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Abstract

A posteriori error estimates are derived for unsteady convection-diffusion equations
discretized with the non-symmetric interior penalty and the local discontinuous
Galerkin methods. First, an error representation formula in a user specified output
functional is derived using duality techniques. Then, an L2

t (L
2
x) a posteriori estimate

consisting of elementwise residual-based error indicators is obtained by eliminating
the dual solution. Numerical experiments are performed to assess the convergence
rate of the various error indicators on a model problem.

Key words: a posteriori error estimates, duality techniques, non-symmetric
interior penalty, local discontinuous Galerkin, convection-diffusion equations

1 Introduction

Adaptive finite element methods based on discontinuous approximation spaces
have been under rapid development recently, notably because of their flexi-
bility in both local mesh subdivision and local polynomial degree variation.
The inherent flexibility of discontinuous Galerkin (DG) methods allows for
the general construction of temporal and spatial non-uniformities, more so
than conventional continuous finite element techniques, though at a higher
computational expense. Furthermore, they are locally conservative, allow for
nonconforming grids, and successfully handle the difficulties associated with
high gradient solutions. Cockburn et al. [1] contains a thorough survey of
modern implementations in various applications.
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While an extensive body of work with a priori error analysis exists for these
methods applied to transient convection-diffusion equations (see [1–5] and
references therein), their a posteriori error analysis and implementation is
significantly less developed. A posteriori estimators rely on the derivation of
computable bounds on the error and may be used to signify where refinement
in spatial quantities or polynomial degree may be adaptively modified. They
can be particularly useful in applications where solution gradients vary in
orders of magnitude across spatial domains, such as those arising in convection-
dominated transport.

A posteriori error estimators for DG methods have focused primarily on steady-
state equations of elliptic and hyperbolic type. Recent work by Becker et al. [6]
and Karakasian and Pascal [7] establishes energy norm estimates for elliptic
equations. Houston et al. [8] derive computable upper bounds on a natural
DG energy norm for incompressible Stokes flows. We mention work by Rivière
and Wheeler [9] who utilize a standard elliptic duality technique to derive L2

estimates. The use of a duality argument also extends to hyperbolic problems
to derive estimates of functional quantities of interest, leading to adaptivity
based on more physically meaningful quantities than the energy or L2 norm.
Such error bounds for first order hyperbolic problems were derived by Larson
and Barth in [10]. Süli and collaborators [11,12] also derive and implement
various error bounds for general linear and nonlinear target functionals of the
solution within an adaptive framework.

There are considerably fewer papers that are concerned with a posteriori error
estimation for DG methods applied to transient problems. Adjerid et al. [13]
and Flaherty et al. [14] exploit superconvergence results to construct asymp-
totically correct estimates of spatial discretization errors for unsteady linear
and nonlinear hyperbolic conservation laws. This application was also explored
by Hartmann and Houston [15] where they employ duality techniques to de-
rive estimates based on functional quantities of interest and demonstrate that
“weighted” a posteriori error indicators can lead to sharper bounds and more
efficient meshes than corresponding “unweighted” indicators: estimates based
on the elimination of the dual solution in the analysis. Results for transient
convection-diffusion operators remain sparse; we mention the work of Sun
and Wheeler [16], where an explicit L2(L2) and target functional estimates
are derived for a symmetric discretization of the diffusion operator. Formal
L2(L2) and target functional estimates of a non-symmetric interior penalty
formulation and the related “local” discontinuous Galerkin formulation re-
main unexplored in the literature.

In this paper, we focus our attention on the derivation of an explicit error
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estimator for the transient convection-diffusion problem

φ∂tc+ ∇ · (uc−D∇c) = φf on Ω, t ≥ 0, (1)

(uc−D∇c) · n = (uĝ) · n on ∂Ωin, t ≥ 0, (2)

(−D∇c) · n = 0 on ∂Ωout, t ≥ 0, (3)

c(x, 0) = c0(x) on Ω, (4)

defined on polygonal bounded domain Ω ∈ R
d, d = 2 or 3, with unit outward

normal n to Lipschitz boundary ∂Ω. Let ∂Ω = ∂Ωin∪∂Ωout be partitioned into
disjoint inflow and outflow boundary portions ∂Ωin = {x ∈ ∂Ω : u ·n < 0} and
∂Ωout = {x ∈ ∂Ω : u · n ≥ 0}, respectively. In typical porous media applica-
tions, c(x, t) represents the concentration of some chemical component, φ(x) is
the effective porosity of the medium and is bounded above and below by posi-
tive constants, u(x, t) is the Darcy velocity, D(x, u, t) is a diffusion/dispersion
tensor assumed to be uniformly positive definite (but not necessarily sym-
metric), and f(x, t) is a source term. We will assume the Darcy velocity field
vector u is given and satisfies the continuity equation ∇ · u = 0.

Our approach to derive a posteriori error estimates is based on the use of a du-
ality argument and Galerkin orthogonality and is similar to techniques used by
Rivière and Wheeler in [9] for elliptic equations. The particular non-symmetric
discontinuous Galerkin method (NIPG) we consider for discretizing the dif-
fusion operator was originally developed by Oden, Baumann and Babuška in
[17], and extended by Rivière et al. by adding interior penalty terms in the
formulation to weakly enforce inner element continuity; see [18] and references
therein. We also consider the local discontinuous Galerkin method (LDG) de-
veloped by Cockburn and Shu [2].

2 Non-symmetric Interior Penalty Galerkin (NIPG)

Let {Th}h>0 denote a family of finite element subdivisions of domain Ω parti-
tioned into open disjoint elements Ωe such that Ω̄ = ∪Ωe∈Th

Ω̄e. We denote by
Hs(Ω) the standard Sobolev spaces equipped with the usual norms ‖ · ‖2

Hs(Ω).

For a time-space function u, the notation u ∈ L2
t (H

s
x) (resp. u ∈ Ck

t (Hs
x))

means that the function t 7→ u(t, ·) ∈ Hs(Ω) is in L2(0, T ) (resp. Ck(0, T ))
where T is given. Define P

k(Ωe) to be the set of polynomials of degree less
than or equal to k on Ωe and consider the finite element space Vh = {v ∈
L2(Ω) : ∀Ωe ∈ Th, v|Ωe

∈ P
k(Ωe)}.

We will use the standard L2 inner product notation (·, ·)R for domains R ∈
R

d, and the notation 〈·, ·〉R to denote integration over (d − 1)-dimensional
manifolds. Let Fh be the set of faces belonging to elements Ωe ∈ Th and
partition Fh into F i ∪F ∂

in ∪F
∂
out, where F i denotes the set of interior faces, F ∂

in
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the set of those located on ∂Ωin, and F ∂
out the set of those located on ∂Ωout. For

a face F ∈ F i shared by elements Ωe1 and Ωe2 with respective unit outward
normals n1 and n2, define the average and (vector-valued) jump of v ∈ Vh as
{v} = 1

2
(v1 + v2) and [v] = (v1n1 + v2n2), respectively, where v1 = v|Ωe1

and
v2 = v|Ωe2

. Define the upwind value v↑ = v1 when u · n1 > 0, else v↑ = v2.
Similarly, for a function w ∈ [Vh]

d, define the average and (scalar-valued) jump
as {w} = 1

2
(w1 + w2) and [w] = (w1·n1 + w2·n2), respectively.

The NIPG formulation consists of seeking uh ∈ C1
t (Vh) such that ∀v ∈ Vh and

∀t ≥ 0,
(φ∂tch, v)Ω + aNIPG(ch, v) = (φf, v)Ω − (uĝ · n, v)∂Ωin

, (5)

with the initial condition (c0 − ch(0, ·), v)Ω = 0, ∀v ∈ Vh. The bilinear form
aNIPG is given by

aNIPG(ch, v) = −
∑

Ωe∈Th

(uch −D∇ch,∇v)Ωe
+

∑

F∈F ∂
out

〈uch · n, v〉F

+
∑

F∈F i

(

〈uc↑h, [v]〉F − 〈{D∇ch}, [v]〉F + 〈{D∇v}, [ch]〉F + 〈σF [ch], [v]〉F

)

,
(6)

where σF = σ0

|F |
, σ0 is a positive constant, and |F | the (d − 1)-dimensional

measure of F . Let the error in the solution be defined as ec = c− ch. Our goal
is to control the error in the functional

Ψ(ec) =
∫ T

0
(ψ1(ec), ec)Ω dt + (ψ2(ec(T, ·)), ec(T, ·))Ω, (7)

where ψ1 and ψ2 are user specified functions. Let ξ satisfy the adjoint equation

φ∂tξ + ∇ · (uξ +DT∇ξ) = ψ1(ec) on Ω, t ≤ T, (8)

(uξ +DT∇ξ) · n = 0 on ∂Ωout, t ≤ T, (9)

(−DT∇ξ) · n = 0 on ∂Ωin, t ≤ T, (10)

ξ(x, T ) = −ψ2(ec(T, ·)) on Ω. (11)

We first derive an error representation formula.

Theorem 2.1 Assume that the solution c to (1)–(4) and the solution ξ to
(8)–(11) are both in L2

t (H
2
x)∩C0

t (L2
x). Assume the diffusion/dispersion tensor

D to be continuous. Then,

Ψ(ec) = −
∫ T

0
(Reqn, ξ − ξ∗)Ω dt− (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0

(

∑

F∈F ∂
in

〈Rin, ξ − ξ∗〉F +
∑

F∈F ∂
out

〈Rout, ξ − ξ∗〉F

)

dt

+
∫ T

0

∑

F∈F i

(

〈R[ch], D
T∇ξ +D∇ξ∗〉F − 〈R[D∇ch] − u ·R[ch], ξ − ξ∗〉F

)

dt,

(12)
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where ξ∗ is arbitrary in Vh∩C
0(Ω) and where we have introduced the residuals

Reqn = φf − φ∂tch + ∇ · (uch −D∇ch), (13)

R[ch] = [ch], R[D∇ch] = [D∇ch], (14)

Rin = uĝ · n− (uch −D∇ch) · n, Rout = −D∇ch · n, (15)

Rt=0 = c0 − ch,0. (16)

Proof. Using (7), (8), and (11), we infer

Ψ(ec) = −
∫ T

0
(φ∂tec, ξ)Ω dt− (Rt=0, ξ(0, ·))Ω +

∫ T

0
(∇ · (uξ +DT∇ξ), ec)Ω dt.

Integrate by parts the diffusion contribution to the last term and use (10) to
obtain

(∇ · (DT∇ξ), ec)Ω = −
∑

Ωe∈Th

(∇ξ,D∇ec)Ωe
+
∑

F∈F i

〈DT∇ξ, [ec]〉F

+
∑

F∈F ∂
out

〈DT∇ξ · n, ec〉F .

Let ξ∗ be arbitrary in Vh ∩ C
0(Ω). Using Galerkin orthogonality, we obtain

Ψ(ec) = −
∫ T

0
(φ∂tec, ξ − ξ∗)Ω dt− (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0

∑

Ωe∈Th

(uec −D∇ec,∇(ξ − ξ∗))Ωe
dt

+
∫ T

0

(

∑

F∈F i

〈DT∇ξ, [ec]〉F +
∑

F∈F ∂
out

〈DT∇ξ · n, ec〉F

)

dt

+
∫ T

0

(

∑

F∈F i

〈{D∇ξ∗}, [ec]〉F +
∑

F∈F ∂
out

〈uec · n, ξ
∗〉F

)

dt.

Integrate by parts the term in the second line of the above equation to infer

∑

Ωe∈Th

(uec −D∇ ec,∇(ξ − ξ∗))Ωe
= −

∑

Ωe∈Th

(∇ · (uec −D∇ ec), ξ − ξ∗)Ωe

+
∑

F∈F i

〈[uec −D∇ec], ξ − ξ∗〉F +
∑

F∈F ∂
in
∪F ∂

out

〈(uec −D∇ec) · n, ξ − ξ∗〉F .

Using (9), we readily deduce the error representation formula (12). 2

From the error representation formula (12), it is possible to infer a residual-
based a posteriori error estimate where the dual solution has been eliminated
using the Cauchy–Schwarz inequality, local approximation properties of the
finite element space Vh, and a global stability result for the dual problem.
Set ψ1(ec) = ec and ψ2(ec) = 0 so that Ψ(ec) = ‖ec‖

2
L2

t (L2
x). Assume that the

5



resulting dual problem (8)–(11) satisfies the stability estimate

max
0≤t≤T

‖ξ(·, t)‖2
Ω +

∫ T

0
‖ξ‖2

H2(Ω) dt ≤ C

∫ T

0
‖ec‖

2
L2(Ω) dt. (17)

Furthermore, assume that the following approximation properties proven in
[19] for d = 2 also hold for d = 3. For element Ωe in Th and φ ∈ Hs(Ωe), there
exists a constant C depending on s but independent of φ, k, and element
diameter he and a sequence φ∗

h ∈ P
k(Ωe), such that for 0 ≤ q ≤ s and for

µ = min(k + 1, s),

‖φ− φ∗
h‖Hq(Ωe) ≤ C

hµ−q
e

ks−q
‖φ‖Hs(Ωe) s ≥ 0, (18)

‖φ− φ∗
h‖Hr(∂Ωe) ≤ C

hµ−r−1/2
e

ks−r−1/2
‖φ‖Hs(Ωe) s >

1

2
+ δ, δ = 0, 1. (19)

Corollary 2.1 With the above assumptions, an L2
t (L

2
x) a posteriori error es-

timate holds for the formulation (5) of the form

‖ec‖
2
L2

t (L2
x) ≤ C

∫ T

0

∑

Ωe∈Th

η2
e dt, (20)

with elementwise error indicators

η2
e =

h4
e

k4
‖Reqn‖

2
L2(Ωe) +

h4
e

k4
‖Rt=0‖

2
L2(Ωe)

+
∑

F∈∂Ωe∩Ω

(

h̃3
e

k3
‖R[D∇ch] + u ·R[ch]‖

2
L2(F ) +

h̃2
e

k2
‖D‖2

L∞‖R[ch]‖
2
L2(F )

+ ‖D‖2
L∞‖R[ch]‖

2
L2(F )

)

+
∑

F∈∂Ωe∩∂Ωin

h̃3
e

k3
‖Rin‖

2
L2(F ) +

∑

F∈∂Ωe∩∂Ωout

h̃3
e

k3
‖Rout‖

2
L2(F ),

(21)

for h̃e the maximal element diameter over all elements with the common face
F and C a constant independent of hF .

Proof. Use the error representation formula (12) together with the stability
estimate (17) and the approximation results (18)–(19). The only term re-
quiring special attention is the first one in the third line of (12). Writing
DT∇ξ +D∇ξ∗ = (D +DT )∇ξ −D∇(ξ − ξ∗), the second term yields the last
term in the second line of (21). The quantity ‖∇ξ‖F is estimated by ‖ξ‖H2(Ωe)

where Ωe is an element to which F belongs. Using the stability estimate (17),
this yields the first term in the third line of (21). 2

Convergence orders of the various contributions to (21) are assessed numeri-
cally in Section 4. Note also that with some additional algebra, it is possible
to derive an error representation formula and an a posteriori error estimate
when the diffusion tensor is discontinuous across mesh interfaces.
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3 Local Discontinuous Galerkin (LDG)

The LDG method consists of seeking ch, z̃h, zh ∈ C1
t (Vh) such that ∀v ∈ Vh,

∀w ∈ [Vh]
d, ∀w̃ ∈ [Vh]

d, and ∀t ≥ 0,

(φ∂tch, v)Ω −
∑

Ωe∈Th

(uch + zh,∇v)Ωe
+
∑

F∈F i

〈uc↑h + {zh}, [v]〉F

+
∑

F∈F ∂
out

〈uch · n, v〉F = (φf, v)Ω − (uĝ · n, v)∂Ωin
,

(22)

(z̃h, w)Ω −
∑

Ωe∈Th

(ch,∇ · w)Ωe
+
∑

F∈F i

〈{ch}, [w]〉F + (ch, w · n)∂Ω = 0, (23)

(Dz̃h, w̃)Ω − (zh, w̃)Ω = 0, (24)

with the same initial condition as before. Again, let ξ satisfy the dual problem
(8)–(11).

Theorem 3.1 Assume that the solution c to (1)–(4) and the solution ξ to
(8)–(11) are both in L2

t (H
2
x)∩C0

t (L2
x). Assume the diffusion/dispersion tensor

D to be continuous and piecewise-linear in space. Then,

Ψ(ec) = −
∫ T

0
(Reqn, ξ − ξ∗)Ω dt− (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0

(

∑

F∈F ∂
in

〈Rin, ξ − ξ∗〉F +
∑

F∈F ∂
out

〈Rout, ξ − ξ∗〉F

)

dt

+
∫ T

0

∑

F∈F i

(

〈R[ch], D
T∇ξ〉F − 〈R[D∇ch] − u ·R[ch], ξ − ξ∗〉F

)

dt,

(25)

where ξ∗ is arbitrary in Vh∩C
0(Ω) and where the residuals Reqn, R[ch], R[D∇ch],

Rin, Rout, and Rt=0 are defined in (13)–(16).

Proof. The proof is similar to that of Theorem 2.1. The main difference is that
Galerkin orthogonality now yields

Ψ(ec) = −
∫ T

0
(φ∂tec, ξ − ξ∗)Ω dt− (Rt=0, (ξ − ξ∗)(0, ·))Ω

+
∫ T

0

(

∑

Ωe∈Th

(uec,∇(ξ − ξ∗))Ωe
− (D∇ec,∇ξ)Ωe

− (ez,∇ξ
∗)Ωe

)

dt

+
∫ T

0

(

∑

F∈F i

〈DT∇ξ, [ec]〉F +
∑

F∈F ∂
out

〈DT∇ξ · n, ec〉F +
∑

F∈F ∂
out

〈uec · n, ξ
∗〉F

)

dt,

where ez = z − zh and z = −D∇c. Similarly, set ez̃ = z̃ − z̃h where z̃ = −∇c.
Owing to the assumption on D, we infer DT∇ξ∗ ∈ [Vh]

d and hence

(ez,∇ξ
∗)Ωe

= (ez̃, D
T∇ξ∗)Ωe

= −(∇ec, D
T∇ξ∗)Ωe

= −(D∇ec,∇ξ
∗)Ωe

,
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whence the error representation formula (25) readily follows. 2

Corollary 3.1 With the assumptions of Corollary 2.1, an L2
t (L

2
x) a posteri-

ori error estimate holds for the formulation (22)–(24) of the form (20) with
elementwise error indicators given by (21).

4 Numerical Results

In this section we present numerical results to illustrate the convergence order
of the various terms in the a posteriori error estimates. For the sake of brevity,
we consider the NIPG error estimates (21). As a model problem, consider a
1D convection-diffusion equation posed over domain Ω = (0, 4π) with initial
data u0(x) = sin(x), source term f = 0, inflow data ĝ(t) = −e−Dt sin(ut),
diffusion coefficient D = 1, and advection velocity u = 1. The simulation
time is set to T = 0.5. Since the diffusion length scale can be estimated as
δ = (DT )

1

2 = 0.7, we infer that the restriction of the solution to the interval
(0, 2π) is approximately given by c(t, x) = e−Dt sin(x− ut).

Numerical experiments are performed on two series of meshes: a series of
uniform meshes with step size h = 2−p π

8
(0 ≤ p ≤ 3) and a series of non-

uniform meshes which are constructed from the uniform meshes by setting the
step size alternatively to h

2
and 3h

2
for adjacent cells. Problem (5) is discretized

in time using an explicit Euler method and a time step of 2.5×10−5. Results
are presented in Tables 1 and 2. We evaluate the quantities

T1 =





∑

xj∈(0,2π)

[ch(xj)]
2





1

2

, T2 =





∑

xj∈(0,2π)

[c′h(xj)]
2





1

2

,

T3 = Rin(t = T, x = 0), T4 =





∑

Ωe∈(0,2π)

‖Rt=0‖
2
L2(Ωe)





1

2

,

where the xj’s denotes the mesh vertices. On the uniform meshes, supercon-
vergence is obtained so that the upper bound in (21) scales as h2. On the
non-uniform mesh, the first term in the third equation of (21) dominates the

upper bound, yielding a convergence order of h
3

2 approximately. This esti-
mate is compatible with standard a priori estimates for convection-diffusion
equations.
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p T1 order T2 order T3 order T4 order

0 2.98e-2 – 7.73e-1 – 2.53e-2 – 7.18e-3 –

1 1.79e-2 2.2 5.51e-1 .49 5.97e-3 2.1 1.80e-3 2.0

2 3.36e-3 2.4 3.90e-1 .50 1.22e-3 2.3 4.50e-3 2.0

3 6.07e-4 2.5 2.76e-1 .50 2.03e-4 2.6 1.13e-3 2.0

Table 1
Convergence tests on uniform meshes

p T1 order T2 order T3 order T4 order

0 4.94e-2 – 7.84e-1 – 5.78e-2 – 1.40e-2 –

1 1.95e-2 1.3 5.54e-1 .49 1.37e-2 2.1 3.51e-3 2.0

2 7.82e-3 1.3 3.92e-1 .50 3.30e-3 2.1 8.79e-4 2.0

3 1.04e-3 1.4 2.78e-1 .50 7.29e-4 2.2 2.20e-4 2.0

Table 2
Convergence tests on non-uniform meshes
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