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Abstract

We develop methods of risk sensitive impulsive control theory in
order to solve an optimal asset allocation problem with transaction
costs and a stochastic interest rate. The optimal trading strategy and
the risk-sensitized expected exponential growth rate of the investor’s
portfolio are characterized in terms of a nonlinear quasi-variational
inequality. This problem can then be interpreted as the ergodic Isaac-
Hamilton-Jacobi equation associated with a min-max problem. We
use a numerical method based on an extended two-stage policy iter-
ation algorithm for min-max problems and provide numerical results
for the case of two assets and one factor that is a Vasicek interest rate.

1 Introduction

The mathematical problem of optimally managing a portfolio of securities
when there are transaction costs has received considerable research attention
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in recent years. See Cadenillas [9] for a recent survey of this literature. Most
such research has been concerned with the classical economic objectives of
maximizing expected utility of terminal wealth and/or utility of consumption
over a planning horizon that can be finite or infinite. Researchers such as
Akian, Menaldi, and Sulem [1], Akian, Sulem, and Taksar [2], Cvitanic and
Karatzas [14], and Shreve and Soner [26] were concerned with cases where
the cost of a transaction is proportional to the amount of money that is
shifted between securities. Typically the optimal strategy is characterized
by a no-trade region, with “local-time” trading on the boundary used to
keep a certain process in the region. Other researchers such as Korn [18],
Morton and Pliska [22], @ksendal and Sulem [25] and Chancelier, QOksendal
and Sulem [12] assumed the transaction cost has a fixed component, thereby
precluding the optimality of local-time trading because it is, essentially, con-
tinuous. In this case the optimal strategy is again typically characterized by
a no-trade region, only when a certain process such as the vector of portfolio
proportions hits the boundary, a transaction is made causing the process to
jump to a point in the interior of the region, from which the process resumes
as before.

In a somewhat different direction, researchers such as Buckley and Korn
8], Connor and Leland [13], and Leland [20] have looked at optimal tracking
problems, where the tracking error is some measure of the differences between
specified fixed target proportions and the actual proportions for each asset
with respect to the total value of the portfolio. Since there are transaction
costs, there is an obvious trade-off between large tracking errors and large
transaction costs. The optimal strategies that emerge from these studies
resemble those mentioned in the preceding paragraph, with no-trade regions
and so forth.

For all of these studies the underlying models of the securities are com-
plete. Indeed, in most cases the asset appreciation rates and volatilities are
constants, that is, the so-called “investment opportunity sets” are constants.
Meanwhile, in a seminal paper, Merton [21] proposed a portfolio optimiza-
tion model, the so-called intertemporal capital asset pricing model (ICAPM),
where the asset appreciation rates and volatilities depend on one or more ex-
ogenous, stochastic factors. The added realism of his model comes with a
cost, however: perhaps because the model is incomplete, explicit results are
known for only a very few, special cases.

The objective for Merton’s ICAPM was the classical, economic one of
maximizing expected utility of terminal wealth and/or consumption. With



the aim of obtaining explicit results for a wider variety of cases, in recent
years researchers such as Bielecki and Pliska [3], [5], Bielecki, Pliska, and
Sherris [7], Fleming and Sheu [16], and Kuroda and Nagai [19] have studied
the very same model, only replacing the original economic objective with a
so-called “risk sensitive” one: maximizing the portfolios risk adjusted growth
rate. Indeed, this approach has produced explicit results for cases with many
assets, many Gaussian factors, and, very recently (see Nagai [23]), even non-
Gaussian factors. And these explicit results come with only a small cost
for abandoning classical expected utility criteria, because it has been shown
that the risk sensitive criterion is simply an approximation of a fundamental
objective in financial practice: the trade-off between a portfolio’s average
return and its average volatility. See Bielecki and Pliska [6] for a recent
study of the economic properties of the risk sensitive criterion for portfolio
management.

For most of these ICAPM models, whether they involve classical or risk
sensitive objectives, there are no transaction costs. But there are a few ex-
ceptions. Weiner [28] studied a problem where there is a trade-off involving
stochastic volatility, which is the factor. Another exception is a study by
Bielecki and Pliska [4] that combined the risk sensitive ICAPM model with
transaction costs having a fixed component. They used impulse control meth-
ods to show that solutions can be obtained via risk sensitive quasi-variational
inequalities (RSQVIs). They demonstrated their methods by obtaining ex-
plicit, numerical results for a simple zero-factor case involving just two assets
(in particular, for a modest generalization of the two-asset Morton and Pliska
[22] model). Bielecki and Pliska did not solve more complicated risk sensitive
quasi-variational inequalities due to computational challenges.

Indeed, while theoretical results for transaction cost problems are avail-
able for rather general models featuring many assets, many stochastic factors,
and various kinds of transaction costs, it remains true that numerical results,
let alone explicit results, have been obtained only for a very few, relatively
simple cases. The theory seems to be far ahead of the practical matter of
actually solving problems. The research challenge is to be able to solve mean-
ingful transaction cost problems in order to obtain economic insight if not
optimal trading strategies for realistic applications.

The main goal of this paper is to advance this “computational barrier”
by providing a computational algorithm and numerical results for a version
of the Bielecki and Pliska [4] model. Our analysis is for a case where there
are two assets (a risky asset and a bank account) and a single factor that
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one can interpret as the (Gaussian) short interest rate for the bank account.
The stochastic dynamics of the risky asset explicitly depend on this inter-
est rate, and the transaction cost is a fixed fraction of the portfolio’s value
when a transaction occurs. While this is only a modest generalization of
the Bielecki-Pliska [4] numerical example, now with one factor instead of
none, our solution approach is not simply a straightforward application of
established computational procedures such as dynamic programming itera-
tive methods, discrete time Markov chain approximations, or finite difference
methods. First we make a transformation that reduces the number of un-
derlying state variables from five to two, namely, the interest rate factor and
the fraction of the funds that are invested in the risky asset. This is pos-
sible due to the form of the transaction cost. Then, due to non-linearities
in the differential equation that is part of the risk sensitive QVI, we make
a further transformation that results in what can be interpreted as the er-
godic Isaac-Hamilton-Jacobi equation associated with a max-min problem.
Finally, we use a numerical method based on an extended two-stage policy
iteration algorithm to solve this min-max problem.

JFrom the economic standpoint our numerical results for the optimal
trading strategy are as one would intuitively anticipate. For a fixed interest
rate the no-trade region is an interval, and, with lower values of the interest
rate factor being bullish for the risky asset, the end points of the interval are
decreasing, in a continuous fashion, with respect to the factor level. When
the two-dimensional process hits the boundary, one rebalances by restarting
the process from a specified point in the interior of the interval corresponding
to the current factor value. And as one changes the risk sensitivity parameter
so as to make the investor more risk averse, the no-trade region shifts in a
direction toward smaller proportions in the risky asset.

The plan for this paper is as follows. In the next section we formulate
the problem and present the RSQVI which must be solved for the optimal
trading strategy. In Section 3 we explain how to transform this RSQVI into
an equivalent Isaac-Hamilton-Jacobi equation. Our computational approach
is presented in Section 4, and then in Section 5 we validate our approach by
using it to reconstruct the results obtained with different methods by Bielecki
and Pliska [4] for their zero-factor example. Then in Section 6 we illustrate
our computational approach by numerically solving an example which in-
cludes the stochastic interest rate factor. These results not only demonstrate
the efficiency of our algorithm, but by including comparative statics analyses
they also provide some economic understanding of the underlying portfolio
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optimization problem. We conclude with some remarks in Section 7 on the
vanishing transaction cost case and explicit solutions.

2 Model and Problem Formulation

We start with a two-asset, one-factor market model consisting of a bank
account Sy

dSo(t
Soo((t)) = (ao + Ao X())dt,  S0(0) = 5o,
a risky security S; such as a stock or stock index
dsS(t)

S\ (8) = (a1 + A, X (t))dt + o1 dWi(t), S1(0) = sy,

and one exogenous economic factor X (t)
dX (1) = (b+ BX(£))dt + MdWi(t) + AedWa(t), X(0) = z.

Here W(t) = (Wi(t), Ws(t)) is a two-dimensional Brownian motion while
ag, Ag, a1, Ay, 01,0, B, A1, and A\ are various scalar parameters. Presumably,
one could take B < 0 so that the factor process will have the “mean reverting”
property. Notice that this factor can explicitly affect the appreciation rate
of the risky asset. Moreover, if one takes ag = 0 and Ay = 1, then the factor
coincides with the bank’s interest rate, and so one in this case one should
interpret the factor as the short interest rate, as in the so-called Vasicek
model.

In this market we consider an investor who is dynamically trading the two
securities: Sy and S;. The information available to this investor is modeled
by the filtration G; := o((Si(s), X(s)),0 < s < t). However, due to the
presence of fixed transaction costs, the investor does not trade continuously
in time. Rather, the investor is restricted to the use of impulsive investment
strategies of the form u = ((13, Nx),k = 0,1,2,...) where

e =0<7 <...<Tp < Tpy1 < ...are Gy-stopping times (portfolio
rebalancing times) with 7, — oo a.s. when k& — oo, and

o N :=[Nyo, Ni.1]" is G, -measurable, where Ny, ; is the number of shares
of security ¢ to which the investor rebalances his portfolio at time 7,
and Nj; > 0 (no borrowing or short selling is allowed).
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As we mentioned above, the trading is subject to transaction costs. Let
C(s, N, N') denote the cost of the transaction when the security prices are
s = (s0,51)T and the portfolio share-holding positions change from N :=
(no,n1) to N’ := (ng, n}). We envision two main examples:

e Proportional to the transaction volume:

C(s,N,N'):=c+ci|s- (N—N")|, ¢,c; >0

e Proportional to the investor’s wealth level (as in Morton-Pliska [22])

C(s,N,N'):=as-N, ac(0,1).

We consider the following set of admissible strategies:
U :={u= (mk, Np),k=0,1,...), N}, € A(S(7), Np_1), S(7%) - Ny > 0}
where
A(s,N):={N' €[0,400)*>: s-N —C(s,N,N')>s-N'}.

Thus for a trading strategy to be admissible it must be self-financing, that
is, the portfolio value immediately after a transaction cannot be greater than
the portfolio value immediately before a transaction less the cost of the trans-
action. Moreover, it is required that the investor retains a positive amount
of money in the portfolio after any transaction.

Let N(t) = N“(t) := N, € R%, t € [, Ti41), k=0,1,2,..., denote the
share holding process. The investor’s objective is to trade optimally according
to the risk-sensitive performance criterion, that is, for > 0, maximize the
risk sensitive expected exponential growth rate of the investor’s portfolio:

Ty = timinf (- %)t_l IE[(S(t) - N*(t))"5]. (2.1)
As discussed above and explained more fully in various references cited above,
this criterion can be interpreted as providing a trade-off between a portfolio’s
exponential growth rate and its asymptotic variance, that is, its average
volatility. Moreover, the bigger the value of the parameter 8, the more risk
averse the investor.



This model is a special case of the one in Bielecki and Pliska [4], so to solve
this optimization problem we shall initially follow their approach. Consider
the following state process (a piecewise It6 process):

Y = (S(t), X(t), N“(t)) € O := (0,00)* x R x [0, 00)>.

We denote the current state by y = (so, s1, z, ng, n1).
The wealth process Z;* := S(t) - N“(t) evolves according to:

dz¢ = ZP( (Yt +3(Y)dW,) + > AZE 1, <

k=0
where

S()NO
SON() + 81N1

A(y) = (0,7(y)"
Y(y) = ( S - 0)

01 )
soNo + s1.V1

Note for future use that the functions 4 and f depend on y = (sq, s1,x, No, N1)
only through x and the fraction of wealth held in the risky security: %
Using Ito’s formula, we obtain:

51Ny

— A _ s
f(y) = (ao + Ao) soNo 1 51V,

+ (CLl + Alx)

dIn(Zy') = (f(Y}") = /2|7 (Y)|*)dt

(Y)W + ) AI(ZE )1, <ty

k=0

Hence

E[(ZZ‘)—GN] = E[eXp <—g(/ fg(Y;u)dT + ZAIH ng]‘{TkSt})>

exp (<12 [ I+ [ utam, )

where

o) = Fu) —1/205 + DI W)I?

and vy = —g'y.



For each v € U and 6 > 0, define an equivalent measure P*? by

dpu
dP

Fi

t t
~exp (—1/2 / Io(Y)]2dr + / w(Yf)dWT),
0 0

where F := (F;, t > 0) is the Wiener filtration associated with the Brownian
motions Wi and W5. Then the performance can be rewritten:

2 0, [ =
Jy(s,x) = li{n inf —gt_l InE30, (exp(—§(/ fo(Y,")dr + Z Aln kal{mq}))) :
o 0 k=0

We know by Bielecki and Pliska [4] that the solution to the investor’s
problem can be characterized in terms of the following Risk-Sensitive Quasi-
Variational Inequality (RSQVI):

Find a scalar A and a suitable, real-valued function ® solving

{ max{L®(y) — §[|®,(y) - B> = A+ fo(y), M® — D} =0 in int(O)
Md—-d <0 on 00

where

0'28%N1

LO®(y) := (ao + Aox)s0Ps, + [(a1 + Arz)s1 — § S|P,

8 )\10’181N1 1 2 9 1 2 2
_ v - o o — D,y
+[(b + Bx) SN § S1N1]q)x + 55101 P + 0181 Py, + 2()\1 +A3)

M®(y):= sup {In(s-N')—In(s-N)+ ®(s,z,N')},

N’'eA(s,N)
0 0
S0 0
Bly) =1 M X |,
0 0
0 0

o) = F(5) —1/2(5 + Db W),

SoNo
= (ag + Agg) ——————— + (a1 + Az —_—,
f(y) ( 0 0 >80n0 + s1nq ( ! ! )Sono + s1nq

S1M1



and
S511

= (o —L ).
Y(y) (UlsonoJrsml’ )

The optimal trading strategy can be constructed from the solution (A, ®)
in a very straightforward fashion. The Verification Theorem associated with
this characterization was provided (for a more general version of this model)
by Bielecki and Pliska [4], but that was as far as they took it. It remains

to find the scalar A and the smooth, real-valued function ® satisfying this
RSQVI.

3 Preliminary Transformations

We concentrate on the case where the transaction cost is
C(s,N,N')=as-N, ae(0,1).

The following change of variables reduces the number of state variables from
five to two, thereby simplifying the analysis of our RSQVI. Consider the new
state variable

L n131
T noSo + n1S1’
representing the current fraction of wealth in the risky asset (we call this the
risky fraction), and define a new function by taking

U(z,x) := D(so, 51, x,n0,M7)

on D := (0,1) xR. Now writing various partial derivatives of ® in terms of ¥,
substituting these in the above RSQVI, and doing some algebra, it becomes
apparent that our original RSQVTI is equivalent to the following one:

max{LWV(z,z) — 8o12(1 — 2) W, (2, 2) + MP,u(2,2))% — EN3W, (2, 2)?

A+ f(z2), MU(z,2) — U(z,2)} = 0 ) in D
MU (z,2) — ¥(z,2) <0 on 0D
(3.2)
where

LY (z,x) :=bi(z,2)V, + ba(z, )V, 4+ d11(2)V,, + dooV,p + dia(2) V., (3.3)
MUY (z,z) :=In(l —a)+ sup V(' z) (3.4)

0<z'<1



with
bi(z,z) = ((a1 —ag) + (A1 — Ag)z — (0/2 + 1)022) 2(1 — 2),
bo(z,z) =b+ Bx — g)\lalz,
dir(z)  =30122(1 = 2)2, do = 3(ANT+A3), dia(z) :=Morz(1 — 2),

f(z,z) (ap + Apx)(1 — 2) + (a1 + Ayz)z — é(g +1)22%.

(3.5)

The economic intuition associated with this transformation is fairly clear:
the two resulting state variables, namely, the risky fraction process and the
factor process, together constitute a sufficient statistic for the purposes of
the optimization problem.

Unfortunately, the terms in (3.2) that are nonlinear with respect to partial
derivatives of U present difficulties when one attempts to solve this RSQVI
with a standard computational approach. Our approach for circumventing
this difficulty is to linearise the RSQVI by using an auxiliary control variable.

The quadratic part in RSQVI (3.2), namely

2 Y

0
_Z(Ulz(l —2)V, + N V,) 1

2052
/\2\113:7
can be expressed as

O i 1 0 . 1
g mip{—(n1z(L =) ¥e = Ao + g + g min{—Aeacs + 50}

The RSQVI can then be rewritten as

{ max{min.cg2[L.V — A+ g.|, MU — ¥} =0 inD

MU —U <0 on 0D (3.6)

where

0 0 0
LV = (bl_§CIUIZ(1_Z))qu+(b2_5)\101_5)\202)\I}$+d11\1/zz+d22\11xz+d12\11zx7
(3.7)

7 0, 0,

ge(z, ) = f(z,2) + 16 + 1%

and M is given in (3.4). Thus we have introduced a game theoretic aspect to

our problem, thereby making it more complicated in some respects. However,

now all the partial derivatives of ¥ enter the RSQVT in a linear fashion, and

so it is ready to be solved for (A, V), as will be explained in the following
section.
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Remark 3.1 It is essential to emphasize here that our RSQVI (5.6) should
not be mistaken for an eigenfunction/eigenvalue type problem (or a Sturm-
Liouville type problem). In fact, we do not know of any way of characterizing
the optimal investment problem considered in this paper in terms of an eigen-
function/eigenvalue type problem. One of the reasons that such a characteri-
zation does not appear to be possible is that the optimization problem we deal
with is essentially a free-boundary problem, where the free boundary depends
on the bias function. Moreover, our problem is an ergodic type problem,
which — in distinction from discounted type problems — does not lend itself to
the eigenfunction/eigenvalue characterization. Thus a special computational
approach had to be devised for dealing with our problem.

4 Computational Approach

The purpose of this section is to present an algorithm for computing a solu-
tion to the max-min problem (3.6) and thus the original RSQVI.

4.1 Localisation

With regard to boundary conditions, the original, transformed problem sits
on a strip in R2?. The risky fraction process lives between 0 and 1 due to
the nature of the problem, which stipulates that after any rebalancing the
fraction in the risky asset must start strictly between 0 and 1. For a contin-
uous time diffusion the boundaries 0 and 1 are probably totally inaccessible
(for example, see Morton and Pliska [22]), and so the boundary condition for
the risky fraction component should not matter; we make it reflecting. The
factor process lives between plus and minus infinity, but for computational
purposes this must be changed to a compact interval. Since the factor process
is stable (i.e., mean reverting), its boundaries can be set at levels which are
rarely reached. If they are set in this way, then the specific kind of boundary
behavior is not important; we shall make these reflecting. Consequently, the
discretized problem ends up being an approximation of a two dimensional
process that lives on a compact rectangle 2 = [0, 1] x [Ly, Ly] with reflection
on all four boundaries.
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4.2 Finite-difference approximation

The operator £, defined in (3.7) can be rewritten as:
LV =010, 4 bV, + di1 Vs, + dpo Wy + di2 ¥y,
where _
by =b — 0/2c1012(1 — 2)
b2 = b2 — 0/2()\161 + )\262)
and b; and by defined in (3.5). We consider a finite difference approximation,

based upon a two-dimensional grid that is denoted Dy = E, x E, and has
space discretization steps denoted §; and 0, such that 1/6; € N and LZ(;;fl €
N. Here E, = {id1,i = 0...1/6,} and E, = {Ly + jd2,j = 0....“5;?} denote
respectively the z-grid and the z-grid.

Let (id1, jd2) be a point of the grid Ds. We approximate £,V (idy, jd2) by
L2V (8, 70,) defined as:

LIV = D192 + b0 92U + d110.. 0 + dpp0py U + dy20., 0,

where

8T (i6y, jos) = ((i +1)d1,j02) (2(51,j(52)’

01
W(idy, joo) — W((i — 1)dy, 7

0 (it 6z) = 000 = - o0 g%),
1

W((i+1)81,702) — 2W(idy, j62) + W((i — 1)d1,702)

63 ’
02(i01, joa) = (%62(2\11051,]’52) + V(i + 1)1, ( + 1)02) + W((i — 1)1, (j — 1)d2),
—(W((i+ 1)01,302) + (i = 1)1, jo2) + W(idy, ( + 1)) + W(idy, (j = 1)32)).

azz (2617 352) =

and 9F and 9,, are similarly defined. The discrete operator £2 has a square
matrix representation denoted by L°. The approximation is stable in the
sense of the L.-norm when the matrix L is invertible and if there exists a
uniform upper bound of ||(L?)7!||o. This is achieved when L¢ is diagonally
dominant. This condition is met when the spatial steps §; and d, satisfy

dll |d12’ d22 |d12‘
G 1%l 5 g apq 222142l 48
5 o, — o M ST T (4.8)
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(see [15, p.108]), which is equivalent to

|A1]o1z(1 — 2) < o < o12(1 — 2)

— forall z € F,.
N+A2 o T 0T |\

This is true if

|A1]o12(1 — 2) < 0 < min 012(1 — 2)
z€01] A2+ M3 dy T z€[0,1] | A1
Note that this cannot be satisfied for z = 0 and 1. In order to be satisfied
for all z € E, we add a viscosity term A to the £, operator *. This leads

to the following sufficient stability condition:

’)\1’0’1 < 51 < g1€

—— < =< — 4.9
29 = = A 4
We thus obtain the discrete approximation of Equation (3.6):
max (m}% B\ V), MV — v) =0 in D, (4.10)
ce
where
BX\V) = —A+LXV +g,
MV (z,2) = max V(' z)+In(l —a)
Z’E z

and £2¢ is the discrete operator obtained from the finite difference of £.+eA.

Note that equation (4.10) is valid for the points of the grid situated on the
boundary Ds N 62 since we have set reflecting boundary conditions (homo-
geneous Neuman limit conditions): the value of the function V' at fictitious
points situated outside the grid is equal to the value of the function V' at the
inner points, symmetric with respect to the boundary. Moreover MV —V < 0
holds on the boundary since it is implied by the equation.

Denote by L3¢ the matrix representation of £¢. Take k < [(L%€);|! for
all diagonal entries (L%€);. Condition (4.9) implies that P. = I + kL€ is a
Markov transition matrix, and equation (4.10) can be rewritten as:

max (min M+ (P, — D)V + kge, M°V — V) =0 in Ds. (4.11)

ceR?

1 As suggested by Nagai [24], we could also perform the change of variable y = Inz —
In(1 - z)
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4.3 A Howard algorithm to solve the discrete-time max-
min problem

To solve the discrete time max-min problem (4.10) we use a double stage
Howard algorithm. This involves a series of major iterations which we index
by k. And each such major iteration involves a series of minor iterations that
we index by p. Here, now, is a description of our algorithm. We denote by ¢
an a priori prescribed precision, and for any function ¢ : E, — E, and any
function V(z,x) we denote by N¢ the function defined as

NV (z,2) = V(E(z),x) + In(1 — «).

[S1] Initialization: We fix an initial partition Dj, U Dj, of Ds (take e.g.
D;, = Ds and D;, = () and an initial function &, : £, — E..

For k£ > 1 we have a major iteration comprised of the following steps:

[S5] Step 2k — 1: Find (A¥, V*), a solution of

{ mingege BY(A, V) =0 in Dy, (4.12)

V=N,V in Dy,
and compute the optimal strategy c* as given by
c* € argmin, g B3 (\*, VF).

Equation (4.12) is solved by using a Howard algorithm, a separate
procedure described below.

[S3] Step 2k: Compute 3¥t!(z) € argmax,.p V*(2,x) and define a new
partition D(';J{l U Dgl as

'Dg“lrl — {(Z, 1‘) € 'D(;, mllRI% Bg()\k, Vk) > Nﬂk+1 Vk}
' ce
Di;' = Do\Dgi'. (4.13)

[S4] Stop: If [\¥F1 — | < € we stop; else we go back to [Ss] to perform
step Step 2k + 1.
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Resolution of (4.12). Given a partition Ds; U Dsy and a function ¢ :
E, — E,, the Howard algorithm used in step 2k — 1 is described now. This
algorithm is a series of iterations that we call the minor iterations. Each such
iteration, indexed by p > 1, consists of the following steps.

[s1] Initialisation: Let’s ¢ be a given initial strategy: Ds; — R?
[se] Step 2p — 1: given a strategy ¢ :
c?: Dsi— R?
(2,2) = (c1,¢2)
we solve the linear system in (A, V):

{ B(csp()" V) = O iIl DE,I

V= NV in Dy, (4.14)

with the additional constraint }-, .p V(z,2) = 1 because V' is only
defined within an additive constant by (4.12). We denote by (AP, V?)
the solution of the system (4.14).

[s3] Step 2p: compute the strategy Pt : Ds; +— R? defined as

p+1

T = argmin{ceRz}Bf()\p, VP).

[s4] If [APT1 — N\P| < € stop; else go back to [ss] to perform Step 2p + 1.

A proof of convergence of this algorithm is given in [10], [11], and [17] in
a simpler case when there is only regular type of controls and not impulse
control. This proof uses the facts that the matrix L%¢ satisfies the Discrete
Maximum Principle (that is, it is a monotone operator) and that the matrix

M O . : .
b% T)’ where M is an irreducible

matrix (i.e., for all z,y, In(z,y) such that Mﬁ;x’y) > 0) and T is such that
I — T is invertible.

P. has a unique final class, i.e., P. = (

5 Comparison with the Risk Sensitive Exten-
sion of the Morton-Pliska Problem

As mentioned in the introduction, Morton and Pliska [22] studied a two-
asset model with the same dynamics as here, only there were no factors, so
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Ag = A; = 0. Their transaction cost was also the same as here, namely,
proportional to the investor’s wealth at the time of the transaction. Their
optimality criterion consisted in maximizing the investor’s long run, expo-
nential growth rate; this is equivalent to our risk sensitive criterion with risk
aversion parameter § = 0. Subsequently, Bielecki and Pliska [4] extended
the Morton-Pliska results to allow for any positive value of the risk aversion
parameter 6. In particular, they were able to find the explicit solution of
the differential equation corresponding to the continuation-region portion of
the RSQVTI in their case, and so by using suitable computer software they
were able to numerically compute the full solution of their RSQVI and thus
their optimal strategy. Since their numerical example is a special case of
the one-factor model studied in this paper, it provides a benchmark for the
purpose of validating our double stage, Howard algorithm approach.

Using the notation of this paper, the Morton-Pliska problem solved in
Bielecki-Pliska [4] corresponds to the following choice of parameters (specifi-
cations of our space mesh are also given):

e ayp=0.07,4)=0,a; =0.15,A; = 0,01 = 0.4, = 0.001.
o [Li, Ly =[0,L,] with L, = 0.12

e N, = 30 number of grid points on the z-axis process X ()
e N, =50 number of grid points on the z-axis process z(t)

We computed the optimal trading strategy for 6 € {0.1,2,4}. When
0 = 4, we obtained A = 0.07568 (see Figure 1). The numerical results that
we get are very close to the results published by Bielecki and Pliska in [4].

In Figure 1 and in subsequent figures, the horizontal axis is the risky
fraction (z € [0,1]) and the vertical axis is the interest rate factor (z €
[0, L,;]). The gray region represents the rebalancing portfolio region, the
white one is the no transaction region, and the black line is the set of levels
reached after a transaction.

The optimal policy is characterized here by the triple (z, z*,Z) such that
{(z,2),z < z} is the buying region, {(z, z),z > Z} is the selling region, and
z* is th optimal rebalancing portfolio. Figure 2 displays the sensitivity of
(z,2*,Z) to the size of the z-grid.
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A = 0.07568
0.12

0. 10;
0.08;
0.06;
0.04;

0.021

0.00 ‘ ‘ ‘ ; ‘ : : : :
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Optimal investment strategy for the risk sensitive Morton Pliska
problem with o = 0.001, # = 4.00, N, = 30, N, = 50

Sy}

o o

R 8
1 N

=

Figure 2: 2z, z* and Z for the risk sensitive Morton Pliska problem with
a = 0.001, § =4.00, N, = 30
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6 Numerical results for the risk sensitive prob-
lem with the interest rate factor

In this section we provide numerical results for the risk sensitive problem
with a factor, obtained by implementing our algorithm.? Not only does this
validate the efficiency of our algorithm, but this provides some economic
understanding of the underlying problem. In fact, we do a comparative
statics analysis, investigating the sensitivity of the optimal strategy to some
of the data parameters.

Figure 3 represents a typical optimal strategy such as we obtained for
figures 4 to 10. While the locations of the various boundaries will of course
vary, the qualitative nature of the strategies corresponding to Figures 4 to
10 will all resemble the hypothetical strategy illustrated in Figure 3.

A

L,

sell :'\\ sell

buy

=

buy ™ No\transaction

Figure 3: Typical optimal strategy

For Figure 4 the following “baseline” parameter values are used:

® 4y = O,AO = 1,@1 = 018,141 = —170'1 = 04,() = 006,B = —1,>\1 =
—0.001, Ay = 0.005,60 = 2, = 0.01.

o [Li,Ly) = [0, L] with L, = 0.12

e N, = 70: number of grid points on the z-axis, N, = 70: number of
grid points on the z-axis.

2The C and Scilab [27] programs which were used for numerical computations can be
found at url : http://cermics.enpc.fr/~jpc/bcp-19-nov-2003/
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For these values of parameters the risk sensitive performance \ is 0.05 (it
varies from 0.063 to 0.05 when the number of grid points increases from 30
points to 70 points in both directions).

A =0.06343
T

0. 12]

0.101
0.08;
0.06;
0.04;

0.021

0.00 ‘ ‘ ‘ ‘ : : : : :
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Optimal investment strategy for the risk sensitive problem o =
0.010, 6 = 2.00, N, =70, N, =70

Given various values of x, Table 1 provides the values of the optimal
thresholds (z(x), z*(z),Z(x)) such that buying is optimal at (z, z) when z <
z(x), selling is optimal at (z,z) when z > Z(x), and the optimal rebalancing
fraction is z*(z). This is done for the parameters used for Figure 4 and also
for a coarser grid N, = N, = 50.

Continuation region versus risk sensitive parameter. We investigate
the sensitivity of the numerical results to changes in the investor’s risk aver-
sion parameter. As expected, as 6 increases, the investor keeps more money
in the less risky asset; see Figures 5, 6, and 7 and Tables 2 and 3 (here for
N, = N, = 50).

Continuation region versus transaction cost. We also investigate the
sensitivity of results to changes in the transaction cost (here for N, = N, =
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N, =N, =50 N,=N, =170
T z z* Z z z* Z
0.000 || 0.122 | 0.347 | 0.837 || 0.116 | 0.333 | 0.841
0.030 || 0.061 | 0.245 | 0.612 || 0.058 | 0.246 | 0.609
0.060 - 0.184 | 0.449 - 0.174 | 0.435
0.090 — 0.102 | 0.327 — 0.101 | 0.304
0.120 - 0.000 | 0.224 - 0.000 | 0.217
Table 1: z,2* and Z as in Figure 4
. A = 0.06839

0.12 4

0.10+

0.08+

0.06-

0.04-

0.021

0.00 ; ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: a = 0.010, § = 0.10, N, = 50, N, = 50

0 z z* zZ 01 A
0.100 || 0.082 | 0.367 | 0.673 | 0.0204 | 0.06839
2.000 - 0.184 | 0.449 | 0.0204 | 0.06343
4.000 - 0.102 | 0.327 | 0.0204 | 0.06201

Table 2: z,2z* and Z for x = 0.06 and N, = N, = 50
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A =0.06343

0. 12]

0.10
0.08;
0.06;
0.04;

0.021

0.00

0.0

0.2

0.4 0.6

0.8

1.0

Figure 6: a = 0.010, 6 = 2.00, N, = 50, N, = 50

A = 0.06201

0.2

0.4 0.6

0.8

1.0

Figure 7: a = 0.010, 8 = 4.00, N, = 50, N, = 50
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0 z z* z 01 A
0.100 || 0.069 | 0.345 | 0.655 | 0.0345 | 0.06840
2.000 - 0.172 | 0.448 | 0.0345 | 0.06340
4.000 — 0.103 | 0.310 | 0.0345 | 0.06199

Table 3: z,2* and Z for x = 0.06 and N, = N, = 30

50). As expected, as the transaction cost « increases, the no-transaction

region increases; see Figures 8, 9, and 10 and Tables 4 and 5.

A = 0.06491

0.12
o.1o]
0.08|
0.061

0.04+

0.021

0.00
0.0

0.2

04 06

0.8

1.0

Figure 8: a = 0.001, # = 2.00, N, = 50, N, = 50

Figure 11 displays the evolution of the computed value A, with respect to
the iteration index k of the algorithm for the six examples given in Figures 5-
10. We see that only a few iterations is needed for the Howard algorithm to

converge.

22




A =0.06343

0. 12]

0.10
0.08;
0.06;
0.04;

0.021

0.00 ‘ w

0.0 0.2

0.4 0.6

0.8

1.0

Figure 9: a = 0.010, 6 = 2.00, N, = 50, N, = 50

A = 0.06168

0.2

0.4 0.6

0.8

1.0

Figure 10: a = 0.100, 8 = 2.00, N, = 50, N, = 50
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718.1-

687.2-

656.4-

625.61

594.8:

o z z* z 01 A
0.001 || 0.061 | 0.184 | 0.327 | 0.0204 | 0.06491
0.010 — 0.184 | 0.449 | 0.0204 | 0.06343
0.100 0.061 | 0.633 | 0.0204 | 0.06168
Table 4: z,z* and Z for x = 0.06 and N, = N, = 50
o z z* z 01 A
0.001 || 0.069 | 0.172 | 0.310 | 0.0345 | 0.06493
0.010 - 0.172 | 0.448 | 0.0345 | 0.06340
0.100 0.069 | 0.621 | 0.0345 | 0.06165
Table 5: z,2* and Z for x = 0.06 and N, = N, = 30
Fig. 5 Fig. 6 Fig. 7
Fig. 8 Fig. 9 Fig. 10

602-

562:

52,

594-

558-

647.6

616.2

584.8:

553.4;

W

68:
3 5 7 9

1

522.0-

11 13

1 3 5 7 9 11 13 15 17 19

Figure 11: Evolution of \; with respect to the iteration index k

24



7 Concluding Remarks: a Vanishing Trans-
action Cost

Not surprisingly, taking v = 0 in our RSQVI (3.2) we reproduce the no-
transaction cost results of Bielecki and Pliska [3], [5]. To see this, with a =0
we get M (z,7) = sup,pq Y(2',2) < ¥(z,z) for all 2. Consequently,
equation (3.2) becomes

W(z,2) = ¥(a) ]
baliz, 20 () + ot () — SOV + M)/ (2)? = A+ f(5,2) <0 in D,
(7.15)
It can be proven that the solution (¢, A) of the control problem is the minimal
solution of Eq. (7.15). Consequently, (1, A) must satisfy:

e {ba(ir 20 (2) + dt(2) — N (@) — DN (@) — A+ F(z,0)) =0,

z€[0,1]

This suggests that the optimal investment policy must satisfy:

a; — ag + (Al — Ao).CE — 9/2)\101w/($)
o2(0/2+1) '

Substituting this in the preceding equation, it is apparent that the function
1 satisfies:

2 (x) =

bo(x, 2% (2))Y () + dogt)” (x) — foz//(xf — ZA%W(Q;)? — A+ f(z*(x),7) = 0.

It turns out that the solution ¢ (x), defined within an additive constant, is a
quadratic function of x, so we shall set

W(x) = px +v

for scalar parameters 1 and v. Substituting this in the preceding equation
and then doing some algebra, one obtains the final solution, namely,

Q-B-/(Q-py - Eh Al
B P

1

L= —ub—i-/i@)\ﬂfl (al_a(])/(Q m) _(Al—AO) (a1 _GO)/f_AO
N wP+B—Q
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and

2 N 02
A:ub+dw_9d222y P (T 2§Alaw/ )
where
R N 50
P= _§(A1+A2)+Z(m)> =0 (5+1)
and
(A — Ag)O\

T 200(0/24+1)°

The function v is obviously C?. We can thus check by a verification
theorem that A is indeed the optimal performance and 1 is the potential
function of our control problem.

We see numerically that the optimal policy converges when a goes to
zero to the solution of the no-transaction cost problem. Figure 12 displays
the optimal policy for & = 1078, = 2 and the same other values of the
parameters.

A = 0.06577

00 02 04 06 08 1.0

Figure 12: Optimal investment strategy for vanishing transaction cost o =
le—8,0=2, N, =50, N, =50

We can identify 1(x) = 3.0722 + 0.25x — 0.029 as a quadratic function of
x which leads to z*(z) as an affine function of z, as can be seen on figure 12.
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