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Abstract The aim of this paper is to solve the fixed point problems :
v=0v, with Ouv(z)= max(Lv(z), Bv(z)), z€&, (1)
where £ is a finite set, L is contractive and B is a nonexpansive operator and

v=0v, with Ouv(z)= max(sup L”v(z),sup B*v(z)), z €&, (2)

w z
where W and Z are general control sets, the operators L™ are contractive and
operators B? are nonexpansive. For these two problems, we give conditions which
imply existence and uniqueness of a solution and provide a policy iteration algo-
rithm which converges to the solution. The proofs are slightly different for the two
problems since the set of controls is finite for (1) while it is not necessary the case for
problem (2). Equation (2) typically arises in numerical analysis of quasi variational
inequalities and variational inequalities associated to impulse or singular stochastic
control.

Key words Howard Algorithm — Policy iteration — Impulse control — Quasi-
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1 Introduction

The case of Bellman equations associated to optimal control of Markov chains on
an infinite horizon with discount factor A > 0 has been studied for a long time by
many authors (see e.g the monographs by [1] and [8] and the references herein).
Typically these equations are of the form v = supwew{p%\M Yy + ¢} where MY
is the transition matrix of the Markov chain, ¢ is the running utility and w is
the control variable with values in some control set WW. We know that the iteration
policy algorithm converges to the solution of the Bellman equation since the operator
H%\M W 4 ¢ is contractive and satisfies a discrete maximum principle.

The problem addressed in this paper concerns more general fixed point problems
on a finite state space. Typically the operator we will consider is the maximum
of a contractive operator and a nonexpansive one which satisfy some appropriate
properties. We refer to [1] for the study of shortest path problems which also lead
to some fixed point problems with nonexpansive operators but in a rather different
context or to [4, p.39] where reflecting boundaries lead to nonexpansive operators
on the boundary. This last problem appears to be a special case of ours.

The paper is organized as follows: In Section 2, we study the problem:

v(x) = max(Lv(x), Bv(x)), x€f&, (3)

where £ is a finite set, L is contractive and B is a nonexpansive operator. We prove
the convergence of an iteration policy algorithm to the solution of (3) provided that
the operators L and M fulfill some conditions. In section 3, we turn to

v(z) = max(sup L¥v(z),sup B*v(z)), =z €&, (4)
w z

where W and Z are general control sets, the operators LY are contractive and

operators B? are nonexpansive. Now the set of controls is infinite and the proof of

convergence of the policy iteration has to be adapted. These problems are illustrated

by examples in optimal control of Markov chains.

Finally Section 4 concerns an application of the results of Section 3 to the
numerical analysis of quasi variational inequalities (QVIs) associated to combined
impulse/stochastic optimal controls. Indeed, stable and consistent finite difference
approximations of these QVIs lead to fixed point problems of type (4) where L™
comes from the approximation of the underlying controlled diffusion and B* comes
from the approximation of the intervention operator. We refer to [5] for an general
exposition on impulse control problems and to [7]-[3] for the study of impulse control
problems associated to portfolio optimization with fixed transaction costs. Results
of section 2 can be applied to the numerical analysis of variational inequalities with
gradient constraints associated to singular optimal controls [2].

2 A fixed point problem with a nonexpansive operator and a finite set
of controls

2.1 Formulation of the problem and hypotheses

We consider the fixed point problem :
v(z) = max(Lv(x), Buv(z)), x €& (5)

where £ is a finite set of cardinal n, v is a function defined on £ taking values in R,
L is contractive and B is nonexpansive.
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If Ais a subset of £, we denote V4 = {v: A — R}. When A = £ we simply
write V for Vg. We identify functions belonging to V4 with vectors of dimension
equal to cardA.

If T is a subset of £, we denote by Or the following operator :

Opu(z) & Lo(z) ifzeC where C=E\T,
T\ Bo(e) itzeT.

Problem (5) is equivalent to

v(x) = Trengé) Orv(x). (7)

We restrict now the set of admissible controls. Define
T.. = PE\E. (8)

We thus assume that the choice T = £ is not admissible. Note that T, is a finite
set since £ is a finite set. Set:

Ov(z) = Joax Orv(x). 9)

We look for (v*,T*) € V x T,4, a solution of :

v* = max Opv* = Op«v*. (10)
T€Taa

For T € T,, and v € R™ we denote by (vc,vr) the decomposition of v on the
partition C,T of £. We make the following assumptions:

H, For each T' € T4, there exist two operators L:Voe— Vo, B: Vo Vpand a
function k£ : T — T such that :

Orv =v < Lve = ve and vr = Bue + k (11)
Orv! — O <ol =2 = fvé — fv%« < Ulc — v% (12)
and B(vy —vE) < (v — v3) (13)
ve > 0= Bue > 0. (14)
H, The operator L defined in H; is contractive, i.e. satisfies

|Lo' — To?| o < [ — 0?0 (15)

and satisfies a discrete maximum principle (DMP in short):
L' —Tv? <ot =t =0t —0v? >0 (16)

Under these hypothesis we will prove the convergence of a policy iteration algorithm
to solve problem (10). We start with two lemmas.

Lemma 1 For each T € T,,, Or satisfies a discrete mazimum principle (16) and
O satisfies also a discrete mazimum principle (16) .

Proof : Let T € T,q4, given v; and vg, suppose that
Orv' — Opv? < o' — 02,

From (12), we get
fvé - fv% < v}; — v%.
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Then the discrete maximum principle (16) applied to L implies
vi(z) —vi(x) >0 forall ze€C. (17)
Now from (13) we have
B(ve —v¢) < (vp — vp)
and since v} (z) — v4 (x) > 0, (14) implies
B(vs —vE) >0

We conclude that
vh(z) —vi(z) >0 forall zeT. (18)

Together with (17), this implies
vi(z) —v*(x) >0 forall x € &.

Suppose now that
Ovl — Ov? <ol —2?

and let Ty € T,, such that Or,v? = Ov?. We have :
(’)T21)1 — (’)T2v2 < Ovl — Ov? < vl — 02,

Since Or, satisfies the DMP, this implies v; — vz > 0. O

Lemma 2 For each T € T,;, Or has a unique fized point. If a fixed point exists for
O it is unique.

Proof : Lemma 1 implies that if a fixed point exists for Op or O, it is unique. Now,
from (11) the existence of a fixed point of Or is equivalent to the existence of a
fixed point of the associated L operator. But L has indeed a fixed point since it is
contractive. O

2.2 A policy iteration algorithm

The policy iteration algorithm for solving (7) consists in constructing two sequences
of admissible policies (Tk, k € N*) and functions (vg, k € N) as follows: Note that
here an admissible policy is nothing but a given admissible partition of £. Let vg € V'
a given function. For k£ > 0 we do the following iterations :

— (step 2k) Given vy compute a policy Tk such that

Tit1 € Argmax{Orv;}. (19)
TETqa

We may for example set :
Tit1 = {x € &, Bug(z) > Lug(x)}.

— (step 2k + 1) Let (Tx41) be a given admissible policy, compute vi11 as the
solution of
Vk+1 = OTk+1U7€+1' (20)

Set k «<— k + 1 and return to step 2k.

Theorem 1 — (i) The sequence (vi(x),k € N) is well defined and nondecreasing.
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— (i1) Suppose that there exists a function vt which satisfies OpvT < vt for all
T € T,,. Then the sequence (vg(z),k € N) is bounded by v (x) and converges
forallxz € &.

— (iii) The limit v* of the sequence (vy, k € N) is a fized point of O.

Proof : (i) Given Ty, vy, is defined as the fixed point of Op, , which exists and is
unique by Lemma 2. Using the definition of Ty, 1 we have :

Or,vp < Oqy Uk (21)

So
OTHlka — OTk+1vk < OTHlka — (’)Tkvk. (22)

Now, using vy, = Or, vy, and vpy1 = Oy, Vk41, We get
0Tk+1vk+1 — OTkHUk < Vg41 — Vk. (23)

Using Lemma 1 we conclude that viy > vg.
(7i) One sees easily that

OTkUJr - OTk Vk S ’l)Jr — VL (24)

which implies v — v, > 0.

(i7i) Tn what follows, the existence of v is not used. Let (Tx,k € N) be the
sequence of partitions computed by the policy iteration algorithm. Since T, is
finite we can find (k,%’) such that £ < k' and T, = Tj». Lemma 2 which gives
the uniqueness of the fixed point of Op, implies that vy = vi. Combined with the
monotonicity of the sequence (vg), this implies that vy, = vg41. Thus :

Ovp = Or, v = Oy, Vp1 = V41 = Vg

and we conclude that vy is a fixed point of O. Moreover since a fixed point of O is
also a super-solution of @ it can play the role of v* and it gives an upper bound
of the sequence vy. Then vy () is constant for k' > k and the sequence (vg(z))ken
converges in a finite number of iterations. O

2.8 An example related to Bellman equations

Let & & {1,...,n} be the state space. A partition T of £ will be admissible if 1 & T.
Let M be a n x n stochastic matrix, ¢ and k& two vectors of dimension n, A > 0,
o :[1,n] — [1,n] an integer function such that o(i) < ¢ and B a n x n stochastic
matrix (except for the first line) defined by :

Bi, — 1 ifj=0c@)andi#1 (25)
0 elsewhere.
The matrix B is thus lower tridiagonal with zeros on the diagonal. We define
e ]‘ €
LvE ——(Mv+¢) and Bv= (Bv+k). (26)

14
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Lemma 3 Let T € T,, and let v = (ve,vr) be the decomposition of the vector v on
the set T and its complementary C gCcS'\T. Let oP denote the p-composition of the
function o (0°(z) £ x) and for each x € T, let :

p(x) ZLinf{p > 1 such that oP(x) € E\T}.

Define the operator B as

(Bv)(z) = v(c?") (x))
and the vector k as
p(z)—1

k)= > k(o'(x)).
=0

The value of Bv only depends on the value of v on C and we thus write Bvc. We
have

— (i) B fulfills property (14). B
— (ii) v=Bv on T & vr = Bvc + kr. B
— (iii) Bv! — Bv? <v! —v? on T = Bv} — Bv < vi —v2.

Proof : (i) For i in T, let o®(i) denote the p-composition of the function o. Since
o is strictly decreasing and o(2) = 1 € E\T, the pth-composition of o starting from
a point in T will end up in E\T after a finite number of steps. Thus for ¢ in T" we
can define p(i) the smallest value of p > 1 (such that o?(i) € £\T and B is well
defined. It is clear that B satisfies property (14) and only depends on the value of
von C.

(#i) Suppose that v is a function such that v = Bv on the set T. We then have
forxeT

v(z) = Bu(z) = v(o(x)) + k(x).

By iteration we have

p(z)—1

o(@) = o (@) + 3 Ko@) for p<p(e).
=0

Taking p = p(z), we get v(z) = (Bv)(z) + k().
Suppose now that

v(z) = (Bv)(z) + k(z) forall ze€T. (27)

Let z € T. If p(z) = 1 we get immediately v(x) = (Bv)(z).
1f p(x) > 1 then o(z) € T and p(o(z)) = p(z) — 1. We have, using the definition
of B

(Bv)(z) = v(o?® (x))

and

(Bv)(o(z)) = v(o” "o (x)) = v(o?® (x)).
Consequently

We also have :
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Using now (27), we get v(z) = v(o(x)) + k(x) = Bv(z). We conclude that v = Bv
onT.
(#i) We prove (iii) similarly. O

We can suppose, modulo a permutation on the elements of £, that the first
elements of £ belong to C and the others belong to T. Then the matrices M and
B can be written as :

Mcc Mcr Bee Bor
M = d B=
(MTC MTT> o (BTC BTT)

and

1 1
7MCC 7MCT (e Ccc

Oy — [ THA EDY
v ( Brc Brr vr) T ke

Define L and M as :

— de e
M = Mce + Mo * B and Luc d:fH_—A(MUC—&-EC) (28)

where B is given in Lemma 3 and ¢ LMok + co
Lemma 4 Using B and L the hypothesis Hy and Hy are fulfilled.

Proof : The entries of the matrix M are nonnegative since B has nonnegative entries
and M is stochastic. Since 1 ¢ T we have (Be)p = ep where e = (1,...,1)T.
Proceeding as in Lemma 3 (i), we get er = Bec. Then :

Mec = Mccec + McrBec

(29)
= Mcceo + Morer = (Moc Mer) e = ec

The matrix M is thus stochastic and L is linear, contractive and satisfies the discrete
maximum principle. So Hs is satisfied.
Suppose now that v is a solution of Opv = v. This is equivalent to
vp=BvonT (30)
ve = Lv on C. (31)

By Lemma 3, (30) is equivalent to
vr = Bue + k. (32)

Using (32), we can write

_ 1 — 1
Lvc = m((MCC + Mcr * B)ve +¢c) = H_/\(MCCUC + Mervr + cc)
1

= m((Mv)c +cc) = Lv(z) on C.
Combined with (31), this gives v¢ = Lvc. Using Lemma 3 again the converse
implication follows easily.

Suppose now that
Opvt — Opv? < o' — 02,

This implies on T
Bv' — Bv? < o' — 2.
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Using lemma 3 this implies that

(vt =07 > B! —v?)e. (33)
On C, we have
Lot — Lv? <ol — 2.
Moreover
1
L’U1 — L’U2 = 1_’_—)\(]\41/1 — M’UZ)

1 vk — 02
= — (Moo M, o~ UC
s (e o) (15215

1
Y (Moco(vg = vE) + Mor (v — v7))
1 _

by using (33). We thus get

1 —
H——)\ (Mcc + MCTB) (’Ué — ’U%) < ”Uéw — U%.
Consequently
J p— — of = -
T (Mvé - Mv?;) = Lvg — Lvg < vg —vd
and (12) is obtained. O

Remark 1 When k = 0, one can easily checks that v = |¢|oo /) is, for all T € T, a
super-solution of Op (O7vt < vT). When k # 0, Lemma 6 below gives an upper
bound for v*.

A probabilistic interpretation in terms of an optimal control problem. Let (X,,,n €
N) be an homogeneous controlled Markov chain with transition matrix M*" defined
on a finite state space £. We assume that the control u has only two possible values:
u € {c,t}. The transition matrix takes thus two values M < M and M* = B. We
consider the following optimal control problem:

400 k
v (z) = %wu&wU(x) with oY(z) < E, ZHE(Xi,Ui)C(Xk,Uk) (34)
€
k=0 i=0

where U stands for the stationary Markovian strategies. The profit and discount
rate functions are defined by :

wr J(L+A) ifu=c aet Je(z) ifu=c
Sla,u) = {1 if u=t. Cla,u) = {k(m) if u =t. (35)

To each subset T of £ we associate a stationary policy Uy = (U;,i > 0) where
U, =U(X;) for all i > 0, and U is a function: £ — {c,t} such that U(x) =t for
x €T and U(z) = c for x € E\T.

Lemma 5 vU7 is the fized point of the operator O and v* is the fized point of O.
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Proof : For an initial state z € £, we define the stopping time :
7% = inf{k > 0 such that X} € T'}.

Let Coo be the subset of E\T' consisting of the states x such that 7} = co. When
z € Cu, v97 () can be rewritten as :

400 1
WU (2) = B, kz_o(l_‘_wc(xk)]

and the restriction of vUT to C is the solution of the equation :

1
T (z) = m(MCoo WU (z) + ¢(z)) for z € Cyp (36)
where Mc__ is the restriction of M to C.
For z € £\Cw, the strong Markov property implies :

Tr—1 k T
V() BB, | > [[EXLUNC(X, Un) + [ 6(X0, Ui (X, Urs)
k=0 =0 =0
7
+ Hg(XivUi)vUT(XT%+1)
=0

Using the definition of 77, we obtain

P
Tr—1

1 1

r) =K, 1;) WC(X]C) + WWT(XT%)

UUT(

Up(z) = BT (z) + k()

It is well known that vY7 () then satisfies the Kolmogorov equation

dot {H%\(MUIUT(I) +e(z)) ifxeé\T,z ¢ Cx. (37)

o) = BuYT (z) + k(z) ifeel.

Combining (36) and (37), we obtain that vV7 is a fixed point of Or. Since the set
of stationary Markovian strategies is finite, v* is well defined and there exists T
such that v* = vYr*. This implies that v* coincides with the unique fixed point of

0. O

Lemma 6 We have v* < (|¢|oo + n|k|oo)/A where n is the cardinal of £.

Proof : For a given strategy Ur, let (X,(,)) be the subsequence of X,, which
belongs to subset C' = £\T. Using the probabilistic interpretation of vV () we can
write :

+o0 1 p(k+1)—1
k=0 i=p(k)+1

But we also have |p(k + 1) — p(k)| < n since after at most n successive transitions
in T the chain is in C. The result follows. O
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3 A fixed point problem with a nonexpansive operator and non finite
sets of controls

We consider now the fixed point problem :

v(z) = max(sup L%v(x),sup B*v(z)), x€€& (39)
weW z€EZ
where £ is a finite set, YV and Z are general control sets. The operators L* and B*
depend now on control variables w and z.
Let T be a subset of £, w € W and z € Z and denote by Or,, . the operator :

O ov() & LYv(x) ?f reC where C=E\T, (40)
B*v(z) ifzeT.
Problem (39) is equivalent to
v(z) = sup Orw,2-
TeP(E),weEW,z€Z
Set
Ov(z) = sup Orw.z
TETaq,weEW,2€2Z
where T, is defined in (8). We restrict ourselves to the following problem
v(z) = sup Or.w,z- (41)

TETa,weEW,2€2Z
We make the following assumptions :

H, For each given T € T,y, W : £ - W oand Z : £ — Z , we can build two

operators ZT’W’Z, B"™7 and a function &~ such that :
Orwzv=v & ZT’W’ZvC =ve and vp = ET’W’ZUC + B (42)
(’)T,Wzvl — OT,w’ZUQ <vl—v?= ZT’W’Zvlc — ZT’W’CUé <wg —vd o (43)
and B (0h — o) < wp —vd)  (44)
ve>0=B""ve>0. (45)

+T\W,Z . .
H, For each (T, W, Z), the operator L defined by Hj is contractive and sat-
isfies a discrete maximum principle :

PP ST <ol —v? =0l =02 >0, (46)
H3; — For each v € V, Argmax{L"v(z),w € W} and Argmax{B*v(z),z € Z}
exist.
— Foreach T € Tyq, W : £ - W and Z : £ — Z, the operator Oz is
nondecreasing.

— The operator O is continuous and nondecreasing.

Lemma 7 — ForeachT € Tyq, W : &€ = W and Z : £ — Z, the operator Or,w,z
satisfies a discrete mazimum principle and O satisfies also a discrete maximum
principle.

—For eachT € Toq, W : € = W and Z : £ — Z, the operator Or w7z has a
unique fized point. If a fixed point exists for O it is unique.

Proof : We use similar arguments as in the proof of lemma 1 and lemma 2. O
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3.1 A policy iteration algorithm

The policy iteration algorithm for solving (41) consists in constructing two sequences
of admissible policies ((Tk, Wk, Zi), k € N) and functions (vi, k € N) as follows: Let
vy € V a given function. For k£ > 0 we do the following iterations :

— (step 2k) Given vy, compute an admissible policy (Tx+1, Wg+1, Zk+1) such that

(Tk+1, Wk+1, Zk—i—l) c ArgmaX{OT,szl}k}. (47)
TW,K

In other words Ovi, = Oy, . W11, 2511 Vk-
— (step 2k+1) Let (Tk41, Wk+1, Zr+1) be a given admissible policy, compute vgq
as the solution of

Vk+1 = OTk+17Wk+11Zk+1vk+1' (48)

Set k «— k+ 1 and go to step 2k.

Theorem 2 — (i) The sequence (vi(x),k € N) is well defined and nondecreasing.
— (ii) Suppose that there exists a function v which satisfies O w,zvt < vt for all
(T, W, Z).Then the sequence (vi(z),k € N) is bounded by v*(x) and converges
forallxz € &.
— (iii) There exists vo such that vg < Ovg. The limit v* of the sequence (vg, k € N)
starting from this vg is a fized point of O.

Proof :
(i) and (ii) are proved similarly as in the proof of Theorem 1.
The proof of (i) is different as explained now: Set for writing simplicity

def
Ow) = Or, w24 -

For all z € &, the sequence (vg(z), k € N) is nondecreasing and bounded by vt (z),
it converges to v¥(z) < v*(x). Let us prove by induction that

Okvo < vg. (49)
We have by (47) at step k =0,
Ovg = O(1)vo-
and by (48)
vy = Oyvs.

So Ovg < vy if and only if O(1yvg < O(1yv1 which is true since O(;) is nondecreasing
(by H3) and vy < v1.
Suppose (49) holds. By Hs, O is nondecreasing, so

OF Ly < Owy,.

by (47),
ka = O(k+1)’vk.

By H3, O(j41) is nondecreasing. Since v, < vit1, Ok41)Vk < Oy1)Vk+1- By (48)
Vi1 = Oy 1)Vs1-

Consequently

Oy < vgy1.
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Suppose that there exists vy such that vy < Oug. The sequence v, = OFvy is
nondecreasing and bounded and thus converges to v. Taking the limit when £ — oo
in (49), we get

v < ot <ot

Moreover 7 is a fixed point of O since v converges, V11 = Oy, and O is continuous.
Now
v = Okyve < Orryve = Ovg

Taking the limit when & — oo, we get

vf < Ovt, (50)

Suppose that there exists T such that
v = Ov. (51)

Subtracting (51) from (50) and using a discrete maximum principle for O (lemma
7), we get vt < 7.

We conclude that v =7 and v* is a fixed point of O.

It remains to prove that vy such that vg < Owvg exists. For v € V, set

Lv = sup L"v.
weW
Consider the special strategy T' = (). Hypothesis Hoimplies that L is contractive. It
thus has a fixed point vg and OQvy > Lvg = vg . O

3.2 An example

Let (M*,w € W) be a family of n X n stochastic matrices, (¢*,w € W) and
(k*,z € Z) two families of vectors of dimension n, A a strictly positive real number,
o :[l,n] x Z — [1,n] an integer function such that o(i,2) < i and (B*,z € Z) a
family of n x n stochastic matrices (except for the first line) defined by :

. 1 ifj=o0(,2)andi#1
ij — (52)
0 elsewhere.
We define 1
L0 = ——(MYv+c¢*) and Bv = (B*v+ k?). (53)

DY

We define the state space £ = {1,...,n} and the admissible partitions as the ones
such that 1 ¢ T.

Let T €Ty, Z:& — Zand W : £ — W. Define the function ¢ on £ by
o(x) =o(x,Z(x)). For each z € T, let :

pTZ(x) = inf{p > 1 such that ¢°(z) € E\T'}.

Define the operator B as
(B %0)(z) = v(”" @),
and the vector k'~ as

p"Z (x)—1

(@)= > k@)

=0

-T,2
k
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We can suppose, modulo a permutation on the elements of £ that the first
elements of £ belong to C' and the others belong to T'. Then the matrices M* and
B? can be written as :

w_ (Méc Mér 2 _ (Bfcc Bier
. (M%”c mpp) BT Bere Borr

and

L ME TS ME (v oo
O v = [ TEATCC TR OT C +(°C
naw ( B?r¢  Bfrr vr k%

—T\W,Z —T\W,Z
Define L and M as :

—T\W,Z aet —T,2
M = MY, + MY+ B

+TW,Z a1 —TWzZ _T\W,Z
L Vo = m(M vc + CC )

= . . . _T.W.Z def -T1,2Z
where B is given in lemma 3 and cC’W’ = Mcrk "~ +

—T,Z —T,W ‘ .
Lemma 8 B'"7 and T" satisfy the hypothesis Hyi, Ho. Moreover, suppose: (i)
W and Z are compact sets, (ii) w — (M™,c") is continuous, (i) z — k* is
continuous. Then Hs is also satisfied.

Proof : The proof that H; and Hy are fulfilled is similar to the proof of lemma 4.
For v € V and for all € £, Argmax{L"v(x),w € W} exists since w — L%v(x) is
continuous in w on a compact set W. Note that B#v(x) can take a finite number of
values and consequently Argmax{B*v(z),z € £} exists.

For all (T, W, Z) the operator Op .z is nondecreasing since M W and BZ are
matrices with nonnegative entries. The operator O is also nondecreasing since it
is the maximum of nondecreasing operators. The operator O is nonexpansive and
thus continuous. 0

A probabilistic interpretation. Let (X,,n € N) be an homogeneous controlled
Markov chain with transition matrix MU defined on a finite state space £. We
assume here that the control U = (u,w, z) where u has only two possible values
ue{c,t},we W and z € Z.

M=) et ) MPifu=c,
B*  ifu=t.
We consider the optimal control problem :

v*(z) = sup v (z) (54)
Ueu

with : N
UU(x) d:ef Ea’ lz H g(XZa UI)C(XTM Una Wn)]
n=01¢{=0

where U stands for the stationary Markovian strategies. The profit and discount
rate functions are defined by :

def 1 -1 if u= def ) if u=
oy UV U= g gy ) Hu=e
1 if u=t. k(z,z) ifu=t.
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To each subset T' of £ and given functions W : £ — W and Z : £ — Z we
associate a stationary policy denoted by Ur zw = (U;,i > 0) where U; = U(X;)
and U(x) = (¢, Z(x)) for x € T and U(z) = (¢, W(z)) for z € E\T (To be rigorous
we should write U(x) = (t, Z(x), W (z)) but w (resp. z) is not involved when u =t
(resp. u = c)).

Lemma 9 Let (T, W, Z) be an admissible strategy and Orp,w,z the operator defined

with B? and LY as in equations (52) and (53). Let v be a fived function. The
following property holds :

Orw,z(v+a) > Orw,z(v) + % Yo € R.

Proof : This is straightforward since

Bz(v—i-a):BZ(v)-i-aZBZ(v)—i-lj_L)\

and

v >y -2
(v+a) > v+1+)\

Lemma 10 vV7-2W s the fized point of the operator Orw.z and v* is the fized
point of O.

Proof : Using Remark 1 and Theorem 2 we know that a fixed point of O exists.
The fact that, for a fixed strategy (T, W, Z), vU72W is the fixed point of the operator
Or,w,z can be proved similarly as in the proof of Lemma 5. Note also that pUTzw <
v™T, thus v* defined in (54) is well defined. It remains to show that v* coincides with
the fixed point © of O. Let € > 0 be fixed and let T, W, Z. be an admissible policy
such that

where we have denoted

We have
Ve = OTE,WE,ZE,UG < OUe-

Subtracting this inequality to the equality
=00
we obtain, by using the DMP for O
U > Ve. (56)
We then conclude that & > v*. Let now (T, W, Z.) be a strategy such that
Ot —e < Or. w. z.0. (57)
Denote v, the fixed point of Or. w. z.:
Or. w. z.Ve = Ve (58)
Since © = O, (57) can be rewritten as

*OTS,WS,ZJA) < —?0+e.
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Together with (58), this gives
Or w20 = O1 w20 < € + v =0

which combined with Lemma 9 leads to :

N . . 14+ A
Ot w..z.0e = Or, w2, (0 = f) < ve — (0 — ) with § = ——e
Using the DMP again we conclude that v, > 0 — 3. This leads to v* > © — 3 and to
v* >0 as e— 0. O

4 Application to the numerical analysis of quasi-variational inequalities
associated to combined stochastic and impulse control problems

Let B(t) = B(t,w) ; t > 0, w € 2 be a d-dimensional Brownian motion on a filtered
probability space (£2,F,{Fi}it>0,P), B(0) = 0 a.s. Let U be a given compact set
of RE. Let b: RF x U — R* and o : R x U — R*¥*? be given continuous functions.
We consider a system whose state Y (t) € R* follows the dynamics

AY (1) = b(Y (6),u(Y ()dt + o (V (1), u()dBE); 75 <t<mer  (59)
Y(Tj+1):F(Y(TJi,’_1)7<j+1) y j:071,27... (60)
where u(t) is a control process with values in U and v = (71,72,...;(1,(2,...) €
V is an impulse control and 79 = 0. Here 7y < 70 < --- are Fi-stopping times

(intervention times), (j,7 > 1 are F,-measurable random variables representing
the corresponding impulses, (; € Z C Rf, Z = Z(y) is a given set which may
depend on y. The result of giving an impulse { when the state of the system is
y is that the state jumps immediately from Y (t7) = y to Y (¢) = I'(y,(), where
I':R¥ x Z — RF is a given function.

Let W be the set of admissible combined controls w = (u,v) such that a unique
strong solution Y (*)(¢) of (59), (60) exists and lim 7; = co a.s.

j—o00

Let S be an open set of R¥ and define T = inf{t > 0;Y()(t) ¢ S}. Let f

be a profit/utility rate function and g a bequest function. Moreover, suppose the

profit/utility of performing an intervention with impulse ¢ € Z when the system is

in state y is K(y, (), where K : S x Z — R is a given function. We assume that for
ally € R*, wew,

EBY

T
/ |f<Y(w><t>,u<t>>dt] <oo, B [jgv(1)] < o0,

BV | Y K@), )| < eo.
7 <T

The performance is given by
T
T ) = B[ [ M0+ (v (D)) (61)
£ R ()6

and we want to find the value function @ defined by

(y) = sup J ) (y) . (62)
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The function @ is associated to the HIBQVI

o (sup (L0) + £, ). M2 - #()) =0, yES (63
with boundary values
P(y)=gly); yecois (64)
where
N & 0D b 02
Le®(y) = ;bi(yva) o, + %”2221 (00 )ij(y7a)m — AP (65)
and
M (y) = sup {&(I'(y,¢)) + K(y,¢);¢ € Z,I'(y,{) € S} . (66)

We discretize (63) by using a consistent and stable finite difference approxi-
mation with spatial step §. Following the method explained in [3], we obtain the
following discrete-time problem in the grid Ss:

OP5(y) = max (Sup{L?%(y) + 15 ()}, Ms®s(y) — %(y)) =0, yebs;

acU
(67)
where L§ is diagonally dominant and
M;®(y) = sup {@(I(y, ) + K(y,¢); ¢ € Z, I'(y,€) € S}
Equation (67) can be rewritten as
®5(y) = max (Sup{ﬁa“@(s(y)}, sup BC%(@/)) , YESs (68)
acU CEZs
where
V= —1+)\k(M5U+kf§)
1
k< m—m—
A+ (L§)iil

Mg = kL§ + (1 + Mk)I  (Stochastic matrix)
Bv(y) =v(I'(y,¢)) + K(y,¢)
Zs=1{C € Z,I(y,¢) € Ss}.

The grid Ss consists is a finite set of N points of S : Ss = {x;,i=1,... N}.
We make the following assumptions:

— There exists an integer function o : {1,2,... N} x Z — {1,2,... N} such that
forall( € Z

I'(24,¢) = x4(i ) for all z; € S5 with  o(4,() <1

— It is not admissible to perform an intervention in x1 € Sy.

Problem (68) is of the form (41). Assuptions H;, Hy and Hj are satisfied
and Problem (68) can thus be solved by using the policy iteration described in
section (3.1).
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