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Abstract

Although there exists a large variety of copula functions, only a few are

practically manageable, and often the choice in dependence modeling falls on

the Gaussian copula. Further, most copulas are exchangeable, thus implying

symmetric dependence. We introduce a way to construct copulas based on

periodic functions. We study the two-dimensional case based on one depen-

dence parameter and then provide a way to extend the construction to the

n-dimensional framework. We can thus construct families of copulas in dimen-

sion n and parameterized by n− 1 parameters, implying possibly asymmetric

relations. Such “periodic” copulas can be simulated easily.

Key words: Dependence Modeling, Copula Functions, Gaussian Copula, Archimedean

Copula, Periodic Copula, Simulation
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1 Introduction and Motivation

Consider a random vector X = (X1, ..., Xn), and suppose that we wish to analyze

the dependence between its components. The whole information on the distribution

of the vector is given by the joint cumulative distribution function of X. If P denotes

the probability measure in our setting, such function in the point (x1, . . . , xn) is

given by P(X1 ≤ x1, ..., Xn ≤ xn). However, this function mixes information on

the dependence between the different components of the vector with information

on the distribution of the single components themselves. Copula functions have

been introduced in order to allow a separation between the marginal cumulative

distribution functions (cdf for short) and the dependence structure. The former

concerns single components, taken one at the time, and is given by the cdf’s Fi(x) :=

P(Xi ≤ x), i = 1, . . . , n, which we assume to be continuous. The latter is entirely

represented by the copula function we introduce now. It is well known that U1 =

F1(X1), ..., Un = Fn(Xn) are uniformly distributed random variables on [0, 1]. The

joint cumulative distribution function of (U1, ..., Un), that we denote by

C(u1, ..., un) = P(U1 ≤ u1, ..., Un ≤ un),

is called the copula function of (X1, ..., Xn) and has the following link with the mul-

tivariate cdf:

P(X1 ≤ x1, ..., Xn ≤ xn) = C(P(X1 ≤ x1), ...,P(Xn ≤ xn)). (1)

One can easily check that a copula has the following properties:

1. C(u1, .., ui−1, 0, ui+1, .., un) = 0

2. C(1, .., 1, uk, 1, .., 1) = uk

3. ∂u1...unC is a positive measure in the sense of Schwartz distributions. This

means concretely that for any hypercube H = [a1, b1]× ...× [an, bn] ⊂ [0, 1]n,

P[(U1, .., Un) ∈ H] ≥ 0.

When n = 2, this can be written as

C(b1, b2)− C(a1, b2)− C(b1, a2) + C(a1, a2) ≥ 0.
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Conversely, one can show that any function that satisfies these three conditions can

be viewed as the joint cdf of a vector of uniform variables on [0, 1] and is thus a copula.

This is known as Sklar’s theorem, see for example Joe (1997) or Nelsen (1999).

In the following, the expression ”simulating a copula C” will denote the simulation

of a random vector of uniform variables (U1, .., Un) on [0, 1] whose joint cdf is C.

Among the different ways to define specific copula functions, there are following

two. The first one consists in seeking functions C satisfying the three above prop-

erties. Archimedean copulas are an example of this approach. Indeed, Archimedean

copulas come from the remark that if ϕ is a convex decreasing function such that

ϕ(1) = 0 , then

C(u1, .., un) = 1{ϕ(u1)+..+ϕ(un)≤ϕ(0)}ϕ
−1(ϕ(u1) + ..+ ϕ(un))

has the above three properties and is thus a copula. Therefore, by specifying families

of decreasing convex functions that vanish in 1 we specify families of copulas (e.g.

Gumbel, Joe, Frank...), see Bouyé et al. (2000), Nelsen (1999) and Joe (1997).

The second method consists in working directly with joint cdf’s F (x1, ..., xn) and

the related marginal cdf’s Fi. The associated copula is then defined as F (F−1
1 (u1), ..., F

−1
n (un)).

Even if this method does not always lead to analytically tractable copulas, it can

provide us copulas that are easy to simulate. Indeed, the main example of this

kind of construction is the well known fundamental family of Gaussian copulas.

A Gaussian copula is defined as the copula of a joint Gaussian random vector X

with standard Gaussian marginals and correlation matrix ρ, and is thus given by

Nρ(N
−1(u1), ..., N

−1(un)) where N is the cdf of a standard normal variable and Nρ

is the joint cdf of X. This copula cannot be computed explicitly. The simula-

tion is however straightforward: it is sufficient to consider (N(X1), ..., N(Xn)) where

X = (X1, ..., Xn) is a Gaussian vector with correlation ρ that can be easily simulated

by resorting to a standard Gaussian simulator and to a Cholesky decomposition of

ρ. A similar approach leads to Student’s copula (see Bouyé et al. (2000). and Genz

and Bretz (2002)

A possible major drawback of Archimedean and Gaussian copulas is their sym-

metric properties. Let us precise this by the following definition.

Definition 1.1. (k-exchangeability). Let us consider a copula C that is the cdf

of the random vector (U1, .., Un). We will say that the copula C is k-exchangeable
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(2 ≤ k ≤ n) if, for any 1 ≤ i1 < i2 < .. < ik ≤ n and any permutation σ on

{1, ..., k}, (Ui1 , .., Uik) and (Uiσ(1)
, .., Uiσ(k)

) have the same law.

It is clear, with this definition, that a k′-exchangeable copula is also a k-exchangeable

copula whenever k′ > k. In the two-dimensional case we resort directly to the term

“exchangeable” rather than “2-exchangeable”. When dealing with defaultable bonds

as in Jouanin and al. (2001), n-exchangeable copulas (as the Archimedean copu-

las) cannot model situations where the dependence is asymmetric and based on the

assets themselves. With 2-echangeable copulas (such as for example Gaussian or

Archimedean copulas), we cannot model asymmetric relations featuring a first entity

that influences a second one more than the latter influences the former.

In recent years, copula functions have received a great deal of attention, see

for example the papers of Genz and Bretz (2002), Hürlimann (2002, 2003), Juri

and Wüthrich (2002), Nelsen et al. (2001), Wei and Hu (2002), and the books of

Joe (1997) and Nelsen (1999). For financial and insurance applications, recent appli-

cations on copulas include for example Bouyé et al. (2000), Cherubini et al. (2002),

Embrechts et al. (2001), Jouanin et al. (2001), Klugman and Parsa (1999), Pram-

polini (2003), and Schönbucher and Schubert (2001).

In this paper, we will build new families of copulas based on the first approach,

using periodic functions following Alfonsi (2002). We first begin to work in the

two-dimensional case, obtaining a one-parameter copula, and then give a way to

extend the result to the n-dimensional case with n > 2, getting a family with n − 1

parameters, 2-exchangeable or not. Finally, we explain how such copulas can be

simulated.

2 Construction of copulas based on periodic func-

tions

2.1 The construction of families in two dimensions

We begin by defining our new copula functions for bivariate dependence, i.e. for

possible dependence structures between two random variables. It is helpful to first

recall three particular “limit” copulas. The “middle” one, which is typically denoted

by C⊥, is the copula obtained when U1 and U2 are independent uniform variables on



New families of Copulas based on periodic functions 5

[0, 1], that is:

C⊥(u1, u2) := u1u2.

The two other “limit” copulas, denoted by C−F and C+
F respectively, are the two

Frechet bounds of the convex subset of copulas:

C+
F (u1, u2) = min(u1, u2), C−F (u1, u2) = (u1 + u2 − 1)+,

where x+ = max(x, 0) denotes the positive part operator. Naming U a uniform

random variable on [0, 1], C+
F can be obtained as the copula of (U,U) and corresponds

obviously to perfect positive dependence, whereas C−F is obtained as the copula of

(U, 1− U) and describes total negative dependence. Moreover, for any copula C, we

have

C−F (u1, u2) ≤ C(u1, u2) ≤ C+
F (u1, u2), ∀(u1, u2) ∈ [0, 1]2.

Recall the above characterization of a copula function for the bivariate case: the

function C defined on [0, 1]2 is a copula if and only if i) C(u1, 0) = 0 and C(0, u2) = u2,

ii) C(u1, 1) = u1 and C(1, u2) = u2, and iii) ∂2C
∂u1∂u2

is a positive measure in the sense

of Schwartz distributions.

We will say in the following that a copula admits a density when ∂2C
∂u1∂u2

= c(u1, u2)

exists in the ordinary sense. In this paper we propose copulas that have a density

that can be written in the form

c(u1, u2) = c̃(u1 + u2) (resp. c(u1, u2) = c̃(u1 − u2))

for a function c̃ : R → R. To satisfy properties i), ii) and iii), c̃ must be nonnegative

and verify: ∫ u1

0

∫ 1

0

c̃(x1 ± x2)dx1dx2 = u1, ∀u1 ∈ [0, 1],∫ 1

0

∫ u2

0

c̃(x1 ± x2)dx1dx2 = u2, ∀u2 ∈ [0, 1].

Differentiating with respect to u1 and u2 respectively, we obtain∫ 1

0

c̃(u1 ± x2)dx2 = 1, ∀u1 ∈ [0, 1],∫ 1

0

c̃(x1 ± u2)dx1 = 1, ∀u2 ∈ [0, 1].

Differentiating further the first relation, since
∫ 1

0
c̃(u1+x2)dx2 =

∫ u1+1

u1
c̃(x2)dx2 (resp.∫ 1

0
c̃(u1 − x2)dx2 =

∫ u1

u1−1
c̃(x2)dx2) , we obtain:

c̃(u1 + 1) = c̃(u1) ∀u1 ∈ [0, 1], (resp. c̃(u1 − 1) = c̃(u1) ∀u1 ∈ [0, 1]).
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Thus, a consequence of requiring c(u1, u2) := c̃(u1± u2) to be the density of a copula

is that c̃ has to be 1-periodic (at least on [−1, 2], but its value outside this interval

is irrelevant) and that
∫ 1

0
c̃(u)du = 1. Conversely, it is easy to see that if c̃ is a

nonnegative 1-periodic function such that
∫ 1

0
c̃(u)du = 1, then

C̃−(u1, u2) :=

∫ u1

0

∫ u2

0

c̃(x1 + x2)dx1dx2 (resp. C̃+(u1, u2) :=

∫ u1

0

∫ u2

0

c̃(x1 − x2)dx1dx2)

satisfies conditions i), ii) and iii), and so is a copula function that we call, with a slight

abuse of language, periodic copula. We note here that copulas obtained with these

densities form a convex set since a convex combination of 1-periodic nonnegative

functions satisfying
∫ 1

0
c̃(u)du = 1 is also a 1-periodic nonnegative function with

integral 1 on a period. Notice further that the use of the “-” and “+” signs appears

to be counterintuitive (one would exchange the above signs), but there is a reason for

this that will be clarified later on.

At times, rather than characterizing copulas through their densities, it is prefer-

able to have a direct characterization of the copula itself. To characterize periodic

copulas without explicitly referring to their densities, denote by ϕ the primitive of c̃

that vanishes at 0, and set Φ(x) :=
∫ x

0
ϕ(u)du, so that Φ is a double primitive of c̃.

We can then rewrite the above periodic copula as follows:

C̃−(u1, u2) =

∫ u1

0

∫ u2

0

c̃(x1 + x2)dx1dx2 = Φ(u1 + u2)− Φ(u1)− Φ(u2), (2)

C̃+(u1, u2) =

∫ u1

0

∫ u2

0

c̃(x1 − x2)dx1dx2 = Φ(u1) + Φ(−u2)− Φ(u1 − u2)

and we see that the first copula is always exchangeable (symmetric), in that C̃−(u1, u2) =

C̃−(u2, u1), whereas the second one can be non symmetric if Φ is not par, i.e. if

Φ(−x) 6= Φ(x) for some x. We have thus characterized our periodic copulas in terms

of double primitives Φ of periodic functions c̃.

A first example of such a function which arises naturally is c̃(x) = 1+sin(2πx+ϕ)

where ϕ is a parameter that we can take in [0, 2π). It gives respectively the following

families of copulas:

• C̃−(u1, u2) = u1u2 +(sin(2πu1 +ϕ)− sin(ϕ)− sin(2π(u1 +u2)+ϕ)+ sin(2πu2 +

ϕ))/(2π)2

• C̃+(u1, u2) = u1u2+(sin(ϕ)−sin(2πu1+ϕ)+sin(2π(u1−u2)+ϕ)−sin(−2πu2+

ϕ))/(2π)2.
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These copulas, however, cannot model strong positive or negative dependence, since

these copulas cannot approach neither C−F nor C+
F . On the contrary, it might be

interesting to have a family of copulas which attains the copulas C+
F , C⊥ and C−F

as limit cases in order to be able to describe a large range of dependence structures.

By expressing copulas by means of ∂2C
∂u1∂u2

, attaining C+
F , C−F and C⊥ amounts to

attaining

µ+ = δx1(dx2)⊗ dx1, µ− = δ1−x1(dx2)⊗ dx1, c⊥ = 1.

with the copula density. Since ∂2C⊥

∂u1∂u2
exists in the ordinary sense of differentiation,

it has a density c⊥ = 1 that corresponds to the Lebesgue measure on the square

[0, 1]2, µ⊥ = dx1 ⊗ dx2. Instead, µ+ and µ− are to be interpreted in the generalized

sense. Moreover, µ+ and µ− charge only the diagonals of the square [0, 1]2, i.e.

∆+ = {(x, x), x ∈ [0, 1]} and ∆− = {(x, 1 − x), x ∈ [0, 1]} respectively. The idea is

then to find a family of periodic functions c̃γ indexed by a parameter γ and such that

the density c̃γ(x1 − x2) (resp. c̃γ(x1 + x2)) concentrates on ∆+ (resp. ∆−) for some

values of γ. Thus, if we define the piecewise 1-periodic function c̃γ for 0 < γ ≤ 1
2

by

c̃γ(x) :=
1

2γ

(
1[0, γ](x) + 1(1−γ, 1)(x)

)
for x ∈ [0, 1), (3)

we see that the family of densities defined as c+γ (x1, x2) := c̃γ(x1 − x2) verifies:

c+1/2 = c⊥, c+γ (x1, x2)dx1dx2
D−→

γ→0
µ+

D→ denoting convergence in distribution. The corresponding convergence in law for

random variables is denoted by L. To calculate the associated copula C+
γ := C̃+, it is

best to try a drawing and see that its value in (u1, u2) is the area in the intersection of

the rectangle delimited by (0, 0) and (u1, u2) with {(x1, x2) ∈ [0, 1]2,−γ ≤ x1−x2 ≤ γ

or x1−x2 ≤ γ−1 or x1−x2 ≥ 1−γ}. We obtain, for u1 ≤ u2 which is not restrictive

since C+
γ (u1, u2) = C+

γ (u2, u1),

C+
γ (u1, u2) = 1

2γ
[u1u2 + 1

2
[−((u2 − u1 − γ)+ + (u2 − γ)+)(min(u1, u2 − γ))+ − ((u1 − γ)+)2

+((u2 − 1 + γ)+ + (u2 − 1 + γ − u1)
+) · (min(u1, u2 − 1 + γ))+ + ((u1 − 1 + γ)+)2]]

(4)

In order to obtain a family that reaches C−F instead, we use the other family, precisely

c−γ (x1, x2) = c̃γ(x1 + x2). We obtain

c−1/2 = c⊥, c−γ (x1, x2)dx1dx2
D−→

γ→0
µ−.
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Fortunately, a simple geometric remark links the related copula C−γ to C+
γ , thus

avoiding a new calculation:

C−γ (u1, u2) = u2 − C+
γ (1− u1, u2) (5)

Thus, with this method, we have obtained a family of copula quite ”exhaustive” going

from C−F to C+
F and taking the in-between value C⊥. Incidentally, we see now why

we chose to name C̃+ the copula coming from c̃(x1 − x2) and C̃− the copula coming

from c̃(x1 +x2): this is done because in our case the former attains C+
F and the latter

C−F .

At times it can be handy to have a single number measuring some stylized aspects

of a given copula. The Spearman’s rho is such a number and is a well known measure

of concordance, see for example Embrechts et al. (2001). When defined in terms of

copula functions, it is given by the following integral in the copula density c: ρ :=

12
∫ 1

0

∫ 1

0
u1u2c(u1, u2)du1du2− 3. We obtain for the C+

γ and C−γ copulas respectively,

ρ+
γ = (2γ − 1)(γ − 1), ρ−γ = (1− 2γ)(γ − 1).

An interesting remark concerns the construction of non-exchangeable (non-symmetric)

copulas (C(u1, u2) 6= C(u2, u1)) through this method. This can be relevant for ex-

ample in credit risk when modelling the default dependence between two firms with

asymmetric relations. One may have a first firm depending more on a second one

than the latter depends on the former. This could be the case of a little firm that

provides goods to a large one. A default of the large company could induce a dra-

matic effect on the smaller one, whereas a default of the small firm could have little

relevance to the large one. Notice that, in this respect, Archimedean and Gaussian

copulas only provide symmetric relations between the two firms defaults.

In order to provide an example of non-exchangeable copula obtained from our

family, we see from (2) that our only chance is to select a periodic function c̃ whose

double primitive Φ is not par and then take the related C̃+. The simplest such

function is c̃ := c̄γ defined, for γ ∈ [0, 1], as

c̄γ(x) := (1/γ)1[0,γ](x), for x ∈ [0, 1). (6)

We have then c̄γ(x) = c̃ γ
2
(x − γ

2
). Thus, we obtain the following copula C̄+

γ := C̃+



New families of Copulas based on periodic functions 9

associated with the density c̃(x1 − x2) := c̄γ(x1 − x2):

C̄+
γ (u1, u2) =

∫ u1

0

∫ u2

0

c̄γ(x1 − x2)dx1dx2 =

∫ u1

0

∫ u2

0

c̃γ/2(x1 − x2 − γ/2)dx1dx2

=

∫ u1

0

∫ u2+γ/2

γ
2

c̃γ/2(x1 − x2)dx1dx2

= C+
γ/2(u1,min(u2 + γ/2, 1))− C+

γ/2(u1, γ/2) + C+
γ/2(u1, (u2 + γ/2− 1)+)

With this asymmetric periodic copula we still have good asymptotic properties, in

that C̄+
1 = C⊥ and C̄+

γ → C+
F when γ → 0. Calculating the Spearman’s rho, we

find again ρ(C̄+
γ ) = (2γ − 1)(γ − 1) for γ ∈ [0, 1]. Somehow surprisingly, ρ(C̄+

γ )

takes negative value between γ = 1/2 and γ = 1, and vanishes at 1/2 for a copula

different from C⊥. To obtain a (symmetric) family that reaches C−F we need consider

C̄−γ (u1, u2) :=
∫ u1

0

∫ u2

0
c̄γ(x1 + x2)dx1dx2. We get

C̄−γ (u1, u2) = C−γ/2(u1, (u2 − γ/2)+) + C−γ/2(u1, 1− (γ/2− u2)
+)− C−γ/2(u1, 1− γ/2)

and can show, with a trivial change of variable, that ρ(C̄−γ ) = −ρ(C̄+
γ ) = −(2γ −

1)(γ − 1). Thus, if we wish to describe a negative asymmetric dependence, it is best

to use C+
γ with 1/2 < γ < 1. However, we point out that we cannot describe negative

dependence with an asymmetric copula attaining C−F .

Another interesting synthetic quantity concerning copulas is the upper-tail de-

pendence. This indicator is defined as

λ := lim
u→0

1

u

∫ 1

1−u

∫ 1

1−u

c(x1, x2)dx1dx2

when the copula has a density c. Let us consider the general periodic case, where

as before c̃ is a nonnegative 1-periodic function such that
∫ 1

0
c̃(u)du = 1, and ϕ is

its primitive that vanishes at 0. Using the periodicity, we have 1
u

∫ 1

1−u

∫ 1

1−u
c(x1 ±

x2)dx1dx2 = 1
u

∫ 0

−u

∫ 0

−u
c(x1 ± x2)dx1dx2 = 1

u

∫ 0

−u
±(ϕ(x1)− ϕ(x1 ∓ u))dx1 →

u→0
0 since

lim
u→0

1
u

∫ 0

−u
ϕ(x1)dx1 = lim

u→0

1
u

∫ u

0
ϕ(x1)dx1 = ϕ(0) = 0. Thus, periodic copulas have no

upper-tail dependence. However, if one wishes to obtain a copula with an upper-tail

dependence equal to λ > 0, it is still possible to consider the convex combination

(1 − λ)C + λC+
F where C is a preferred periodic copula. This convex combination

can be simulated easily when one knows how to simulate the basic C, as we do for

the periodic copulas (with invertible ϕ, i.e. with a strictly positive periodic function

c̃) we introduced here.
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2.2 A smooth family that reaches C−
F , C⊥ and C+

F

A drawback of the families C+
γ and C−γ is that these copulas are constant on some

intervals and comes from the 0-1 nature of the density, and more precisely from the

existence of a domain (with positive measure) where the density vanishes. This causes

problems, especially when in need of simulating the copula. In order to avoid this

drawback, the idea is then to replace γ with a random variable Γ and then take the

expectation of c̃Γ, using the convexity of the subset of the periodic copulas. Indeed, if

Γ ∼ p where p is the density of a probability measure on [0, 1/2] such that p(γ) > 0 ∀γ,
then ĉp(x) := E[c̃Γ(x)] =

∫ 1
2

0
c̃γ(x)p(γ)dγ is a positive 1-periodic function. Thus, if

we have a family of random variables (Γα)α≥0 concentrated on [0, 1/2] with densities

{pα, α ∈]0,+∞[} on [0, 1/2] and such that Γα
L−→

α→0
1/2 and Γα

L−→
α→∞

0, we can define

Ĉ+
α := E[C+

Γα
] =

∫ 1
2

0

C+
γ pα(γ)dγ, Ĉ−α := E[C−Γα

] =

∫ 1
2

0

C−γ pα(γ)dγ (7)

(that correspond respectively to the periodic densities c̃(x1 − x2) = ĉpα(x1 − x2) and

c̃(x1+x2) = ĉpα(x1+x2)). We have obtained a family of copulas with good asymptotic

properties, in that

Ĉ+
α →

α→0
C⊥, Ĉ+

α →
α→+∞

C+
F , Ĉ−α →

α→0
C⊥, and Ĉ−α →

α→+∞
C−F .

We can build easily a random variable with suitable density on [0, 1
2
] by transforming

a uniform variable U on [0,1] according to a homeomorphism. Indeed, consider Γα :=

1
2
Uα, α ∈]0,+∞[, so that we get a family of densities pα on [0, 1

2
] that feature the

desired asymptotic properties in 0 and +∞ and are immediately computed:

pα(u) = (2
1
α/α)u

1−α
α .

The calculation of C+
α does not present difficulties either. We first calculate the

periodic function ĉα := ĉpα , obtaining

ĉα(x) =
1

1− α
[1− (2x)

1−α
α ], α 6= 1

ĉ1(x) = − ln(2x)

for 0 ≤ x ≤ 1/2, and ĉα(x) = ĉα(1 − x) for 1/2 ≤ x ≤ 1, since the same property

holds for the basic c̃γ’s. Let us compute the primitive ψα of ĉα that vanishes at x = 0.

We obtain, for 0 ≤ x ≤ 1/2:

ψα(x) =
1

2(1− α)
[2x− α(2x)

1
α ], α 6= 1, ψ1(x) = x− x ln(2x).
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Using the symmetry property ĉα(x) = ĉα(1− x) we obtain, for 1/2 ≤ x ≤ 1, ψα(x) =

ψα(1/2) + (ψα(1/2)− ψα(1− x)) = 1− ψα(1− x), since ψα(1/2) = 1/2. Instead, for

x ∈ [−1, 0] we use the periodicity of ĉ to get ψα(x) = −ψα(−x). To proceed further,

we need to know also the primitive Ψα of ψα, i.e. the double primitive of ĉα. We find,

for x ∈ [0, 1
2
]:

Ψα(x) =
1

2(1− α)
[x2 − α2

α+ 1
2

1
αx

1+α
α ], α 6= 1, Ψ1(x) =

3

4
x2 − x2

2
ln(2x),

and, for x ∈ [1
2
, 1]:

Ψα(x) = x− 1

2
+ Ψα(1− x),

and finally Ψα(x) = Ψα(−x) for x ∈ [−1, 0], since ψα is an odd function. We are

now able to calculate Ĉ+
α (u1, u2) =

∫ u2

0

∫ u1

0
ĉα(x1 − x2)dx1dx2 =

∫ u2

0
(ψα(u1 − x2) −

ψα(−x2))dx2 =
∫ u2

0
(ψα(u1 − x2) + ψα(x2))dx2 and so we get, in agreement with our

earlier general result (2):

Ĉ+
α (u1, u2) = Ψα(u1) + Ψα(u2)−Ψα(u1 − u2). (8)

The copula Ĉ−α can then be calculated easily, since C−γ (u1, u2) = u2 −C+
γ (1− u1, u2)

and therefore Ĉ−α (u1, u2) =
∫ 1

2

0
(u2−C−γ (1−u1, u2))pα(γ)dγ = u2−Ĉ+

α (1−u1, u2). We

can also easily calculate the Spearman’s rho of Ĉ+
α , since ρ(Ĉ+

α ) =
∫ 1/2

0
(2γ − 1)(γ −

1)21/αγ(1−α)/α/αdγ so that

ρ(Ĉ+
α ) = 1− 3

2(1 + α)
+

1

2(1 + 2α)

and we have ρ(Ĉ−α ) = −ρ(Ĉ+
α ) (this is a general relation between the rho of the

periodic copulas with density c̃(x1 + x2) and c̃(x1 − x2)). We can sum up in Table 1

the values for which a limit copula is reached. The families built previously are

α C−F C⊥ C+
F

C+
α / 1

2
0

C−α 0 1
2

/

Ĉ+
α / 0 +∞

Ĉ−α +∞ 0 /

Table 1: Limit copulas for the parameterization Cα and Ĉα
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exchangeable, since the related c̃ are expectations of functions leading to par double

primitives and therefore lead themselves to par double primitives, so that (2) yields

symmetry.

However, we can also construct a smooth family of non symmetric copulas by

defining c̃ as the expectation of the previous non symmetric function (6) with a

random γ.

Indeed, if Z ∼ q where q is a positive density of a probability measure on [0, 1],

then c̄q := E[c̄Z ] =
∫ 1

0
c̄γ(x)q(γ)dγ is a positive 1-periodic function. Thus, as before,

if we have a family of random variables (Zα)α≥0 concentrated on [0, 1] with densities

{qα, α ∈]0,+∞[} on [0, 1] and such that Zα
L−→

α→0
1 and Zα

L−→
α→∞

0, we can define

̂̄C+

α := E[C̄+
Zα

] =

∫ 1

0

C̄+
γ qα(γ)dγ, ̂̄C−α := E[C̄−Zα

] =

∫ 1

0

C̄−γ qα(γ)dγ (9)

(that correspond respectively to the periodic densities c̃(x1 − x2) = c̄qα(x1 − x2) and

c̃(x1 + x2) = c̄qα(x1 + x2) = E[c̄Zα(x1 + x2)]).

We take Zα := Uα, where U is a uniform random variable on [0, 1]. Its density is

qα(u) =
1

α
u

1−α
α ,

so that the associated periodic function c̃ = c̄α is given in [0, 1] by

̂̄cα(x) := c̄qα =
1

1− α
[1− x

1−α
α ], α 6= 1, ̂̄c1(x) := c̄q1 = − ln(x).

In order to find an expression for the copula, we compute the primitive gα of ̂̄cα that

vanishes at x = 0. We have, for x ∈ [0, 1]:

gα(x) =
1

1− α
[x− αx

1
α ], α 6= 1, g1(x) = x− x ln(x),

and for x ∈ [−1, 0] we have gα(x) = gα(1 + x)− 1. Denote by Gα the primitive of gα

vanishing at 0. For x ∈ [0, 1] Gα is given by

Gα(x) =
1

1− α

[
1

2
x2 − α2

1 + α
x

1+α
α

]
, α 6= 1, G1(x) =

3

4
x2 − 1

2
x2 ln(x),

whereas for x ∈ [−1, 0] we have

Gα(x) = Gα(1 + x)− x−Gα(1).

By Fubini’s theorem, the copulas defined by (9) are the same as the copulas associated

with the periodic functions c̃ = ̂̄cα and defined by (2). We thus have, by (2) and using
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periodicity of ̂̄c (thus replacing ̂̄c(·) by ̂̄c(·−1), which is helpful in some computational

respects):

̂̄C+

α (u1, u2) = Gα(u1) +Gα(−u2)−Gα(u1 − u2)̂̄C−α (u1, u2) = Gα(u1 + u2 − 1)−Gα(u2 − 1)−Gα(u1 − 1) +Gα(−1).

Calculating the related Spearman rho we find:

ρ( ̂̄C+

α ) = 1− 3

1 + α
+

2

1 + 2α

and ρ( ̂̄C−α ) = −ρ( ̂̄C+

α ). As we know from (2), ̂̄C−α , contrary to ̂̄C+

α , is a family

of symmetric copulas, but this family is however interesting because it completes

“naturally” the family ̂̄C+

α . In Table 2 we sum up the values of the parameter α for

which the ̂̄C copulas reach the limit copulas.

C−F C⊥ C+
F

C̄+
α / 1 0

C̄−α 0 1 /̂̄C+

α / 0 +∞̂̄C−α +∞ 0 /

Table 2: Limit copulas for the parameterization C̄α and ̂̄Cα

2.3 Beyond the bivariate case

There are several ways to extend the previous construction to build a copula in

dimension n > 2. In dimension n > 2, we see that if c̃ is a 1-periodic function such

that
∫ 1

0
c̃(x)dx = 1, then c̃(

∑n
i=1 εixi) are densities of copulas when εi ∈ {−1, 1}.

However, these copulas cannot be obtained directly in terms of bivariate copulas and

therefore require cumbersome calculations. In order to keep the analysis simple, we

work instead with the densities already defined for the bivariate case. Consider the

following proposition.

Proposition 2.1. Assume that c1, ..., cn−1 are densities of two dimensional copulas

built through periodic densities c̃1, . . . , c̃n−1, i.e. cj(x, y) = c̃j(x + εjy) with εj ∈
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{−1, 1} and c̃j a nonnegative 1-periodic function with unit integral on a period. Set

č := (c1, ..., cn−1). Then

Č1(u1, .., un) :=

∫ u1

0

..

∫ un

0

c1(x1, x2)c2(x2, x3)..cn−1(xn−1, xn)dx1...dxn

Č2(u1, .., un) :=

∫ u1

0

..

∫ un

0

c1(x1, x2)c2(x1, x3)..cn−1(x1, xn)dx1...dxn

are copulas.

The proof is quite immediate. Properties 1 and 3 in Section 1 are satisfied by

construction. It remains to observe that Č(1, .., 1, uk, 1, .., 1) =
∫ uk

0
dxk = uk, by

using Fubini’s theorem, integrating first with respect to the xi’s with i 6= k, and

using then the property
∫ 1+x

x
c̃(u)du = 1.

The first copula Č1 is convenient if we wish to express the n-dependence in terms

of dependences of two consecutive variables, whereas the second one Č2 allows us to

express the n-dependence in terms of the dependence of a preferred variable (the first

in our formulation) with all other variables. The second method could be referred to

as a “preferred-” or “main-factor” approach.

3 The simulation of periodic copulas

Let us begin by recalling how to simulate a copula that admits a density p(x1, ..., xn).

We need simulate a vector of uniform variables (U1, ..., Un) that has the following

joint cdf:

C(u1, ..., un) =

∫ u1

0

..

∫ un

0

p(x1, ..., xn)dx1...dxn.

This can be done according to the following steps.

• To simulate the first variable U1, it suffices to sample from a uniform random

variable Ũ1 in [0, 1]. This can be easily done on a PC. Let us call u1 the

simulated sample.

• To obtain a sample u2 from U2 consistently with the earlier sampled u1, we

need to know the law of U2 conditional on U1 = u1. Let us name F2(.|u1) the

cdf of this law,

F2(u2|u1) = P(U2 ≤ u2|U1 = u1) = ∂u1C(u1, u2, 1, .., 1)/∂u1C(u1, 1, 1, .., 1)

= ∂u1C(u1, u2, 1, .., 1) =

∫ u2

0

∫ 1

0

. . .

∫ 1

0

p(u1, x2, ..xm)dx2..dxm.
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We take u2 = F−1
2 (Ũ2|u1) where Ũ2 is a new uniform-[0, 1] sample independent

of Ũ1.

• to simulate Uk consistently with the earlier sampled u1, . . . , uk−1, we need the

law of Uk conditional on Ui = ui for i < k. Denoting as usual by Fk(·|u1, .., uk−1)

the cdf of this law,

Fk(uk|u1, . . . , uk−1) = P(Uk ≤ uk|U1 = u1, .., Uk−1 = uk−1)

=
∂u1,..,uk−1

C(u1, .., uk, 1, .., 1)

∂u1,..,uk−1
C(u1, .., uk−1, 1, .., 1)

=

∫ uk

0

∫ 1

0
..

∫ 1

0
p(u1, .., uk−1, xk, .., xn)dxkdxk+1..dxn∫ 1

0

∫ 1

0
..

∫ 1

0
p(u1, .., uk−1, xk, .., xn)dxkdxk+1..dxn

we can take Uk = F−1
k (Ũk|u1, .., uk−1) where Ũk is a uniform-[0, 1] variable

independent of (Ũ1, ..., Ũk−1).

In the case of the periodic copulas Č1,2, maintaining the notation of Proposition 2.1,

we have respectively F 1
k (uk|u1, .., uk−1) =

∫ uk

0
ck−1(uk−1, xk)dxk and F 2

k (uk|u1, .., uk−1) =∫ uk

0
ck−1(u1, xk)dxk, where the upper index refers to the copula we are considering.

Taking the smooth families of the previous section, these F functions can be expressed

in terms of ψα and gα (for example
∫ uk

0
ĉα(u± x)dx = ±(ψα(u± uk)−ψα(u)). More-

over they are strictly increasing, and can therefore be inverted easily numerically.

We note here that if we choose the “non smooth” copulas C± and C
±
, this inversion

is not feasible since the densities vanish on some intervals. Thus we have obtained

families of n-dimensional copulas essentially characterized by n − 1 parameters αi

plus the flags sgni, symi, for i = 1, . . . , n− 1, where symi is set according to whether

we take a symmetric family or not (symbolized here by the bar), and where sgni is

taken from the set {−,+}.

4 Conclusions

The new family of “periodic” copulas introduced in this paper is an attempt at ob-

taining practically manageable and possibly asymmetric copulas. We have studied

the two-dimensional case, based on a single dependence parameter, and then pro-

vided a means to construct an n-dimensional copula building on the two-dimensional

case. We obtained families of copulas in dimension n and parameterized by n − 1
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parameters, implying possibly asymmetric relations. We explain how such copulas

can be simulated.
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