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77455 Marne-La-Vallée Cedex 2, France

herve.grall@free.fr

Abstract

Mobile programs, like applets, are not only ubiquitous, but also potentially malicious.
We study the case where mobile programs are executed by a host system in a secured
environment, in order to control all accesses from mobile programs to local resources. The
article deals with the following question: how to ensure that the local environment is secure?
We answer by giving a confinement criterion: if the type of the local environment satisfies it,
then no mobile program can directly access to a local resource. The criterion, which is type-
based and hence decidable, is valid for a functional language with references. By proving
its validity, we solve a conjecture stated by Leroy and Rouaix at POPL ’98; moreover, we
show that the criterion is optimal. The article mainly presents the proof method, based
on a language annotation which keeps track of code origin and thus enables studying the
interaction frontier between the local code and the mobile code, and it finally discusses the
generalization of the method.
typed programming languages, mobile code, language-based security, access
controls, confinement
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1 Introduction

Mobile programs, like applets, are not only ubiquitous, but also potentially malicious. It
is thus usual that a host system executes mobile programs in a secured local environment.
The environment acts as an interface for local resources and thus enables controlling inter-
actions between mobile programs and local resources, and particularly accesses from mobile
programs to local resources. A typical example is provided by the language Java, which
was designed to support the construction of applications that import and execute untrusted
code from across a network, like Internet; a Java applet, which is a mobile program, is ex-
ecuted in a secured environment by a virtual machine, which can be embedded in a web
browser, or in a smart card. Since the original security model, the “sandbox model”, which
provided a very restricted environment, the security architecture has evolved towards a
greater flexibility, with fine-grained access controls [7, 8].
The article defines a confinement criterion, which is new and optimal; the criterion can
help to enforce a security policy based on access controls in the presence of mobile code, as
the following introductory example explains.
Let us consider an object which represents a resource like a file and is equipped with an
access function, and suppose that accesses to the resource need to be controlled. There are
two techniques to implementing these controls. Firstly, the local environment can provide
a direct reference to the resource; in order to protect the resource, the encapsulated access
function must be replaced with a secured one, which makes some security checks before ac-
cessing to the resource. Secondly, the local environment can provide as a service a function
which makes some security checks before calling the access function encapsulated in the re-
source; of course, it must also prevent mobile programs from directly calling the unsecured
access function: in other words, the resource must be confined in the local environment.
A confinement criterion ensures that if the local environment satisfies it, then no mobile
program can directly call the access function of a resource. As the example shows, confine-
ment is used in conjunction with access controls in the local environment. It is therefore
interesting that before studying confinement, we review some current implementations of
access controls.

Access controls in programming languages We restrict ourselves to the approach
called language-based security, which is particularly relevant to computer-security questions,
as Harper et al. have argued in [9]. In this approach, security controls are implemented
either at a syntactic level, for instance, by instrumenting code, which leads to directly insert
checks in programs, or at a semantic level, by statically analyzing code or by modifying the
(operational) semantics. An access involves a subject, also called a principal, an object,
which we prefer to call a resource, and an access function, so that the question is: how are
they represented in this approach? An identification mechanism usually assigns each piece
of code to a subject. A static point of view only considers the current subject, the caller
of the access function, as in the SLam-calculus (acronym for “Secure Lambda-calculus”)
[10] or in the POP system (acronym for “Programming with Object Protection”) [23]; a
dynamic point of view leads to consider not only the current subject, but also its callers,
which are obtained by inspecting the call stack: see the original work of Wallach [27], the
official implementation for Java [7, 8], Schneider and Erlingsson’s alternative [5], Pottier
et al.’s analysis [20], which replaces some dynamic checks with static ones, implemented
by a type system, and the semantic theory of stack inspection developed by Fournet and
Gordon in [6]. A resource, which usually corresponds to the source of an input or the target
of an output, is represented by a value of the programming language: any object in Java
can therefore be considered as a resource, likewise any function in a functional language
like ML. An access function is any operation which can be applied to a value: any method
call in Java and any functional application in ML can therefore be considered as accesses.
A security policy defines the rules that all accesses must obey during executions. Since
Schneider’s work [22], it has become usual to specify a security policy for controlling ac-
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cesses with a security automaton: see Colcombet and Fradet’s implementation [4], Walker’s
[26] and Thiemann’s [24], which all mix program transformations with static analyses.

Mobile code issue We now come to our specific question: how can we enforce access
controls in the presence of mobile code?
We assume that the code of the local environment can be fully controlled by using one of
the preceding techniques, since it is available on the host system. As for mobile programs,
two limit cases can be drawn.
The first one corresponds to limiting mobility effects by controlling not only the local en-
vironment but also mobile programs; since the mobile code is not available on the host
system, program certification is needed. Before being sent, a mobile program is analyzed or
transformed by using one of the preceding techniques, in order to certify it according to the
security policy of the host system. Modularity is required to proceed as follows: firstly, the
local environment is analyzed to determine its secure calling contexts, secondly, the code of
the mobile program is certified by controlling that calls to the local environment are secure.
A good example is [2], which adds modularity to the analysis proposed by Jensen et al.
in [12]. When the host system receives a mobile program certified, it suffices to verify the
correctness of the certification. This verification may just be an authentication process, but
it may also be the proof that the execution of the mobile program in the local environment
will satisfy the security policy. In [16], Lee and Necula propose to use “proof-carrying code”,
that is to say to add proof hints to the mobile program, in order to ease the proof task.
It remains that with program certification, the mobile program can no more be regarded
as hostile; on the contrary, for the second limit case, no assumption is made about mobile
programs, since only the local environment plays a defensive role. We can distinguish two
defensive techniques, as in the introductory example. The first one is based on encapsu-
lation: access functions are replaced with secured ones, and since they are encapsulated
in local resources, each time a mobile program calls an access function, it actually calls
a secured one. A good example is the current implementation of access controls in Java
system classes. The second one is based on confinement : accesses are controlled in the local
environment and resources are confined in the local environment, so that there will be no
direct accesses from outside the local environment. This technique may be chosen when
the secured access function cannot be encapsulated in the resource, as in the two following
examples: firstly, when the access function itself is not encapsulated in the resource, as
in Java, for the cast operation ((Type)obj) and the reference equality (=), which can be
applied to references, but are not methods; secondly, when the code of the resource is not
available. Performance reasons may also justify this solution. A practical example for this
technique is [25], where Bokowski and Vitek advocate for Java this solution by confinement.
They propose to confine types, that is to say to confine all the values of sensitive types;
their proposal is formalized in [17] for a Java-like language. We also give a type-based
confinement criterion, but for a simpler language, a functional language with references;
our work actually extends Leroy and Rouaix’s results in [13], where code instrumentation
is used in conjunction with confinement or type abstraction to control accesses. All these
confinement criteria turn out to assume that the programming language is typed and that
its type system is sound: “well-typed programs do not go wrong”. Otherwise, it would
be impossible to give a confinement criterion, since a violation of type soundness by the
mobile program could lead to an uncontrolled access (for example, by converting a string
to a resource reference).

To conclude this introduction, we must mention a limitation of our work. We give the
confinement criterion for a high-level language, in order to ensure the following property:
for each local environment satisfying the confinement criterion, for every mobile program,
the mobile code cannot directly access to a sensitive local resource during its execution in
the local environment. The local environment and the mobile program are expressed in
the high-level language; actually, their implementations use a low-level language, like the
“bytecode” language for Java, for example. According to Abadi in [1], compilation is not
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a fully abstract translation, which means that contextual properties (using the universal
quantification “for every mobile program”) are not preserved by compilation, since low-level
languages are richer than high-level ones. This is a good reason for studying in a future work
low-level languages instead of high-level ones; note that a trend is now emerging, which leads
to using structured low-level languages, suitable for verification: see for example the “typed
assembly language” [15] or the translation of Java Bytecode in a typed term calculus [11].
Otherwise, the preservation by compilation of contextual properties may be obtained by
certifying mobile programs in order to execute them only if they result from a compilation.

Overview of the paper In Section 2, called “Keeping track of code origin by annotating
the language”, we define the language with which we work. It is a functional language
which also enables manipulating objects in the memory heap: it corresponds to a simply
typed λ-calculus with references in the style of ML. Although it is a very simple language,
it is sufficient for modeling complex interactions between the mobile program and the local
environment, resulting from the so-called side effects. It is also expressive enough, since for
each functional type, a fixpoint combinator can be encoded (by using references). In order
to rigorously define confinement, we need to keep track of code origin during executions. As
described by Klop et al. in [3, sect. 4], a solution is to annotate the language: every operator
of a program becomes labeled with its origin, in our case, either the mobile program, or
the local environment, and preserves its label during the execution. Executions of labeled
programs are described by an operational semantics, defined by a reduction relation; this
relation includes the following β-reduction, which clearly preserves labels:

@m(λxn b, a) → b[a/x] ,

where @m(−,−) stands for the application operator.
Section 3, called “Frontier under control: The confinement criterion”, is an application
to confinement of this annotation technique. We start by modeling the execution of a
mobile program in the local environment. The local environment is simply a well-typed
program, denoted by L, whereas the mobile program is modeled by a well-typed functional
abstraction, λx M[x], which is applied to the local environment. We then define what it
means for a type to be confined in the local environment: a resource type A is confined
in the local environment if for every mobile program, no operator coming from the mobile
program is applied to a local resource of the type A during the execution. The general
confinement criterion would answer the following question: given a local environment and
a resource type A, determine whether the type A is confined in the local environment. Of
course, a question like this is undecidable; in order to obtain decidability we resort to an
approximation by considering the type of the local environment and not its value. The
approximate confinement criterion that we will give exactly answers the following question:
given a type L for the local environment and a resource type A, determine whether for every
local environment L of type L, the type A is confined in L. The proof is based on an accurate
analysis of what happens at the frontier between the mobile code and the local code during
an execution. This result first solves a conjecture stated by Leroy and Rouaix in [13, sect.
5.1, p. 397]. They have proved that a type A is confined in a local environment if it does not
occur in the type of the environment, and we prove what they have conjectured: it suffices
that the type A occurs in the type of the environment neither at a positive occurrence, nor
under the reference type constructor Ref(−). We also prove that this criterion is optimal,
that is to say as weak as possible: if the resource type A occurs in the environment type L
at a dangerous place, then there exists a local environment L of type L such that the type
A is not confined in L.
Finally, after a brief comparison with Vitek et al.’s results in [25, 17] and Leroy and Rouaix’s
in [13], we will outline some directions for future works. It is particularly interesting to
consider some extensions of the programming language that we use and to better understand
the relationship between the confinement criterion and standard security analyses.
Note that the article ends with three appendices. Appendices A and B give the proof details
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of our main results about the confinement criterion. Appendix C describes a particular
security analysis and its relationship with our confinement criterion.

2 Keeping track of code origin by annotating the
language

We work with a functional language which also enables manipulating objects in the memory
heap: it corresponds to the Church version of a simply typed λ-calculus enriched with
references in the style of ML (see Table 1).

Table 1: Syntax of the programming language

A ::= Unit (singleton type)

| A → A (functional type)

| Ref(A) (reference type)

a ::= x (variable)

| λx : A. a (abstraction)

| a a (application)

| unit (unit)

| lRef(A) (reference, with identifier l and content of type A)

| ref(a) (reference creation)

| get(a) (dereferencing)

| set(a, a) (reference assignment)

In order to keep track of code origin during executions, we resort to an annotation of the
language: operators become labeled. A label is an ordered pair, whose first component
is a type, called the type label, and second component a piece of information, called the
information label. The syntax of the annotated language is given in Table 2. In the following,
f and g stand for operators in {λx, @, unit, l, ref, get, set}: a labeled term e either is
a variable, or has the form fm(e1, . . . , ei), where e1, . . . , ei are the immediate subterms
(0 ≤ i ≤ 2). If e is equal to fm(. . .) for some label m and some operator f, then we
sometimes write em for e in order to stress f’s label, which is called the label of e. Given
a labeled term e, the set of free variables in e is denoted by FV(e), and the set of labeled
references in e is denoted by Ref(e). A closed term is a term without free variables, whereas
a program is a closed term without references.
Note the two choices that we make: variables are not labeled and references are uniformly
labeled. Indeed, we suppose that for any labeled term e, the family (l)lm∈Ref(e) is one-to-
one, in other words, we suppose that the labeled references occurring in e can be identified
by their identifier. In the following, although we only use terms satisfying this formation
rule, we omit to verify its preservation (by reduction, etc.), which is always obvious.

The static and dynamic semantics of the annotated language closely follow the stan-
dard definitions for the programming language, which are not recalled because they can be
deduced from the annotated version. The type system, which is given in Table 3, enables
distinguishing between functions and references. Note the following points:

• for each valid judgment Γ ` e : A, where e is not a variable, the type A is the type
label of e, therefore e receives a unique type in Γ;
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Table 2: Syntax of the annotated language

m ::= (A, ι) (type and information)

e ::= x (variable)

| λxm e (labeled abstraction)

| @m(e, e) (labeled application)

| unit
m (labeled unit)

| lm (labeled reference, with identifier l and label m)

| ref
m(e) (labeled reference creation)

| get
m(e) (labeled dereferencing)

| set
m(e, e) (labeled reference assignment)

• only type labels matter in typing rules;

• since references are labeled with their type, typing environments only deal with vari-
ables, which are not labeled.

Table 3: Type system

∅

Γ ` x : Γ(x)
(x ∈ dom Γ)

Γ.(x : A) ` e : B

Γ ` λx(A→B,ι) e : A → B

Γ ` e1 : A → B Γ ` e2 : A

Γ ` @(B,ι)(e1, e2) : B

∅

Γ ` unit(Unit,ι) : Unit

∅

Γ ` l(Ref(A),ι) : Ref(A)

Γ ` e : A

Γ ` ref (Ref(A),ι)(e) : Ref(A)

Γ ` e : Ref(A)

Γ ` get (A,ι)(e) : A

Γ ` e1 : Ref(A) Γ ` e2 : A

Γ ` set (Unit,ι)(e1, e2) : Unit

The operational semantics is given by a reduction relation, and is presented by using the
standard decomposition of every closed term either into a value, or into a redex in an
evaluation context (cf. [28]). We use a lazy call-by-value reduction strategy : the leftmost
call-by-value redex which does not appear within a λ-abstraction reduces.
Substitutions are defined as usual: if e and a are terms and x a variable, then e[a/x] stands
for the result of replacing in e the free occurrences of x with a, without variable capture.
A value is either a closed abstraction, the unit value, or a reference:

v ::= λxm e | unitm | lm ,

where FV(λxm e) = ∅. A redex is either a β-redex, a reference creation, a dereferencing or
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an assignment:

r ::= @n(λxm e, v) | refm(v) | getm(ln) | setm(ln, v) ,

where FV(λxm e) = ∅. An evaluation context is built around the hole − as follows:

E ::= −
| @m(E, e) | @m(λxn b, E)

| ref
m(E) | getm(E) | setm(E, e) | setm(ln, E) ,

where FV(λxn b) = FV(e) = ∅. Every well-typed closed term is equal to either a value, or
a redex in an evaluation context, and this decomposition is unique.
A store s is a partial function from the the set of labeled references to the set of values such
that:

(i) the family (l)lm∈dom s is one-to-one, in other words, the labeled references belonging
to the domain of s can be identified by their identifier,

(ii) the set of identifiers {l | ∃m . lm ∈ dom s} is an initial segment of the set of reference
identifiers, which is supposed to be isomorphic to the set of natural numbers, and thus
to be well-ordered.

The first condition is coherent with the formation rule for terms. The second condition
enables defining a function for creating references: given a label m, the function νm maps
each store s to some reference lm such that l is the least identifier of the complement of
{l | ∃m . lm ∈ dom s}. Another useful function enables updating or extending a store.
Suppose that s is a store and lm a labeled reference such that lm is either already created,
that is in dom s, or is new, that is equal to νm(s); given a value v, a new store, denoted by
(s, lm 7→ v), is then defined as follows:

(s, lm 7→ v)(kn)
def
=

{
s(kn) if kn 6= lm ,
v otherwise.

A configuration is an ordered pair (s, e), where s is a memory store and e a closed term,
called the control term, such that

(i) Ref(e) ⊆ dom s ,

(ii) ∀ lm ∈ dom s . Ref(s(lm)) ⊆ dom s .

The two conditions mean that every labeled reference occurring in e or in a value belonging
to the range of s has a well-defined content.
The reduction relation is defined by an inference system, in Table 4. A judgment has the
form (s, a) → (s′, a′), which means that the configuration (s, a) reduces to (s′, a′).
The following propositions give the two main properties of the reduction relation. A store
s is said to be well-typed if for any labeled reference lm in the domain of s, lm is well-typed,
which is equivalent to m = (Ref(A), ι) for some type A and some information label ι, and
the value s(lm) has type A; a configuration (s, e) is said to be well-typed if s and e are.

Proposition 1 (Subject reduction)
Let (s, e) be a well-typed configuration. If (s, e) reduces to (s′, e′), then (s′, e′) is a well-typed
configuration and e′ has the same type as e.

Proposition 2 (Totality and determinism)
Let (s, e) be a well-typed configuration. If e is a value, then (s, e) does not reduce. Otherwise,
(s, e) reduces to a unique configuration.

These propositions enable defining the execution trace of each well-typed program e: it is the
maximal sequence of the configurations obtained by reduction from the initial configuration
(∅, e), where ∅ is the store with an empty domain. A well-typed program either evaluates
to a configuration, whose control term is a value, or diverges.
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Table 4: Operational semantics — Reduction relation

∅
[β](

s, @m(λxn e, v)
)
→

(
s, e[v/x]

)
∅

[REF](
s, refm(v)

)
→

(
(s, lm 7→ v), lm

) (lm = νm(s))

∅
[REF−!](

s, getm(ln)
)
→

(
s, s(ln)

)
∅

[REF−?](
s, setm(ln, v)

)
→

(
(s, ln 7→ v), unitm)

(
s, r

)
→

(
s′, r′

)
[RED](

s, E[r]
)
→

(
s′, E[r′]

) (
r redex
E evaluation context 6= −

)

Table 5: Strip function

↓ (x) = x

↓ (λx(A→B,ι) e) = λx : A. ↓ (e)

↓ (l(Ref(A),ι)) = lRef(A)

↓
(
f

m(ej)j

)
= f

(
↓ (ej)

)
j
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Of course, a strip function, denoted by ↓, which erases labels, can be defined: it suffices
to proceed by structural induction as Table 5 shows.
The following propositions explain the relationship between the annotated language and
the programming one.

Proposition 3 (Strip function - Typing preservation)
If the labeled term e has type A in the environment Γ, then ↓ (e) has also type A in Γ.
Conversely, if the unlabeled term a has type A in Γ, then there exists a labeled term e of
type A in Γ such that ↓ (e) = a.

The second part of the proposition and the fact that information labels does not matter
for typing enable defining from an information label ι and an unlabeled term a of type A
a unicolorous term, denoted by 〈a〉ι, such that 〈a〉ι has type A, ↓ (〈a〉ι) = a and every
operator of 〈a〉ι has ι as its information label.

Proposition 4 (Strip function - Reduction preservation)
If T is the execution trace of a well-typed labeled program T0, then ↓ (T ) is the execution
trace of ↓ (T0). Conversely, if S is the execution trace of a well-typed program, then there
exists an execution trace T of a well-typed labeled program such that ↓ (T ) is equal to S.

In other words, the annotated language permits simulating the programming language while
keeping track of code origin with labels.

3 Frontier under control: The confinement crite-
rion

In this section, since we want code to carry information about its origin, we use the pair
{mo, lo} as information labels: an operator labeled with mo comes from the mobile program,
whereas one labeled with lo comes from the local environment. The labels mo and lo are
called origin labels. In the following, if ι belongs to {mo, lo}, then ι denotes the other origin
label in order to obtain {mo, lo} = {ι, ι}.
Initially, the local environment L of type L is labeled with lo, whereas the mobile program
λx : L. M[x] of type L → M , which is applied to the local environment, is labeled with mo.
We thus study the execution of the well-typed labeled program

@(M,mo)(〈λx : L. M[x]〉mo, 〈L〉lo) ,

which is represented by the tree in Figure 1. Note that it is just a convention to label the
application operator with mo.

Figure 1: Modeling the mobile program calling the local environment

@
(M,mo)

mmmmmmm
IIIII

〈λx : L. M[x]〉mo 〈L〉lo

In order to rigorously define confinement, we introduce frontier redexes in Table 6; the
definition is parametrized by an origin label ι, belonging to {mo, lo}. From our perspective,
an access is represented by a redex: the operator, @, get or set, which we call a destructor,
is the access function, whereas the value destructed is the resource accessed. A frontier redex
therefore corresponds to the application of an access function to a resource of a different
origin. A type is confined in the local environment if no value of this type coming from the
local environment can be destructed by mobile code. In other words, confinement actually
means that some frontier redexes must not reduce.

9



Table 6: Frontier redexes

Frontier Redex Type of the value destructed

@(B,ι)(λx(A→B,ι) e, v) A → B

get (A,ι)(l(Ref(A),ι)) Ref(A)

set (Unit,ι)(l(Ref(A),ι), v) Ref(A)

Definition 5 (Confinement)
The type A is confined in the local environment L of type L if for every mobile program
λx : L. M[x] of type L → M , no frontier redex destructs a value of the type A and of the
origin label lo during the execution of the labeled program @(M,mo)(〈λx : L. M[x]〉mo, 〈L〉lo).
To ensure the confinement of a resource type, it suffices that it does not occur at the
frontier between the mobile code and the local code in a configuration of the execution trace.
Initially, there is only one type at the frontier, the type L of the local environment. Then,
during the execution, the frontier becomes more complex, as is exemplified in Figure 2,
where we omit to represent types and the empty store to simplify; in this example, the
mobile program is equal to λg h (g a), where h is an abstraction, g a functional variable and
a a value, and the local environment is equal to the η-expansion of some program f , λx f x;
the frontier is stressed with a double line.

Figure 2: Mobile code execution and frontier - Example

@
mo

uuuuu
CCC

CC
CCC

CC
−→ @

mo

yy
yy

y
CC

CC
C −→ @

mo

��
�� 77

77
77

77

〈λg h (g a)〉mo 〈λx f x〉lo 〈h〉mo
@

mo

||
||

|
||

||
|

::
::

〈h〉mo
@

lo

��
�� 88

88
88

88

〈λx f x〉lo 〈a〉mo 〈f〉lo 〈a〉mo

As the example shows, a tree representation is useful in order to make the frontier visible.
Whereas we consider that a term is naturally equivalent to a tree, how can we represent
a configuration? Suppose that (s, e) is a configuration, with dom s = {l1, . . . , ln} (labels
are omitted to simplify). Then the configuration is represented by the forest described in
Figure 3: each reference is thus followed by its content (as a tree).

Figure 3: Configuration and frontier

(s, e)
def
=


l1 . . . ln e

s(l1) s(l1)


f(∗,ι)

g(A,ι)

Configuration as a forest A at the ι-Frontier

The example also shows that we can actually distinguish two kinds of edges at the frontier,
according to the origin label of the lower node, which leads to the following definition.

Definition 6 (Frontier)
Let ι be any origin label and let ι be such that {ι, ι} = {mo, lo}. Let us consider a configura-
tion (s, e). The type A belongs to the ι-frontier of (s, e) if there exists in the representation
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of (s, e) as a forest an edge of the form described in Figure 3. The lo-frontier and the mo-
frontier are respectively called the outgoing frontier and the incoming frontier (with respect
to the local environment).

Consider the type L for the local environment. We are going to determine from L two
sets of types, Alo(L) and Amo(L), which are upper bounds of the outgoing and incoming
frontiers resulting from executing mobile code: more precisely, given any local environment
L of type L and any mobile program λx : L. M[x] of type L → M , for every configuration
(s, e) in the execution trace of

@(M,mo)(〈λx : L. M[x]〉mo, 〈L〉lo) ,

the outgoing frontier of (s, e) will be included in Alo(L) and the incoming frontier of (s, e)
will be included in Amo(L). Indeed, these upper bounds of the two frontiers lead to a
confinement criterion: if a resource type A does not belong to Alo(L), then no frontier redex
destructing a local value of type A reduces however the local environment and the mobile
program are defined, in other words, the type A is confined in every local environment of
type L.
Let us give some stability properties for these upper bounds. Firstly, note that L, initially
at the lo-frontier, must belong to Alo(L). Secondly, it suffices to examine the worst cases,
that is to say the cases which generate the most frontiers. Let ι be an origin label.
Suppose that A → B belongs to Aι(L). Consider a well-typed configuration(

∅, 〈E〉ι[@(B,ι)(〈λx : A. b〉ι, 〈v〉ι)
)
,

where 〈E〉ι is a unicolorous evaluation context, 〈λx : A. b〉ι a unicolorous abstraction of type
A → B and 〈v〉ι a unicolorous value of type A. The configuration contains A → B at the
ι-frontier and reduces to (

∅, 〈E〉ι
[
〈b〉ι[〈v〉ι/x]

])
,

which contains A at the ι-frontier if b owns a free occurrence of x without being equal to x,
and contains B at the ι-frontier if E is different from the hole − and b from x: see Figure 4,
where the empty store is omitted and where for any variable x, an edge labeled with [/x]
represents the substitution of the lower term for x in the upper term. The inference rules
[− → ] and [ → +] in Table 7 (p. 12) are therefore valid.

Figure 4: Frontier and β-reduction

〈E〉ι

[/−]

−→ 〈E〉ι

[/−]

@
(B,ι)

qqqqqq
qqqqqq

GGG
GG

〈b〉ι

[/x]

〈λx : A. b〉ι 〈v〉ι 〈v〉ι

Suppose that Ref(A) belongs to Aι(L). Let l(Ref(A),ι) be a reference of type Ref(A).
Consider a well-typed configuration(

s, 〈E〉ι[get (A,ι)(l(Ref(A),ι))]
)
,

where 〈E〉ι is a unicolorous evaluation context and s is a memory store such that s(l(Ref(A),ι))
is equal to a unicolorous value 〈v〉ι of type A. The configuration contains Ref(A) at the
ι-frontier and reduces to (

s, 〈E〉ι[〈v〉ι]
)
,

which contains A at the ι-frontier if E is different from the hole −: see Figure 5.
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Figure 5: Frontier and dereferencing(
. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

)
−→

(
. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

)
〈v〉ι get(A,ι) 〈v〉ι 〈v〉ι

l(Ref(A),ι)

Consider a well-typed configuration(
s, 〈E〉ι[set (Unit,ι)(l(Ref(A),ι), 〈v〉ι)]

)
,

where s is a memory store, 〈E〉ι a unicolorous evaluation context and 〈v〉ι a unicolorous
value of type A. The configuration contains Ref(A) at the ι-frontier and reduces to(

(s, l(Ref(A),ι) 7→ 〈v〉ι), 〈E〉ι[unit(Unit,ι)]
)
,

which contains A at the ι-frontier (〈v〉ι being under l(Ref(A),ι) in the new store): see Figure 6.

Figure 6: Frontier and assignment(
. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

)
−→

(
. . . l(Ref(A),ι) . . . 〈E〉ι

[/−]

)
. . . set(Unit,ι)

uuu
uuu

uuu
uuu BB

BB
B 〈v〉ι unit(Unit,ι)

l(Ref(A),ι) 〈v〉ι

The inference rules [Ref(+)] and [Ref(−)] in Table 7 are therefore valid.

Table 7: Stability rules for frontier upper bounds

A → B ∈ Aι(L)
[− → ]

A ∈ Aι(L)

A → B ∈ Aι(L)
[ → +]

B ∈ Aι(L)

Ref(A) ∈ Aι(L)
[Ref(−)]

A ∈ Aι(L)

Ref(A) ∈ Aι(L)
[Ref(+)]

A ∈ Aι(L)

Natural candidates for the two upper bounds Alo(L) and Amo(L) are the sets inductively
generated by the inference rules in Table 7 from the axiom L ∈ Alo(L), which easily gives:

(i) A belongs to Alo(L) if and only if A occurs in L at a positive occurrence or under the
type constructor Ref(−),

(ii) A belongs to Amo(L) if and only if A occurs in L at a negative occurrence or under
the type constructor Ref(−).

For example, the type A occurs at a positive occurrence in ∗ → A or in (A → ∗) → ∗, at a
negative occurrence in A → ∗ or in (∗ → A) → ∗, and under the type constructor Ref(−)
in Ref(∗ → A) → ∗ (each occurrence of ∗ standing for any type). The following definition
gives a name to these natural candidates.
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Definition 7 (Outgoing and incoming types)
Let L be a type. We say that

(i) a type A is an outgoing type of L if A occurs in L at a positive occurrence or under
the type constructor Ref(−),

(ii) a type A is an incoming type of L if A occurs in L at a negative occurrence or under
the type constructor Ref(−).

The intuition behind these definitions is right: a type which is not an outgoing type of L is
confined in L, as the following theorem precisely shows, thus solving the conjecture stated
by Leroy and Rouaix in [13, sect. 5.1, p. 397].

Theorem 8 (Confinement criterion)
Let L be the type for the local environment, and A a resource type. If the type A is not
an outgoing type of L, then for every local environment L of type L, the type A is confined
in L.

Proof. Suppose that the resource type A is not an outgoing type of L. Let L be any local
environment of type L, and λx : L. M[x] be any mobile program of type L → M . We must
show that no frontier redex destructs a value of the type A and of the origin label lo during
the execution of the labeled program @(M,mo)(〈λx : L. M[x]〉mo, 〈L〉lo). Let (Ti)i be its exe-
cution trace. It suffices to show that for every configuration Ti in the trace, the outgoing
frontier does not contain A. Since by hypothesis, A is not an outgoing type of L, it thus
suffices to show that a type belonging to the outgoing frontier is an outgoing type of L and
one belonging to the incoming frontier is an incoming type of L. We proceed by induction
on the position i in the trace.
Initially, the incoming frontier is empty whereas the outgoing frontier contains a unique
type, L, which is an outgoing type of itself.
Then we can conclude from the fact that the two frontier upper bounds are preserved by
reduction, which is shown in Appendix A (Th. 23): for any well-typed configuration t re-
ducing to t′, if the outgoing frontier and the incoming frontier of t are respectively included
in the set of outgoing types and in the set of incoming types, then so are the frontiers of t′.
Note that a further hypothesis about origins is needed to obtain preservation: in any con-
figuration, for each occurrence of any bound variable, all operators between the occurrence
and its binder (including the binder) must have the same origin. This property of origin co-
herence is initially satisfied and is also preserved by reduction (cf. Appendix A (Prop. 13)).
The example described in Figure 7 shows why this hypothesis is required: indeed, initially,
the incoming frontier, empty, and the outgoing frontier, equal to {B}, are respectively in-
cluded in the set of incoming types of B and in the set of outgoing types of B; finally, the
outgoing frontier is empty and the incoming frontier is equal to {A}, which can be any type
and therefore may be not an incoming type of B: there is not preservation. 2

Figure 7: Origin incoherence - Example
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The confinement criterion that we have given is optimal since the converse of Theorem 8
is valid: an outgoing type is not confined.

Theorem 9 (Criterion optimality)
Let L be the type for the local environment, and A a resource type. If the type A is an
outgoing type of L, then there exists a local environment L of type L such that the type A
is not confined in L.

The proof, which can be found in Appendix B, is by induction on the type L: for each type
L of whom the resource type A is an outgoing type, a local environment L of type L and a
mobile program λx : L. M[x] of type L → M can be defined in order that a frontier redex
destructs a value of the type A and of the origin label lo during the execution of the labeled
program @(M,mo)(〈λx : L. M[x]〉mo, 〈L〉lo).
The following cases sketch the proof by showing how the mobile program and the local
environment can cooperate. We also illustrate these cases with concrete examples, using
OCAML, an implementation of ML. These examples are presented as transcripts of sessions
with the interactive system: an entry starting with # and finishing with ;; represents a user
input, an OCAML phrase; the system response is printed below, without a leading #. Note
that we actually modify the type outputs of the interpreter by removing polymorphism in
order to ease reading.
Program 1 gives some basic definitions. The resource type is defined by the class resource;

Program 1: Class for resources, instantiation for a local resource and mobile code access

# class resource origin = (* class resource parametrized by origin *)

object

method access subject = print_string (subject^" onto "^origin)

end;;

class resource : string -> object method access : string -> unit end

# let res = new resource "local";; (* instantiation *)

val res : resource = <obj>

# let attack r = r#access "mobile";; (* mobile code access *)

val attack : resource -> unit = <fun>

the class is parametrized by origin, which we use to indicate the origin of created instances;
the variable res, which is an instance of the class resource created with "local" as the
origin, represents the sensitive local resource. The goal of our mobile programs is to call
the method access of res with "mobile" as the argument, which will write "mobile onto

local" onto the standard output: the function attack actually realizes this access.
We now describe some interesting cases. We suppose that a local resource of type A is given;
for each given type L for the local environment, we informally define a local environment
of type L and a well-typed mobile program whose execution entails the forbidden access to
the local resource. We also give the concrete examples in OCAML, where A is represented
by resource and the other types by unit.
If L = (A → B) → C, then A occurs at a positive occurrence in L. The mobile program
passes to the environment a function which realizes an access to its unique argument; the
environment applies this function to the resource: see Program 2.
If L = Ref(A) → B, then A occurs under the type constructor Ref(−). The mobile
program passes a reference of type Ref(A) to the environment; the environment assigns
to this reference a new content, the local resource, which becomes available to the mobile
program: see Program 3.
If L = Ref(A → B), then A again occurs under the type constructor Ref(−). It turns out
that the situation is more difficult. The local environment is a reference lL of type L, which
is initialized with a particular function f : when f is applied to an argument, it first reads
the content of lL to obtain a function of type A → B, then applies this function to the local
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Program 2: Attack onto resource in (resource -> unit) -> unit

# let mobile e = e attack;; (* mobile program *)

val mobile : ((resource -> unit) -> unit) -> unit = <fun>

# let env f = f res;; (* local environment *)

val env : (resource -> unit) -> unit = <fun>

# mobile env;; (* mobile program calling the local environment *)

mobile onto local- : unit = ()

Program 3: Attack onto resource in resource ref -> unit

# let mobile e =

let l = ref (new resource "mobile") in

( e l ; attack !l );; (* mobile program *)

val mobile : (resource ref -> unit) -> unit = <fun>

# let env l = (l := res );; (* local environment *)

val env : resource ref -> unit = <fun>

# mobile env;; (* mobile program calling the local environment *)

mobile onto local- : unit = ()

resource of type A, and finally returns some value of type B. As long as the content of l is
f , the function f diverges for any argument. As for the mobile program, it first reads the
content of its argument lL in order to obtain f , then assigns to lL a function of type A → B
which realizes an access to its argument of type A; finally, the mobile program applies f
to an argument of type A: the content of lL, yet the function realizing the access, is thus
applied to the local resource. See Program 4 for details.

Program 4: Attack onto resource in (resource -> unit) ref

# let mobile e = let f = !e in

let r = new resource "mobile" in

(e := attack ; f r);; (* mobile program *)

val mobile : (resource -> unit) ref -> unit = <fun>

# let f_init r = ();; (* initialization function *)

val f_init : resource -> unit = <fun>

# let env = let l = ref f_init in

let f x = !l res in

(l := f ; l);; (* local environment *)

val env : (resource -> unit) ref = {contents = <fun>}

# mobile env;;

mobile onto local- : unit = ()

4 Conclusion

As mobile programs, like applets, are potentially malicious, we have studied the case where
mobile programs are executed by a host system in a secured local environment, in order
to control all accesses from mobile programs to local resources. This article actually deals
with the following question: how to ensure that the local environment is secure? We answer
by giving a confinement criterion, such that if the local environment satisfies it, then no
mobile program can directly access to a local resource.
The criterion is type-based: it takes as inputs a resource type A and a type L for the local
environment, and determines whether for each local environment L of type L, the type A

15



is confined in L, which means that no resource of type A belonging to the local environ-
ment L can be directly accessed by a well-typed mobile program. More precisely, we have
proved that the resource type A is confined if it occurs in the environment type L neither
at a positive occurrence, nor under the reference type constructor Ref(−), which can be
computed with a polynomial-time complexity. This criterion improves the one given by
Leroy and Rouaix in [13], which forbids the resource type to occur in the environment type;
moreover, we have proved that our criterion is optimal: if the resource type A occurs in
the environment type L at a positive occurrence or under the reference type constructor
Ref(−), then there exists a local environment L of type L such that A is not confined in L.
It remains that the criterion is only valid for a functional language with references. Vitek
et al.’s works about confinement [25, 17] deal with an object-oriented language like Java. If
we try to apply their confinement criterion to mobile code, then we find that the criterion
also forbids any resource type to occur in the environment type (cf. rules C2 and C3 in [17,
p. 137]). It is thus interesting to determine whether our method, which is different from
the methods of these previous works, can be extended to a richer language, particularly to
an object-oriented language, in order to get the best possible confinement criterion. Our
method is based firstly on the annotation of the programming language, in order to keep
track of code origin, secondly on the study of the interaction frontier between the mobile
code and the local code; it enables rigorously defining confinement, which seems to be its
decisive advantage over the previous methods. Future works will confront our method to
different features of object-oriented programming languages, like data abstraction, subtyp-
ing and inheritance. We actually expect that our method is suitable for a lot of data types,
particularly with ordered pair, record and list types, and recursive types; since objects can
be represented as references containing records, object types being recursive because of self-
reference, objects could actually be added to our programming language without difficulty.
As for other features, further investigations are needed and could benefit from Vitek et
al.’s works [25, 17]. For example, a specific rule is needed for subtyping, since it becomes
possible to convert a local resource into any supertype: not only the resource types must
be confined, but also their supertypes, when they are used to convert local resources (cf.
rule C5 in [17, p. 137]).

Finally, we come back to security concerns. As we have seen in the introduction, es-
pecially in the introductory example, we use confinement in conjunction with local access
controls. The security certification of the local environment is therefore based on two
elements, firstly, a security analysis of the code of the local environment, secondly, a con-
finement criterion.
A security analysis may directly lead to a confinement criterion. Indeed, it may enable in-
ferring from a local result, only dealing with the local environment, a global result, dealing
with any mobile program calling the local environment: an inference like this is valid when
the local result satisfies some conditions, which define the confinement criterion. Whether
this associated confinement criterion is equivalent to ours is an interesting question for a
type-based analysis.
Let us give an illustration, developed in Appendix C. Suppose that the local environment
contains sensitive resources. Since the local code is available, we can secure access functions
in the local environment by adding run-time checks. This code instrumentation must ensure
that no unsecure access function is applied to a sensitive resource during an execution. To
verify this property, we can analyze the local environment; it remains that this analysis
provides half of the verification: confinement for sensitive resources is also needed, since
mobile code could directly access to a sensitive resource. We can therefore decompose the
problem into two parts: firstly, conceive a security analysis which leads to control accesses
in a whole program; secondly, determine a confinement criterion which enables inferring
from the analysis result for the local environment the analysis result for any mobile pro-
gram calling the local environment.
Heintze and Riecke answer in [10] the former problem by defining a type system which
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statically ensures access controls for a language called the SLam-calculus (acronym for “Se-
cure Lambda-calculus”). Note that we just consider access controls whereas their solution
is more general since it also deals with information flows. An annotated language which
keeps track of origin is used; labels mark sensitive resources and secured access functions.
More precisely, two labels are used, ⊥ and >, with the following meaning:

constructor destructor

⊥ not sensitive not secured

> sensitive secured

Recall that resources are terms generated by constructors, and access functions are destruc-
tors. A labeled program is secure if during its execution, no destructor labeled with ⊥ is
applied to a constructor labeled with >. Heintze and Riecke propose a system of labeled
types to satisfy this property: a labeled program well-typed in this system is secure, as their
subject reduction theorems show (cf. [10, Th. 2.1, 3.1]). In this type system, a value labeled
with > (representing therefore a sensitive resource) has a type labeled with >, whereas a
value labeled with ⊥ has a type labeled with ⊥; elimination rules enforce the preceding
security property, which gives for the application operator (with σ1 and σ2 belonging to
{⊥,>}, ordered by ⊥ < >):

Γ ` f : A
σ1→ B Γ ` a : A

Γ ` @σ2(f, a) : B
(σ1 ≤ σ2) .

The type system allows subtyping: given any type constructor F, a type F⊥(. . .) is a subtype
of F>(. . .). Indeed, the substitution principle, as defined by Liskov and Wing in [14], is valid
under the following form: if a program is secure when it uses any sensitive resource of type
F>(. . .), then it is also secure when it uses instead any value of type F⊥(. . .) .
The subtyping relation enables solving the confinement problem, by using the technique
of converting to confine. Consider the local environment: since it is available on the host
system, we can assume that it is well-typed in the annotated type system, and therefore
secure. As for a mobile program, since it is not available on the host system, it is just
assumed to be typed in the standard type system, without annotation; actually, since
the mobile program contains no sensitive resource and is not secured, it also receives a
type only labeled with ⊥ in the annotated type system. Here is the question: is the
mobile program calling the local environment secure? The answer is affirmative if the local
environment can receive a type completely labeled with ⊥: the mobile program calling
the local environment then receives a labeled type and is therefore secure. If the labeled
type of the local environment contains >, it may be subsumed in another type completely
labeled with ⊥: for instance, the type Ref>(A) is not a subtype of Ref⊥(A), so that the

label > cannot be removed, whereas the type Ref>(A)
⊥→ B is a subtype of Ref⊥(A)

⊥→ B
because of the rule of domain contravariance. Finally, this technique of converting the local
environment leads to the following confinement criterion (cf. Appendix C (Prop. 30)):

given a labeled environment type L, if every labeled type which occurs in L at
a positive occurrence or under the reference type constructor Ref(−) is labeled
with ⊥, then every mobile program calling a local environment of the labeled
type L is secure.

It turns out that the confinement criterion inferred from the type system and its subtyping
properties is equivalent to ours. It remains to review other type-based security analyses.
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Appendices

Appendices A and B give the proof details of our main results about the confinement
criterion (cf. Theorems 8 (p. 13) and 9 (p. 14)). Appendix C describes a particular security
analysis, which has been developped by Heintze and Riecke in [10], and its relationship with
our confinement criterion. It develops the second part of the conclusion (cf. p. 16–17).

A Validity of the confinement criterion

We finish off the proof of Theorem 8 (p. 13). We begin by formally defining origin coherence
and studying the preservation of this property by reduction. Then, we prove that the frontier
upper bounds are preserved by reduction, which allows concluding.

Definition 10 (Origin coherence)
A labeled term e is origin coherent if it is inductively generated by the following rules:

(i) e is a variable,

(ii) e is equal to f(A,ι)(e1, . . . , ej), where for all integers k in {1, . . . , j},
(a) ek is origin coherent,

(b) if ek contains a free variable and is not a variable, then ek is not at the frontier
in e:

(FV(ek) 6= ∅ ∧ ek = g
(Ak,ιk)(. . .)) ⇒ ι = ιk .

A configuration (s, e) is origin coherent if

(i) the control term e is origin coherent,

(ii) for every labeled reference lm belonging to the domain of s, the value s(lm) is origin
coherent.

This definition corresponds to the following intuitive characterization: in a term which is
origin coherent, all operators between its root and an occurrence of any free variable have
the same origin, likewise all operators between an occurrence of a bound variable and its
binder (including the binder) have the same origin. For instance, given a closed term f , the
term

λx(A→B,mo) @(B,lo)(〈f〉lo, x)

is not origin coherent, whereas the terms

λx(A→B,lo) @(B,lo)(〈f〉lo, x)

and
λx(A→B,mo) @(B,mo)(〈f〉lo, x)

are (see Figure 8, where the operator with the wrong origin label is boxed). In the following,

Figure 8: Origin incoherence and coherence - Examples
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we only use terms which are origin coherent. We must therefore show that this property is
preserved by reduction.
We first examine the decomposition in an evaluation context. Note that in order to deter-
mine whether an evaluation context is origin coherent, we consider that the hole − is not
a variable, but an operator with a null arity. It is easy to show that evaluation contexts
which are origin coherent are inductively generated by the following grammar:

E ::= −
| @n(E, e) | @n(v, E)

| ref
m(E) | getm(E) | setm(E, e) | setm(v, E) ,

where the value v and the closed term e are origin coherent.
Let us give the first lemma, which will be used for the reduction rule [RED].

Lemma 11

(
Origin coherence
Decomposition lemma

)
Let E be a labeled evaluation context and e a labeled closed term. If E[e] is origin coherent,
then so are E and e.

Proof. It is straightforward, by induction on E. 2

Let us consider substitutions, which are used in β-reductions; if the free variable is replaced
with a closed term, origin coherence is preserved. Otherwise, the preservation may fail, as
the following example shows:

ref
lo(x)[refmo(y)/x] = ref

lo(refmo(y)) .

Lemma 12

(
Origin coherence
Substitution lemma

)
Let e and a be two labeled terms. If a is closed and if e and a are origin coherent, then
e[a/x] is origin coherent.

Proof. Let a be a labeled closed term which is origin coherent. We show by induction on e
that if e is origin coherent, then so is e[a/x]. We deal with the only interesting case, where
e is equal to f(A,ι)(e1, . . . , ej). Let us suppose that e is origin coherent.
We show that for all integers k between 1 and j,

(a) ek[a/x] is origin coherent,

(b) if ek[a/x] contains a free variable and is not a variable, then ek[a/x] is not at the
frontier in e[a/x].

Let k ∈ {1, . . . , j}.
The first condition follows from the inductive hypothesis, since ek is origin coherent.
As for the second one, let us examine the different cases for ek.
If ek = x, then ek[a/x] = a and by hypothesis, FV(a) = ∅: the second condition is trivially
satisfied.
If ek is equal to a variable y different from x, then ek[a/x] = y: the second condition is
trivially satisfied.
Otherwise, ek is equal to g(Ak,ιk)(. . .) (for some operator g), so that

e[a/x] = f
(A,ι)(e1[a/x], . . . , g(Ak,ιk)(. . .), . . . , ej [a/x]) .

If ek[a/x] contains a free variable, then since FV(ek[a/x]) ⊆ FV(ek), a being closed, ek

contains a free variable; since e is origin coherent, we have ι = ιk and we can conclude. 2

We can now prove that origin coherence is preserved by reduction.

Proposition 13

(
Origin coherence
Preservation by reduction

)
Let t1 be a configuration reducing to t2. If t1 is origin coherent, then so is t2.
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Proof. We proceed by induction on the proof of t1 → t2.
• [β]
We use Lemma 12 to conclude.
• [REF], [REF−!], [REF−?]
It is straightforward.
• [RED]
t1 and t2 are respectively equal to (s, E[r]) and (s′, E[r′]), where E is an evaluation context
and r a redex such that (s, r) → (s′, r′) .
If t1 is origin coherent, then so are E and (s, r), by using Lemma 11, so is (s, r′) by the
inductive hypothesis, and finally t2 is origin coherent by Lemma 12. 2

We now prove that the two frontier upper bounds given in Definition 7 (p. 13) are
preserved by reduction. We only consider well-typed configurations in the following: note
that by the subject reduction property (cf. Prop. 1, p. 7), if a well-typed configuration t
reduces to t′, then t′ is well-typed. We recall that given an environment type L, we denote
by Alo(L) the set of outgoing types of L and by Amo(L) the set of incoming types of L.
Some preliminary lemmas are useful. In these lemmas, we suppose that ι is an origin label,
either lo or mo. The ι-frontier of a configuration (s, e) (cf. Definition 6, p. 10) is denoted
by Fι(s, e); it is useful to decompose Fι(s, e) in Fι(s) ∪ Fι(e), where Fι(s) and Fι(e) are
the ι-frontiers of the memory store s and of the term e, respectively, and are defined as for
configurations in Definition 6 (p. 10). Given a label (A1, ι1), let us define a useful function,

L(A1,ι1)
ι , which maps each labeled term e to a set of types, as follows:

L(A1,ι1)
ι (e)

def
=

{
{A2} if e = f(A2,ι2)(. . .) and ι = ι2 = ι1 ,

∅ otherwise.

This function, which computes the ι-frontier at the top of term patterns g(A1,ι1)(. . . , e, . . .),
leads to the following formal definition of the term frontier by induction:

Fι(x) = ∅ ,

Fι(f
n(ej)j) =

⋃
j

Fι(ej) ∪ Ln
ι (ej) .

As for a memory store s, the frontier is formally defined as follows:

Fι(s) =
⋃

lm∈dom s

Fι(s(l
m)) ∪ Lm

ι (s(lm)) .

We begin by computing the frontier of a closed term in an evaluation context. An evaluation
context is said to reduce under the label n if it contains as a subterm fn(. . . ,−, . . .), for
some operator f. This definition is justified by the following lemma.

Lemma 14 (Frontier and reduction)
Let E be a labeled evaluation context reducing under n and let e be a labeled closed term.
Then we have:

Fι(E[e]) = Fι(E) ∪ Fι(e) ∪ Ln
ι (e) .

Proof. It is straightforward by induction on E. 2

Let us consider substitution effects.

Lemma 15 (Frontier and substitution)
Let e be a term labeled with n, a a labeled term and x a variable, such that e is origin
coherent. If x is free in e, then we have:

Fι(e[a/x]) = Fι(e) ∪ Fι(a) ∪ Ln
ι (a) .
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Note that we assume the origin coherence of e in order to use on the right hand side its
label, n.

Proof. We show by induction on e that if e is origin coherent, is not a variable and contains
a free occurrence of x, then the expected equality is satisfied.
The case where e is a variable being trivial, we only consider the interesting case where
the labeled term e is equal to fn(e1, . . . , ej) for some operator f and some label n equal to
(A0, ι0). We suppose that e is origin coherent and contains a free occurrence of x.
By definition, we have

Fι(e[a/x]) =
⋃

1≤k≤j

Fι(ek[a/x]) ∪ Ln
ι (ek[a/x]) .

We must show

Fι(e[a/x]) =
( ⋃

1≤k≤j

Fι(ek) ∪ Ln
ι (ek)

)
∪ Fι(a) ∪ Ln

ι (a) .

Let k be an integer in {1, . . . , j}. We consider two cases according to whether x is a free
variable in ek or not.
• x ∈ FV(ek)
If ek = x, then

Fι(ek[a/x]) ∪ Ln
ι (ek[a/x]) = Fι(a) ∪ Ln

ι (a) ,

Fι(ek) ∪ Ln
ι (ek) = ∅ .

Let us suppose ek 6= x. Since x is free in ek, the term ek cannot be a variable and is thus
labeled, say with (Ak, ιk).
Since e is origin coherent, ek is origin coherent and we have ι0 = ιk. From the inductive
hypothesis applied to ek, we obtain

Fι(ek[a/x]) = Fι(ek) ∪ Fι(a) ∪ L(Ak,ιk)
ι (a) .

Since ι0 = ιk, we have L(Ak,ιk)
ι (a) = Ln

ι (a). Since Ln
ι (ek[a/x]) = Ln

ι (ek), we finally deduce:

Fι(ek[a/x]) ∪ Ln
ι (ek[a/x]) = Fι(ek) ∪ Ln

ι (ek) ∪ Fι(a) ∪ Ln
ι (a) .

• x /∈ FV(ek)
We then have ek[a/x] = ek, and therefore:

Fι(ek[a/x]) ∪ Ln
ι (ek[a/x]) = Fι(ek) ∪ Ln

ι (ek) .

Finally, by gathering all the cases, and by noting that there exists at least some k such that
x ∈ FV(ek), we obtain:

Fι(e[a/x]) = Fι(e) ∪ Fι(a) ∪ Ln
ι (a) .

2

We now study how the frontier evolves when the memory store is updated.

Lemma 16 (Frontier and memory store updating)
Let s be a memory store and ln a labeled reference belonging to dom s ∪ {νn(s)}. Then we
have:

Fι((s, l
n 7→ v)) ⊆ Fι(s) ∪ Fι(v) ∪ Ln

ι (v) .

Proof. It follows from the definitions of the updating function and of the frontier. 2

We can now prove that the frontier upper bounds are preserved by reduction. We are going
to proceed by induction on the proof of the reduction. Firstly, we consider base cases.
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Lemma 17

(
Preservation of frontier upper bounds
β-reduction

)
Let L be a type. Consider a β-reduction (s, r) → (s, r′) such that

(i) the configuration (s, r) is origin coherent,

(ii) for all origin labels ι, the ι-frontier of (s, r) is included in Aι(L):

Fι(s, r) ⊆ Aι(L) .

Then for all origin labels ι, the ι-frontier of (s, r′) is included in Aι(L):

Fι(s, r
′) ⊆ Aι(L) .

Proof. Suppose that the reduction (s, r) → (s, r′) satisfying the preceding conditions is(
s, @(B,ι1)(λx(A→B,ι2) b, v)

)
→ (s, b[v/x]) .

Let ι be an origin label. In order to show Fι(s, b[v/x]) ⊆ Aι(L), we examine the different
cases for b.
• b = x
Since b[v/x] = v, it is straightforward.
• b = f(B,ι3)(. . .)
If x /∈ FV(b), then b[v/x] = b; we can conclude. Let us suppose x ∈ FV(b).
Since b is origin coherent, from Lemma 15, we deduce

Fι(b[v/x]) = Fι(b) ∪ Fι(v) ∪ L(B,ι3)
ι (v) .

It remains to prove L(B,ι3)
ι (v) ⊆ Aι(L).

Suppose L(B,ι3)
ι (v) 6= ∅: we then have that v is labeled with (A, ι), L(B,ι3)

ι (v) = {A} and
ι3 = ι.
Since r is origin coherent, we have ι2 = ι3. The reduction is represented in Figure 9, where
the created frontier is indicated with a double line.

Figure 9: Proof of Lemma 17 - Interesting case

( s @
(B,ι1)

pppppp
JJJJJ

) −→ ( s b(B,ι)

[/x]

)

λx(A→B,ι) v(A,ι) v(A,ι)

b(B,ι)

If ι1 = ι, then A belongs to Fι(r), which is included in Aι(L) by hypothesis.
If ι1 = ι, then A → B belongs to Fι(r), which is included in Aι(L) by hypothesis. By the
inference rule [− → ] (cf. Table 7, p. 12), we obtain that A belongs to Aι(L). 2

Lemma 18

(
Preservation of frontier upper bounds
[REF−?] reduction

)
Let L be a type. Consider a [REF−?] reduction (s, r) → (s′, r′) such that for all origin
labels ι, the ι-frontier of (s, r) is included in Aι(L):

Fι(s, r) ⊆ Aι(L) .

Then for all origin labels ι, the ι-frontier of (s′, r′) is included in Aι(L):

Fι(s
′, r′) ⊆ Aι(L) .
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Proof. Suppose that the [REF−?] reduction (s, r) → (s′, r′) satisfying the preceding con-
ditions is (

s, set (Unit,ι1)(l(Ref(A),ι2), v)
)
→

(
(s, l(Ref(A),ι2) 7→ v), unit(Unit,ι1)) .

Let ι be an origin label. By Lemma 16, we have

Fι(s
′, r′) ⊆ Fι(s) ∪ Fι(v) ∪ L(Ref(A),ι2)

ι (v) .

It thus remains to prove L(Ref(A),ι2)
ι (v) ⊆ Aι(L).

Suppose L(Ref(A),ι2)
ι (v) 6= ∅: we then have that v is labeled with (A, ι), L(Ref(A),ι2)

ι (v) = {A}
and ι2 = ι. The reduction is represented in Figure 10, where the created frontier is indicated
with a double line.

Figure 10: Proof of Lemma 18 - Interesting case

( . . . l(Ref(A),ι) . . . set(Unit,ι1)

ttt
ttt GG

GG
G ) −→ ( . . . l(Ref(A),ι) . . . unit(Unit,ι1) )

. . . l(Ref(A),ι) v(A,ι) v(A,ι)

If ι1 = ι, then A belongs to Fι(r), which is included in Aι(L) by hypothesis.
Otherwise, ι1 = ι and Ref(A) belongs to Fι(r), which is included in Aι(L) by hypothesis;
by the inference rule [Ref(−)] (cf. Table 7 , p. 12), we obtain that A belongs to Aι(L). 2

Lemma 19

(
Preservation of frontier upper bounds
[REF] or [REF−!] reduction

)
Let L be a type. Consider a [REF] or [REF−!] reduction (s, r) → (s′, r′) such that for all
origin labels ι, the ι-frontier of (s, r) is included in Aι(L):

Fι(s, r) ⊆ Aι(L) .

Then for all origin labels ι, the ι-frontier of (s′, r′) is included in Aι(L):

Fι(s
′, r′) ⊆ Aι(L) .

Proof. It can be easily shown that Fι(s
′, r′) ⊆ Fι(s, r). 2

Lemmas 17, 18 and 19 allow concluding that all base cases are satisfied. Secondly, we
consider the inference rule [RED], involving an evaluation context. We examine the different
cases for the reduction premise, which is a base case; for every following lemma, we assume
the inductive hypothesis.

Lemma 20

(
Preservation of frontier upper bounds
β-reduction in evaluation context

)
Let L be a type. Consider a [RED] reduction rule

(s, r) → (s′, r′)

(s, E[r]) → (s′, E[r′])
(evaluation context E 6= −)

such that

(i) (s, r) → (s′, r′) is a β-reduction,

(ii) for all origin labels ι, the ι-frontier of (s, E[r]) is included in Aι(L):

Fι(s, E[r]) ⊆ Aι(L) ,
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(iii) for all origin labels ι, the ι-frontier of (s′, r′) is included in Aι(L):

Fι(s
′, r′) ⊆ Aι(L) .

Then for all origin labels ι, the ι-frontier of (s′, E[r′]) is included in Aι(L):

Fι(s
′, E[r′]) ⊆ Aι(L) .

Proof. Suppose that the reduction (s, E[r]) → (s′, E[r′]) satisfying the preceding conditions
is (

s, E[@(B,ι1)(λx(A→B,ι2) b, v)]
)
→ (s, E[b[v/x]]) .

We also assume that the evaluation context reduces under m, which has ι0 as its origin
label.
Let ι be an origin label. By Lemma 14, we have

Fι(s, E[b[v/x]]) = Fι(s) ∪ Fι(E) ∪ Fι(b[v/x]) ∪ Lm
ι (b[v/x]) .

From the hypotheses, we deduce

Fι(s) ∪ Fι(E) ∪ Fι(b[v/x]) ⊆ Aι(L) .

It remains to prove Lm
ι (b[v/x]) ⊆ Aι(L).

Suppose Lm
ι (b[v/x]) 6= ∅: we then have that b[v/x] is labeled with (B, ι), Lm

ι (b[v/x]) = {B}
and ι0 = ι. We consider two cases according to whether b is equal to x or not.
• b = x
We have b[v/x] = v and A = B. Whatever ι1 is, A belongs to Fι(E[r]), which is included
in Aι(L) by hypothesis.
• b = f(B,ι3)(. . .)
Since b[v/x] is labeled with (B, ι), we have ι3 = ι. The reduction is represented in Figure
11, where the created frontier is indicated with a double line.

Figure 11: Proof of Lemma 20 - Interesting case

( s E(∗,ι)

[/−]

) −→ ( s E(∗,ι)

[/−]

)

@
(B,ι1)

pppppp
DD

DD
DD

b[v/x](B,ι)

λx(A→B,ι2) v

b(B,ι)

If ι1 = ι, then B belongs to Fι(E[r]), which is included in Aι(L) by hypothesis.
If ι1 = ι and ι2 = ι, then B belongs to Fι(r), which is also included in Aι(L) by hypothesis.
If ι1 = ι and ι2 = ι, then A → B belongs to Fι(r), included in Aι(L) by hypothesis; by the
inference rule [ → +] (cf. Table 7, p. 12), we obtain that B belongs to Aι(L). 2

Lemma 21

(
Preservation of frontier upper bounds
[REF−!] reduction in evaluation context

)
Let L be a type. Consider a [RED] reduction rule

(s, r) → (s′, r′)

(s, E[r]) → (s′, E[r′])
(evaluation context E 6= −)

such that
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(i) (s, r) → (s′, r′) is a [REF−!] reduction,

(ii) for all origin labels ι, the ι-frontier of (s, E[r]) is included in Aι(L):

Fι(s, E[r]) ⊆ Aι(L) ,

(iii) for all origin labels ι, the ι-frontier of (s′, r′) is included in Aι(L):

Fι(s
′, r′) ⊆ Aι(L) .

Then for all origin labels ι, the ι-frontier of (s′, E[r′]) is included in Aι(L):

Fι(s
′, E[r′]) ⊆ Aι(L) .

Proof. Suppose that the reduction (s, E[r]) → (s′, E[r′]) satisfying the preceding conditions
is

(s, E[get (A,ι1)(l(Ref(A),ι2))]) → (s, E[s(l(Ref(A),ι2))]) .

We also assume that the evaluation context reduces under m, which has ι0 as its origin
label.
By Lemma 14, we have

Fι(s, E[s(l(Ref(A),ι2))]) = Fι(s) ∪ Fι(E) ∪ Fι(s(l
(Ref(A),ι2))) ∪ Lm

ι (s(l(Ref(A),ι2))) .

From the hypotheses, we deduce

Fι(s) ∪ Fι(E) ∪ Fι(s(l
(Ref(A),ι2))) ⊆ Aι(L) .

It remains to prove Lm
ι (s(l(Ref(A),ι2))) ⊆ Aι(L).

Suppose Lm
ι (s(l(Ref(A),ι2))) 6= ∅: we then have that s(l(Ref(A),ι2)) is labeled with (A, ι),

Lm
ι (s(l(Ref(A),ι2))) = {A} and ι0 = ι. The reduction is represented in Figure 12, where the

created frontier is indicated with a double line.

Figure 12: Proof of Lemma 21 - Interesting case

( . . . l(Ref(A),ι2) . . . E(∗,ι)

[/−]

) −→ ( . . . l(Ref(A),ι2) . . . E(∗,ι)

[/−]

)

s(l(Ref(A),ι2))(A,ι) get(A,ι1) s(l(Ref(A),ι2))(A,ι) s(l(Ref(A),ι2))(A,ι)

l(Ref(A),ι2)

If ι1 = ι, then A belongs to Fι(E[r]), which is included in Aι(L) by hypothesis.
If ι1 = ι and ι2 = ι, then A belongs to Fι(s), which is included in Aι(L) by hypothesis.
If ι1 = ι and ι2 = ι, then Ref(A) belongs to Fι(r), included in Aι(L) by hypothesis; by the
inference rule [Ref(+)] (cf. Table 7, p. 12), we obtain that A belongs to Aι(L). 2

Lemma 22

(
Preservation of frontier upper bounds
[REF] or [REF−?] reduction in evaluation context

)
Let L be a type. Consider a [RED] reduction rule

(s, r) → (s′, r′)

(s, E[r]) → (s′, E[r′])
(evaluation context E 6= −)

such that

(i) (s, r) → (s′, r′) is a [REF] or [REF−?] reduction,
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(ii) for all origin labels ι, the ι-frontier of (s, E[r]) is included in Aι(L):

Fι(s, E[r]) ⊆ Aι(L) ,

(iii) for all origin labels ι, the ι-frontier of (s′, r′) is included in Aι(L):

Fι(s
′, r′) ⊆ Aι(L) .

Then for all origin labels ι, the ι-frontier of (s′, E[r′]) is included in Aι(L):

Fι(s
′, E[r′]) ⊆ Aι(L) .

Proof. Assume that the evaluation context reduces under m. We have:

Fι(s, E[r]) = Fι(s) ∪ Fι(E) ∪ Fι(r) ∪ Lm
ι (r) ,

Fι(s
′, E[r′]) = Fι(s

′) ∪ Fι(E) ∪ Fι(r
′) ∪ Lm

ι (r′) .

From the hypotheses, we deduce Fι(s
′) ∪ Fι(r

′) ∪ Fι(E) ⊆ Aι(L); by inspection of the
reduction rules, we remark that Lm

ι (r′) = Lm
ι (r), which gives by hypothesis Lm

ι (r′) ⊆
Aι(L). We can therefore conclude. 2

We can conclude that the frontier upper bounds Alo(L) and Amo(L) are preserved by re-
duction.

Theorem 23

(
Frontier upper bounds
Preservation by reduction

)
Let L be a type. Consider a reduction (s, e) → (s′, e′) between well-typed configurations such
that

(i) the configuration (s, e) is origin coherent,

(ii) for all origin labels ι, the ι-frontier of (s, e) is included in Aι(L):

Fι(s, e) ⊆ Aι(L) .

Then for all origin labels ι, the ι-frontier of (s′, e′) is included in Aι(L):

Fι(s
′, e′) ⊆ Aι(L) .

Proof. We proceed by induction on the reduction by using Lemmas 17, 18, 19, 20, 21 and
22. It is straightforward. 2

B Optimality of the confinement criterion

We prove Theorem 9 (p. 14), which is the converse of Theorem 8 (p. 13): given a resource
type A and an environment type L of whom the resource type A is an outgoing type (cf.
Definition 7, p. 13), we must define a local environment L of type L and a mobile program
λx : L. M[x] of type L → M in order that a frontier redex destructs a value of the type A
and of the origin label lo during the execution of the labeled program

@(M,mo)(〈λx : L. M[x]〉mo, 〈L〉lo) .

We define the local environment and the mobile program accessing to the local resource
by induction on the environment type. Consider the case where the environment type is
a functional type L1 → L2. If A is an outgoing type of L1 → L2, then there are two
possibilities when A is different from L1 → L2:

• either A is an incoming type of L1,

• or A is an outgoing type of L2.
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For the latter possibility, the inductive hypothesis can be applied, whereas for the former,
it cannot, so that we proceed differently: we show that it is possible to decompose L1 in
order to obtain a type of whom A is an outgoing type.

We begin by formalizing the preceding properties about outgoing and incoming types.

Proposition 24
Let C and A be two distinct types. We have:

(i) if C is equal to D1 → D2, then A is an outgoing (resp. incoming) type of C if and
only if A is an outgoing (resp. incoming) type of D2 or an incoming (resp. outgoing)
type of D1.

(ii) if C is equal to Ref(D), then A is an outgoing (resp. incoming) type of C if and only
if A is an outgoing (resp. incoming) type of D or an incoming (resp. outgoing) type
of D.

Proof. From left to right, it is straightforward by induction on the proof that A is an
outgoing (resp. incoming) type of C (cf. Table 7 (p. 12) for the definition of the inference
rules).
From right to left, it is better to use the following equivalent form: if A is an outgoing (resp.
incoming) type of D, then

(i) for all types D′, A is an incoming (resp. outgoing) type of D → D′,

(ii) for all types D′, A is an outgoing (resp. incoming) type of D′ → D,

(iii) A is an outgoing type and an incoming type of Ref(D).

It is straightforward by induction on the proof that A is an outgoing (resp. incoming) type
of D. 2

The proof of Theorem 9 (p. 14) is mainly a programming exercise. We use the program-
ming language defined in Table 1 (p. 5). Its operational semantics can be deduced from the
reduction relation defined in Table 4 (p. 8) for the annotated language; we then need two
useful functions for creating references and for updating memory stores, as described for the
annotated language (cf. p. 7): given a reference type A and a memory store s, νA(s) creates
a new reference of type A in the memory store s, and given a memory store s, a reference
lA in dom s ∪ νA(s) and a value v, then (s, lA 7→ v) updates or extends s by assigning v to
lA.
We first show that each type is inhabited by a convergent program, which is useful to define
default values.

Lemma 25
For each type A, there exists a program aA, a value uA and a memory store sA, such that
the configuration (∅, aA) evaluates to (sA, uA).

Proof. We proceed by induction on A.
• A = Unit

Put aA = uA = unit and sA = ∅.
• A = A1 → A2

Put aA = uA = λx : A1. aA2 and sA = ∅.
• A = Ref(A1)
Put aA = ref(aA1), uA = νA(sA1) and sA = (sA1 , uA 7→ uA1). 2

The following notations ease programming.
If e1 and e2 are two terms and x a variable, which is not free in e1 and has type A in e2,
then the expression

let A x = e1 in e2

declares x as a local variable of type A in e2, initializes x with e1 and returns e2; it can be
defined as follows:

let A x = e1 in e2
def
= (λx : A. e2) e1 .
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If e1 and e2 are two terms, then e1 ; e2 is the sequential composition of e1 and e2, and is
defined as follows:

e1 ; e2
def
= (λx e2) e1 ,

where x is not free in e2 (the type of x is omitted).
If f et g have types A1 → A2 and A2 → A3 respectively, then g ◦ f is the functional
composition of f and g and is defined as follows:

g ◦ f
def
= λx : A1. g (f x) ,

where x is free neither in f nor in g.
Finally, s1 . . . . . sn denotes the memory store s if the family (si)i and the memory store s
satisfy all the following conditions:

(i) for each i, s is an extension of si,

(ii) (dom si)i is a partition of s,

(iii) for each i, the set {l | ∃ j ≤ i . ∃A . lA ∈ dom sj} is an initial segment of the set of
reference identifiers.

In other words, s1 . . . . . sn is a well-ordered decomposition of s.
The following lemma gives a fundamental property of incoming types, as explained after its
statement.

Lemma 26
Let L and A be two types such that A is an incoming type of L. Then there exists two types
L′ and L′′, and two programs δ and et γ, of type L → L′ and L′ → L respectively, such
that:

(i) L′ is a subtree of L,

(ii) L′ is equal to Ref(L′′) or L′′ → B for some type B,

(iii) A is an incoming type of L′,

(iv) A is an outgoing type of L′′,

(v) the programs δ and γ are both abstractions,

(vi) for any configuration (s1, v), where s1 is a memory store and v a value of type L′,
there exists a value u of type L and a memory store s such that

(a) (s1, γ v) evaluates to (s1 . s, u),

(b) for any configuration (s2 . s . s3, δ u), where s2 and s3 are memory stores, there
exists s4 such that (s2 . s . s3, δ u) evaluates to (s2 . s . s3 . s4, v).

If we forget the side effects, the lemma asserts that δ◦γ is the identity function. By allowing
going from L′ to L and then coming back, the two programs enable using the inductive
hypothesis in L′′. Before describing how to proceed, let us prove this lemma.

Proof. We proceed by induction on L. Let A be a type. We show that if A is an incoming
type of L, then two types, L′ et L′′, and two programs, δ et γ, satisfying all the preceding
conditions, can be defined.
• L = Unit

L has no incoming types.
• L = L1 → L2

Suppose that A is an incoming type of L. By Proposition 24, there exists two possibilities,
which we detail.
◦ A is an outgoing type of L1

Let us define L′ as L, L′′ as L1, δ and γ as the identity function λx : L. x.
◦ A is an incoming type of L2

The inductive hypothesis applied to L2 gives L′, L′′, δ of type L2 → L′ and γ of type
L′ → L2.
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Write F for λf : L. f aL1 of type L → L2 and G for λy : L2. λx : L1. y of type L2 → L. It
is easy to prove that L′, L′′, δ ◦ F and G ◦ γ are suitable.
• L = Ref(L1)
Suppose that A is an incoming type of L. By Proposition 24, there exists two possibilities,
which we detail.
◦ A is an outgoing type of L1

Let us define L′ as L, L′′ as L1, δ and γ as the identity function λx : L. x.
◦ A is an incoming type of L1

The inductive hypothesis applied to L1 gives L′, L′′, δ and γ.
Write F for λx : L. get(x) of type L → L1 and G for λx : L1. ref(x) of type L1 → L. It is
easy to prove that L′, L′′, δ ◦ F and G ◦ γ are suitable. 2

We can now prove Theorem 9 (p. 14). We do not actually show that the execution traces
of the programs that we define satisfy the intended property. Informally, the reader should
be convinced that it works: the proof would be based on the conditions (v) and (vi) of
Lemma 26, which we have chosen in order to simplify the verification, and on some intuitive
properties of execution traces. Without computer aid, it should be very long to fully
formalize the proof.

Proof. (Theorem 9 - Criterion optimality)
We proceed by induction on L. Given a type A different from Unit, we show that if A is
an outgoing type of L, then we can define a local environment L of type L and a mobile
program λx : L. M[x] of type L → M (for some type M) such that a frontier redex destructs
a value of the type A and of the origin label lo during the execution of the labeled program

@(M,mo)(〈λx : L. M[x]〉mo, 〈L〉lo) ,

denoted by M(M, L) in the following.
The case where A is equal to L being trivial, we suppose that A is different from L.
• L = Unit

L has no outgoing types, except itself.
• L = L1 → L2

Suppose that A is an outgoing type of L. Proposition 24 gives two possibilities, which we
detail.
◦ A is an outgoing type of L2

The inductive hypothesis applied to L2 gives a local environment L of type L2 and a mobile
program λx : L2. M[x] such that the execution of M(M, L) entails the intended destruction.
One easily verify that

λx : L1. L

and
λf : L.(λx : L2. M[x]) (f aL1)

are suitable as a local environment and a mobile program respectively.
◦ A is an incoming type of L1

Lemma 26 gives two types L′ and L′′, and two programs δ et γ, of type L1 → L′ and
L′ → L1 respectively, satisfying the different conditions. Since A is an outgoing type of L′′,
the inductive hypothesis applied to L′′ gives a local environment L of type L′′ and a mobile
program λx : L′′. M[x] such that the execution of M(M, L) entails the intended destruction.
Consider two cases, according to the relationship between L′′ and L′ (cf. condition (ii) of
Lemma 26).
◦ L′ = L′′ → B
The new local environment is defined by

L′ : L
def
= λx : L1.(δ x L ; aL2)

and the body of the new mobile program by

M′[f : L]
def
= f (γ λx : L′′.(M[x] ; aB)) .
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One easily verify that the execution of M(M′, L′) entails the intended destruction.
◦ L′ = Ref(L′′)
The new local environment is defined by

L′ : L
def
= λx : L1.(set(δ x, L) ; aL2)

and the body of the new mobile program by

M′[f : L]
def
= let L′ z = aL′ in

(f (γ z) ; (λx : L′′. M[x]) get(z)) .

One easily verify that the execution of M(M′, L′) entails the intended destruction.
• L = Ref(L1)
Suppose that A is an outgoing type of L. Proposition 24 gives two possibilities, which we
detail.
◦ A is an outgoing type of L1

The inductive hypothesis applied to L1 gives a local environment L of type L1 and a mobile
program λx : L1. M[x] such that the execution of M(M, L) entails the intended destruction.
One easily verify that

ref(L)

and
λz : L. let L1 x = get(z) in M[x]

are suitable as a local environment and a mobile program respectively.
◦ A is an incoming type of L1

Lemma 26 gives two types L′ and L′′, and two programs δ et γ, of type L1 → L′ and
L′ → L1 respectively, satisfying the different conditions. Since A is an outgoing type of L′′,
the inductive hypothesis applied to L′′ gives a local environment L of type L′′ and a mobile
program λx : L′′. M[x] such that the execution of M(M, L) entails the intended destruction.
Consider two cases, according to the relationship between L′′ and L′ (cf. condition (ii) of
Lemma 26).
◦ L′ = L′′ → B
The new local environment is defined by

L′ : L
def
= let L z = aL in

(set(z, γ λx : L′′. δ get(z) L) ; z)

and the body of the new mobile program by

M′[z : L]
def
= let L1 y = get(z) in

(set(z, γ λx : L′′.(M[x] ; aB)) ; δ y aL′′) .

One easily verify that the execution of M(M′, L′) entails the intended destruction.
◦ L′ = Ref(L′′)
The new local environment is defined by

L′ : L
def
= let L′ y = ref(L) in ref(γ y)

and the body of the new mobile program by

M′[z : L]
def
= let L′′ y = get(δ get(z)) in M[y] .

One easily verify that the execution of M(M′, L′) entails the intended destruction.
2
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C The SLam-calculus: From access controls to con-
finement

In the second and last paragraph of the conclusion (cf. p. 16–17), we have described the
relationship between a standard security analysis and our confinement criterion. We now
formalize this relationship: we adapt Heintze and Riecke’s solution [10] to our programming
language, which is a restriction of their language, the SLam-calculus (“Secure Lambda-
calculus”), and show how their type system, which enforces security controls, leads to a
confinement criterion equivalent to ours. We restrict ourselves to access controls, whereas
the SLam-calculus also deals with information flows.

We again resort to an annotated language which keeps track of origin, as defined in
Section 2 (p. 5). However, the purpose is different: a label does not indicate the origin
of code, the mobile program or the local environment, but its security status. We thus
introduce two security labels, ⊥ and >, ordered by ⊥ < >: the security label > is intended
to mark sensitive resources and secured access functions. Types are also labeled and are
generated by the following grammar:

A ::= Unit (singleton type)

| A
⊥→ A | A >→ A (functional types)

| Ref
⊥(A) | Ref>(A) (reference types) .

In the following, the type A, labeled by σ in {⊥,>}, is also denoted by Aσ in order to
stress the security label. We also need to define the set of labels for the annotated lan-
guage. Recall that a label annotating an operator is an ordered pair whose first component
is a standard type and second component a piece of information (cf. Sect. 2, p. 5). If the
information label simply was the security label, then we could not deduce from the label of
a term its labeled type: for instance, the identity program λx(A,>) x, where A is a standard

type, would have any labeled type A′ >→ A′, where A′ results from a labeling of the type
A. That is the reason why we define the information label as a security label associated
with a labeled type. Since a labeled type gives the underlying standard type by erasing
labels, we can simplify: a label becomes an ordered pair (A, σ), where A is a labeled type,
called the type label, and where σ belongs to {⊥,>} and is called the security label. Thus,

the preceding program becomes λx(A′,>) x, with type A′ >→ A′; we will see that this label
definition enables determining a least type for a term.
The annotated type system is described by the inference system in Table 8; a typing judg-
ment has the form Γ ` e : A, where Γ is an environment, e a labeled term and A a labeled
type. Note the following points:

• given a term, its type label gives its labeled type,

• a value (or a redex creating a new reference) labeled by σ in {⊥,>} has a type labeled
by σ,

• elimination rules enforce a security control: the security label of a destructor is greater
than the security label of the term to which it is applied.

The subtyping relation is inductively generated by the inference system given in Table 9:
judgments are inequalities A ≤ B, meaning that A is a subtype of B. The subtyping
relation enforces the substitution principle (cf. Liskov and Wing’s definition [14]) stated
as follows: given any type constructor F, equal to Ref(−) or − → −, for any context C[ ],
if for all values v of type F>(. . .), the program C[v] is secure, then for all values v of type
F⊥(. . .), the program C[v] is secure. Note the following points:

• for the type constructor − → −, the subtyping rule is contravariant on the left com-
ponent (the domain type) and covariant on the right component (the codomain type),
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Table 8: Annotated type system

∅

Γ ` x : Γ(x)
(x ∈ dom Γ)

Γ.(x : A) ` e : B

Γ ` λx(A
σ→B,σ) e : A

σ→ B

Γ ` e1 : A
σ1→ B Γ ` e2 : A

Γ ` @(B,σ2)(e1, e2) : B
(σ1 ≤ σ2)

∅

Γ ` unit(Unit,σ) : Unit

∅

Γ ` l(Ref
σ(A),σ) : Refσ(A)

Γ ` e : A

Γ ` ref (Ref σ(A),σ)(e) : Refσ(A)

Γ ` e : Ref
σ1(A)

Γ ` get (A,σ2)(e) : A
(σ1 ≤ σ2)

Γ ` e1 : Ref
σ1(A) Γ ` e2 : A

Γ ` set (Unit,σ2)(e1, e2) : Unit
(σ1 ≤ σ2)

Table 9: Subtyping relation

∅

Unit ≤ Unit

A2 ≤ A1 B1 ≤ B2

A1
σ1→ B1 ≤ A2

σ2→ B2

(σ1 ≤ σ2)

∅

Ref
σ1(A) ≤ Ref

σ2(A)
(σ1 ≤ σ2)
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• for the type constructor Ref(−), the subtyping rule is invariant on the unique compo-
nent.

Finally, it is easy to show that the subtyping relation is a partial order. In order to benefit
from this relation in the type system, we add the following conversion rule:

Γ ` e : A

Γ ` e : B
(A ≤ B) .

The type system satisfy standard properties. Note that typing uniqueness is replaced with
typing minimality.

Proposition 27 (Properties of the annotated type system)
Let Γ be a typing environment. Consider a labeled term a of labeled type A in Γ :

Γ ` a : A .

Weakening lemma
Let us consider an environment Γ′ extending Γ. Then the typing judgment Γ′ ` a : A is
valid.
Basis lemma
Consider the environment Γ|FV(a) equal to the restriction of Γ to the free variables of a.
Then the typing judgment Γ|FV(a) ` a : A is valid.
Typing minimality
If a is equal to a variable x, then Γ(x) is the least type (with respect to the subtyping relation)
of a in Γ. Otherwise, if a is labeled by (M, σ), then M is the least type of a in Γ.
Substitution lemma
Let x be a variable in the domain of Γ, and b a labeled term of type Γ(x). Then the term
a[b/x] has type A in Γ :

Γ ` a : A Γ ` b : Γ(x)

Γ ` a[b/x] : A
(x ∈ domΓ) .

Decomposition lemma
Let us suppose that a is equal to E[r], where E is an evaluation context and r a redex. Then
r is well-typed, and if we assign to the hole − the least type of r, then E has type A.

Proof.
• Weakening and basis lemmas, typing minimality, substitution lemma
It is easy (and standard) by induction on the proof of the typing judgment Γ ` a : A.
• Decomposition lemma
It is straightforward by induction on E. 2

We now define the operational semantics. In order to simplify, we do not modify the oper-
ational semantics defined by a reduction relation in Table 4 (p. 8). This choice corresponds
to an accessibility interpretation: the security label for a destructor represents an access
right, granted for > and denied for ⊥, to sensitive resources, marked by >. A more realistic
approach would consider a code instrumentation: a secured destructor could first check the
access permission, then according to the result, either realize the expected destruction, or
raise an exception.
We now state the main property, which allows the static and the dynamic semantics to
meet. A memory store s is said to be well-typed (in the annotated type system) if for all
references lm in dom s, lm is well-typed, which is equivalent to m = (Refσ(A), σ) for some
type A and some security label σ, and the value s(lm) has type A; a configuration (s, e) is
said to be well-typed if s and e are.

Theorem 28 (Subject reduction: Type decreasing)
Let (s1, e1) be a well-typed configuration reducing to (s2, e2). Then (s2, e2) is well-typed and
moreover the least type of e2 is a subtype of the least type of e1.
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Proof. We proceed by induction on the proof of the reduction (s1, e1) → (s2, e2). We
suppose that the configuration (s1, e1) is well-typed. Let us denote by M the least type of
e1.
• [β]
The reduction is

(s1, @
m(λxn a, v)) → (s1, a[v/x]) .

The proof of ∅ ` e1 : M has the following form:

∅.(x : A′) ` a : M ′

∅ ` λxn a : A′ σ′→ M ′
···

∅ ` λxn a : A
σ→ M

···
∅ ` v : A

,
∅ ` @m(λxn a, v) : M

where A ≤ A′, M ′ ≤ M and σ′ ≤ σ.
From these inequalities and the substitution lemma, we deduce that a[v/x] has type M ,
and therefore its least type is a subtype of M . Moreover, (s1, a[v/x]) is well-typed.
• [REF]
The reduction is

(s1, ref
m(v)) → ((s1, l

m 7→ v), lm) ,

where lm is equal to νm(s). The proof of ∅ ` refm(v) : M has the following form:

···
∅ ` v : M1

,
∅ ` ref

(Ref σ(M1),σ)(v) : Ref
σ(M1)

where Refσ(M1) = M and (Refσ(M1), σ) = m. We deduce that ((s1, l
m 7→ v), lm) is well-

typed. Moreover, refm(v) and lm have the same least type, M .
• [REF-!]
The reduction is

(s1, get
m(ln)) → (s1, s1(l

n)) .

The configuration (s1, s1(l
n)) is obviously well-typed. We show that s1(l

n) has type M .
The proof of ∅ ` getm(ln) : M has the following form:

∅

∅ ` ln : Ref
σ′(M)

···
∅ ` ln : Ref

σ(M)
,

∅ ` get
m(ln) : M

where σ′ ≤ σ. We deduce that n is equal to (Refσ′(M), σ′). Since s1 is well-typed, s1(l
n)

has type M .
• [REF-?]
The reduction is

(s1, set
m(ln, v)) → ((s1, l

n 7→ v), unitm) .

The proof of ∅ ` setm(ln, v) : Unit has the following form:

∅

∅ ` ln : Ref
σ′(B)

···
∅ ` ln : Ref

σ(B)

···
∅ ` v : B

,
∅ ` set

m(ln, v) : Unit
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where σ′ ≤ σ. We deduce that n is equal to (Refσ′(B), σ′). Since (s1, l
n 7→ v)(v), which

is equal to v, has type B, the memory store (s1, l
n 7→ v) is well-typed, and so is the

configuration ((s1, l
n 7→ v), unitm).

• [RED]
The reduction is (s1, E[r1]) → (s2, E[r2]), where E is an evaluation context different from
the hole − and r1 a redex such that (s1, r1) reduces to (s2, r2).
By the decomposition lemma, we obtain that r1 is well-typed and that E has type M
if we assign to the hole − the least type of r1. By the inductive hypothesis applied to
(s1, r1) → (s2, r2), since (s1, r1) is well-typed, we have that s2 is well-typed and that the
least type of r2 is a subtype of r1. From the substitution lemma, we deduce that E[r2] has
type M , and we can conclude. 2

This fundamental theorem implies that a program is secure if it is well-typed in the anno-
tated type system.

Corollary 29 (Type soundness)
If a labeled program is well-typed in the annotated type system, then, during its execution,
no destructor labeled by ⊥ is applied to a value labeled by >.

Proof. By the subject reduction theorem, every configuration in the execution trace is well-
typed. Suppose that during the execution, a destructor labeled by ⊥ is applied to a value
labeled by >. Then the corresponding redex is ill-typed, contradiction by the decomposition
lemma. 2

In other words, the static verification of typing entails the dynamic verification of the
security policy asserting that only secured access functions are applied to sensitive resources.

We now show how to deduce a confinement criterion from the annotated type system.
We first model the mobile program calling the local environment. Since the local environ-
ment is available on the host machine, it is assumed to be secure: after the sensitive local
resources have been marked and access rights have been assigned to access functions, the
local environment is assumed to receive a labeled type in the annotated type system. We
denote by LS the labeled local environment and by LS its least labeled type. As above, we
denote by L the unlabeled type obtained by erasing the labels in LS . As for the mobile
program, since it is not local by definition, it cannot contain sensitive local resources, and
since it may be hostile, no access rights are assigned to its access functions: therefore, we
only assume that the mobile program is an unlabeled program, λx : L. M[x], of type L → M
in the standard type system (without annotation); however, we can label the mobile pro-
gram, provided the labeling only uses the security label ⊥, since the mobile program is nor
local, neither secured. More precisely, given an unlabeled type A, we denote by 〈A〉⊥ the
labeling of A such that each type constructor, − → − or Ref(−), is labeled by ⊥. Given
an unlabeled term a, we denote by 〈〈a〉〉⊥ the term a completely labeled by ⊥, that is the
labeled term equal to G(〈a〉⊥), where G is inductively defined as follows (cf. p. 9 for the
definition of 〈a〉⊥):

G(x) = x ,

G(f(A,⊥)(ej)j) = f
(〈A〉⊥,⊥)(G(ej))j .

It is now easy to show that the labeled mobile program

〈〈λx : L. M[x]〉〉⊥

is well-typed (in the annotated type system). Since it is labeled by

(〈L〉⊥ ⊥→ 〈M〉⊥,⊥) ,

its least type is 〈L〉⊥ ⊥→ 〈M〉⊥. Finally, the mobile program calling the local environment
is soundly modeled by

@(〈M〉⊥,⊥)(〈〈λx : L. M[x]〉〉⊥, LS) .
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The question becomes: is this program secure? By Corollary 29, it is secure if it is well-typed
in the annotated type system. In that case, the typing proof has the following form:

···
∅ ` 〈〈λx : L. M[x]〉〉⊥ : 〈L〉⊥ ⊥→ 〈M〉⊥

···
∅ ` 〈〈λx : L. M[x]〉〉⊥ : K

⊥→ 〈M〉⊥

···
∅ ` LS : LS···
∅ ` LS : K

,
∅ ` @(〈M〉⊥,⊥)(〈〈λx : L. M[x]〉〉⊥, LS) : 〈M〉⊥

where LS ≤ K ≤ 〈L〉⊥. We can easily conclude that the mobile program calling the local
environment is well-typed if and only if the type LS is a subtype of the type 〈L〉⊥. The
following proposition gives the corresponding characterization. Given a labeled type, we
denote by ↓ (C) the unlabeled type obtained by erasing the labels.

Proposition 30 (Subtyping and outgoing types)
Let C be a labeled type. Then C is a subtype of 〈↓ (C)〉⊥ if and only if every outgoing type
of C different from Unit is labeled by ⊥.

Recall that a type A is an outgoing type of C if it occurs either at a positive occurrence,
or under a reference type constructor Ref ∗(−); likewise, a type A is an incoming type of C
if it occurs either at a negative occurrence, or under a reference type constructor Ref ∗(−).

Proof. We show not only the property of the statement, but also a dual property. More
precisely, we show the two following equivalences:

C ≤ 〈↓ (C)〉⊥ ⇔ ∀Aσ 6= Unit . Aσ outgoing type of C ⇒ σ = ⊥ ,

〈↓ (C)〉⊥ ≤ C ⇔ ∀Aσ 6= Unit . Aσ incoming type of C ⇒ σ = ⊥ .

The proof is straightforward by induction on C. 2

How to secure the local environment?
Firstly, we instrument the local code by marking sensitive resources and assigning access
rights to access functions, according to a given security policy; secondly, we verify the
instrumentation by determining whether the labeled local environment is well-typed in the
annotated type system; finally, by using Proposition 30, we determine whether the labeled
type of the local environment is a subtype of a labeled type completely labeled by ⊥: this is
exactly our confinement criterion, as stated in Theorem 8 (p. 13). If the answer is positive,
then any mobile program calling the local environment is secure.
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