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Abstract The aim of this paper is to solve the fixed point problems :

v = Ov, with Ov(x)
def

= max(Lv(x), Bv(x)), x ∈ E , (1)

where E is a finite set, L is contractive and B is a nonexpansive operator and

v = Ov, with Ov(x)
def

= max(sup
w

Lwv(x), sup
z

Bzv(x)), x ∈ E , (2)

where W and Z are general control sets, the operators Lw are contractive and
operators Bz are nonexpansive. For these two problems, we give conditions which
imply existence and uniqueness of a solution and provide a policy iteration algo-
rithm which converges to the solution. The proofs are slightly different for the two
problems since the set of controls is finite for (1) while it is not necessary the case for
problem (2). Equation (2) typically arises in numerical analysis of quasi variational
inequalities and variational inequalities associated to impulse or singular stochastic
control.

Key words Howard Algorithm – Policy iteration – Impulse control – Quasi-
variational inequalities – Fixed point problems – Optimal control of Markov Chains
– Nonexpansive operators
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1 Introduction

The case of Bellman equations associated to optimal control of Markov chains on
an infinite horizon with discount factor λ > 0 has been studied for a long time by
many authors (see e.g the monographs by [1] and [8] and the references herein).
Typically these equations are of the form v = supw∈W{

1
1+λ

Mwv + cw} where Mw

is the transition matrix of the Markov chain, cw is the running utility and w is
the control variable with values in some control set W. We know that the iteration
policy algorithm converges to the solution of the Bellman equation since the operator

1
1+λ

Mw + cw is contractive and satisfies a discrete maximum principle.
The problem addressed in this paper concerns more general fixed point problems

on a finite state space. Typically the operator we will consider is the maximum
of a contractive operator and a nonexpansive one which satisfy some appropriate
properties. We refer to [1] for the study of shortest path problems which also lead
to some fixed point problems with nonexpansive operators but in a rather different
context or to [4, p.39] where reflecting boundaries lead to nonexpansive operators
on the boundary. This last problem appears to be a special case of ours.

The paper is organized as follows: In Section 2, we study the problem:

v(x) = max(Lv(x), Bv(x)), x ∈ E , (3)

where E is a finite set, L is contractive and B is a nonexpansive operator. We prove
the convergence of an iteration policy algorithm to the solution of (3) provided that
the operators L and M fulfill some conditions. In section 3, we turn to

v(x) = max(sup
w

Lwv(x), sup
z

Bzv(x)), x ∈ E , (4)

where W and Z are general control sets, the operators Lw are contractive and
operators Bz are nonexpansive. Now the set of controls is infinite and the proof of
convergence of the policy iteration has to be adapted. These problems are illustrated
by examples in optimal control of Markov chains.

Finally Section 4 concerns an application of the results of Section 3 to the
numerical analysis of quasi variational inequalities (QVIs) associated to combined
impulse/stochastic optimal controls. Indeed, stable and consistent finite difference
approximations of these QVIs lead to fixed point problems of type (4) where Lw

comes from the approximation of the underlying controlled diffusion and Bz comes
from the approximation of the intervention operator. We refer to [5] for an general
exposition on impulse control problems and to [7]-[3] for the study of impulse control
problems associated to portfolio optimization with fixed transaction costs. Results
of section 2 can be applied to the numerical analysis of variational inequalities with
gradient constraints associated to singular optimal controls [2].

2 A fixed point problem with a nonexpansive operator and a finite set

of controls

2.1 Formulation of the problem and hypotheses

We consider the fixed point problem :

v(x) = max(Lv(x), Bv(x)), x ∈ E (5)

where E is a finite set of cardinal n, v is a function defined on E taking values in R,
L is contractive and B is nonexpansive.
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If A is a subset of E , we denote VA
def

= {v : A 7→ R}. When A = E we simply
write V for VE . We identify functions belonging to VA with vectors of dimension
equal to cardA.

If T is a subset of E , we denote by OT the following operator :

OT v(x)
def

=

{

Lv(x) if x ∈ C where C
def

= E\T ,

Bv(x) if x ∈ T .
(6)

Problem (5) is equivalent to

v(x) = max
T∈P(E)

OT v(x). (7)

We restrict now the set of admissible controls. Define

Tad

def

= P(E)\E . (8)

We thus assume that the choice T = E is not admissible. Note that Tad is a finite
set since E is a finite set. Set:

Ov(x)
def

= max
T∈Tad

OT v(x). (9)

We look for (v?, T ?) ∈ V × Tad, a solution of :

v? = max
T∈Tad

OT v
? = OT?v?. (10)

For T ∈ Tad and v ∈ R
n we denote by (vC , vT ) the decomposition of v on the

partition C, T of E . We make the following assumptions:

H1 For each T ∈ Tad, there exist two operators L : VC 7→ VC , B : VC 7→ VT and a
function k : T 7→ T such that :

OT v = v ⇔ LvC = vC and vT = BvC + k (11)

OT v
1 −OT v

2 ≤ v1 − v2 ⇒ Lv1
C − Lv2

C ≤ v1
C − v2

C (12)

and B(v1
C − v2

C) ≤ (v1
T − v2

T ) (13)

vC ≥ 0⇒ BvC ≥ 0. (14)

H2 The operator L defined in H1 is contractive, i.e. satisfies

|Lv1 − Lv2|∞ < |v1 − v2|∞ (15)

and satisfies a discrete maximum principle (DMP in short):

Lv1 − Lv2 ≤ v1 − v2 ⇒ v1 − v2 ≥ 0. (16)

Under these hypothesis we will prove the convergence of a policy iteration algorithm
to solve problem (10). We start with two lemmas.

Lemma 1 For each T ∈ Tad, OT satisfies a discrete maximum principle (16) and
O satisfies also a discrete maximum principle (16) .

Proof : Let T ∈ Tad, given v1 and v2, suppose that

OT v
1 −OT v

2 ≤ v1 − v2.

From (12), we get

Lv1
C − Lv2

C ≤ v1
C − v2

C .
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Then the discrete maximum principle (16) applied to L implies

v1
C(x)− v2

C(x) ≥ 0 for all x ∈ C. (17)

Now from (13) we have
B(v1

C − v2
C) ≤ (v1

T − v2
T )

and since v1
C(x)− v2

C(x) ≥ 0, (14) implies

B(v1
C − v2

C) ≥ 0.

We conclude that
v1
T (x)− v2

T (x) ≥ 0 for all x ∈ T. (18)

Together with (17), this implies

v1(x)− v2(x) ≥ 0 for all x ∈ E .

Suppose now that
Ov1 −Ov2 ≤ v1 − v2

and let T2 ∈ Tad such that OT2
v2 = Ov2. We have :

OT2
v1 −OT2

v2 ≤ Ov1 −Ov2 ≤ v1 − v2.

Since OT2
satisfies the DMP, this implies v1 − v2 ≥ 0. ¤

Lemma 2 For each T ∈ Tad, OT has a unique fixed point. If a fixed point exists for
O it is unique.

Proof : Lemma 1 implies that if a fixed point exists for OT or O, it is unique. Now,
from (11) the existence of a fixed point of OT is equivalent to the existence of a
fixed point of the associated L operator. But L has indeed a fixed point since it is
contractive. ¤

2.2 A policy iteration algorithm

The policy iteration algorithm for solving (7) consists in constructing two sequences
of admissible policies (Tk, k ∈ N

?) and functions (vk, k ∈ N) as follows: Note that
here an admissible policy is nothing but a given admissible partition of E . Let v0 ∈ V
a given function. For k ≥ 0 we do the following iterations :

– (step 2k) Given vk compute a policy Tk+1 such that

Tk+1 ∈ Argmax
T∈Tad

{OT vk}. (19)

We may for example set :

Tk+1 = {x ∈ E , Bvk(x) > Lvk(x)}.

– (step 2k + 1) Let (Tk+1) be a given admissible policy, compute vk+1 as the
solution of

vk+1 = OTk+1
vk+1. (20)

Set k ← k + 1 and return to step 2k.

Theorem 1 – (i) The sequence (vk(x), k ∈ N) is well defined and nondecreasing.
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– (ii) Suppose that there exists a function v+ which satisfies OT v
+ ≤ v+ for all

T ∈ Tad. Then the sequence (vk(x), k ∈ N) is bounded by v+(x) and converges
for all x ∈ E.

– (iii) The limit v] of the sequence (vk, k ∈ N) is a fixed point of O.

Proof : (i) Given Tk, vk is defined as the fixed point of OTk , which exists and is
unique by Lemma 2. Using the definition of Tk+1 we have :

OTkvk ≤ OTk+1
vk. (21)

So

OTk+1
vk+1 −OTk+1

vk ≤ OTk+1
vk+1 −OTkvk. (22)

Now, using vk = OTkvk and vk+1 = OTk+1
vk+1, we get

OTk+1
vk+1 −OTk+1

vk ≤ vk+1 − vk. (23)

Using Lemma 1 we conclude that vk+1 ≥ vk.

(ii) One sees easily that

OTkv
+ −OTkvk ≤ v+ − vk (24)

which implies v+ − vk ≥ 0.

(iii) In what follows, the existence of v+ is not used. Let (Tk, k ∈ N) be the
sequence of partitions computed by the policy iteration algorithm. Since Tad is
finite we can find (k, k′) such that k < k′ and Tk = Tk′ . Lemma 2 which gives
the uniqueness of the fixed point of OTk implies that vk = vk′ . Combined with the
monotonicity of the sequence (vk), this implies that vk = vk+1. Thus :

Ovk = OTk+1
vk = OTk+1

vk+1 = vk+1 = vk

and we conclude that vk is a fixed point of O. Moreover since a fixed point of O is
also a super-solution of O it can play the role of v+ and it gives an upper bound
of the sequence vk. Then vk′(x) is constant for k′ ≥ k and the sequence (vk(x))k∈N

converges in a finite number of iterations. ¤

2.3 An example related to Bellman equations

Let E
def

= {1, . . . , n} be the state space. A partition T of E will be admissible if 1 6∈ T .
Let M be a n × n stochastic matrix, c and k two vectors of dimension n, λ > 0,
σ : [1, n] 7→ [1, n] an integer function such that σ(i) < i and B a n × n stochastic
matrix (except for the first line) defined by :

Bi,j =

{

1 if j = σ(i) and i 6= 1

0 elsewhere.
(25)

The matrix B is thus lower tridiagonal with zeros on the diagonal. We define

Lv
def

=
1

1 + λ
(Mv + c) and Bv

def

= (Bv + k). (26)
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Lemma 3 Let T ∈ Tad and let v = (vC , vT ) be the decomposition of the vector v on

the set T and its complementary C
def

= E\T . Let σp denote the p-composition of the

function σ (σ0(x)
def

= x) and for each x ∈ T , let :

p(x)
def

= inf{p ≥ 1 such that σp(x) ∈ E\T}.

Define the operator B as
(Bv)(x) = v(σp(x)(x))

and the vector k as

k(x) =

p(x)−1
∑

i=0

k(σi(x)).

The value of Bv only depends on the value of v on C and we thus write BvC . We
have

– (i) B fulfills property (14).
– (ii) v = Bv on T ⇔ vT = BvC + kT .
– (iii) Bv1 −Bv2 ≤ v1 − v2 on T ⇒ Bv1

C −Bv2
C ≤ v1

T − v2
T .

Proof : (i) For i in T , let σp(i) denote the p-composition of the function σ. Since
σ is strictly decreasing and σ(2) = 1 ∈ E\T , the pth-composition of σ starting from
a point in T will end up in E\T after a finite number of steps. Thus for i in T we
can define p(i) the smallest value of p ≥ 1 (such that σp(i) ∈ E\T and B is well
defined. It is clear that B satisfies property (14) and only depends on the value of
v on C.

(ii) Suppose that v is a function such that v = Bv on the set T . We then have
for x ∈ T

v(x) = Bv(x) = v(σ(x)) + k(x).

By iteration we have

v(x) = v(σp(x)) +

p(x)−1
∑

i=0

k(σi(x)) for p ≤ p(x) .

Taking p = p(x), we get v(x) = (Bv)(x) + k(x).
Suppose now that

v(x) = (Bv)(x) + k(x) for all x ∈ T . (27)

Let x ∈ T . If p(x) = 1 we get immediately v(x) = (Bv)(x).
If p(x) > 1 then σ(x) ∈ T and p(σ(x)) = p(x)− 1. We have, using the definition

of B
(Bv)(x) = v(σp(x)(x))

and
(Bv)(σ(x)) = v(σp(σ(x))σ(x)) = v(σp(x)(x)).

Consequently
(Bv)(x) = (Bv)(σ(x)).

We also have :

k(x) =

p(x)−1
∑

i=0

k(σi(x)) = k(x) +

p(σ(x))
∑

i=1

k(σi(x))

= k(x) + k(σ(x)).
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Using now (27), we get v(x) = v(σ(x)) + k(x) = Bv(x). We conclude that v = Bv
on T .

(iii) We prove (iii) similarly. ¤

We can suppose, modulo a permutation on the elements of E , that the first
elements of E belong to C and the others belong to T . Then the matrices M and
B can be written as :

M =

(

MCC MCT

MTC MTT

)

and B =

(

BCC BCT

BTC BTT

)

and

OT v =

(

1
1+λ

MCC
1

1+λ
MCT

BTC BTT

)(

vC
vT

)

+

(

cC
kT

)

Define L and M as :

M
def

= MCC +MCT ∗B and LvC
def

=
1

1 + λ
(MvC + cC) (28)

where B is given in Lemma 3 and cC
def

= M2k + cC

Lemma 4 Using B and L the hypothesis H1 and H2 are fulfilled.

Proof : The entries of the matrix M are nonnegative since B has nonnegative entries
and M is stochastic. Since 1 6∈ T we have (Be)T = eT where e = (1, . . . , 1)T .
Proceeding as in Lemma 3 (ii), we get eT = BeC . Then :

MeC = MCCeC +MCTBeC

= MCCeC +MCT eT =
(

MCC MCT

)

e = eC
(29)

The matrix M is thus stochastic and L is linear, contractive and satisfies the discrete
maximum principle. So H2 is satisfied.

Suppose now that v is a solution of OT v = v. This is equivalent to

vT = Bv on T (30)

vC = Lv on C. (31)

By Lemma 3, (30) is equivalent to

vT = BvC + k. (32)

Using (32), we can write

LvC =
1

1 + λ
((MCC +MCT ∗B)vC + cC) =

1

1 + λ
(MCCvC +MCT vT + cC)

=
1

1 + λ
((Mv)C + cC) = Lv(x) on C.

Combined with (31), this gives vC = LvC . Using Lemma 3 again the converse
implication follows easily.

Suppose now that
OT v

1 −OT v
2 ≤ v1 − v2.

This implies on T
Bv1 −Bv2 ≤ v1 − v2.
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Using lemma 3 this implies that

(v1 − v2)T ≥ B(v1 − v2)C . (33)

On C, we have

Lv1 − Lv2 ≤ v1 − v2.

Moreover

Lv1 − Lv2 =
1

1 + λ
(Mv1 −Mv2)

=
1

1 + λ

(

(

MCC MCT

)

(

v1
C − v2

C

v1
T − v2

T

))

=
1

1 + λ

(

MCC(v
1
C − v2

C) +MCT (v
1
T − v2

T )
)

≥
1

1 + λ

(

MCC(v
1
C − v2

C) +MCTB(v1
C − v2

C)
)

.

by using (33). We thus get

1

1 + λ

(

MCC +MCTB
)

(v1
C − v2

C) ≤ v1
C − v2

C .

Consequently

1

1 + λ

(

Mv1
C −Mv2

C

)

def

= Lv1
C − Lv2

C ≤ v1
C − v2

C

and (12) is obtained. ¤

Remark 1 When k ≡ 0, one can easily checks that v+ def

= |c|∞/λ is, for all T ∈ Tad a
super-solution of OT (OT v

+ ≤ v+). When k 6= 0, Lemma 6 below gives an upper
bound for v?.

A probabilistic interpretation in terms of an optimal control problem. Let (Xn, n ∈
N) be an homogeneous controlled Markov chain with transition matrix Mu defined
on a finite state space E . We assume that the control u has only two possible values:

u ∈ {c, t}. The transition matrix takes thus two values M c def

= M and M t def

= B. We
consider the following optimal control problem:

v?(x)
def

= max
U∈U

vU(x) with vU(x)
def

= Ex

[

+∞
∑

k=0

k
∏

i=0

ξ(Xi, Ui)C(Xk, Uk)

]

(34)

where U stands for the stationary Markovian strategies. The profit and discount
rate functions are defined by :

ξ(x, u)
def

=

{

(1 + λ)−1 if u = c

1 if u = t.
C(x, u)

def

=

{

c(x) if u = c

k(x) if u = t.
(35)

To each subset T of E we associate a stationary policy UT = (Ui, i ≥ 0) where
Ui = U(Xi) for all i ≥ 0, and U is a function: E 7→ {c, t} such that U(x) = t for
x ∈ T and U(x) = c for x ∈ E\T .

Lemma 5 vUT is the fixed point of the operator OT and v? is the fixed point of O.



A policy iteration algorithm 9

Proof : For an initial state x ∈ E , we define the stopping time :

τxT = inf{k ≥ 0 such that Xx
k ∈ T}.

Let C∞ be the subset of E\T consisting of the states x such that τ x
T = ∞. When

x ∈ C∞, vUT (x) can be rewritten as :

vUT (x) = Ex

[

+∞
∑

k=0

1

(1 + λ)k+1
c(Xk)

]

and the restriction of vUT to C∞ is the solution of the equation :

vUT (x) =
1

1 + λ
(MC∞

vUT (x) + c(x)) for x ∈ C∞ (36)

where MC∞
is the restriction of M to C∞.

For x ∈ E\C∞, the strong Markov property implies :

vUT (x)
def

= Ex





τxT−1
∑

k=0

k
∏

i=0

ξ(Xi, Ui)C(Xk, Uk) +

τxT
∏

i=0

ξ(Xi, Ui)C(Xτx
T
, Uτx

T
)

+

τxT
∏

i=0

ξ(Xi, Ui)v
UT (Xτx

T
+1)



 .

Using the definition of τxT , we obtain

vUT (x) = Ex





τxT−1
∑

k=0

1

(1 + λ)k+1
c(Xk) +

1

(1 + λ)τ
x
T

ΨT (Xτx
T
)





ΨT (x)
def

= BvUT (x) + k(x)

It is well known that vUT (x) then satisfies the Kolmogorov equation

vUT (x)
def

=

{

1
1+λ

(MvUT (x) + c(x)) if x ∈ E\T , x 6∈ C∞.

BvUT (x) + k(x) if x ∈ T .
(37)

Combining (36) and (37), we obtain that vUT is a fixed point of OT . Since the set
of stationary Markovian strategies is finite, v? is well defined and there exists T ?

such that v? = vUT? . This implies that v? coincides with the unique fixed point of
O. ¤

Lemma 6 We have v? ≤ (|c|∞ + n|k|∞)/λ where n is the cardinal of E.

Proof : For a given strategy UT , let (Xρ(n)) be the subsequence of Xn which

belongs to subset C = E\T . Using the probabilistic interpretation of vUT (x) we can
write :

vUT (x) = Ex





+∞
∑

k=0

1

(1 + λ)k+1



c(Xρ(k)) +

ρ(k+1)−1
∑

j=ρ(k)+1

k(Xj)







 (38)

But we also have |ρ(k + 1)− ρ(k)| ≤ n since after at most n successive transitions
in T the chain is in C. The result follows. ¤
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3 A fixed point problem with a nonexpansive operator and non finite

sets of controls

We consider now the fixed point problem :

v(x) = max( sup
w∈W

Lwv(x), sup
z∈Z

Bzv(x)), x ∈ E (39)

where E is a finite set, W and Z are general control sets. The operators Lw and Bz

depend now on control variables w and z.
Let T be a subset of E , w ∈ W and z ∈ Z and denote by OT,w,z the operator :

OT,w,zv(x)
def

=

{

Lwv(x) if x ∈ C where C
def

= E\T ,

Bzv(x) if x ∈ T .
(40)

Problem (39) is equivalent to

v(x) = sup
T∈P(E),w∈W,z∈Z

OT,w,z.

Set
Ov(x)

def

= sup
T∈Tad,w∈W,z∈Z

OT,w,z.

where Tad is defined in (8). We restrict ourselves to the following problem

v(x) = sup
T∈Tad,w∈W,z∈Z

OT,w,z. (41)

We make the following assumptions :

H1 For each given T ∈ Tad, W : E → W and Z : E → Z , we can build two

operators L
T,W,Z

, B
T,W,Z

and a function k
T,Z

such that :

OT,W,Zv = v ⇔ L
T,W,Z

vC = vC and vT = B
T,W,Z

vC + k
T,Z

(42)

OT,W,Zv1 −OT,w,zv
2 ≤ v1 − v2 ⇒ L

T,W,Z
v1
C − L

T,W,C
v2
C ≤ v1

C − v2
C (43)

and B
T,W,Z

(v1
C − v2

C) ≤ (v1
T − v2

T ) (44)

vC ≥ 0⇒ B
T,W,Z

vC ≥ 0. (45)

H2 For each (T,W,Z), the operator L
T,W,Z

defined by H1 is contractive and sat-
isfies a discrete maximum principle :

L
T,W,Z

v1 − L
T,W,Z

v2 ≤ v1 − v2 ⇒ v1 − v2 ≥ 0. (46)

H3 – For each v ∈ V , Argmax{Lwv(x), w ∈ W} and Argmax{Bzv(x), z ∈ Z}
exist.

– For each T ∈ Tad, W : E → W and Z : E → Z, the operator OT,W,Z is
nondecreasing.

– The operator O is continuous and nondecreasing.

Lemma 7 – For each T ∈ Tad, W : E → W and Z : E → Z, the operator OT,W,Z

satisfies a discrete maximum principle and O satisfies also a discrete maximum
principle.

– For each T ∈ Tad, W : E → W and Z : E → Z, the operator OT,W,Z has a
unique fixed point. If a fixed point exists for O it is unique.

Proof : We use similar arguments as in the proof of lemma 1 and lemma 2. ¤
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3.1 A policy iteration algorithm

The policy iteration algorithm for solving (41) consists in constructing two sequences
of admissible policies ((Tk,Wk, Zk), k ∈ N) and functions (vk, k ∈ N) as follows: Let
v0 ∈ V a given function. For k ≥ 0 we do the following iterations :

– (step 2k) Given vk, compute an admissible policy (Tk+1,Wk+1, Zk+1) such that

(Tk+1,Wk+1, Zk+1) ∈ Argmax
T,W,K

{OT,W,Zvk}. (47)

In other words Ovk = OTk+1,Wk+1,Zk+1
vk.

– (step 2k+1) Let (Tk+1,Wk+1, Zk+1) be a given admissible policy, compute vk+1

as the solution of

vk+1 = OTk+1,Wk+1,Zk+1
vk+1. (48)

Set k ← k + 1 and go to step 2k.

Theorem 2 – (i) The sequence (vk(x), k ∈ N) is well defined and nondecreasing.
– (ii) Suppose that there exists a function v+ which satisfies OT,W,Zv+ ≤ v+ for all
(T,W,Z).Then the sequence (vk(x), k ∈ N) is bounded by v+(x) and converges
for all x ∈ E.

– (iii) There exists v0 such that v0 ≤ Ov0. The limit v
] of the sequence (vk, k ∈ N)

starting from this v0 is a fixed point of O.

Proof :

(i) and (ii) are proved similarly as in the proof of Theorem 1.
The proof of (iii) is different as explained now: Set for writing simplicity

O(k)
def

= OTk,Wk,Zk
.

For all x ∈ E , the sequence (vk(x), k ∈ N) is nondecreasing and bounded by v+(x),
it converges to v](x) ≤ v+(x). Let us prove by induction that

Okv0 ≤ vk. (49)

We have by (47) at step k = 0,

Ov0 = O(1)v0.

and by (48)

v1 = O(1)v1.

So Ov0 ≤ v1 if and only if O(1)v0 ≤ O(1)v1 which is true since O(1) is nondecreasing
(by H3) and v0 ≤ v1.

Suppose (49) holds. By H3, O is nondecreasing, so

Ok+1v0 ≤ Ovk.

by (47),

Ovk = O(k+1)vk.

By H3, O(k+1) is nondecreasing. Since vk ≤ vk+1, O(k+1)vk ≤ O(k+1)vk+1. By (48)

vk+1 = O(k+1)vk+1.

Consequently

Ok+1v0 ≤ vk+1.
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Suppose that there exists v0 such that v0 ≤ Ov0. The sequence γk = Okv0 is
nondecreasing and bounded and thus converges to v. Taking the limit when k →∞
in (49), we get

v ≤ v] ≤ v+.

Moreover v is a fixed point of O since γk converges, γk+1 = Oγk and O is continuous.
Now

vk = O(k)vk ≤ O(k+1)vk = Ovk

Taking the limit when k →∞, we get

v] ≤ Ov]. (50)

Suppose that there exists v such that

v = Ov. (51)

Subtracting (51) from (50) and using a discrete maximum principle for O (lemma
7), we get v] ≤ v.

We conclude that v] = v and v] is a fixed point of O.
It remains to prove that v0 such that v0 ≤ Ov0 exists. For v ∈ V , set

Lv = sup
w∈W

Lwv.

Consider the special strategy T = ∅. Hypothesis H2implies that L is contractive. It
thus has a fixed point v0 and Ov0 ≥ Lv0 = v0 . ¤

3.2 An example

Let (Mw, w ∈ W) be a family of n × n stochastic matrices, (cw, w ∈ W) and
(kz, z ∈ Z) two families of vectors of dimension n, λ a strictly positive real number,
σ : [1, n] × Z 7→ [1, n] an integer function such that σ(i, z) < i and (Bz, z ∈ Z) a
family of n× n stochastic matrices (except for the first line) defined by :

Bz
i,j =

{

1 if j = σ(i, z) and i 6= 1

0 elsewhere.
(52)

We define

Lwv
def

=
1

1 + λ
(Mwv + cw) and Bzv

def

= (Bzv + kz). (53)

We define the state space E
def

= {1, . . . , n} and the admissible partitions as the ones
such that 1 6∈ T .

Let T ∈ Tad, Z : E → Z and W : E → W. Define the function σ̄ on E by
σ̄(x) = σ(x, Z(x)). For each x ∈ T , let :

pT,Z(x)
def

= inf{p ≥ 1 such that σ̄p(x) ∈ E\T}.

Define the operator B
T,Z

as

(B
T,Z

v)(x) = v(σ̄pT,Z(x)).

and the vector k
T,Z

as

k
T,Z

(x) =

pT,Z(x)−1
∑

i=0

k(σ̄i(x)).
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We can suppose, modulo a permutation on the elements of E that the first
elements of E belong to C and the others belong to T . Then the matrices Mw and
Bz can be written as :

Mw =

(

Mw
CC Mw

CT

Mw
TC Mw

TT

)

and Bz =

(

Bz
CC Bz

CT

Bz
TC Bz

TT

)

and

OT,Z,W v =

(

1
1+λ

Mw
CC

1
1+λ

Mw
CT

Bz
TC Bz

TT

)(

vC
vT

)

+

(

cwC
kzT

)

Define L
T,W,Z

and M
T,W,Z

as :

M
T,W,Z def

= MW
CC +MW

CT ∗B
T,Z

L
T,W,Z

vC
def

=
1

1 + λ
(M

T,W,Z
vC + cT,W,Z

C ).

where B is given in lemma 3 and cT,W,Z
C

def

= MCT k
T,Z

+ cWC

Lemma 8 B
T,Z

and L
T,W

satisfy the hypothesis H1, H2. Moreover, suppose: (i)
W and Z are compact sets, (ii) w 7→ (Mw, cw) is continuous, (iii) z 7→ kz is
continuous. Then H3 is also satisfied.

Proof : The proof that H1 and H2 are fulfilled is similar to the proof of lemma 4.
For v ∈ V and for all x ∈ E , Argmax{Lwv(x), w ∈ W} exists since w 7→ Lwv(x) is
continuous in w on a compact set W. Note that Bzv(x) can take a finite number of
values and consequently Argmax{Bzv(x), z ∈ Z} exists.

For all (T,W,Z) the operator OT,W,Z is nondecreasing since MW and BZ are
matrices with nonnegative entries. The operator O is also nondecreasing since it
is the maximum of nondecreasing operators. The operator O is nonexpansive and
thus continuous. ¤

A probabilistic interpretation. Let (Xn, n ∈ N) be an homogeneous controlled
Markov chain with transition matrix MU defined on a finite state space E . We
assume here that the control U = (u,w, z) where u has only two possible values
u ∈ {c, t}, w ∈W and z ∈ Z.

M
(u,z,w) def

=

{

Mw if u = c,

Bz if u = t.

We consider the optimal control problem :

v?(x)
def

= sup
U∈U

vU(x) (54)

with :

vU(x)
def

= Ex

[

+∞
∑

n=0

n
∏

i=0

ξ(Xi, Ui)C(Xn, Un,Wn)

]

where U stands for the stationary Markovian strategies. The profit and discount
rate functions are defined by :

ξ(x, u)
def

=

{

(1 + λ)−1 if u = c

1 if u = t.
C(x, u, w)

def

=

{

c(x,w) if u = c

k(x, z) if u = t.
(55)
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To each subset T of E and given functions W : E 7→ W and Z : E 7→ Z we
associate a stationary policy denoted by UT,Z,W = (Ui, i ≥ 0) where Ui = U(Xi)
and U(x) = (t, Z(x)) for x ∈ T and U(x) = (c,W (x)) for x ∈ E\T (To be rigorous
we should write U(x) = (t, Z(x),W (x)) but w (resp. z) is not involved when u = t

(resp. u = c)).

Lemma 9 Let (T,W,Z) be an admissible strategy and OT,W,Z the operator defined
with BZ and LW as in equations (52) and (53). Let v be a fixed function. The
following property holds :

OT,W,Z(v + α) ≥ OT,W,Z(v) +
α

1 + λ
∀α ∈ R.

Proof : This is straightforward since

BZ(v + α) = BZ(v) + α ≥ BZ(v) +
α

1 + λ

and
LW (v + α) ≥ LW v +

α

1 + λ
.

¤

Lemma 10 vUT,Z,W is the fixed point of the operator OT,W,Z and v? is the fixed
point of O.

Proof : Using Remark 1 and Theorem 2 we know that a fixed point of O exists.
The fact that, for a fixed strategy (T,W,Z), vUT,Z,W is the fixed point of the operator
OT,W,Z can be proved similarly as in the proof of Lemma 5. Note also that vUT,Z,W ≤
v+, thus v? defined in (54) is well defined. It remains to show that v? coincides with
the fixed point v̂ of O. Let ε > 0 be fixed and let Tε,Wε, Zε be an admissible policy
such that

v? − ε ≤ vε

where we have denoted
vε

def

= vUTε,Wε,Zε .

We have
vε = OTε,Wε,Zε

vε ≤ Ovε.

Subtracting this inequality to the equality

v̂ = Ov̂

we obtain, by using the DMP for O

v̂ ≥ vε. (56)

We then conclude that v̂ ≥ v?. Let now (Tε,Wε, Zε) be a strategy such that

Ov̂ − ε ≤ OTε,Wε,Zε
v̂. (57)

Denote vε the fixed point of OTε,Wε,Zε
:

OTε,Wε,Zε
vε = vε (58)

Since v̂ = Ov̂, (57) can be rewritten as

−OTε,Wε,Zε
v̂ ≤ −v̂ + ε.
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Together with (58), this gives

OTε,Wε,Zε
vε −OTε,Wε,Zε

v̂ ≤ ε+ vε − v̂

which combined with Lemma 9 leads to :

OTε,Wε,Zε
vε −OTε,Wε,Zε

(v̂ − β) ≤ vε − (v̂ − β) with β =
1 + λ

λ
ε

Using the DMP again we conclude that vε ≥ v̂− β. This leads to v? ≥ v̂− β and to
v? ≥ v̂ as ε 7→ 0. ¤

4 Application to the numerical analysis of quasi-variational inequalities

associated to combined stochastic and impulse control problems

Let B(t) = B(t, ω) ; t ≥ 0, ω ∈ Ω be a d-dimensional Brownian motion on a filtered
probability space (Ω,F , {Ft}t≥0, P ), B(0) = 0 a.s. Let U be a given compact set
of R

`. Let b : R
k × U → R

k and σ : R
k × U → R

k×d be given continuous functions.
We consider a system whose state Y (t) ∈ R

k follows the dynamics

dY (t) = b(Y (t), u(Y (t))dt+ σ(Y (t), u(t))dB(t) ; τj ≤ t < τj+1 (59)

Y (τj+1) = Γ (Y (τ−j+1), ζj+1) ; j = 0, 1, 2, . . . (60)

where u(t) is a control process with values in U and v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) ∈
V is an impulse control and τ0 = 0. Here τ1 < τ2 < · · · are Ft-stopping times
(intervention times), ζj , j ≥ 1 are Fτj -measurable random variables representing
the corresponding impulses, ζj ∈ Z ⊂ R

`, Z = Z(y) is a given set which may
depend on y. The result of giving an impulse ζ when the state of the system is
y is that the state jumps immediately from Y (t−) = y to Y (t) = Γ (y, ζ), where
Γ : R

k × Z → R
k is a given function.

Let W be the set of admissible combined controls w = (u, v) such that a unique
strong solution Y (w)(t) of (59), (60) exists and lim

j→∞
τj =∞ a.s.

Let S be an open set of R
k and define T = inf{t > 0;Y (w)(t) 6∈ S}. Let f

be a profit/utility rate function and g a bequest function. Moreover, suppose the
profit/utility of performing an intervention with impulse ζ ∈ Z when the system is
in state y is K(y, ζ), where K : S ×Z → R is a given function. We assume that for
all y ∈ R

k, w ∈ W,

Ey

[

∫ T

0

|f(Y (w)(t), u(t))|dt

]

<∞, Ey
[

|g(Y (w)(T ))
]

<∞,

Ey





∑

τj<T

|K(Y (w)(τ−j ), ζj)|



 <∞.

The performance is given by

J (w)(y) = Ey
[

∫ T

0

e−λtf(Y (t), u(t))dt+ e−λT g(Y (T )) (61)

+
∑

j

e−λτjK(Y (τ−j ), ζj)
]

and we want to find the value function Φ defined by

Φ(y) = sup
w∈W

J (w)(y) . (62)
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The function Φ is associated to the HJBQVI

max

(

sup
α∈U

{LαΦ(y) + f(y, α)},MΦ(y)− Φ(y)

)

= 0 , y ∈ S (63)

with boundary values

Φ(y) = g(y) ; y ∈ ∂S (64)

where

LαΦ(y) =

k
∑

i=1

bi(y, α)
∂Φ

∂yi
+ 1

2

k
∑

i,j=1

(

σσT
)

ij
(y, α)

∂2Φ

∂yi∂yj
− λΦ (65)

and

MΦ(y) = sup
{

Φ(Γ (y, ζ)) +K(y, ζ); ζ ∈ Z, Γ (y, ζ) ∈ S
}

. (66)

We discretize (63) by using a consistent and stable finite difference approxi-
mation with spatial step δ. Following the method explained in [3], we obtain the
following discrete-time problem in the grid Sδ:

OΦδ(y)
def

= max

(

sup
α∈U

{Lα
δ Φδ(y) + fα

δ (y)},MδΦδ(y)− Φδ(y)

)

= 0 , y ∈ Sδ

(67)
where Lα

δ is diagonally dominant and

MδΦ(y) = sup
{

Φ(Γ (y, ζ)) +K(y, ζ); ζ ∈ Z, Γ (y, ζ) ∈ Sδ

}

.

Equation (67) can be rewritten as

Φδ(y) = max

(

sup
α∈U

{Lαδ Φδ(y)}, sup
ζ∈Zδ

BζΦδ(y)

)

, y ∈ Sδ (68)

where

Lαδ v =
1

1 + λk
(Mα

δ v + kfα
δ )

k ≤
1

|λ+ (Lα
δ )ii|

Mα
δ = kLα

δ + (1 + λk)I (Stochastic matrix)

Bζv(y) = v(Γ (y, ζ)) +K(y, ζ)

Zδ = {ζ ∈ Z, Γ (y, ζ) ∈ Sδ}.

The grid Sδ consists is a finite set of N points of S : Sδ = {xi, i = 1, . . . N}.
We make the following assumptions:

– There exists an integer function σ : {1, 2, . . . N} × Z → {1, 2, . . . N} such that
for all ζ ∈ Z

Γ (xi, ζ) = xσ(i,ζ) for all xi ∈ Sδ with σ(i, ζ) < i

– It is not admissible to perform an intervention in x1 ∈ Sδ.

Problem (68) is of the form (41). Assuptions H1, H2 and H3 are satisfied
and Problem (68) can thus be solved by using the policy iteration described in
section (3.1).
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