn+1/2k (x) = ~Hn+1/2i (x): (11)For absorbing boundary 
onditions, this will de detailed in a spe
i�
 s
heme in se
tion 4.INRIA



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 93 A su�
ient stability 
ondition for metalli
 
avitiesWe aim at giving and proving a su�
ient 
ondition for the L2-stability of the new Galerkin-Dis
ontinuous s
heme (9-10) with only metalli
 boundary 
onditions. We use the same kindof energy approa
h as in [2℄, where a quadrati
 form plays the role of a Lyapunov fun
tionof the whole set of numeri
al unknowns.3.1 A dis
rete energyWe �rst propose the following dis
rete energies, dire
tly derived from De�nition 2.1 :De�nition 3.1 For a 
omplete polyhedral �nite volume partition G of the domain 
 withonly metalli
 boundary 
onditions (�
 = �
m), we 
onsider the following ele
tromagneti
energies inside ea
h �nite volume and in the whole domain:(i) 8i; Eni = 12ZTi �t~Eni ��"i~Eni + t ~Hn-1/2i ���i ~Hn+1/2i � = 12 �tEni M �iEni + tHn-1/2i M�i Hn+1/2i �,(ii) En =Xi2G Eni .It is absolutely not obvious why the dis
rete energy En should be a positive de�nitequadrati
 form of all numeri
al unknowns We noti
e here that the situation is quite di�erentfrom the proof of the L2-stability of the �rst-order upwind �nite-volume s
heme of [2℄, wherethe energy was obviously a positive de�nite quadrati
 form of all unknowns. At the sametime, the energy proposed here depends expli
itly on the numeri
al s
heme, sin
e it 
an beonly written as a quadrati
 form of all unknowns (Eni ;Hn-1/2i ) through the use of the se
ondpart of the s
heme (9-10) with metalli
 boundary values (11).In the following, we shall prove that the proposed energy is 
onserved through a timestep and that it is a positive de�nite quadrati
 form of all unknowns under a CFL-like 
ondition on the time-step �t. This will yield the proof that the s
heme (9-10) withmetalli
 boundary values (11) is L2-stable under a 
ondition on �t.3.2 Conservation of the dis
rete energyLemma 3.1 Using the s
heme (9)-(10) for an arbitrary 
onne
ted group G of �nite volumes,the variation during one time step of the dis
rete ele
tromagneti
 energy inside the group,de�ned in De�nition 3.1 is given byEn+1G = EnG +�t boundaryXfa
es aik Zaik ~~nik: ~En+1/2i (x)� ~Hn+1/2k (x) + ~En+1/2k (x) � ~Hn+1/2i (x)2 ! ;with the 
onvention ~En+1/2i (x) � (~Eni (x) + ~En+1i (x))=2.
RR n° 4733



10 Piperno & FezouiProof: The ordinary di�erential system (5) 
an be formally seen as a system of the form8><>: SXn+1 �Xn�t = UY n+1/2;T Y n+3/2 � Y n+1/2�t = V Xn+1;where S and T are squared symmetri
 de�nite positive matri
es, and U and V are re
tangularmatri
es. The dis
rete ele
tromagneti
 energy inside the group, de�ned in De�nition 3.1 isalso equal to Fn = (tXnSXn + tY n-1/2TY n+1/2)=2. It is elementary to prove thatFn+1 = Fn +�t tY n+1/2 �V + tU�Xn+1/2;with Xn+1/2 = (Xn +Xn+1)=2, whi
h leads after rewriting to the result of the lemma.Lemma 3.2 Using the s
heme (9)-(10)-(11), the total dis
rete ele
tromagneti
 energy de-�ned in De�nition 3.1 is exa
tly 
onserved, i.e. En+1 = En .Proof: This is a dire
t 
onsequen
e of Lemma 3.1 for the ordinary di�erential system (5)-(8),be
ause all boundaries are metalli
 (the proof is as simple as the one in the time-
ontinuous
ase).3.3 De�nite positivity of the dis
rete energyIn order to prove that our s
heme is stable, we �nally show that the dis
rete energy En ,under some stability 
ondition on �t, is a positive de�nite quadrati
 form of the numeri
alunknowns Hn-1/2i and Eni . This will lead to the stability result of this se
tion. We �rst needsome elementary de�nitions.De�nition 3.2 Sin
e the basis fun
tions ~'ij ; 1 � j � di are linearly independent, and sin
ethe tensors ��"i and ���i are symmetri
 positive de�nite, there exists two positive 
onstants �iand �i su
h that8~X 2 Span(~'ij ; 1 � j � di); ZTit ~X��"i ~X � �ik~Xk2Ti ; ZTit ~X���i ~X � �ik~Xk2Ti : (12)We have denoted by k~XkTi the L2 norm of the ve
tor �eld ~X over Ti, i.e. k~Xk2Ti = RTik~Xk2.The same notation will also be used for L2 norm of ve
tor �elds over interfa
es aik.De�nition 3.3 We also assume some regularity of the basis fun
tions ~'ij ; 1 � j � di.More pre
isely, we assume that for any �nite volume Ti, there exists 
onstants �i and �ik(k 2 Vi) su
h that8~X 2 Span(~'ij ; 1 � j � di); k ~rot~XkTi � �iPiVi k~XkTi ; (13)8~X 2 Span(~'ij ; 1 � j � di); k~Xk2aik � �ikk~nikkVi k~Xk2Ti : (14)
INRIA



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 11Lemma 3.3 Using the s
heme (9)-(10)-(11), under assumptions of De�nitions 3.2 and 3.3,the lo
al dis
rete ele
tromagneti
 energy Eni de�ned in De�nition 3.1 veri�es,Eni � �i2 k~Eik2Ti + �i2 k~Hik2Ti � �iPi�t2Vi k~HikTik~EikTi��t8 Xk2Vi ��ikk~nikkVi k~Hik2Ti + �kik~nikkVk k~Ekk2Tk� :In the above expression, if the fa
e aik is a metalli
 boundary fa
e, then we set by 
onventionk~EkkTk � k~EikTi , k~HkkTk � k~HikTi , �ki � �ik, Vk � Vi, �k � �i, and �k � �i.Proof: We get ba
k to the de�nition of the dis
rete energy inside a �nite volume Eni . Wehave Eni = 12 tEni M �iEni + 12 tHn-1/2i M�i Hn+1/2i= 12 tEni M �iEni + 12 tHn-1/2i M�i Hn-1/2i � �t2 Xni ; withXni = X1�j�di tHn-1/2ij  ZTi ~rot~'ij :~Eni � Xk2Vi Zaik(~'ij � ~Eni + ~Enk2 ):~~nik!= ZTi ~rot~Hn-1/2i :~Eni � Xk2Vi Zaik(~Hn-1/2i � ~Eni + ~Enk2 ):~~nik= 12 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �� 12 Xk2Vi Zaik(~Hn-1/2i � ~Enk ):~~nik:In the sequel of this proof, we omit the supers
ripts n and n-1/2 respe
tively in ele
tri
 andmagneti
 variables. We have the following identities:jXni j � 12 ����ZTi ~rot~Hi:~Ei����+ 12 ����ZTi ~rot~Ei: ~Hi����+ 12 Xk2Vi Zaik 1p�i�k kp�i ~Hi �p�k~Ekk� 12k ~rot~HikTik~EikTi + 12k ~rot~EikTik~HikTi + 14 Xk2Vi�r�i�k k~Hik2aik +r �k�i k~Ekk2aik�� �iPiVi k~HikTik~EikTi + 14 Xk2Vi��ikk~nikkp�iVip�k k~Hik2Ti + �kik~nikkp�kVkp�i k~Ekk2Tk�This expression is also valid when the 
onsidered �nite volume has a metalli
 boundary fa
e,be
ause of the 
onvention in the lemma and be
ause of (11). To 
on
lude the proof, thelower bounds in De�nition 3.2 yield the result given in the lemma.
RR n° 4733



12 Piperno & FezouiLemma 3.4 Using the s
heme (9)-(10)-(11), under assumptions of De�nitions 3.2 and 3.3,the total dis
rete ele
tromagneti
 energy En de�ned in De�nition 3.1 is a positive de�nitequadrati
 form of all unknowns if8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi :Proof: Following the result of the previous lemma, using the de�nition of Pi =Pk2Vi k~nikk,we 
an split E i the following way:Eni � Xk2Vi k~nikk� �i2Pi k~Eik2Ti +� �i2Pi � �ik�tp�i8Vip�k � k~Hik2Ti��i�t2Vi k~HikTik~EikTi � �ki�tp�k8Vkp�i k~Ekk2Tk� :At this point, we 
hoose to use an upper bound for the term k~HikTik~EikTi whi
h mightlead to sub-optimal lower bounds for the energy (and then to a slightly too severe stabilitylimit for the s
heme). Anyway, this stability limit is only su�
ient, and not really 
lose tone
essary. We use the inequalityk~HikTik~EikTi � p�i2p�i k~Hik2Ti + p�i2p�i k~Eik2Ti :We then 
an sum up the lower bounds for the E i to obtainEn � internalXfa
es aik k~nikkWik +metalli
 boundaryXfa
es aik k~nikkZik; with (15)Wik =� �i2Pi� �ik�tp�i8Vip�k � �i�tp�i4Vip�i � k~Eik2Ti +� �i2Pi� �ik�tp�i8Vip�k � �i�tp�i4Vip�i � k~Hik2Ti +� �k2Pk � �ki�tp�k8p�iVk � �k�tp�k4Vkp�k �k~Ekk2Tk+� �k2Pk � �ki�tp�k8Vkp�i � �k�tp�k4Vkp�k �k~Hkk2TkZik =� �i2Pi � �ik�tp�i8Vip�i � �i�tp�i4Vip�i � k~Eik2Ti +� �i2Pi � �ik�tp�i8Vip�i � �i�tp�i4Vip�i � k~Hik2TiFinally, all quadrati
 forms are positive de�nite if8i;8k 2 Vi; 8>><>>: �i2Pi � �ik�tp�i8Vip�k � �i�tp�i4Vip�i > 0;�i2Pi � �ik�tp�i8Vip�k � �i�tp�i4Vip�i > 0;
INRIA



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 13whi
h is equivalent to the 
ondition given in the lemma. Under that 
ondition, all quadrati
forms are positive de�nite, and the energy En as well. The reader 
an 
he
k that this
ondition also in
ludes the treatment of metalli
 boundaries. This result leads the mainresult of this se
tion:Theorem 3.1 Using the s
heme (9)-(10)-(11) on arbitrary �nite volumes as des
ribed inthis se
tion (with metalli
 boundary 
onditions only), under assumptions of De�nitions 3.2and 3.3, the energy En de�ned in De�nition 3.1 is 
onserved through iterations. It is alsoa positive de�nite quadrati
 form of all unknowns (Eni ;Hn-1/2i ), and therefore the s
heme isL2-stable, if the time step �t is su
h that8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi(with the 
onvention that k should be repla
ed by i in the above formula for metalli
 boundaryinterfa
es aik).Remark 3.1 CFL nature of this su�
ient stability 
ondition.The above stability 
ondition is CFL-type, as the parameters �i and �ik are dimensionless,the fra
tion Vi=Pi has the dimension of a length and gives an approximate for the lo
al sizeof the �nite volume, and �nally, 1=p�i�i has the dimension of a wave speed (it is indeed anupper bound for the lo
al wave speed in the heterogeneous anisotropi
 medium).4 A stable s
heme with absorbing boundary 
onditionsIn this se
tion, we deal with absorbing boundary 
onditions. We aim at proposing some weaktreatment for an absorbing boundary and proving a su�
ient 
ondition for the L2-stability ofthe new Galerkin-Dis
ontinuous s
heme (9-10) with both metalli
 and absorbing boundaries.We use again the same energy approa
h as previously: we show that some dis
rete energy,playing the role of a Lyapunov fun
tion of the whole set of numeri
al unknowns under somepositivity 
ondition, is non-in
reasing.4.1 Weak treatment of absorbing boundariesIn the following, a �rst-order Silver�Müller absorbing 
ondition is used on the absorbingboundary �
a. We re
all we have assumed that the medium is isotropi
 near the absorbingboundary �
a (then the permeability and permittivity tensors ��" and ��� are s
alars). Usingthe wave speed 
 = 1=p��, the Silver�Müller absorbing 
ondition 
an be written~~n�E = �
� ~~n� �~~n�H� ; ~~n�H = 
� ~~n� �~~n�E� ;
RR n° 4733



14 Piperno & Fezouiwhere ~~n is the outgoing unitary normal. This boundary 
ondition is exa
t for outgoing planewaves (with a wave ve
tor 
ollinear with ~~n). This 
ondition is a �rst-order approximation,asymptoti
ally 
orre
t when the �
titious absorbing boundary is far enough.In view of the absorbing boundary 
ondition above, we propose the following �
titious�elds ~Hn+1/2k and ~En+1k over an absorbing interfa
e aik between the real �nite volume Ti andits �
titious neighbour Tk (these �elds are used in the s
heme (9)-(10) for the absorbinginterfa
e aik):Absorbing boundary: 8x 2 aik; � ~Hn+1/2k (x) = 
i�i ~~nik � ~Eni (x);~En+1k (x) = �
i�i ~~nik � ~Hn+1/2i (x); (16)where 
i = 1=p�i�i is the lo
al wave speed (re
all the medium is assumed isotropi
 near theabsorbing boundary).Remark 4.1 Validity and origin of these absorbing boundary �elds.� these de�nitions only on aik of the �
titious �elds are su�
ient in view of the s
hemewritten as in (9)-(10) (after time dis
retization);� these de�nitions do not have the same form as the absorbing boundary 
onditionsabove. Anyway, the 
loser form ~~nik � ~Hn+1/2k (x) = 
i�i ~~nik � �~~nik � ~Eni (x)� (for in-stan
e) is equivalent be
ause �
titious �elds are always 
ross-multiplied by the lo
alnormal;� the reader 
an 
he
k that the �elds ~Eni (x) and ~Hn+1/2i (x) are available when the bound-ary �uxes are needed to advan
e them in time. One 
an also noti
e that the proposedformulae are time-in
onsistent. They probably lead to only �rst-order a

urate ab-sorbing boundary 
onditions.� among many possible 
hoi
es, the origin of these �uxes is not really obvious. In fa
t,these values 
orrespond to upwind �uxes at the absorbing boundary, based on thehyperboli
 nature of the global six-
omponent Maxwell system.If metalli
 and absorbing boundary 
onditions are used, then we 
an give the variation ofthe total ele
tromagneti
 energy given in De�nition (3.1). This is the result of the followinglemma.Lemma 4.1 Using the s
heme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi
 near absorbing boundaries, the variation ofthe dis
rete ele
tromagneti
 energy de�ned in De�nition 3.1 through a time-step is given byEn+1 = En � �t2 absorbingXfa
es aik Zaik " 
i�i�~~nik � ~Hn+1/2i � : ~~nik � ~Hn-1/2i + ~Hn+1/2i2 !+
i�i�~~nik � ~Eni � : ~~nik � ~Eni + ~En+1i2 !# :
INRIA



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 15Proof: This is a dire
t 
onsequen
e of Lemma 3.1. We just have to use the de�nitions of�
titious �elds near absorbing boundaries given in (16) and the result of the lemma is found.We 
an point out here that the dis
rete energy is not anymore 
onserved (this is naturalsin
e we want waves to go out). It is probably non-in
reasing for very small time steps, butsome additional work has to be done to prove it is non-in
reasing for all time steps.4.2 De�nition of a non-in
reasing 
orre
ted dis
rete energyWe propose to 
orre
t the dis
rete energy En proposed in De�nition (3.1). Let us thenintrodu
e the lo
al and global 
orre
ted dis
rete energies Fni and Fn .De�nition 4.1 For a 
omplete polyhedral �nite volume partition G of the domain 
 withmetalli
 or absorbing boundary 
onditions, we de�ne the following 
orre
ted ele
tromagneti
energies:(i) 8i; Fni = 12 ZTi �t~Eni ��"i~Eni + t ~Hn-1/2i ���i ~Hn+1/2i �+�t8 absorbingXfa
es aikZaik �
i�i 


~~nik � ~Hn-1/2i 


2 � 
i�i 


~~nik � ~Eni 


2�(ii) Fn =Xi2G Fni .The physi
al meaning of this 
orre
ted dis
rete energies is not straightforward. Corre
tionterms are only related to absorbing boundaries (whi
h means that Fn = En if there arenone). The additional terms probably �nd their origin in the temporal in
onsisten
y ofboundary numeri
al �uxes. We 
an now prove that the dis
rete energy Fn is non-in
reasing.Lemma 4.2 Using the s
heme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi
 near absorbing boundaries, the 
orre
teddis
rete energy Fn de�ned in De�nition 4.1 is non-in
reasing. More pre
isely, the variation�F = Fn+1 � Fn is given by�F = ��t2 absorbingXfa
es aikZaik 0�
i�i 




~~nik � ~Hn-1/2i + ~Hn+1/2i2 




2 + 
i�i 




~~nik � ~Eni + ~En+1i2 




21A � 0:Proof. The proof is elementary. We simply add terms deriving from Fn � En , Fn+1 � En+1and from the result of Lemma 4.1. We have�F = (Fn+1 �En+1 )+(En+1 �En )+(En �Fn ) = �t absorbingXfa
es aikZaik (
i�iAik + 
i�iBik) ; with
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16 Piperno & FezouiAik = 18 


~~nik � ~Hn+1/2i 


2� 12 �~~nik � ~Hn+1/2i �: ~~nik � ~Hn-1/2i + ~Hn+1/2i2 !� 18 


~~nik � ~Hn-1/2i 


2= �12 




~~nik � ~Hn-1/2i + ~Hn+1/2i2 !




2 ; andBik = �18 


~~nik � ~En+1i 


2 � 12 �~~nik � ~Eni � : ~~nik � ~Eni + ~En+1i2 !+ 18 


~~nik � ~Eni 


2= �12 




~~nik � ~Eni + ~En+1i2 !




2 ;whi
h simply leads to the result of the lemma.4.3 De�nite positivity of the 
orre
ted dis
rete energyIn order to prove that our s
heme is stable when used with both metalli
 and absorbingboundary 
onditions, we �nally show that the 
orre
ted dis
rete energy Fn , under somestability 
ondition on �t, is a positive de�nite quadrati
 form of the numeri
al unknownsHn-1/2i and Eni . This will lead to the stability result of this se
tion.Lemma 4.3 Using the s
heme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi
 near absorbing boundaries, the lo
al dis
reteele
tromagneti
 energy Fni de�ned in De�nition 4.1 veri�es,Fni � �i2 k~Eik2Ti + �i2 k~Hik2Ti � �iPi�t2Vi k~HikTik~EikTi��t8 Xk2Vi��ikk~nikkVi k~Hik2Ti + �kik~nikkVk k~Ekk2Tk� :In the above expression, if the fa
e aik is a boundary fa
e, then we set by 
onventionk~EkkTk � k~EikTi , k~HkkTk � k~HikTi , �ki � �ik, Vk � Vi, �k � �i, and �k � �i.
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A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 17Proof: We get ba
k to the de�nition of the 
orre
ted dis
rete energy inside a �nite volumeFni . We haveFni = 12 tEni M �iEni + 12 tHn-1/2i M�i Hn+1/2i+�t8 absorbingXfa
es aikZaik �
i�i 


~~nik � ~Hn-1/2i 


2 � 
i�i 


~~nik � ~Eni 


2�= 12 tEni M �iEni + 12 tHn-1/2i M�i Hn-1/2i � �t2 Xni + �t8 Yni ; withYni = absorbingXfa
es aikZaik �
i�i 


~~nik � ~Hn-1/2i 


2 � 
i�i 


~~nik � ~Eni 


2�Xni = X1�j�di tHn-1/2ij  ZTi ~rot~'ij :~Eni � Xk2Vi Zaik(~'ij � ~Eni + ~Enk2 ):~~nik!= ZTi ~rot~Hn-1/2i :~Eni � Xk2Vi Zaik(~Hn-1/2i � ~Eni + ~Enk2 ):~~nik= 12 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �� 12 Xk2Vi Zaik(~Hn-1/2i � ~Enk ):~~nik= 12 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �� 12 internalXfa
es aikZaik(~Hn-1/2i � ~Enk ):~~nik+12 metalli
Xfa
es aikZaik (~Hn-1/2i � ~Eni ):~~nik � 12 absorbingXfa
es aikZaik(~Hn-1/2i � ~Enk ):~~nik :Combining terms in Xni and Yni deriving from absorbing boundary fa
es, we getFni = 12 tEni M �iEni + 12 tHn-1/2i M�i Hn+1/2i � �t4 ZTi� ~rot~Hn-1/2i :~Eni + ~rot~Eni : ~Hn-1/2i �+�t4 internalXfa
es aikZaik (~Hn-1/2i � ~Enk ):~~nik � �t4 metalli
Xfa
es aikZaik(~Hn-1/2i � ~Eni ):~~nik��t8 absorbingXfa
es aikZaik �
i�i 


~~nik � ~Hn-1/2i 


2 + 
i�i 


~~nik � ~Eni 


2� :
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18 Piperno & FezouiIn the sequel of this proof, we omit the supers
ripts n and n-1/2 respe
tively in ele
tri
 andmagneti
 variables. We have the following lower bound:Fni � �i2 k~Eik2Ti + �i2 k~Hik2Ti � �t�iPi2Vi k~HikTik~EikTi��t8 Xk2Vi��ikk~nikkp�iVip�k k~Hik2Ti + �kik~nikkp�kVkp�i k~Ekk2Tk� :This expression is valid for all �nite volumes, be
ause of the 
onventions in the lemma andbe
ause of the treatments of boundary 
onditions (11) and (16). This 
on
ludes the proofof the lemma.Lemma 4.4 Using the s
heme (9)-(10)-(11)-(16), under assumptions of De�nitions 3.2and 3.3, and assuming the material is isotropi
 near absorbing boundaries, the 
orre
ted totaldis
rete ele
tromagneti
 energy Fn de�ned in De�nition 4.1 is a positive de�nite quadrati
form of all unknowns if8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi :Proof: The proof is exa
tly the same as in the metalli
 
ase. Under the 
ondition of thelemma (whi
h is the same as in the metalli
 
ase), the 
orre
ted energy is positive de�nite.We get the following stability result.Theorem 4.1 Using the s
heme (9)-(10)-(11)-(16) on arbitrary �nite volumes as des
ribedin this se
tion, under assumptions of De�nitions 3.2 and 3.3, and assuming the materialis isotropi
 near absorbing boundaries, the 
orre
ted energy Fn de�ned in (4.1) is non-in
reasing through iterations. It is also a positive de�nite quadrati
 form of all unknowns(Eni ;Hn-1/2i ), and therefore the s
heme is L2-stable, if the time step �t is su
h that8i;8k 2 Vi; �tp�i�i �2�i + �ik max�r �i�k ;r �i�k�� < 4ViPi(with the 
onvention that k should be repla
ed by i in the above formula for metalli
 boundaryinterfa
es aik).5 Parti
ular 
ases on tetrahedral meshes5.1 Classi
al �nite volumes on tetrahedral meshesFor tetrahedral dis
retizations of the 
omputing domain, a 
lassi
al �nite volume s
hemebased on a leap-frog time-s
heme and 
entered �uxes has been proposed [3℄. This work is aparti
ular 
ase of the more general formulation proposed in this paper, with the followingparti
ular 
hoi
es: INRIA



A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 19� the �nite volumes are the tetrahedra themselves;� for ea
h �eld, three basis fun
tions have been 
hosen, whi
h are the 
onstant ve
tor�elds ~ex, ~ey, and ~ez. Therefore, we have 8i 2 G; di = 3;� the material is heterogeneous, isotropi
, with 
onstant ele
tromagneti
 parametersinside ea
h �nite volume (i.e. 8x 2 Ti; ��"i(x) = ��iI; ���i(x) = ��iI);� metalli
 and absorbing boundary 
onditions are enfor
ed in a weak sense, with thesame 
hoi
es for boundary �uxes.For this parti
ular 
hoi
es, in the general framework proposed in this paper, the material isindeed isotropi
 near absorbing boundaries and assumptions of De�nitions 3.2 and 3.3 areveri�ed with� 8i 2 G; �i = 0;� 8i 2 G; �i = ��i; �i = ��i;� 8i 2 G;8k 2 Vi; �ik = 1;With these parameters, Theorems 3.1 and 4.1 imply that the �nite volume method proposedin [3℄ has a de
reasing dis
rete 
orre
ted total ele
tromagneti
 energy, whi
h is a positivede�nite quadrati
 form of all unknowns, and therefore the s
heme is stable, if8i;8k 2 Vi; �tp�i�i �max�r �i�k ;r �i�k�� < 4ViPi :This 
ondition is equivalent to� 8 boundary interfa
e aik; �t < 4p�i�iVi=Pi;8 internal interfa
e aik; �t < 4min (p�i�k;p�i�k)min (Vi=Pi; Vk=Pk) ;whi
h is slightly more severe than the 
ondition obtained in the less general 
ontext of [3℄,whi
h is equivalent to� 8 boundary interfa
e aik; �t < 4p�i�iVi=Pi;8 internal interfa
e aik; �t < 4min (p�i�k;p�i�k)p(Vi=Pi):(Vk=Pk):5.2 A P1-DG FVTD method on tetrahedral meshesInside ea
h tetrahedron, the basis ve
tor �elds are simply P1 �elds inside the tetrahedron.This leads to twelve degrees of freedom for ea
h �eld inside ea
h tetrahedron (three 
ompo-nents times four P1 s
alar basis fun
tions). Therefore, we have 8i 2 G; di = 12; Di�erent
hoi
es 
an be made 
on
erning the P1 basis fun
tions inside tetrahedra. We have tried twodi�erent implementations where, inside tetrahedron Ti, the P1 basis ve
tor �elds were of theform ~'ij(x) = 'ij(x):~eu (where ~eu is ~ex, ~ey, or ~ez), where the 'ij areRR n° 4733



20 Piperno & Fezoui� either the P1 s
alar basis fun
tions equal to 0 on aij and 1 on the other vertex;� or the P1 s
alar basis fun
tion equal to 1 on aij and -1 on the other vertex.In both 
ases, We have 
hosen to limit a �rst implementation where the material is homoge-neous and isotropi
 inside ea
h tetrahedron. Be
ause of this simple 
hoi
e, for both 
hoi
esof P1 basis fun
tions 
onsidered, exa
t integrations were performed for volume integrals overtetrahedra and surfa
e integrals over interfa
es. The se
ond 
hoi
e was 
onsidered be
auseexa
t surfa
e integrals at �rst sight were less CPU-expensive using Gauss quadrature rulesbased on values on the 
enters of edges.Lemma 5.1 For both 
hoi
es, assumptions of De�nitions 3.2 and 3.3 are veri�ed with thesame values (be
ause the span of both families of basis �elds are identi
al), whi
h are:(i) 8i 2 G; �2i = 209 maxj2Vi(k~nijk)Pi ;(ii) 8i 2 G;8k 2 Vi; �ik = 8=3;Proof: Let us 
onsider the standard P1 s
alar basis fun
tions 'ij (equal to 0 on aij and 1on the other vertex). We have the following elementary integrals:ZTi'ij'ij0 = (1 + Æjj0 )Vi=20;Zaik'ij'ij0 = (1� Ækj)(1� Ækj0 )(1 + Æjj0 )k~nikk=12:(i) derives from the fa
t that if a P1 ve
tor �eld writes ~X = Pj2Vi ~Xij 'ij , then we havek~Xk2Ti � Vi20 Xj2Vi k ~Xijk2 be
ause of the �rst equation above. At the same time,k ~rot~Xk2Ti = 19Vi 0�Xj2Vi ~nij � ~Xij1A2 = P 2i9Vi 0�Xj2Vi k~nijkPi ~~nij � ~Xij1A2� P 2i9Vi Xj2Vi k~nijkPi �~~nij � ~Xij�2 � Pi9Vi maxj2Vi (k~nijk)Xj2Vi k ~Xijk2Then the �rst assumption of De�nitions 3.3 is veri�ed for �i given in the lemma.(ii) derives from the fa
t that �ik should be the smallest 
onstant su
h that0BB� 0 0 0 00 2 1 10 1 2 10 1 1 2 1CCA � 3�ik5 0BB� 2 1 1 11 2 1 11 1 2 11 1 1 2 1CCA ;
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A Dis
ontinous Galerkin FVTD method for 3D Maxwell equations 21whi
h leads to �ik = 8=3.These results lead to the following su�
ient stability 
ondition for our P1 Dis
ontinuousGalerkin FVTD method on unstru
tured tetrahedral meshes:8i;8j 2 Vi; �tp�i�i 244p53 smaxj2Vi(k~nijk)Pi + 83 max�r�i�j ;r �i�j�35 < 4ViPi :Remark 5.1 A simpli�ed version for heterogeneous media.It is easy to see that maxj2Vi(k~nijk) � Pi=2 be
ause if k~nij0k = maxj2Vi(k~nijk), thenPi � k~nij0k = Xj2Vi;j 6=j0 k~nijk � 





 Xj2Vi;j 6=j0 ~nij





 = k � ~nij0k = k~nij0k:Then the stability limit 
an be simpli�ed into8i;8j 2 Vi; �tp�i�i "4p53p2 + 83 max�r�i�j ;r �i�j�# < 4ViPi :Remark 5.2 Comparison with 
lassi
al �nite volumes for homogeneous media.For homogeneous media, the above stability 
ondition redu
es to8i;8j 2 Vi; �tp�i�i "4p53p2 + 83# < 4ViPi :This means that, theoreti
ally, the limit possible time step for our P1 Dis
ontinuous GalerkinFVTD method on unstru
tured tetrahedral meshes will be smaller than the limit time stepadmissible with 
lassi
al �nite volumes by a fa
tor of 4p53p2 + 83 , roughly equal to 4:7. We 
annoti
e that if tetrahedra are assumed quite equilateral, then maxj2Vi(k~nijk) ' Pi=4 and theredu
tion fa
tor is theoreti
ally 
lose to 4:1.6 Numeri
al resultsWe sele
t two resonant 
avities, a 
ubi
 one and a spheri
al one, sin
e the exa
t solutionsare known for these geometries allowing us to appre
iate the numeri
al results at any pointand time in the 
avity.
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22 Piperno & Fezoui6.1 The 
ubi
 
avityWe 
ompute the (1; 1; 1) mode whi
h is a standing wave of 0.260 GHz frequen
y in a 
ubeof 1 m of side. We use an unstru
tured grid of 16464 tetrahedra and 3375 nodes whi
h gives13 points per wavelength. We plot on Figure 2 the time evolution at a �xed point in the
avity of the z-
omponent of the ele
tri
 �eld during twelve periods. One 
an see that theDis
ontinuous Galerkin (P1-DG) solution 
ompares well with the exa
t one. The Figure 3
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Figure 2: P1-DG, P0, and exa
t solutions: �rst twelve periods (
omponent Ez).shows a zoom on the last two periods of the P1-DG and exa
t �elds with now the P0 (�nitevolume) solution whi
h obviously has a higher rate of dispersion error. Let us re
all that the�nite volume s
heme has the same order of dispersion error as the Yee s
heme [5℄. The overallL2-error on the ele
tromagneti
 �eld (E;H) of the P1-DG and P0 approximate solutions areplotted on Figure 4. The errors are in
reasing in time be
ause of the dispersion and thelevel of dispersion is a lot smaller for the P1-DG method. Figure 5 shows the 
ontours of theEx and Hz 
omponents for the exa
t and P1-DG solutions in the 
ut plane z = 0. Figure 6and Figure 7 show the 
ontours respe
tively of the �elds (Ex; Ey ; Ez) and (Hx; Hy; Hz) forthe exa
t and P1-DG solutions in the 
ut plane x+ y + z = 1:5.
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Figure 3: P1-DG, P0, and exa
t solutions: zoom after ten periods (
omponent Ez).

RR n° 4733



24 Piperno & Fezoui

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  2  4  6  8  10  12

(E,H) L2 error

P1-DG
P0

Figure 4: L2-error on (E;H) for P1-DG and P0 approximate solutions in fun
tion of thetime.
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P1-DG

Ex,  min = -0.7667,  max = 0.7667

exact

Ex,  min = -0.7797,  max = 0.7797

P1-DG

Hz,  min = -0.3379,  max = 0.3350

exact

Hz,  min = -0.3599,  max = 0.3599Figure 5: P1-DG and exa
t solutions: Ex and Hz 
ontours in plane z = 0.
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P1-DG

Ex,  min = -0.4851,  max = 0.4849

exact

Ex,  min = -0.4949,  max = 0.4947

P1-DG

Ey,  min = -0.0011,  max = 0.0011

exact

Ey,  min = 0,  max = 0

P1-DG

Ez,  min = -0.4849,  max = 0.4851

exact

Ez,  min = -0.4947,  max = 0.4949Figure 6: P1-DG and exa
t solutions: (Ex; Ey; Ez) 
ontours in plane x+ y + z = 1:5.INRIA
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P1-DG

Hx,  min = -0.0385,  max = 0.3350

exact

Hx,  min = -0.0423,  max = 0.3599

P1-DG

Hy,  min = -0.6710,  max = 0.0760

exact

Hy,  min = -0.7197,  max = 0.0845

P1-DG

Hz,  min = -0.0385,  max = 0.3350

exact

Hz,  min = -0.0423,  max = 0.3599Figure 7: P1-DG and exa
t solutions: (Hx; Hy; Hz) 
ontours in plane x+ y + z = 1:5.RR n° 4733



28 Piperno & Fezoui6.2 The spheri
al 
avityWe 
hoose here to 
ompute the lowest (0; 1; 1) TE mode in a spheri
al 
avity of radius 1m. The resonant frequen
y is 0.21 GHz and the mesh is made of 82000 tetrahedra and15000 nodes whi
h 
orresponds to an average of 12 points per wavelength. We 
ompare onFigure 8 the time evolution of the Hz 
omponent of the exa
t and 
omputed magneti
 �eldduring seven periods. One may see again that the two solutions 
ompare very well. These
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 0  2  4  6  8  10

Magnetic field component Hz

P1-DG
exact

Figure 8: P1-DG approximate solution vs. exa
t solution: �rst seven periods (
omponentHz).solutions are 
ompared to the P0 approximate solution on Figure 9 and the gain in a

ura
yin favour of the P1-DG solution is obvious. Figure 10 shows 
ontours of the 
omputed andexa
t magneti
 �eld respe
tively in the plane z = 0.7 Con
lusionWe presented a new formulation of a P1 Dis
ontinuous Galerkin method applied to the timedomain Maxwell's equations. One may say that it is a simpli�ed formulation when it is
ompared with the methods found in the literature (see [1℄ for example). The new methodmay also be viewed as a straightforward extension of a 
entered �nite volume s
heme asthe one introdu
ed in [5℄. We proved that the method is stable under a CFL like 
onditionINRIA
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Figure 9: P1-DG, P0, and exa
t solutions: zoom after �ve periods (
omponent Hz).
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30 Piperno & Fezouiand also that a dis
rete energy is 
onserved. Some numeri
al simulations were performedand the results 
ompared with the analyti
 solutions. One 
an noti
e that the numeri
alresults are en
ouraging, be
ause good a

ura
y is obtained with few points per wavelength.Higher order of a

ura
y in time (possibility of a fourth-order a

urate s
heme 
onservingan energy) and in spa
e (why not try P2 basis fun
tions) might lead to interesting results.However, due to the limitation on the time-step and the high number of degrees of freedom(24 times the number of 
ells for tetrahedra and P1 DG), the method may be 
onsidered asvery 
ostly in time an memory when 
ompared to the �nite volume s
heme for example butfortunately the method is highly parallelizable and we expe
t a very good e�
ien
y. At thesame time, the DG methods are very �exible, sin
e the fun
tional basis is lo
al in ea
h �nitevolume or element. One 
an imagine to restri
t the P1-DG method to some lo
al zones with
omplex isolines and use a P0 method or even a Yee s
heme in the va
uum for example.Another possibility would be to adaptively restri
t some degrees of freedom in parti
ularsub-domains.Referen
es[1℄ B. Co
kburn, G. E. Karniadakis, and C.-W. Shu, editors. Dis
ontinuous Galerkin meth-ods. Theory, 
omputation and appli
ations., volume 11 of Le
ture Notes in ComputationalS
ien
e and Engineering. Springer-Verlag, Berlin, 2000.[2℄ S. Piperno. L2-stability of the upwind �rst order �nite volume s
heme for the maxwellequation in two and three dimensions on arbitrary unstru
tured meshes. RAIRO Modél.Math. Anal. Numér., 34(1):139�158, 2000.[3℄ S. Piperno, M. Remaki, and L. Fezoui. A non-di�usive �nite volume s
heme for the 3dmaxwell equations on unstru
tured meshes. SIAM J. Numer. Anal., 39(6):2089�2108,2002.[4℄ M. Remaki. A new �nite volume s
heme for solving Maxwell's system. COMPEL,19(3):913�931, 2000.[5℄ M. Remaki and L. Fezoui. Une méthode de Galerkin Dis
ontinu pour la résolutiondes équations de Maxwell en milieu hétérogène. Te
hni
al Report RR-3501, INRIA,September 1998.
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P1-DG

Ex,  min = -1.108,  max = 1.108

exact

Ex,  min = -1.143,  max = 1.143

P1-DG

Ey,  min = -1.109,  max = 1.109

exact

Ey,  min = -1.143,  max = 1.143

P1-DG

Hz,  min = -0.8242,  max = 2.453

exact

Hz,  min = -0.8131,  max = 2.424Figure 10: P1-DG and exa
t solutions: Ex, Ey , and Hz 
ontours in plane z = 0.RR n° 4733
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