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Abstract

The Diffusion Monte Carlo (DMC) method is a powerful strategy to estimate the

ground state energy E0 of a N -body Schrödinger hamiltonian H = −1

2
∆ + V with

high accuracy. Briefly speaking, it consists in writing E0 as the long-time limit of
the expectation value of a drift-diffusion process with source term, and in numerically
simulating this process by means of a collection of random walkers. As for a number of
stochastic methods, a DMC calculation makes use of an importance sampling function
ψI which hopefully approximates some ground state ψ0 of H . In the fermionic case, it
has been observed that the DMC method is biased, except in the special case when the
nodal surfaces of ψI coincide with those of a ground state of H . The approximation
arising from the fact that, in practice, the nodal surfaces of ψI differ from those of
the ground states of H , is refered to as the Fixed Node Approximation (FNA). Our
purpose in this article is to provide a mathematicial analysis of the FNA. We prove
that, under some hypotheses, a DMC calculation performed with the importance
sampling function ψI , provides an estimation of the infimum of the energy 〈ψ,Hψ〉
on the set of the fermionic test functions ψ that vanish on the nodal surfaces of ψI .

1 Introduction

Calculating the ground state of fermionic systems is a major concern in Computational
Chemistry and Physics. In particular, this issue is the heart of the matter in Quantum
Chemistry and in ab initio Molecular Dynamics (see e.g. [16, 19] and [5] for a more math-
ematical presentation). In both cases, the purpose is to determine electronic structures.

In absence of magnetic field, the electronic structure of a piece of matter consisting of M
nuclei and N electrons is described by a hamiltonian of the form

H = −1

2
∆ + V

operating on the antisymmetrized tensor product

He =
N∧

i=1

L2(IR3).

The above notation means that He is the Hilbert space of square integrable functions

ψ : IR3 × · · · × IR3 ≡ IR3N → IR or C|

satisfying the antisymmetry condition

ψ(xσ(1), · · · , xσ(N)) = ε(σ)ψ(x1, · · · , xN ) (1)
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for all permutation σ ∈ SN and almost all (x1, · · · , xN ) ∈ IR3 × · · · × IR3 (ε(σ) denotes
the signature of σ). The antisymmetry condition (1) accounts for the fermionic nature of
the electrons. For simplicity, we do not take the spin variables into account, but all the
results below can be straightforwardly extended to spin-dependent models. The particular
form of V will be made precise in Section 2. Let us just mention for the moment that
V is a real-valued local potential, symmetric with respect to renumbering of particules
(i.e. V (xσ(1), · · · , xσ(N)) = V (x1, · · · , xN )), and that the linear operator H, defined on a
convenient domain D(H) ⊂ He, is self-adjoint on He.

We assume in the sequel that H is bounded from below and that the lower bound of
its spectrum, denoted by E0, corresponds to an isolated eigenvalue. We denote by ψ0 a
normalized eigenfunction of H associated with E0. By definition, E0 is the ground state
energy and ψ0 a ground state of the system. Recall that, under some technical assumptions
on V (satisfied in particular by the potentials V defined in Section 2),

E0 = inf

{
1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V |ψ|2, ψ ∈ D(qH), ‖ψ‖L2 = 1

}
(2)

where D(qH) is the domain of the energy functional, i.e. of the quadratic form

〈ψ,Hψ〉 =
1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V |ψ|2

associated with H (recall that D(H) ⊂ D(qH) ⊂ He with dense embeddings). Besides,
the ground state ψ0 is a minimizer of (2) and satistifies the time-independent Schrödinger
equation

Hψ0 = E0ψ0. (3)

In practice, and in particular in electronic structure calculations [16, 19, 5], determining
the ground state amounts to computing the ground state energy E0, and possibly some
functions of ψ0 of the form 〈ψ0, Aψ0〉 where A is a self-adjoint operator on He. Let us
notice that, as the potential V is real-valued and as we focus on solutions of the time-
independent Schrödinger equation (3), it is sufficient to consider real-valued functions ψ
only.

Tackling directly problem (2) or equation (3) with deterministic numerical methods is out
of reach for values of N larger than 6 or 7. Most of the fermionic ground state calcula-
tions are in fact performed either with the Hartree-Fock model [20] or with the Kohn-Sham
model [11]. The Hartree-Fock model is a variational approximation of problem (2) consist-
ing in minimizing the energy functional 〈ψ,Hψ〉 on the subset of {ψ ∈ D(qH), ‖ψ‖L2 = 1}
consisting of Slater determinants, i.e. on the set

{
ψ ∈ D(qH), ψ(x1, · · · , xN ) =

1√
N !

det (φi(xj)) , φi ∈ L2(IR3),

∫

IR3
φiφj = δij

}
.

The Hartree-Fock ground state can be computed numerically for systems containing as
many as several hundreds of particles on a today available personal computer. The
Hartree-Fock model can be interpreted as a mean-field model. For this reason, the (non-
negative) difference between the Hartree-Fock energy of the system and the exact ground
state energy E0 is called the correlation energy. In some systems, the correlation energy
may play an essential role, and the Hartree-Fock model is then inefficient. The Kohn-
Sham model is an attempt to calculate E0 without calculating ψ0, which originates from
the Density Functional Theory [10]. It usually outperforms the Hartree-Fock model, but
may fail in some cases. It is out of our purpose to describe the Kohn-Sham model, and we
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therefore refer the reader to the literature (see for instance [11, 5]). Let us only mention
that the Kohn-Sham model is not a variational approximation of (2) and that, depending
on the system under study, it gives an estimation of the ground state energy which can be
either lower or higher than E0. In addition, no error bound for the Kohn-Sham model is
available so far. More sophisticated deterministic models, refered to as post Hartree-Fock
models, have been developed (Møllet-Plesset perturbation method, configuration interac-
tion, multi-configuration self-consistent field, coupled cluster, ...), but the computational
cost of them is prohibitive for large systems.

Quantum Monte Carlo (QMC) methods [14, 15, 21] provide an alternative elegant and
powerful way to solve problem (2). They are (obviously!) stochatics methods. We focus
here on the so-called Diffusion Monte Carlo (DMC) method, which has many advantages:
first, it aims at directly solving the N -body problem (2), without resorting to a mean-
field model; second, as any Monte Carlo method, it provides confidence intervals that
can be, in some sense, considered as a posteriori error bounds; third, it is far much
easier to implement than deterministic methods, such as the Hartree-Fock, Kohn-Sham or
post Hartree-Fock methods. Despite these numerous advantages, the DMC method has
not been widely used by practitioners in the past decades, mainly for the following two
reasons. First, DMC calculations are more demanding in terms of CPU time than, for
instance, Kohn-Sham calculations. In fact, DMC calculations cannot be run from scratch;
they only allow to improve on the result of a previous deterministic or Variational Monte
Carlo (see e.g. [2]) calculation. Second, and contrarily to deterministic methods, DMC
calculations did not offer until recently, the possibility to efficiently compute the gradient
of the ground state energy E0 with respect to external parameters, such that, in electronic
structure calculations, the positions {x̄k} of the nuclei. This was a main drawback because
electronic structure calculations often are the inner loop of an algorithm aiming either in
optimizing the nuclear configuration of the system (molecular mechanics), or in making the
nuclei evolve in the effective potential generated by the electrons (molecular dynamics).
In both cases, the gradient of E0 with respect to the {x̄k} is needed. The situation is
likely to dramatically change in a near future, for the above two difficulties are about to
be overcome. Indeed, the computational cost of the DMC method scales linearly with the
number of particles, so that the efficiency of DMC increases at least as fast as computer
performances. Besides, M. Caffarel and co-workers have proposed in [3] a promissing
method for efficiently computing the derivatives of E0 with respect to nuclear positions.

It is our hope that this article will help applied mathematicians to get aware of the
specific problems encountered in Quantum Monte Carlo simulations of fermions, and that
it will encourage some of them to contribute to the field. This article focus on the theory
underlying DMC calculations. We intend to investigate the numerical aspects in a future
work.

2 Properties of fermionic ground states

Before entering the presentation of the DMC method, let us recall some important prop-
erties of fermionic ground states.

In most applications, and in particular in electronic structure calculations, the potential
V felt by the N fermions under consideration, can be split into two parts:

V (x) =

N∑

i=1

V1(xi) +
∑

1≤i<j≤N

V2(xi − xj) x = (x1, · · · , xN ) ∈ IR3N ,
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the function V2 being such that V2(−y) = V2(y) (usually, V2 is in fact a function of |y|).
The first term accounts for the interaction of the particles with an external potential V1.
The second term is a two-body interaction term. In this paper, we focus on two settings:

1. the simple case of N non-interacting fermions trapped in a harmonic potential, for
which analytical results can be obtained (see Section 6);

2. the one of electronic structure calculations, which is of high practical interest.

In the former setting, the potentials V1 and V2 are given by

∀y ∈ IR3, V1(y) =

3∑

j=1

1

2
ω2
j y

2
j and V2(y) = 0, (4)

with (for instance) 0 < ω1 ≤ ω2 ≤ ω3.

In the latter setting, the hamiltonian H models the dynamics of the N electrons of some
molecular system. The potentials V1 and V2 account for the nuclei-electron and electron-
electron electrostatic interactions respectively. In atomic units [5], they read

V1 = −
M∑

k=1

ρk ?
1

|x| and V2(y) =
1

|y| . (5)

The symbol ? denotes the convolution product in IR3 and ρk is the positive charge distri-
bution modelling the k-th nucleus. Nuclei are generally represented as classical point-like
particles, i.e. by ρk = zkδx̄k

where zk ∈ IN∗ and x̄k ∈ IR3 respectively denote the charge
and the position of the k-th nucleus. Point-like nuclei create attractive singularities of
the potential that are difficult to deal with in Quantum Monte Carlo simulations, both
on the theoretical and numerical viewpoints. We concentrate here on the problems issued
from the fermionic nature of the electrons. That is why, when necessary, we get rid of the
above mentioned difficulty by smearing the nuclear distribution. More precisely, we will
assume in some of our results related to DMC calculations (in particular in Proposition 6

below), that the ρk are localized regular functions such that ρk ≥ 0 and

∫

IR3
ρk = zk. In

the present section however, this simplification is not needed.

It is of course possible to extend our results to more general potentials V with prescribed
local regularities and behaviors at infinity, but we will not proceed further in this direction
here.

Let us first recall some well-known results of existence and local regularity.

Theorem 1 (Existence of a ground state).

1. For V1 and V2 given by (4), the hamiltonian H, defined on the domain D(H) ={
u ∈ He, −

1

2
∆u+ V u ∈ He

}
is self-adjoint on He and has a ground state.

2. For V1 and V2 given by (5) with N ≤ Z =

M∑

k=1

zk (neutral molecule or positive ion),

the hamiltonian H, defined on the domain D(H) = He ∩ H2(IR3N ), is self-adjoint
on He and has a ground state.
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The first statement is straightforward: when the potential V is quadratic, the hamiltonian
H = −1

2∆ + V has a purely discrete spectrum and its eigenpairs are known analytically
(see Section 6 or any textbook of Quantum Mechanics). The second statement is by far
less obvious. It has been established by G.M. Zhislin in [27]. Let us also mention that
for V1 and V2 given by (4), D(qH) = He ∩H1(IR3N )∩F

(
H1(IR3N )

)
where F denotes the

Fourier transform, and that for V1 and V2 given by (5), D(qH) = He ∩H1(IR3N ).

Proposition 2 (Local regularity).

1. For V1 and V2 given by (4), any ground state ψ0 of H belongs to C∞(IR3N ).

2. For V1 and V2 given by (5) with ρk = zkδx̄k
(point-like nuclei) or ρk ∈ C∞(IR3)

(smeared nuclei), any ground state ψ0 of H is in Cθ(IR
3N ) for any 0 < θ < 1 where

Cθ(IR
3N ) =

{
ψ ∈ L∞(IR3N ), ∃C ≥ 0, ∀(x, y) ∈ IR3N × IR3N , |ψ(x) − ψ(y)| ≤ C |x− y|θ

}
.

In addition, ψ0 ∈ C∞
(
IR3N \ (γn ∪ γe)

)
for point-like nuclei and ψ0 ∈ C∞

(
IR3N \ γe

)

for smeared nuclei, where

γe =
{
(x1, · · · , xN ) ∈ IR3N , ∃(i, j) ∈ |[1, N ]| × |[1, N ]|, i 6= j, xi = xj

}

and

γn =
{
(x1, · · · , xN ) ∈ IR3N , ∃(i, k) ∈ |[1, N ]| × |[1,M ]|, xi = x̄k

}
.

The first statement is a direct consequence of basic elliptic regularity arguments (see
e.g. [9]). The proof of the second statement results from a straighforward adaptation of
the proof of the Kato-Simon theorem (see e.g. [22], page 193).

Let us now focus on an interesting property of fermionic ground states among antisym-
metric functions, which plays a crucial role in Monte Carlo simulations (see Remark 13
below).
If ψ is an antisymmetric non-zero continuous function on IR3N , then the open set IR3N \
ψ−1(0) obviously has at least two connected components. For any connected component
C, and any permutation σ ∈ SN ,

Cσ =
{
xσ = (xσ(1), xσ(2), · · · , xσ(N)) ∈ IR3N , x = (x1, x2, · · · , xN ) ∈ C

}

is also a connected component. Indeed, if x, y ∈ C then there exists a continuous function
f : [0, 1] → C such that f(0) = x and f(1) = y. One has ∀s ∈ [0, 1], ψI(x)ψI(f(s)) > 0.
Therefore by antisymmetry of ψI , ∀s ∈ [0, 1], ψI(xσ)ψI(f(s)σ) > 0 and xσ and yσ belong
to the same connected component. Hence Cσ is included in a connected component denoted
by C̃σ. Similarly, (C̃σ)σ−1 is included in a connected component which contains C. Hence
(C̃σ)σ−1 = C and C̃σ = Cσ.

Definition 3. Let ψ ∈ He ∩ C0(IR3N ) and U = IR3N \ ψ−1(0). The function ψ is said to
satisfy the tiling property if for any connected component C of U ,

U =
⋃

σ∈
�

N

Cσ.
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The tiling property therefore means that all the connected components of U can be ob-
tained from one of them by permutating the indices of the particles. It follows that all
these connected components are isometric. In addition, the cardinal Ninv of the subgroup
of permutations on the numbering of the particles which let a given connected component
invariant does not depend on the connected component, and therefore, the number Nc of
connected components of U verifies Nc = N !/Ninv.

Theorem 4 (Tiling property). For V1 and V2 given by (4) or by (5), with point-like or
smeared nuclei, any ground state ψ0 of H satisfies the tiling property.

Theorem 4 is a rigorous formulation of a formal result due to Ceperley [7]. As we are not
aware of any mathematical proof of it, we provide one in Section 5. In some sense, this
result is the counterpart for the fermionic case of the well-known result stating that the

ground state of −1

2
∆ + V on L2(IR3N ) has a sign.

Corollary 5. Let ψ0 be a ground state of H and C a connected component of U0 =
IR3N \ ψ−1

0 (0). For V1 and V2 given either by (4) or by (5), with point-like or smeared
nuclei, the ground state energy E0 satisfies

E0 = inf

{
1

2

∫

C
|∇ψ|2 +

∫

C
V ψ2, ψ ∈ H1

0 (C),

∫

C
ψ2 = 1

}
.

The proof of Corollary 5 is postponed until Section 5.

3 Presentation of the DMC method

For the sake of simplicity, we assume in this section that the ground state energy E0 is an
isolated single eigenvalue of H, and we denote by γ the spectral gap, namely the distance
between E0 and the rest of the spectrum of H.

The DMC method is based on the following remark. Let ψI ∈ He be such that ‖ψI‖L2 = 1.
The unique solution φ(t, x) in C0(IR+,He) ∩ C0(]0,+∞[, D(H)) ∩ C1(]0,+∞[,He) of the
evolution problem {

∂φ

∂t
= −Hφ =

1

2
∆φ− V φ

φ(0, x) = ψI(x)
(6)

reads φ(t, ·) = e−tHψI and is such that

‖ exp(E0t) φ(t) − (ψ0, ψI)L2 ψ0‖L2 ≤ ‖ψI − (ψ0, ψI)L2 ψ0‖L2 exp(−γt),

where as above, ψ0 denotes a ground state of H. If moreover (ψ0, ψI)L2 6= 0, one also has

0 ≤ E(t) −E0 ≤ (〈HψI , ψI〉 −E0)

(ψ0, ψI)2L2

exp(−γt)

where

E(t) =
〈HψI , φ(t)〉
(ψI , φ(t))L2

. (7)

As equation (6) is posed on IR3N , and as in addition, V may have singularities, it seems
difficult to numerically solve it with deterministic methods.
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On the other hand, a stochastic representation of the solution of (6) is available, and could
a priori be used to estimate E0. It indeed follows from the Feynman-Kac formula that,
under convenient assumptions on V ,

φ(t, x) = IE

(
ψI (x+Wt) exp

(
−
∫ t

0
V (x+Ws) ds

))
(8)

where (Wt)t≥0 denotes a IR3N -valued Wiener process. The above expression can be used
in a number of formulae that provide estimations of E0, for instance [17]

−1

t
ln

(
IE

(
ψI (x+Wt) exp

(
−
∫ t

0
V (x+Ws) ds

)))
−→
t→+∞

E0.

As such, expression (8) is however not adapted to numerical simulations; it has indeed
been observed that the variance of the random variable

Yt = ψI (x+Wt) exp

(
−
∫ t

0
V (x+Ws) ds

)

increases very quickly with time.

In practice, physicists and chemists rather make use of the following importance sampling
technique, which allows them to compute ground state energies with a satisfactory accu-
racy (in most cases, 90% of the correlation energy can be recovered). Assume that the
function ψI , which from now on plays the role of an importance sampling function, is such
that the local fields

b(x) =
∇ψI(x)
ψI(x)

and EL(x) =
(HψI)(x)

ψI(x)
= −1

2

∆ψI(x)

ψI(x)
+ V (x) (9)

can be calculated with a reasonable computational complexity for almost every x ∈ IR3N

(for instance, b(x) and EL(x) can be computed in O(N 4) operations if ψI is a Slater
determinant). Let us now consider the function

f1(t, x) = ψI(x)φ(t, x),

where φ is the solution of (6) defined above. The energy E(t) defined by (7) also reads

E(t) =

∫

IR3
EL(x) f1(t, x) dx
∫

IR3
f1(t, x) dx

, (10)

and an elementary calculation shows that f1 is solution of the equation

{
∂f

∂t
=

1

2
∆f − div (bf) −ELf,

f(0, x) = ψ2
I (x),

(11)

where the fields b and EL are defined almost everywhere by (9).

In order to emphasize the advantages of this reformulation, let us assume for a while that
we are dealing with bosons rather than fermions. In other words, let us consider the

problem of computing the ground state of the operator HB = −1

2
∆ + V operating on

the bosonic subspace of L2(IR3N ) consisting of the functions ψ satisfying the symmetry
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property ψ(xσ(1), · · · , xσ(N)) = ψ(x1, · · · , xN ). For simplicity, we assume in addition that
the potential V is regular. It is well known (see e.g. [22]) that the bosonic ground state ψB
of HB is then non-degenerate, regular, and positive on IR3N (up to replacing ψB by −ψB
if necessary). By performing a mean-field calculation, it is possible to build a function
ψI close to ψB and sharing the same properties of regularity and positivity. The fields
b and EL are then regular and problem (11) admits a unique regular solution, namely
f1(t, x) = ψI(x)

(
e−tHBψI

)
(x); in addition,

dµt =
1∫

IR3N f1(t, y) dy
f1(t, x) dx

defines for any t ≥ 0 a probability measure on IR3N (for f1 is non negative a.e.). In the case

when ψI = ψB , the variance

∫

IR3N

E2
L dµt −

(∫

IR3N

EL dµt

)2

of EL under the probability

measure µt is zero, since EL(x) is constant on IR3N . If one chooses ψI close enough to
ψB so that the variance of EL under the probability measure µt is small, one can expect
that (10) will provide an efficient way for estimating E(t). Indeed, µt can be simulated
by interprating (11) as a Fokker-Planck equation with a source term associated with the
diffusion process with generator 1

2∆ + b.∇.

Exploiting formula (10) and (11) is an “exact” very efficient strategy for simulating bosonic
systems. On the other hand, this approach is “biased”, and consequently less efficient, for
fermionic systems. It has indeed been observed in numerical simulations that this approach
introduces a systematic error, except when the nodal surfaces of ψI and ψ0 coincide. The
approximation arising from the fact that, in practice, the nodal surfaces of ψI differ from
those of ψ0, is refered to as the Fixed Node Approximation (FNA). It has been put forward
in the Physics and Chemistry literature that the source of this systematic error lays on
the fact that the sample paths of the diffusion process associated with (11) cannot cross
the nodal surfaces of ψI . Our purpose in this article is to give a sound mathematical
foundation to this statement and to provide a rigorous analysis of the FNA.

In Section 4, we state our main results. We first analyse in Proposition 7 existence and
uniqueness for the diffusion process with generator 1

2∆ + b.∇ and show in particular that
its sample paths actually behave as expected: they cannot cross the nodal surfaces of ψI .
Then we show in Propositions 10 and 11 that problem (11) admits several weak solutions
and that the one we are interested in, namely f1, is not that built from the density of
the stochastic process associated with (11). Next, we identify in Theorem 12 the energy
calculated with the Diffusion Monte Carlo method, using ψI as an important sampling
function. For the sake of clarity, the proofs are postponed until Section 5. Lastly, we
provide in Section 6 a simple illustrative example of two non interacting fermions in an
anisotropic harmonic potential, for which analytical results can be carried out.

4 Analysis of the fixed node approximation

We have been able to rigorously analyse the DMC method under some hypotheses on the
importance sampling function ψI . Let us first list these hypotheses:

[H1] Regularity, antisymmetry and exponential fall-off

ψI ∈ D(H) ∩ C2(IR3N ) with ‖ψI‖L2 = 1 (12)

∃c > 0, ∀y ∈ IR3N , |ψI(y)| ≤ e−c|y|/c (13)
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[H2] Nodal surfaces and critical points

∀y ∈ IR3N such that ψI(y) = 0, ∇ψI(y) 6= 0 (14)

UI = IR3N \ ψ−1
I (0) has a finite number N I

c of connected components (15)

[H3] Behaviour at infinity : we assume that either for each connected component C of UI

∃(x0, C, C
′) ∈ IR3N × (IR+)2, such that ∀y ∈ C,

|y − x0| ≥ C ⇒ (y − x0).b(y) ≤ C ′(1 + |y − x0|2) (16)

or

∃K > 0, ∀x ∈ IR3N , |x| ≥ K ⇒ ψI(x)∆ψI(x) ≥ 0 (17)

[H4] Finite lower bound of the local energy EL

inf
y∈IR3N

EL(y) > −∞ (18)

[H5] Spectrum of H and energy of ψI

H is bounded from below (19)

〈HψI , ψI〉 < inf σess(H) (20)

where σess(H) denotes the essential spectrum of H.

Hypotheses [H1] is not very restrictive. Neither is [H4] for V1 and V2 given by (4) or by
(5) with smeared nuclei. We have in particular the following result :

Proposition 6. If the potentials V1 and V2 are given by (5) with ρk ∈ C∞
0 (IR3) (electronic

structure calculation with smeared nuclei), and if N ≤ Z =
N∑

k=1

zk, then the problem

inf

{
N∑

i=1

1

2

∫

IR3
|∇φi|2 +

∫

IR3
V1ρΦ +

1

2

∫

IR3

∫

IR3
ρΦ(x)V2(x− y) ρΦ(y) dx dy, (21)

Φ = {φi}1≤i≤N ∈
(
H1(IR3)

)N
,

∫

IR3
φiφj = δij, ρΦ(x) =

N∑

i=1

|φi(x)|2
}

has a minimizer
{
φHi
}

1≤i≤N
. Besides the N -body wavefunction

ψI(x1, · · · , xN ) =
1√
N !

det
(
φHi (xj)

)
(22)

fulfills the hypotheses [H1] and [H4]. In addition, ψI satisfies the tiling property.

Problem (21) corresponds to the Kohn-Sham model with a null exchange-correlation func-
tional. More generally, [H1] and [H4] are satisfied by the Slater determinant built with
Kohn-Sham orbitals for local or gradient corrected exchange-correlation energy function-
als [11]. Let us now examine the remaining three hypotheses. Hypothesis [H2] does not
seem restrictive either, since, on the one hand, for a generic function ψI of C1(IR3N ),
∇ψI 6= 0 is satisfied almost everywhere for the surface measure on ψ−1

I (0), and since, on
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the other hand, (15) is fulfilled by the commonly used importance sampling functions for
the latter satisfy the tiling property. As for hypothesis (16), it is a standard assumption
to prevent the sample paths of the stochastic process Xx

t solution of the SDE (23) be-
low, from going to infinity in finite time. Because b(x) = ∇ψI(x)/ψI(x), (16) is rather
restrictive near the nodal surfaces of ψI . The alternative hypothesis (17) holds for in-
stance for ψI given by (22) when for some ε > 0, ε|x|2 is added to V1 in problem (21) (see
equation (31) below). Lastly, hypothesis [H5] is always satisfied for V1 and V2 given by
(4) for in that case, H is bounded from below and has a purely discrete spectrum. For
V1 and V2 given by (5), (19) always holds. For neutral systems and positive ions, even a
simple one-body model (Hartree-Fock or Kohn-Sham) allows in practice to construct an
importance sampling function ψI satisfying (20).

Let us finally mention that in the example of two non-interacting fermions in a harmonic
trap presented in Section 6, the hypotheses [H1]-[H4] are satisfied for ψI given by (47)
with 0 < ω̃ ≤ 1 < ω.

Proposition 7 (Sample paths of the stochastic process). Let (Wt)t≥0 be a 3N -
dimensional Brownian motion. Under hypotheses [H1]-[H3], for any x ∈ UI , the stochastic
differential equation {

dXx
t = b(Xx

t ) dt+ dWt,
Xx

0 = x,
(23)

admits a unique solution. This solution is such that a.s., t 7→ Xx
t ∈ C0(IR+, C(x)) where

C(x) denotes the connected component of UI which contains x. In addition, Xx
t admits

a density p(t, x, y) w.r.t. the Lebesgue measure such that ψ2
I (x)p(t, x, y) is symmetric in

variables x and y.

Remark 8. For x ∈ UI , let us denote by P x the law of (Xx
t )t≥0. Combining Yamada-

Watanabe theorem and the approach given by [25] Theorem 6.2.2 p.146, one obtains that
for any connected component C of UI , the family {P x, x ∈ C} is strong Markov.

Remark 9. A solution to the stochastic differential equation dXt = dWt+(∇ ln(ψI))(Xt)dt
is a so-called distorted Brownian motion. Existence of a weak solution can be obtained
by Dirichlet form techniques : for instance according to [1], (23) can be solved for each
x ∈ U if ψI ∈ H2

loc(IR
3N ) and if for some ε > 0, |∇ψI(x)|3N+ε/|ψI(x)|3N−2+ε is locally

integrable on IR3N . Under [H1]-[H2], the latter integrability condition cannot hold since
∇ψI does not vanish on ψ−1

I (0) and ψ−1
I (0) is a 3N − 1-dimensional manifold because of

the antisymmetry of ψI (UI has at least two connected components). Our approach based
on stochastic calculus enables us to obtain strong existence and trajectorial uniqueness for
(23) and heavily relies on hypothesis (14) which prevents the sample paths from crossing
the nodal surfaces of ψI .

Proposition 10 (Fokker-Planck equation). Let us define

f2(t, x) = ψ2
I (x)IE

(
exp

(
−
∫ t

0
EL(Xx

s )ds

))

where (Xx
t )t≥0 denotes the stochastic process defined by (23), with convention f2(t, x) = 0

when ψI(x) = 0. Under hypotheses [H1]-[H4], the function f2 is a weak solution of (11)

10



in the following sense: ∀ϕ ∈ C∞
0 (IR+ × IR3N ), ∀t ≥ 0,

∫

IR3N

ϕ(t, x)f2(t, x)dx =

∫

IR3N

ϕ(t, x)ψ2
I (x)dx (24)

+

∫ t

0

∫

IR3N

(
∂ϕ

∂s
+

1

2
∆ϕ+ b.∇ϕ−ELϕ

)
(s, x)f2(s, x) ds dx.

The issue is now to characterize the function f2. For this purpose, we introduce, for any
connected component C of UI , the self-adjoint operator HC on L2(C) defined on the domain

D(HC) =

{
u ∈ H1

0 (C), −1

2
∆u+ V u ∈ L2(C)

}
, (25)

by

HCu = −1

2
∆u+ V u. (26)

Note that it results from [H1]-[H2] that the boundary of the domain C is of class C 2.
Therefore, in particular, D(HC) = H2(C) ∩H1

0 (C) for V2 given by (5), with point-like or
smeared nuclei.

Proposition 11 (Identification of f2). For V1 and V2 given either by (4) or by (5),
with point-like or smeared nuclei, and under hypotheses [H1]-[H4], the function

χ(t, x) =
f2(t, x)

ψI(x)
= ψI(x)IE

(
exp

(
−
∫ t

0
EL(Xx

s )ds

))

is characterized by the following property: for each connected component C of UI , the
restriction v of χ to IR+ ×C is the unique solution in C0(IR+, D(HC))∩C1(IR+, L

2(C)) of
the problem {

∂v

∂t
=

1

2
∆v − V v in D′(]0,+∞[×C),

v(0, ·) = ψI |C .
(27)

Note that if ψI satisfies the tiling property, the N I
c problems (27) are identical up to

renumbering of particles.

Theorem 12 (Convergence of the DMC energy). Let

EDMC(t) =

∫

IR3
EL(x) f2(t, x) dx
∫

IR3
f2(t, x) dx

.

For V1 and V2 given either by (4) or by (5), with point-like or smeared nuclei, and under
hypotheses [H1]-[H5], one has

EDMC(t) =

∫

IR3N

ψ2
I (x) IE

(
EL(Xx

t ) exp

(
−
∫ t

0
EL (Xx

s ) ds

))
dx

∫

IR3N

ψ2
I (x) IE

(
exp

(
−
∫ t

0
EL (Xx

s ) ds

))
dx

(28)

11



where (Xx
t )t≥0 denotes the stochastic process defined by (23). When t goes to +∞,

EDMC(t) converges exponentially fast toward

EDMC
0 = inf

{
1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V ψ2, ψ ∈ D(qH), ‖ψ‖L2 = 1, ψ = 0 on ψ−1
I (0)

}
.

One has EDMC
0 ≥ E0, and the equality holds if and only if the nodal surfaces of ψI coincide

with those of a ground state ψ0 of H.

The Diffusion Monte Carlo (DMC) method consists in estimating EDMC(t) for t large
enough by using (28), or a similar expression [14]. The DMC method therefore provides
with an upper bound EDMC

0 of E0 which only depends on the nodal surfaces of the im-
portance sampling function ψI (and not of the function ψI itself). Almost all the QMC
calculations performed at the present time are based on the importance sampling technique
described above. Some methods aiming at going beyong the Fixed Node Appoximation
have been developed, but their use is still limited to small systems consisting of a few
electrons, or to the special case of the homogenous electron gas. Let us incidently mention
that very accurate QMC calculations on homogenous electron gas are used to fit the pa-
rameters of the approximated exchange-correlation functionals used in Density Functional
Theory.

Remark 13. Formula (28) also reads

EDMC(t) =

NI
c∑

n=1

∫

Cn

ψ2
I (x) IE

(
EL(Xx

t ) exp

(
−
∫ t

0
EL (Xx

s ) ds

))
dx

NI
c∑

n=1

∫

Cn

ψ2
I (x) IE

(
exp

(
−
∫ t

0
EL (Xx

s ) ds

))
dx

,

where C1, C2, ... CNI
c

are the connected components of UI . From Proposition 7, the whole
sample path t 7→ Xx

t is a.s. trapped in the connected component containing x. One can
therefore consider that in the DMC method, N I

c calculations are done independently (one
in each connected component) and that the N I

c results are then averaged. If ψI satisfies
the tiling property, the N I

c problems are identical up to renumbering of particles, and
therefore, the final result will not be affected if the walkers are not equally distributed in
the various connected components of UI .

Remark 14. The equivalent of Corollary 5 for EDMC
0 is the following : in the case when

V1 and V2 are given by (4), if one introduces the ground state energy E0
n of HCn (where

C1, C2, ... CNI
c

are the connected components of UI), then EDMC
0 = min1≤n≤NI

c
E0
n. In

the case when V1 and V2 are given by (5), we have again EDMC
0 = min1≤n≤NI

c
inf σ(HS

Cn
),

where HS
Cn

is the operator HCn with domain restricted to symmetric functions on Cn. In
any cases, if ψI satisfies the tiling property, one can check that the (E0

n)1≤n≤NI
c

(resp. the

(inf σ(HS
Cn

))1≤n≤NI
c
) are equal, since all the connected components of UI can be obtained

from any one by permutations.
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5 Proofs of the main results

Proof of Theorem 4. Let C be a connected component1 of the open set U0 = IR3N \
ψ−1

0 (0) and Ω =
⋃

σ∈
�

N

Cσ. Let I be a subset of SN such that





Ω =
⋃

σ∈I

Cσ

∀(σ, σ′) ∈ I × I, (σ 6= σ′) ⇒ (Cσ ∩ Cσ′ = ∅).

Let φ be the function defined by

φ(x) =

∣∣∣∣
ψ0(x) if x ∈ Ω
0 otherwise,

and ψ̃0 =
φ

‖φ‖L2

. It is easy to check that ψ̃0 ∈ D(qH) and that ‖ψ̃0‖L2 = 1. Besides,

〈ψ̃0,Hψ̃0〉 =
1

2

∫

IR3N

|∇ψ̃0|2 +

∫

IR3N

V ψ̃2
0

=
1

‖φ‖2
L2

(
1

2

∫

Ω
|∇ψ0|2 +

∫

Ω
V ψ2

0

)

=
1

‖φ‖2
L2

∑

σ∈I

(
1

2

∫

Cσ

|∇ψ0|2 +

∫

Cσ

V ψ2
0

)

=
|I|

‖φ‖2
L2

(
1

2

∫

C
|∇ψ0|2 +

∫

C
V ψ2

0

)

and

‖φ‖2
L2 = |I|

∫

C
ψ2

0 .

As in addition ψ0|C ∈ H1
0 (C) and −1

2
∆ψ0 + V ψ0 = E0ψ0 in D′(C), it follows from Green’s

formula that

1

2

∫

C
|∇ψ0|2 +

∫

C
V ψ2

0 =

∫

C

(
−1

2
∆ψ0 + V ψ0

)
ψ0 = E0

∫

C
ψ2

0 . (29)

Therefore 〈ψ̃0,Hψ̃0〉 = E0. The function ψ̃0 then is a ground state of the operator H and
thus satisfies equation

−1

2
∆ψ̃0 + V ψ̃0 = E0ψ̃0.

Let Σ be the (empty or finite) set of the points at which V1 is not C∞ and

γ =
{
(x1, · · · , xN ) ∈ IR3N , ∃i ∈ |[1, N ]|, xi ∈ Σ

}

∪
{
(x1, · · · , xN ) ∈ IR3N , ∃(i, j) ∈ |[1, N ]| × |[1, N ]|, i 6= j, xi = xj

}
.

It can be easily checked that γ is a closed negligeable set, that the open set IR3N \ γ is
connected, that V is bounded on any compact set of IR3N \ γ and that ψ̃0 ∈ H2(IR3N ).
One can thus apply a unique continuation principle (see e.g. Theorem XIII.57 and the

1Notice that since we are in IR3N and U0 is an open set, C is an open arc connected set.
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comment just below, page 226 of [22]) : if u ∈ L2(IR3N ) satisfies −1

2
∆u + V u = E0u

and vanishes on an open set of IR3N , then u is identically zero. It follows that ψ̃0 is not
identically equal to zero on each open set of IR3N , and therefore that Ω = U0. �

Proof of corollary 5. Let C be a connected component of U0 = IR3N \ ψ−1
0 (0) and

EC = inf

{
1

2

∫

C
|∇ψ|2 +

∫

C
V ψ2, ψ ∈ H1

0 (C),

∫

C
ψ2 = 1

}
. (30)

The restriction of ψ0 to C is in H1
0 (C) and satisfies (29). Let us denote by ψC the function

defined on C by

ψC(x) =
ψ0(x)(∫

C
|ψ0|2

)1/2
.

We have ψC ∈ H1
0 (C),

∫

C
ψ2
C = 1 and

1

2

∫

C
|∇ψC |2 + V |ψC |2 = E0.

Therefore E0 ≥ EC . When V1 and V2 are given by (4), the remaining of the proof is easy.
In this case indeed, the operator HC defined by (25)-(26) has a purely discrete spectrum
and ψC is an eigenvector of HC which is either positive or negative on C. Therefore, by
standard arguments, ψC is the ground state of HC and EC = E0. When V1 and V2 are
given by (5), we reason as follows. We denote by

E(ψ) =
1

2

∫

C
|∇ψ|2 +

∫

C
V ψ2 = 〈HCψ,ψ〉

the energy functional (defined on H1
0 (C)) and we consider a minimizing sequence (ψn)n∈IN

of problem (30). As for any ψ ∈ H1
0 (C), |ψ| ∈ H1

0 (C) and E(|ψ|) = E(ψ), we can assume
that ψn is non-negative on C for any n ∈ IN. We then introduce J the subgroup of SN

consisting of the permutations σ such that 2

∀(x1, · · · , xN ) ∈ C, (xσ(1), · · · , xσ(N)) ∈ C.

Notice that as ψ0 is antisymmetric, for any σ ∈ SN , Cσ is a connected component of U0,
which ensures that J = {σ ∈ SN , Cσ ∩ C 6= ∅}. Let

χn =

∑

σ∈J

ψσn

∥∥∥∥∥
∑

σ∈J

ψσn

∥∥∥∥∥
L2

where ψσn(x1, · · · , xN ) = ψn(xσ(1), · · · , xσ(N)). The function χn is well-defined for ψn is
non-negative and non-identically equal to zero. We then have χn ∈ H1

0 (C), ‖χn‖L2 = 1

2Notice that the permutations in J are even since odd permutations change the sign of ψ and therefore

cannot let a connected component of U0 invariant.
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and

0 ≤ E(χn) −EC = 〈(H −EC)χn, χn〉

=
1

∥∥∥∥∥
∑

σ∈J

ψσn

∥∥∥∥∥

2

L2

∑

σ,σ′∈J

〈(H −EC)ψ
σ
n, ψ

σ′

n 〉

≤
∑

σ,σ′∈J

〈(H −EC)ψ
σ
n , ψ

σ′
n 〉

=
∑

σ,σ′∈J

〈(H −EC)
1/2 ψσn , (H −EC)

1/2 ψσ
′

n 〉

≤
∑

σ,σ′∈J

〈(H −EC)ψ
σ
n , ψ

σ
n〉1/2 〈(H −EC)ψ

σ′
n , ψ

σ′
n 〉1/2

= |J |2 (E(ψn) −EC) ,

the last equality arising from the symmetry of H with respect to renumbering of particles.
Therefore, (χn)n∈IN is a minimizing sequence for problem (30). As by construction, each
χn satisfies the symmetry property

∀(x1, · · · , xN ) ∈ C, ∀σ ∈ J , χn(xσ(1), · · · , xσ(N)) = χn(x1, · · · , xN ),

whith J = {σ ∈ SN , Cσ ∩ C 6= ∅}, the formula

∀(x1, · · · , xN ) ∈ C, ∀σ ∈ SN , φn(xσ(1), · · · , xσ(N)) =

√
|J |
N !

ε(σ)χn(x1, · · · , xN ),

(where, by definition, χn = 0 outside of C) provides a function ofD(qH) such that ‖φn‖L2 =
1 and 〈φn,Hφn〉 = E(χn). Therefore E0 ≤ lim

n→+∞
〈φn,Hφn〉 = EC . Finally, EC = E0, which

concludes the proof. �

Proof of Proposition 6. The existence of a minimizer
{
φHi
}

1≤i≤N
to the Hartree

problem (21) for neutral or positively charged systems is proved e.g. in [18]. In the same
article, it is shown that the φHi satisfy the Hartree equations

−1

2
∆φHi + V1φ

H
i + (ρ ? V2)φ

H
i = εiφ

H
i

with ρ =
N∑

i=1

|φHi |2, and that the eigenvalues εi are negative. It is then easy to check that

φHi ∈ C∞(IR3) ∩ H2(IR3), that ρ ? V2 vanishes at infinity, and then using the maximum
principle, that φi enjoys an exponential fall-off of exponent

√−ε for any ε such that
εi < ε < 0. Properties (12) and (13) follow. Besides, a simple calculation shows that

−1

2
∆ψI +

N∑

i=1

(V1(xi) + (ρ ? V2) (xi))ψI =

(
N∑

i=1

εi

)
ψI . (31)

Consequently

EL =
HψI
ψI

= −1

2

∆ψI
ψI

+ V =
N∑

i=1

εi +
∑

1≤i<j≤N

V2(xi − xj) −
N∑

i=1

(ρ ? V2) (xi).

15



As ρ ? V2 is bounded and V2 non negative, hypothesis [H4] is fulfilled. Lastly, it is easy to
check that ψI is the ground state of the N -body fermionic hamiltonian

−1

2
∆ +

N∑

i=1

(V1(xi) + (ρ ? V2) (xi))

and that Theorem 4 also holds true for one-body and two-body potentials respectively
given by V1 + ρ ? V2 and 0. Therefore, ψI satisfies the tiling property. �

Proof of Proposition 7. Let us first prove trajectorial uniqueness. For x ∈ UI , assume
that Xx

t is a solution of (23) such that t → Xx
t ∈ C0(IR+, C(x)) and that X̃x

t is another
solution. Let σn = inf{t ≥ 0 : |ψI(Xx

t )| ∧ |ψI(X̃x
t )| ≤ 1/n} for n ∈ IN∗. One has for any

t ≥ 0,

|Xx
t∧σn

− X̃x
t∧σn

| ≤
∫ t∧σn

0

∣∣∣∣∣
∇ψI(Xx

s ) −∇ψI(X̃x
s )

ψI(Xx
s )

∣∣∣∣∣+
∣∣∣∣∣
(ψI(X̃

x
s ) − ψI(X

x
s ))∇ψI(X̃x

s )

ψI(Xx
s )ψI(X̃x

s )

∣∣∣∣∣ ds.

Because of (13) there is a constant Kn such that ∀s ≤ σn, |Xx
s | + |X̃x

s | ≤ Kn. Since ψI is
a C2 function and using the definition of σn, one deduces that there is a constant Cn only
depending on n such that

∀t ≥ 0, |Xx
t∧σn

− X̃x
t∧σn

| ≤ Cn

∫ t∧σn

0
|Xx

s − X̃x
s |ds ≤ Cn

∫ t

0
|Xx

s∧σn
− X̃x

s∧σn
|ds.

By Gronwall’s lemma, one obtains that Xx
t and X̃x

t coincide up to time σn for any n ∈ IN∗.
Therefore σn = inf{t ≥ 0 : |ψI(Xx

t )| ≤ 1/n}. Because t 7→ Xx
t ∈ C0(IR+, C(x)) a.s.,

limn→+∞ σn = +∞ a.s., which concludes the proof of uniqueness.

To prove existence, we are going to introduce suitable regularizations of the drift coefficient
b = ∇ψI/ψI . Let γ : IR+ → IR+ be an increasing C2 function such that





γ(r) = r for r ≥ 1,

γ(r) = 1/2 for r ≤ 1/4,

∀r ≥ 0, 0 ≤ γ ′(r) ≤ 1.

For n ∈ IN∗, we define

gn : y ∈ IR3N 7→ exp(−|y − x|/(2n))√
n3Ns3N−1Γ(3N)

,

where Γ denotes Euler’s gamma function and s3N−1 the surface of the unit sphere in IR3N .
Notice that g2

n is a probability density on IR3N . For n ∈ IN∗, we set

ψn,T (y) = cn × gn(y)γ

( |ψI |(y)
gn(y)

)
(32)

with cn =
(∫

IR3N g2
nγ

2(|ψI |/gn)(y)dy
)−1/2

.
As, by definition of γ, gnγ(|ψI |/gn) ≤ |ψI | ∨ gn, the previous integral is finite. The
associated regularized drift coefficient is bn(y) = ∇ lnψn,T (y). One easily checks that

bn(y) =





b(y) if |ψI |(y) ≥ gn(y),

− (y − x)

2n|y − x| if |ψI |(y) ≤ gn(y)/4.
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¿From now on we suppose that n is bigger than n0 such that n0 > 1/c where c denotes the
constant given by (13) and that |ψI |(x) > (n0

3Ns3N−1Γ(3N))−1/2. This way, bn is equal to
−(y−x)/(2n|y−x|) outside a compact set and equal to b on a neighbourhood of x. Since
one easily checks, using (32), that for any i, j ∈ {1, . . . , 3N}, function ∂2

yiyj
ln(ψn,T )(y) is

locally bounded in IR3N \ {x}, the drift coefficient bn is globally bounded and Lipschitz
continuous on IR3N . Therefore existence and trajectorial uniqueness hold for the stochastic
differential equation

dXx,n
t = dWt + bn(X

x,n
t )dt, Xx,n

0 = x.

Let
τxn = inf{t ≥ 0 : |ψI |(Xx,n

t ) ≤ (n3Ns3N−1Γ(3N))−1/2}.
Setting Xx

t = Xx,n
t ,∀t ∈ [τxn−1, τ

x
n ) for n ≥ n0 (convention τxn0−1 = 0), using the fact that

when n0 ≤ k ≤ l, Xx,k
t = Xx,l

t for t ∈ [0, τxk ), one obtains a solution of (23) on [0, τ x∞)
where τx∞ = limn→+∞ τxn . Since |ψI |(Xx

t ) is positive for t ∈ [0, τx∞), Xx
t remains in C(x)

on this time-interval. The next two lemmas are aimed at checking that for any x ∈ UI ,
τx∞ is a.s. infinite, which also ensures that a.s., t 7→ Xx

t ∈ C0(IR+, C(x)). First, using
especially (14), we will prove that if |Xx

t | remains bounded on [0, τx∞), then τx∞ = ∞.
When (17) holds, the same line of reasoning yields that τ x∞ is a.s. infinite. We will next
prove that when (16) holds, |Xx

t | cannot go to infinity in finite time.

Lemma 15.

∀x ∈ UI , IP

(
τx∞ < +∞, sup

t∈[0,τx
∞)

|Xx
t | < +∞

)
= 0.

In addition, under (17), IP(τ x∞ < +∞) = 0.

Proof : On {τx∞ < ∞}, by definition of τxn , one has |ψI |(Xx
τx
n
) ≤ (n3Ns3N−1Γ(3N))−1/2

and therefore limn→+∞ |ψI |(Xx
τx
n
) = 0.

Let s(x) = 1{ψI (x)>0} − 1{ψI (x)<0}. For t < τx∞,

d|ψI |(Xx
t ) =

|∇ψI |2
|ψI |

(Xx
t ) dt+ s(x)∇ψI(Xx

t ).dWt +
1

2
s(x)∆ψI(X

x
t )dt. (33)

The main idea of the proof of the first assertion consists in checking that because of (14),
the first term of the r.h.s. prevents |ψI |(Xx

t ) from vanishing in finite time whileXx
t remains

in a compact set. Let K,S > 0 and σK = inf{t ≥ 0, |Xx
t | > K}. We are going to check

that

IP

(
τx∞ ≤ S, sup

t∈[0,τx
∞)

|Xx
t | ≤ K

)
= IP (τx∞ ≤ S ∧ σK) = 0. (34)

By (14), there exist positive constants α and M such that

∀y ∈ C(x) ∩ B̄(0,K), |ψI |(y) ≤ α⇒ |∆ψI(y)| ≤M |∇ψI(y)|2. (35)

Let ρ : IR∗
+ → IR− be a C2 non decreasing function such that

ρ(y) =





∫ y

α

eMz

z2
dz if r ≤ α/2,

0 if r ≥ α.
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Applying Itô’s formula, remarking that the non-negative function ρ′ vanishes together with
ρ′′ on [α,+∞) and using (35), one obtains

ρ(|ψI |(Xx
S∧σK∧τx

n
)) = ρ(|ψI |(x)) + s(x)

∫ S∧σK∧τx
n

0
ρ′(|ψI |(Xx

s ))∇ψI(Xx
s ).dWs

+

∫ S∧σK∧τx
n

0

( |∇ψI |2
|ψI |

(Xx
s ) +

s(x)

2
∆ψI(X

x
s )

)
ρ′(|ψI |(Xx

s )) +
1

2
|∇ψI(Xx

s )|2ρ′′(|ψI |(Xx
s ))ds

≥ ρ(|ψI |(x)) + s(x)

∫ S∧σK∧τx
n

0
ρ′(|ψI |(Xx

s ))∇ψI(Xx
s ).dWs

+

∫ S∧σK∧τx
n

0
|∇ψI(Xx

s )|2
[(

1

|ψI |
(Xx

s ) − M

2

)
ρ′(|ψI |(Xx

s )) +
1

2
ρ′′(|ψI |(Xx

s ))

]
ds. (36)

For s < τxn , |ψI(Xx
s )| > (n3Ns3N−1Γ(3N))−1/2, and by (13), |Xx

s | and therefore |∇ψI(Xx
s )|

are bounded. As a consequence the expectation of the stochastic integral in the right-hand-

side of (36) is zero. The function y 7→
(

1
y − M

2

)
ρ′(y)+ 1

2ρ
′′(y) vanishes on ]0, α/2]∪[α,+∞[

and is bounded from below on [α/2, α]. Since because of (13), when |ψI(Xx
s )| belongs to

[α/2, α], |∇ψI(Xx
s )| remains bounded, taking expectations in (36), one obtains

IE
(
ρ(|ψI |(Xx

S∧τx
n∧σ))

)
≥ −C(1 + S),

where the positive constant C does not depend on n. As the left-hand-side is smaller than
ρ((n3Ns3N−1Γ(3N))−1/2)IP(τxn ≤ S ∧ σK) and ρ((n3Ns3N−1Γ(3N))−1/2) goes to −∞ as n
tends to +∞, one deduces that (34) holds. As S and K are arbitrary, the first assertion
follows.

Let us now assume (17). For K such that ∀y ∈ C(x), |y| ≥ K ⇒ s(x)∆ψI(y) ≥ 0, let α
and M be such that (35) holds. Then

∀y ∈ C(x), |ψI(y)| ≤ α⇒ s(x)∆ψI(y) ≥ −M |∇ψI(y)|2.

As a consequence (36) holds with S ∧ σK replaced by S. As above, one concludes that
IP(τx∞ < +∞) = 0. �

Lemma 16. When (16) holds,

∀x ∈ UI , IP

(
τx∞ < +∞, sup

t∈[0,τx
∞)

|Xx
t | = +∞

)
= 0.

Proof : Let (x0, C, C
′) ∈ IR3N × (IR∗

+)2 be a triple associated to C(x) by (16).
Let ρ : IR+ → IR+ be an increasing C2 function constant on [0, C] and such that ρ(r) = r
on [C + 1,+∞) and ρ(r) ≥ r on IR+. By Itô’s formula and (16), for t < τ x∞,

ρ(|Xx
t − x0|2) =ρ(|x− x0|2) +

∫ t

0
ρ′(|Xx

s − x0|2) (2(Xx
s − x0).(b(X

x
s )ds+ dWs) + 3Nds)

+ 2

∫ t

0
ρ′′(|Xx

s − x0|2)|Xx
s − x0|2ds,

≤ρ(|x− x0|2) + ((3N + 2C ′)‖ρ′‖∞ + 2(C + 1)2‖ρ′′‖∞)t

+ 2

∫ t

0
ρ′(|Xx

s − x0|2)(Xx
s − x0).dWs + 2C ′‖ρ′‖∞

∫ t

0
|Xx

s − x0|2 ds.
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Therefore, we have:

|Xx
t − x0|2 ≤C ′′(1 + t) + 2

∫ t

0
ρ′(|Xx

s − x0|2)(Xx
s − x0).dWs + 2C ′‖ρ′‖∞

∫ t

0
|Xx

s − x0|2 ds.

Introducing σk = inf{t ≥ 0 : |Xx
t − x0| ≥ k} for k ∈ IN∗, one deduces that for S > 0,

∀k ∈ IN∗, ∀n ≥ n0, ∀t ∈ [0, S),

IE(|Xx
t∧σk∧τx

n
− x0|2) ≤C ′′(1 + S) + 2C ′‖ρ′‖∞IE

(∫ t∧σk∧τ
x
n

0
|Xx

s − x0|2 ds
)
,

≤C ′′(1 + S) + 2C ′‖ρ′‖∞
∫ t

0
IE(|Xx

s∧σk∧τx
n
− x0|2) ds.

Therefore, by Gronwall Lemma, ∀k ∈ IN∗, ∀n ≥ n0,

IE(|Xx
S∧σk∧τx

n
− x0|2) ≤ K

where the constant K depends on S but neither on n nor on k. As

k2IP(σk ≤ S ∧ τxn ) ≤ IE(|Xx
S∧σk∧τx

n
− x0|2),

one obtains that IP(limk→+∞ σk ≤ S ∧ τx∞) = 0. Since

{
τx∞ ≤ S, sup

t∈[0,τx
∞)

|Xx
t | = +∞

}
⊂
{

lim
k→+∞

σk ≤ S ∧ τx∞
}
,

one concludes that IP
(
τx∞ ≤ S, supt∈[0,τx

∞) |Xx
t | = +∞

)
= 0, where S > 0 is arbitrary. �

To conclude the proof of Proposition 7, one still has to check that for any t > 0, X x
t has a

density p(t, x, y) w.r.t. Lebesgue measure such that function ψ2
I (x)p(t, x, y) is symmetric

in variables x and y. Let us briefly recall the argument given for instance in [24] which
ensures that Xx,n

t satisfies an analogous property.
According to Girsanov theorem, for φ : IR3N → IR measurable and bounded,

IE(φ(Xx,n
t )) = IE

(
φ(x+Wt) exp

(
+

∫ t

0
bn(x+Ws).dWs −

1

2

∫ t

0
|bn|2(x+Ws)ds

))
.

As bn = ∇ lnψn,T by Itô’s formula,

∫ t

0
bn(x+Ws).dWs = ln

(
ψn,T (x+Wt)

ψn,T (x)

)
− 1

2

∫ t

0
∆lnψn,T (x+Ws)ds.

Therefore conditioning by x+Wt one obtains IE(φ(Xx,n
t )) =

∫
IR3N φ(y)

ψn,T (y)
ψn,T (x)α(t, x, y)dy,

where

α(t, x, y) = IE

(
exp

(
−1

2

∫ t

0

(
|bn|2 + ∆ lnψn,T

) (
x+Ws +

s

t
(y − x−Wt)

)
ds

))

is symmetric in variables x and y by time-reversal of the Brownian bridge. As a conse-
quence, the density pn(t, x, y) = ψn,T (y)α(t, x, y)/ψn,T (x) ofXx,n

t is such that ψ2
n,T (x)pn(t, x, y)/c

2
n

is symmetric in variables x and y.
As Xx

t = Xx,n
t on {τxn > t} and limn→+∞ τxn = +∞ a.s., the law of Xx,n

t converges in
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variation to the one of Xx
t . Therefore Xx

t has a density p(t, x, y) which is the limit in
L1(IR3N ) of pn(t, x, y). Let K > 0

∫

B(0,K)×IR3N

∣∣∣∣
ψ2
n,T (x)

c2n
pn(t, x, y) − ψ2

I (x)p(t, x, y)

∣∣∣∣dxdy ≤
∫

B(0,K)

∣∣∣∣∣
ψ2
n,T (x)

c2n
− ψ2

I (x)

∣∣∣∣∣ dx

+

∫

IR3N×IR3N

ψ2
I (x)|p(t, x, y) − pn(t, x, y)|dxdy.

Remarking that for any x ∈ IR3N , ψn,T (x)/cn converges to |ψI(x)| as n → +∞ and that
for n ≥ n0, ψ

2
n,T (x)/c2n ≤ (n3N

0 s3N−1Γ(3N))−1 ∨ ψ2
I (x), one easily check that both terms

of the r.h.s. converge to 0 as n → +∞ according to Lebesgue’s theorem. Therefore
ψ2
I (x)p(t, x, y) is symmetric in variables x and y on B(0,K) ×B(0,K) for any K > 0. �

Proof of Proposition 10. The proof relies on the following Lemma:

Lemma 17. Let t ≥ 0. For any function φ : IR3N → IR non-negative or such that∫
IR3N |φ(x)|f2(t, x)dx < +∞,

∫

IR3N

φ(x)f2(t, x)dx =

∫

IR3N

ψ2
I (x)IE

(
φ(Xx

t ) exp

(
−
∫ t

0
EL(Xx

s )ds

))
dx.

Proof of Lemma 17 : Let us first suppose that φ is positive and bounded. Using
Lebesgue’s theorem, then the Markov property given in Remark 8 and the symmetry of
ψ2
I (x)p(s, x, y) in variables x and y (see Proposition 7), one obtains

∫

IR3N

φ(x)f2(t, x)dx = lim
n→+∞

∫

IR3N

φ(x)ψ2
I (x)IE

(
n∏

k=1

exp(−tEL(Xx
kt/n)/n)

)
dx

= lim
n→+∞

∫

IR(n+1)×3N

φ(x1)ψ
2
I (x1)

n∏

k=1

[p(t/n, xk, xk+1) exp(−tEL(xk+1)/n)] dx1 . . . dxn+1

= lim
n→+∞

∫

IR(n+1)×3N

φ(x1)ψ
2
I (xn+1)

n∏

k=1

[p(t/n, xk+1, xk) exp(−tEL(xk+1)/n)] dx1 . . . dxn+1

= lim
n→+∞

∫

IR3N

ψ2
I (x)IE

(
φ(Xx

t )
n−1∏

k=0

exp(−tEL(Xx
kt/n)/n)

)
dx

=

∫

IR3N

ψ2
I (x)IE

(
φ(Xx

t ) exp

(
−
∫ t

0
EL(Xx

s )ds

))
dx

We obtain the equality for general non-negative functions φ by writing the above equal-
ity for φ ∧ n and letting n → +∞ by the monotone convergence theorem. The case∫
IR3N |φ(x)|f2(t, x)dx < +∞ follows from the equalities for the positive and the negative

parts of φ. �

Let ϕ ∈ C∞
0 (IR+ × IR3N ) and x ∈ UI . By Itô’s formula,

e− � t

0
EL(Xx

s )dsϕ(t,Xx
t ) = ϕ(0, x) +

∫ t

0
e− � s

0
EL(Xx

r )dr∇ϕ(s,Xx
s ).dWs

+

∫ t

0
e− � s

0
EL(Xx

r )dr

(
−ELϕ+ ∂sϕ+

1

2
∆ϕ+ b.∇ϕ

)
(s,Xx

s )ds.
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Taking expectations, one deduces

IE

(
e− � t

0 EL(Xx
s )dsϕ(t,Xx

t )

)
= ϕ(0, x)

+ IE

(∫ t

0
e− � s

0 EL(Xx
r )dr

(
−ELϕ+ ∂sϕ+

1

2
∆ϕ+ b.∇ϕ

)
(s,Xx

s )ds

)
.

Integrating this equality w.r.t. x ∈ IR3N against density ψ2
I (x) and using Lemma 17, one

concludes formally that (24) holds. To make this argument rigourous, one has to justify
the use of Fubini’s theorem for the second term of the r.h.s. and more specifically for the
contribution of −ELϕ+ b.∇ϕ. Using Lemma 17, then the definitions of EL and b and last
(18), one has

∫

IR3N

ψ2
I (x)IE

(∫ t

0
e− � s

0 EL(Xx
r )dr|ELϕ+ b.∇ϕ|(s,Xx

s )ds

)
dx

=

∫ t

0

∫

IR3N

ψ2
I (x)|ELϕ+ b.∇ϕ|(s, x)IE

(
e− � s

0 EL(Xx
r )dr

)
dxds

≤ C

∫ t

0

∫

IR3N

(
1

2
|ψI∆ψIϕ| + |ψ2

IV ϕ| + |ψI∇ψI .∇ϕ|
)

(s, x)dxds.

The last integral is finite since function ψI is C2 and potential V is locally integrable. �

Remark 18. One has f2(t, x) = ψ2
I (x)u(t, x) where

u(t, x) = 1{x∈UI}IE

(
exp

(
−
∫ t

0
EL(Xx

s )ds

))
. (37)

By (18), the function t → ‖u(t, .)‖L∞(IR3N ) is locally bounded and for fixed x ∈ IR3N ,

t 7→ u(t, x) is continuous according to Lebesgue’s theorem. Since ψI ∈ L2(IR3N ), one
deduces again by Lebesgue’s theorem that f2 belongs to C0(IR+, L

1(IR3N )). Notice that
the function u formally solves (Feynman-Kac approach)





∂u

∂t
=

1

2
∆u+ b.∇u−ELu

u(0, x) = 1{x∈UI}.

Proof of Proposition 11. By definition of f2, one has v(t, x) = ψI(x)u(t, x), with u given
by (37). Reasoning like in Remark 18, one obtains that v belongs to C 0(IR+, L

2(C)). Be-
sides, v(t, x) = f2(t, x)/ψI (x) in IR+ ×C, where f2 satisfies (24). For φ ∈ C∞

0 (]0,+∞[×C),
since ψI is of class C2 and is either everywhere positive or everywhere negative on C, one
may choose ϕ(t, x) = 1IC(x)φ(t, x)/ψI (x) where 1IC denotes the characteristic function of
C in (24) . Since one easily checks that

∂ϕ

∂t
=

1IC
ψI

∂φ

∂t
and

1

2
∆ϕ+ b.∇ϕ−ELϕ =

1IC
ψI

(
1

2
∆φ− V φ

)
,

we deduce that

∀φ ∈ C∞
0 (]0,+∞[×C),

∫ +∞

0

∫

C

∂φ

∂t
v +

∫ +∞

0

∫

C

(
1

2
∆φ− V φ

)
v = 0.
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Therefore, v is solution to (27).

Considering only the test functions φ of the form φ(t, x) = ζ(t) ξ(x), one obtains in par-
ticular

∀ξ ∈ C∞
0 (C),

d

dt
(ξ, v(t))L2(C) =

(
1

2
∆ξ − V ξ, v(t)

)

L2(C)

in D′(]0,+∞[). (38)

Let us now prove that (38) still holds true for any ξ ∈ D(HC). As explained below, this
will actually imply that v ∈ C0(IR+, D(HC)) ∩ C1(IR+, L

2(C)).
For convenience, we denote by the same letter a function supported in some subset of
IR3N and its extension by zero on the whole space IR3N . Let us first consider the case of a
compactly supported function ξ ∈ D(HC) and let us denote by R a real number such that
Supp(ξ) ⊂ B(0, R). Let g ∈ C∞

0 (IR3N ) such that Supp(g) ⊂ B(0, 1), g ≥ 0 on IR3N , and∫

IR3N

g = 1. For ε > 0, we denote by gε the function defined by

gε(x) =
1

ε3N
g
(x
ε

)
.

We also introduce
Cε = {x ∈ C, d(x, ∂C) > ε} ,

1ICε the characteristic function of Cε,

hε = 1IC3ε
? gε,

ξε = (ξhε) ? gε,

and
Kβ
α =

(
Cα \ Cβ

)
∩B(0, R+ 1), for 0 ≤ α < β < +∞.

For any ε > 0 small enough, the C∞ function ξε is supported in the compact set Cε ∩
B(0, R + 1). Therefore,

∀ε > 0,
d

dt
(ξε, v(t))L2(C) =

(
1

2
∆ξε − V ξε, v(t)

)

L2(C)

in D′(]0,+∞[). (39)

We then split
1

2
∆ξε − V ξε into four terms

1

2
∆ξε − V ξε =

[(
hε

(
1

2
∆ξ − V ξ

))
? gε

]
+ [(∇ξ · ∇hε) ? gε]

+

[
1

2
(ξ∆hε) ? gε

]
− [V ((ξhε) ? gε) − (V ξhε) ? gε] .

It is easy to check that if u ∈ L2(C), uε = (uhε) ? gε strongly converges toward u in L2(C)
when ε goes to zero. Therefore, for any t ≥ 0,

(ξε, v(t))L2(C) −→ε→0
(ξ, v(t))L2(C) ,

((
hε

(
1

2
∆ξ − V ξ

))
? gε, v(t)

)

L2(C)

−→
ε→0

(
1

2
∆ξ − V ξ, v(t)

)

L2(C)

,

and
(V ((ξhε) ? gε) − (V ξhε) ? gε, v(t))L2(C) −→ε→0

0.
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To obtain the above inequality, we have used that V ξ ∈ L2(C). This is true when V1

and V2 are given by (4) since ξ is compactly supported. This is also true when V1 and
V2 are given by (5), even in the case of point-like nuclei since by Hardy’s inequality,

‖V ξ‖L2 ≤ 2
(
N +

∑M
k=1 zk

)
‖∇ξ‖L2 .

Besides, one has ‖∇hε‖L∞ ≤ 1

ε
‖∇g‖L1 and ‖∆hε‖L∞ ≤ 1

ε2
‖∆g‖L1 , and both functions

∇hε and ∆hε are supported in the compact set K4ε
2ε . It follows that (∇ξ · ∇hε) ? gε and

(ξ∆hε) ? gε are supported in K5ε
ε . One thus has on the one hand,

∣∣∣((∇ξ · ∇hε) ? gε, v(t))L2(C)

∣∣∣ ≤ ‖(∇ξ · ∇hε) ? gε‖L2(K5ε
ε ) ‖v(t)‖L2(K5ε

ε )

≤ ‖∇ξ · ∇hε‖L2(K4ε
2ε ) ‖gε‖L1 ‖v(t)‖L2(K5ε

ε )

≤ 1

ε
‖∇g‖L1 ‖∇ξ‖L2(K4ε

0 ) ‖v(t)‖L2(K5ε
0 ), (40)

and on the other hand
∣∣∣((ξ∆hε) ? gε, v(t))L2(C)

∣∣∣ ≤ ‖(ξ∆hε) ? gε‖L2(K5ε
ε ) ‖v(t)‖L2(K5ε

ε )

≤ ‖ξ∆hε‖L2(K4ε
2ε ) ‖gε‖L1 ‖v(t)‖L2(K5ε

ε )

≤ 1

ε2
‖∆g‖L1 ‖ξ‖L2(K4ε

0 ) ‖v(t)‖L2(K5ε
0 ). (41)

At that point, we make use of the inequality

|v(t, x)| =

∣∣∣∣ψI(x) IE

(
exp

(
−
∫ t

0
EL(Xx

s )ds

))∣∣∣∣ ≤ exp

(
−t
(

inf
IR3M

EL

))
|ψI(x)| , (42)

which states that, in some sense, v(t, ·) vanishes on the boundary ∂C. As there exists a
constant CP depending only on ψI and on R such that, for ε small enough,

∀u ∈ H1
0 (C), ‖u‖L2(Kε

0) ≤ CP ε ‖∇u‖L2(Kε
0)
, (43)

we obtain, for ε small enough,

‖v(t)‖L2(K5ε
0 ) ≤ εCP exp

(
−t
(

inf
IR3M

EL

))
‖∇ψI‖L2(K5ε

0 ), (44)

and
‖ξ‖L2(K4ε

0 ) ≤ εCP ‖∇ξ‖L2(Kε
0)
. (45)

For the sake of brevity, we do not reproduce here the proof of the Poincaré-type inequality
for narrow domains (43). This can be established by using hypotheses [H1]-[H2] which
allow ones to work in local maps.

Putting all together, one obtains that for any t ≥ 0,

(ξε, v(t))L2(C) −→ε→0
(ξ, v(t))L2(C) ,

and (
1

2
∆ξε − V ξε, v(t)

)

L2(C)

−→
ε→0

(
1

2
∆ξ − V ξ, v(t)

)

L2(C)

.
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In order to pass to the limit in (39), we need to check that, for instance, both (ξε, v(t))L2(C)

and

(
1

2
∆ξε − V ξε, v(t)

)

L2(C)

are uniformly bounded on any compact time interval [0, T ],

with bounds independent on ε. Clearly,

‖ξε‖L2(C) ≤ ‖ (ξhε) ? gε‖L2(C)

≤ ‖ξhε‖L2(C) ‖gε‖L1

≤ ‖ξ‖L2(C) ‖hε‖L∞(C) ‖gε‖L1

≤ ‖ξ‖L2(C)

since 0 ≤ hε ≤ 1 and ‖gε‖L1 = 1. Thus,

∀t ∈ [0, T ],
∣∣∣(ξε, v(t))L2(C)

∣∣∣ ≤ ‖ξ‖L2(C) ‖v‖C0([0,T ],L2(C)).

Besides, using (40), (41), (44), (45), together with the three inequalities

∥∥∥∥
((

−1

2
∆ξ + V ξ

)
hε

)
? gε

∥∥∥∥
L2(C)

≤
∥∥∥∥−

1

2
∆ξ + V ξ

∥∥∥∥
L2(C)

,

‖(V ξhε) ? gε‖L2(C) ≤ ‖V ξ‖L2(C) ,

and

‖V ((ξhε) ? gε)‖L2(C) ≤

∣∣∣∣∣∣∣∣∣

(
max ω2

i

)
(1 +R)2 ‖ξ‖L2(C) (V1, V2 given by (4)),

2

(
N +

M∑

k=1

zk

)
(1 + CP‖∇g‖L1) ‖∇ξ‖L2(C) (V1, V2 given by (5)),

we obtain that for ε small enough

∀t ∈ [0, T ],

∣∣∣∣∣

(
1

2
∆ξε − V ξε, v(t)

)

L2(C)

∣∣∣∣∣ ≤ C

where the constant C is independent of ε.

Let us now consider the case of a function ξ ∈ D(HC) non necessarily compactly supported.
For R ≥ 1, we introduce the radial function kR defined by





kR(x) = 1 if |x| < R

kR(x) = (|x| − (R + 1))2 (2(|x| −R) + 1) if R < |x| < R+ 1
kR(x) = 0 if |x| > R+ 1

which is such that 0 ≤ kR ≤ 1, ‖∇kR‖L∞ ≤ 3/2, ‖∆kR‖L∞ ≤ 6 +
3

2
(3N − 1). Then

ξR = kRξ is a compactly supported function of D(HC) and thus

∀R ≥ 1,
d

dt
(ξR, v(t))L2(C) =

(
1

2
∆ξR − V ξR, v(t)

)

L2(C)

in D′(]0,+∞[).

Letting R goes to infinity, one obtains

d

dt
(ξ, v(t))L2(C) =

(
1

2
∆ξ − V ξ, v(t)

)

L2(C)

in D′(]0,+∞[). (46)
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Using the fact that (46) holds for ξ ∈ D(HC), we can now prove that v ∈ C0(IR+, D(HC))∩
C1(IR+, L

2(C)). Let us denote by (Pλ)λ∈IR the spectral family associated with the self-
adjoint operator HC . For any w ∈ L2(C) and any −∞ < α < β < +∞, P]α,β]w :=
(Pβ − Pα)w belongs to D(HC). Using (46) with ξ = P]α,β]w, one obtains

d

dt

(
w,P]α,β]v(t)

)
L2(C)

=
d

dt

(
P]α,β]w, v(t)

)
L2(C)

=
(
HCP]α,β]w, v(t)

)
L2(C)

=
(
w,HCP]α,β]v(t)

)
L2(C)

.

Therefore
d

dt
P]α,β]v(t) = HCP]α,β]v(t).

As P]α,β]v ∈ C0([0,+∞[, L2) and v(0) = ψI |C , and as HC is bounded on Ran(P]α,β]),

P]α,β]v(t) = e−tHCP]α,β] ψI |C .

Passing to the limits α→ −∞ and β → +∞, one gets

v(t) = e−tHC ψI |C .

As ψI is in D(H) ∩ C2(IR3) and satisfies ψI = 0 on ψ−1
I (0), one has ψI |C ∈ D(HC).

Therefore v ∈ C0(IR+, D(HC))∩C1(IR+, L
2(C)). The solution of (27) in C0(IR+, D(HC))∩

C1(IR+, L
2(C)) being unique (see [6]), the proof is completed. �

Remark 19. We have shown that there exists a unique solution of class C 0(IR+, L
2(C))

to (38), if ξ can be chosen in D(HC). The fact that uniqueness holds for this kind of very
weak solutions can be compared to uniqueness results for “generalized solutions” such as
ones defined for example in [12], page 85. Let us sketch another proof of this uniqueness
result inspired by [12], and which does not require v(0) to be in D(HC), and does not use
the notion of spectral family. Let w = H−1

C (v) (one can suppose that 0 6∈ σ(HC) since H
is bounded from below and V is defined up to a constant). Since v ∈ C 0(IR+, L

2), then
w ∈ C0(IR+, D(HC)) (where D(HC) is equiped with the graph norm). For any ζ ∈ L2(C),
it is then easy to check that d

dt(w, ζ) = −(HCw, ζ). Therefore, w is the unique solution to
w′ = −HCw in C0(IR+, D(HC))∩C1(IR+, L

2(C)). As H is self adjoint, w is actually much
more regular on IR∗

+: ∀k, l ∈ IN, w ∈ Ck(IR∗
+, D(H l

C)). As v(0) ∈ L2, this shows that v
is in C0(IR+, L

2(C)) ∩ C1(IR∗
+, L

2(C)) ∩ C0(IR∗
+, D(HC)) and the Hille-Yosida theorem for

self-adjoint operators (see [6]) allows to complete the proof.

Proof of Theorem 12. Let us denote by C1, C2, ... CNI
c

the connected components of
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UI . It follows from Proposition 11 that

EDMC(t) =

∫

IR3
EL(x) f2(t, x) dx
∫

IR3
f2(t, x) dx

=

NI
c∑

n=1

∫

Cn

(
HCn ψI |Cn

)
(x)χ(t, x) dx

NI
c∑

n=1

∫

Cn

ψI(x)χ(t, x) dx

=

NI
c∑

n=1

(
HCn ψI |Cn

, e−tHCn ψI |Cn

)
L2(Cn)

NI
c∑

n=1

(
ψI |Cn

, e−tHCn ψI |Cn

)
L2(Cn)

.

For V1 and V2 given by (4), the remaining of the proof is easy. In this case indeed, HCn

has a purely discrete spectrum and a unique positive ground state ψ0
n. Let us denote by

E0
n < E1

n ≤ E2
n ≤ · · · the eigenvalues of HCn , counted with their multiplicities, and by

(ψkn)k∈IN a Hilbert basis of L2(Cn) such that HCnψ
k
n = Eknψ

k
n for all k ∈ IN. One has

(
HCn ψI |Cn

, e−tHCn ψI |Cn

)
L2(Cn)

=

+∞∑

k=0

Ekn e
−Ek

n t

∣∣∣∣
(
ψkn, ψI |Cn

)
L2(Cn)

∣∣∣∣
2

and
(
ψI |Cn

, e−tHCn ψI |Cn

)
L2(Cn)

=

+∞∑

k=0

e−E
k
n t

∣∣∣∣
(
ψkn, ψI |Cn

)
L2(Cn)

∣∣∣∣
2

.

As ψ0
n is positive on Cn and as ψI |Cn

is either positive or negative on Cn, then

∣∣∣∣
(
ψkn, ψI |Cn

)
L2(Cn)

∣∣∣∣
2

>

0 and therefore,
EDMC(t) = min

1≤n≤NI
c

E0
n +O

(
e−αt

)

where α = min

{
Ekn − min

1≤n≤NI
c

E0
n, E

k
n 6= min

1≤n≤NI
c

E0
n

}
> 0. Let us now prove that

min
1≤n≤NI

c

E0
n = EDMC

0 .

Let n0 be such that E0
n0

= min
1≤n≤NI

c

E0
n and J the subgroup of even permutations of

{1, · · · , N} such that

∀σ ∈ J , ∀(x1, · · · , xN ) ∈ Cn0 , (xσ(1), · · · , xσ(N)) ∈ Cn0 .

Since ψI is antisymmetric, J = {σ ∈ SN , Cσ ∩ C 6= ∅}. As ψ0
n0

is the unique positive
ground state of HCn and V is invariant under permutations, one necessarily has

∀σ ∈ J , ∀(x1, · · · , xN ) ∈ Cn0 , ψ0
n0

(xσ(1), · · · , xσ(N)) = ψ0
n0

(x1, · · · , xN ).
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Therefore the function ψ obtained like in the proof of Corollary 5 by antisymmetrization
and normalization of the extension of ψ0

n0
by 0, satisfies ψ ∈ D(qH), ‖ψ‖L2 = 1, ψ = 0 on

ψ−1
I (0) and

1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V ψ2 = E0
n0
.

Therefore min
1≤n≤NI

c

E0
n ≥ EDMC

0 . On the other hand, let ψDMC
0 be a minimizer of

inf

{
1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V ψ2, ψ ∈ D(qH), ‖ψ‖L2 = 1, ψ = 0 on ψ−1
I (0)

}
.

Notice that (ψDMC
0 )−1(0) = ψ−1

I (0). Indeed, on any connected component C of ψ−1
I (0),

ψDMC
0 |C/||ψDMC

0 |C ||L2(C) is a minimizer of

inf

{
1

2

∫

C
|∇ψ|2 +

∫

C
V ψ2, ψ ∈ H1

0 (C), ‖ψ‖L2(C) = 1

}

since if it was not the case, one could build by antisymmetrisation and normalization
(again by the procedure used in the proof of Corollary 5) an antisymmetric function
which is null on ψ−1

I (0) with a lower energy than ψDMC
0 . On the other hand, since we

know that the ground state of HC is non-degenerate positive, this shows that ψDMC
0 |C is

either positive or negative.

One then has

EDMC
0 =

1

2

∫

IR3N

|∇ψDMC
0 |2 +

∫

IR3N

V |ψDMC
0 |2

=

NI
c∑

n=1

〈HCn ψ
DMC
0

∣∣
Cn
, ψDMC

0

∣∣
Cn
〉

≥
NI

c∑

n=1

E0
n

∥∥∥ψDMC
0

∣∣
Cn

∥∥∥
2

L2

≥ min
1≤n≤NI

c

E0
n.

Let us now consider the case when V1 and V2 are given by (5). For 1 ≤ n ≤ N I
c , we denote

by HS
Cn

the unbounded operator defined by

{
D(HS

Cn
) =

{
φ ∈ H2(Cn) ∩H1

0 (Cn), ∀σ ∈ Jn, φσ = φ
}
,

∀φ ∈ D(HS
Cn

), HS
Cn
φ = −1

2
∆φ+ V φ,

where Jn is the subgroup of the even permutations of {1, · · · , N} such that

∀σ ∈ Jn, ∀(x1, · · · , xN ) ∈ Cn, (xσ(1), · · · , xσ(N)) ∈ Cn,

and where, again, ψσ(x1, · · · , xN ) = ψ(xσ(1), · · · , xσ(N)). The operator HS
Cn

is self-adjoint
on
{
φ ∈ L2(Cn), ∀σ ∈ Jn, φσ = φ

}
and one can check that

EDMC
0 = min

1≤n≤NI
c

inf σ
(
HS

Cn

)
;

the inequality EDMC
0 ≥ min

1≤n≤Nc

inf σ
(
HS

Cn

)
can be established as above, replacing the

minimum ψDMC
0 by a minimizing sequence, and the argument used at the end of the proof

of Corollary 5 leads to the converse inequality.
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Let n0 such that EDMC
0 = inf σ

(
HS

Cn0

)
and assume that EDMC

0 ∈ σess

(
HS

Cn0

)
. Then for all

ε > 0, and for all k ∈ IN∗, there exists a subspace Vk of
{
φ ∈ H1

0 (Cn0), ∀σ ∈ Jn, φσ = φ
}

with dimension k such that

sup
φ∈Vk, ‖φ‖L2=1

1

2

∫

Cn0

|∇φ|2 +

∫

Cn0

V |φ|2 ≤ EDMC
0 + ε.

We then associate with Vk the subspace

Wk =



ψ ∈ He, ∃φ ⊂ Vk, ψ =

∑

σ∈
�

N

ε(σ)φ̃σ





where φ̃ denotes the extension by 0 of φ on IR3N . Clearly, Wk is a subset of D(qH) with
dimension k and

sup
ψ∈Wk, ‖ψ‖L2=1

1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V |ψ|2 = sup
φ∈Vk, ‖φ‖L2=1

1

2

∫

Cn0

|∇φ|2 +

∫

Cn0

V |φ|2.

Then, using the min-max principle

inf σess(H) = lim
k→+∞

inf
W⊂D(qH), dimW=k

sup
ψ∈W, ‖ψ‖

L2=1

1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V |ψ|2 ≤ EDMC
0 .

Therefore inf σess(H) ≤ EDMC
0 ≤ 〈ψI ,HψI〉 and this contradicts hypothesis [H5]. There-

fore the bottom of the spectrum of HS
Cn0

is an isolated eigenvalue of finite multiplic-

ity. By standard argument, HS
Cn0

has a non-degenerate, positive, ground state φn0 and

ψDMC
0 = C

∑

σ∈
�

N

ε(σ)φ̃σn0
, where C is a normalisation constant and φ̃n0 the extension by 0

of φn0 on IR3N , is a minimizer of problem

inf

{
1

2

∫

IR3N

|∇ψ|2 +

∫

IR3N

V ψ2, ψ ∈ D(qH), ‖ψ‖L2 = 1, ψ = 0 on ψ−1
I (0)

}
.

Notice that, by definition of ψDMC
0 , we also have in this case (ψDMC

0 )−1(0) = ψ−1
I (0). The

same arguments as in the case of a purely discrete spectrum detailed previously, allow to
conclude that EDMC(t) converges exponentially fast toward EDMC

0 .

Lastly, in any case (V1 and V2 given by (4) or by (5)) one obviously has EDMC
0 ≥ E0.

Now, if EDMC
0 = E0, then ψDMC

0 is a ground state of H, and as we have shown that
ψ−1
I (0) = (ψDMC

0 )−1(0), this concludes the proof. Notice that we also proved here the
results presented in Remark 14. �

6 Analytical calculations on a simple example

Let us consider the hamiltonian

H = h(~x1) + h(~x2)

where

h(~x) = −1

2
∆~x + V1(~x)
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and

∀~x =




x
y
z


 ∈ IR3, V1(~x) =

1

2
x2 +

1

2
ω2
(
y2 + z2

)
,

with ω > 1. This hamiltonian describes a system with two non-interacting identical
particles with mass 1 submitted to the harmonic anisotropic potential V1.

Let us denote

λnx,ny,nz =

(
nx +

1

2

)
+ ω (ny + nz + 1) , (nx, ny, nz) ∈ IN3

the eigenvalues of h and

φnx,ny,nz(~x) = ω1/2 φnx(x)φny (
√
ω y)φnz(

√
ω z)

the corresponding eigenfunctions. Functions (φn)n∈IN are the eigenfunctions of the 1D

harmonic oscillator with hamiltonian − 1
2
d2

dx2 + 1
2x

2 and are given by

φn(t) = Hn(t) exp(−t2/2)

where Hn(t) is the n-th Hermite polynomial. Polynomials Hn(t) are normalized in such a
way as

∀(m,n) ∈ IN × IN,

∫ +∞

−∞
Hm(t)Hn(t) e

−t2 dt = δmn.

In particular,

φ0(t) =
e−t

2/2

π1/4
, et φ1(t) =

√
2 t
e−t

2/2

π1/4
.

When ω > 1, the fermionic ground state energy of the hamiltonian H is E0 = 2(1 + ω)
and is non-degenerate. The ground state is given by the Slater determinant

ψ0(~x1, ~x2) =
1√
2

(φ000(~x1)φ100(~x2) − φ100(~x1)φ000(~x2))

=
ω

π3/2
(x2 − x1) exp

(
−1

2

(
x2

1 + x2
2

)
− ω

2

(
y2
1 + y2

2 + z2
1 + z2

2

))
.

Let us consider the importance sampling functions

ψI(~x1, ~x2) = c ((x2 − x1) cos θ + (y2 − y1) sin θ) (47)

exp

(
−1

2
(x1 cos θ + y1 sin θ)2 − 1

2
(x2 cos θ + y2 sin θ)2

)

exp

(
− ω̃

2

(
(−x1 sin θ + y1 cos θ)2 + (−x2 sin θ + y2 cos θ)2 + z2

1 + z2
2

))

where ω̃ ∈]0, 1], θ ∈ [0, 2π[ and the normalization constant c ensures that
∫
IR6 ψ2

I = 1. In
case θ = π/2, one remarks that the function

1√
2

(φ000(~x1)φ010(~x2) − φ010(~x1)φ000(~x2))

=
(ω
π

)3/2
(y2 − y1) exp

(
−1

2

(
x2

1 + x2
2

)
− ω

2

(
y2
1 + y2

2 + z2
1 + z2

2

))
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is an eigenfunction of H for the eigenvalue 1 + 3ω and only vanishes on {(~x1, ~x2) : y1 =
y2} = ψ−1

I (0). Hence its restriction to each connected component C of UI is a ground state
of HC and according to Remark 14, EDMC

0 = 1 + 3ω > 2(1 + ω) = E0. In general (for
θ /∈ {0, π/2, π, 3π/2}) it does not seem easy to compute analytically EDMC

0 .

Nevertheless, for each θ ∈ [0, 2π[, the function ψI satisfies the tiling property and hypoth-
esis [H1]. We are now going to check that hypotheses [H2]− [H4] also hold and to exhibit
the transition density associated with the stochastic differential equation (23).
With the new variables

x̃1 =
(x2 − x1) cos θ + (y2 − y1) sin θ√

2
, ỹ1 = y1 cos θ − x1 sin θ, z̃1 = z1,

x̃2 =
(x2 + x1) cos θ + (y2 + y1) sin θ√

2
, ỹ2 = y2 cos θ − x2 sin θ, z̃2 = z2,

one has

ψI(x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2) =
√

2 cx̃1 exp

(
−1

2
(x̃2

1 + x̃2
2) −

ω̃

2
(ỹ2

1 + ỹ2
2 + z̃2

1 + z̃2
2)

)
.

Since ∂ �x1
ψI does not vanish on {x̃1 = 0} = ψ−1

I (0), (14) and therefore [H2] hold. In
addition,

b(x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2) =




1

x̃1
− x̃1

−ω̃ỹ1

−ω̃z̃1
−x̃2

−ω̃ỹ2

−ω̃z̃2




.

and [H3] is satisfied since (16) holds with x0 = 0, C = 1/
√
ω̃ and C ′ = 0. Notice that (17)

also holds with K = 2
√

1 + ω̃/ω̃ since

∆ψI
ψI

= −4(1 + ω̃) + x̃2
1 + x̃2

2 + ω̃2(ỹ2
1 + ỹ2

2 + z̃2
1 + z̃2

2).

Combining this equality with

V (x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2) =
1

2

[
(1 + (ω2 − 1) sin2 θ)(x̃2

1 + x̃2
2) + (1 + (ω2 − 1) cos2 θ)(ỹ2

1 + ỹ2
2)

+ 2(ω2 − 1) sin θ cos θ

(
ỹ1
x̃2 − x̃1√

2
+ ỹ2

x̃2 + x̃1√
2

)
+ ω2(z̃2

1 + z̃2
2)

]
,

one obtains

EL(x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2) = 2(1 + ω̃) +
1

2

[
(1 − ω̃2)(ỹ2

1 + ỹ2
2) + (ω2 − ω̃2)(z̃2

1 + z̃2
2)

+ (ω2 − 1)

((
cos θỹ1 + sin θ

x̃2 − x̃1√
2

)2

+

(
cos θỹ2 + sin θ

x̃1 + x̃2√
2

)2
)]

.

As ω > 1 and ω̃ ∈]0, 1], EL is greater than 2(1+ω̃) and [H4] holds. Notice that in addition,

∃C > 0, ∀1 ≤ i ≤ 6, |∂iEL| ≤ C(1 +EL). (48)
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In the new coordinates, the stochastic differential equation (23) writes




dX1,t =

(
1

X1,t
−X1,t

)
dt+ dW 1

t ,

dY1,t = −ω̃Y1,tdt+ dW 2
t ,

dZ1,t = −ω̃Z1,tdt+ dW 3
t ,

dX2,t = −X2,tdt+ dW 4
t ,

dY2,t = −ω̃Y2,tdt+ dW 5
t ,

dZ2,t = −ω̃Z2,tdt+ dW 6
t .

(49)

The last five coordinates are Ornstein-Uhlenbeck processes and the first one is linked to
the Cox-Ingersoll-Ross model of interest rates. Indeed, setting Rt = (X1,t)

2, one obtains

dRt = 2X1,tdX1,t + dt = (3 − 2Rt)dt+ 2
√
Rt
(
1{X1,t≥0} − 1{X1,t<0}

)
dW 1

t .

According to [13] p.126, for any r > 0, the stochastic differential equation

Rrt = r + 3t− 2

∫ t

0
Rrsds+ 2

∫ t

0

√
RrsdBs

where B is a 1D-Brownian motion admits a IR∗
+-valued solution. For x̃1 ∈ IR∗, choosing

Bt = (1{ �x1>0}−1{ �x1<0})W
1
t , one easily checks that X

�x1
1,t = (1{ �x1>0}−1{ �x1<0})

√
R

�x2
1
t solves

the first equation in (49). As the function 1
x − x is decreasing on IR∗

+ and on IR∗
−, one

may check that any solution of the first equation in (49) starting from x̃1 is equal to X
�x1
1,t.

From [13] p.128, one obtains that for t > 0, X
�x1
1,t admits as a density w.r.t. the Lebesgue

measure, the function p1 defined by

p1(t, x̃1, x̄1) = 1{ �x1x̄1>0}2
(
1 − e−2t

)−3/2
x̄2

1 exp

(
−e

2tx̄2
1 + x̃2

1

e2t − 1

) ∞∑

n=0

e2nt

n!Γ(n+ 3/2)

(
x̃1x̄1

e2t − 1

)2n

where Γ is Euler’s gamma function. One checks that x̃2
1 exp(−x̃2

1)p1(t, x̃1, x̄1) is symmetric
in variables x̃1 and x̄1. Similar symmetry relations are easily obtained for the Ornstein-
Uhlenbeck components in (49). Hence the transition density p associated with (49) which
is, by independence of the stochastic processes, the product of the transitions densities
associated with each component, is such that

ψ2
I (x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2)p(t, x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2, x̄1, ȳ1, z̄1, x̄2, ȳ2, z̄2)

is symmetric in variables (x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2) and (x̄1, ȳ1, z̄1, x̄2, ȳ2, z̄2). As an easy con-
sequence ψ2

I is an invariant density for (49). For x̃ = (x̃1, ỹ1, z̃1, x̃2, ỹ2, z̃2) ∈ IR∗ × IR5,

let us denote X x̃
t = (X x̃1

1,t, Y
ỹ1
1,t , Z

z̃1
1,t, X

x̃2
2,t, Y

ỹ2
2,t , Z

z̃2
2,t) where each coordinate solves the cor-

responding stochastic differential equation in (49) with an initial condition given by the
superscript (X x̃

0 = x̃). One has

∂x̃1X
x̃1
1,t = exp

(
−t−

∫ t

0

1

(X x̃1
1,s)

2
ds

)
, ∂x̃2X

x̃2
2,t = e−t,

∂ỹ1Y
ỹ1
1,t = ∂z̃1Y

z̃1
1,t = ∂ỹ2Y

ỹ2
2,t = ∂z̃2Y

z̃2
2,t = e−

�ωt.

One easily checks using Lebesgue’s theorem that for any t ≥ 0, ∂x̃1IE
(
exp

(
−
∫ t
0 EL(X x̃

s )ds
))

is equal to

IE

(
exp

(
−
∫ t

0
EL(X x̃

s )ds

)∫ t

0
exp

[
−s−

∫ s

0

1

(X x̃1
1,r)

2
dr

]
∂1EL(X x̃

s )ds

)
.
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Notice that because of (48), the variable in the last expectation is bounded, uniformly in x
and locally in t. Again by Lebesgue’s theorem, for fixed x ∈ IR∗×IR5 the expectation is con-

tinuous w.r.t. variable t. More generally, one obtains that ∇x̃IE
(
exp

(
−
∫ t
0 EL(X x̃

s )ds
))

is bounded, uniformly in x ∈ IR∗× IR5 and locally in t and continuous w.r.t. t for fixed x ∈
IR∗ × IR5. This ensures that the restriction of χ(t, x̃) = ψI(x̃)IE

(
exp

(
−
∫ t
0 EL(X x̃

s )ds
))

to each connected component C of UI belongs to C0(IR+,H
1
0 (C)) and Proposition 11 can

be proved by standard energy arguments.
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nance, Ellipse 1997.

[14] W.A. Lester Jr. (ed.), Recent advances in Quantum Monte Carlo methods, World
Sientific 1997.

[15] W.A. Lester Jr., S.M. Rothstein and S. Tanaka (eds.), Recent advances in Quantum
Monte Carlo methods, Part II, World Sientific 2002.

[16] I.N. Levine, Quantum chemistry, 4th edition, Prentice Hall 1991.

[17] P.-L. Lions, Remarks on mathematical modelling in quantum chemistry, in: Compu-
tational Methods in Applied Sciences, Wiley 1996, 22-23.

[18] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Commun.
Math. Phys. 53 (1977) 185-194.

[19] D. Marx and J. Hutter, Ab initio molecular dynamics: theory and implementation,
in: Modern Methods and Algorithms of Quantum Chemistry, J. Grotendorst (ed.),
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