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Abstract

We derive here a simplified discrete one-dimensional (1D) model describing the main
features of shock waves. In order to avoid expensive multidimensional simulations, 1D
models are commonly used, but the existing ones often exhibit some spurious physically
irrelevant behavior. Here we build a 1D model with perturbations arising from mean
higher-dimensional behavior. The coupling of the system with a deterministic heat bath
“à la“ Kac-Zwanzig allows us to derive a generalized Langevin equation for the system,
without a priori fixing the temperature in the shocked region. This deterministic problem
with several degrees of freedom is then reduced to a simpler stochastic problem with
memory. Some numerical results are provided, that illustrate and confirm the qualitative
correctness of the model.

1 Introduction

The aim of this study is to derive and assess the validity of a simplified microscopic model
of shock waves that could help to calibrate parameters for macroscopic descriptions. Shock
waves are intrinsically propagative phenomena. It is thus reasonable to describe them within
a 1D macroscopic theory. In some cases depending on the geometry, this approximation has
proven to be correct [2].

A 1D lattice seems an appropriate model that could, in addition, allow for some mathemat-
ical treatment and thus a better theoretical understanding of the phenomena and mechanisms
at play. Indeed, many mathematical results are known about the behavior of waves in 1D
lattices, concerning the existence of localized waves [10, 22], the form of those waves in the
high-energy limit [8] or in the low-energy limit [9], or the behavior under shock [6]. There
also exist extended results for a particular interaction between sites, the Toda potential [23]
: the structure of a 1D shock is then precisely known, at least in some regime [24].

We begin in section 2 with some introduction to 1D lattice motion, and briefly report on
some theoretical results and numerical experiments on piston-impacted shocks. It is shown
that, in the absence of a specific treatment, the shock profiles generated significantly differ
from shock waves. Especially, their thicknesses grow linearly with time [16, 24], there is no
usual equilibration downstream the shock front [3, 18, 24], and relaxation waves do not behave
as expected. Indeed, one would expect the shock wave to be a self-similar jump separating two
domains at local thermal equilibrium at different temperatures. The relaxation waves should



then catch up the shock front and weaken the shock wave until it disappears. So, we have to
introduce higher-dimensional effects, at least in an averaged way. This is performed in section
3. The connection of the chain with a heat bath consisting of a large number of harmonic
oscillators, seems to be a good remedy for spurious 1D effects. The shocks generated have
constant thicknesses and relaxation waves appear to be properly modelled. We eventually
present some simulation results in section 4.

2 The pure 1D model

2.1 Description of the lattice model

We consider a one-dimensional chain of particles with nonlinear nearest-neighbor interactions,
described by a potential V . Initially, the particles are at rest at positions Xn(0) = nd, which is
an equilibrium state for the system. All the masses are set to 1. The normalized displacement
of the n-th particle from its equilibrium position is xn(t) = 1

d(Xn(t) − Xn(0)). We consider
the following normalization conditions [16]:

V (0) = 0, V ′(0) = 0, V ′′(0) = 1 . (1)

The first condition is more a shift on the energy reference, the second one expresses the fact
that x = 0 is the equilibrium position, and the last one amounts to a rescaling of time. The
so-called ”reduced relative displacement” is defined as δxn(t) = xn+1(t) − xn(t).

The Hamiltonian of the system is:

HS({xn}) =

∞∑

n=−∞

V (xn+1 − xn) +
1

2
ẋ2

n . (2)

The Newton equations of motion read:

ẍn = V ′(xn+1 − xn) − V ′(xn − xn−1) . (3)

The potential taken here can either have a physical origin, like the 1D Lennard-Jones
potential:

VLJ(x) =
1

8

(
1

(1 + x)4
− 2

(1 + x)2

)
, (4)

or more mathematical motivations, like the one-parameter Toda potential [23]:

V b
Toda(x) =

1

b2

(
e−bx − 1 + bx

)
. (5)

We define b = −V ′′′(0). The parameter b measures at the first order the anharmonicity of
the system. For the Lennard-Jones potential b = 9, and for the Toda potential, the parameter

b introduced in the definition (5) is indeed equal to −d3V b

dx3
(0).

2.2 Shock waves in the 1D lattice

2.2.1 A brief review of the existing mathematical and numerical results

A shock can be generated using a ”piston” : the first particle is considered as being of infinite
mass and constantly moving at velocity up. We refer to [4] for a pioneering study of those

2



shocks in 1D lattices, to [15, 16, 18] for careful numerical experiments and formal analysis,
and to [24] for a rigorous mathematical study in the Toda case. All of these studies identify
the parameter a = bup as critical. When a < 2 (note that we use b = 2α with the notation of
[16]), the velocity of the downstream particles converge to the piston velocity, in analogy with
the behavior of a harmonic lattice (see Figure 1). When a > 2, the particles behind the shock
experience an oscillatory motion (see Figure 2 to 4). This behavior is quite similar to what
is happening in hard-rod fluids (see [18] for a more precise description of that phenomenon),
and has to be linked to the exchange of momenta happening when two particles collide in a
1D setting. This was also noticed for other potentials such as the Lennard-Jones potential,
and can be used to define specific 1D thermodynamical averages [3].
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Figure 1: Relative displacement (left) and velocity profiles (right) versus particle index for a
weak shock at a representative time: number of particles Npart = 500, Toda parameter b = 1,
piston velocity up = 0.2 so that a = 0.2. The particle are taken initially at rest at their
equilibrium positions.
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Figure 2: Relative displacement (left) and velocity profiles (right) versus particle index for a
strong shock at time T = 100: b = 10, up = 1 so that a = 10. The particles are initially at
rest.

In the case of a strong shock (a > 2) and in the Toda case, the displacement pattern
is particularly well understood from a mathematical point of view [24]: the lattice can be
decomposed in three regions. In the first one, for n > Nmaxt, the particles have “almost”
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Figure 3: Relative displacement (left) and velocity profiles (right) versus particle position for
a strong shock at time T = 100.12 using the same conditions as for Figure 2. Notice how the
downstream quantities changed.
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Figure 4: Left: Zoom on the relative displacement pattern of Figure 2. Right: Zoom on the
velocity pattern of Figure 3. Notice the oscillatory distribution for the downstream quantities.

not felt the shock yet, and their displacements are exponentially small. The second region,
whose thickness grows linearly in time (Nmint < n < Nmaxt), is composed of a train of
solitons. We recall that solitons are particular solutions of the Toda lattice model, and
correspond to localized waves [23]. In the third region (n < Nmint), the lattice motion
converges to an oscillatory pattern of period 2 (binary wave). The motion behind the shock is
asymptotically described by the evolution of a single oscillator (see [3] for a precise description
of this behavior). There is no local thermal equilibrium in the usual sense (i.e. the distribution
of the velocities is not of Boltzmann form). This was already mentioned in [18].

2.2.2 Density plots.

To get a better understanding of the shock patterns, it is convenient to represent the system
in terms of local density. This local density can be obtained as a function of the local average
of the interatomic distances, both in space and time. We restrict ourselves to a local average
in space.
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More precisely, the local averaged interatomic distance of the n-th length is denoted by
δxn, and given by:

δxn =
+∞∑

i=−∞

αj δxn+j .

The local density ρn is then defined as:

ρn =
(
1 + δxn

)−1
.

The weights {αj} are chosen in practice to be non negative and of sum equal to one. A
convenient choice is for example:

αj = C−1 cos

(
j

2M + 1
π

)

for −M ≤ j ≤ M , and αj = 0 otherwise. C is a normalization factor:

C =
M∑

j=−M

cos

(
j

2M + 1
π

)
.

The integer M is the local range of averaging.
Figure 5 gives the densities corresponding to the relative displacement patterns of figures

1 and 2.
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Figure 5: Density patterns for the relative displacement pattern of the weak shock of Figure
1 (left) and the strong shock of Figure 2 (right). The local averaging range is M = 50.

2.2.3 Simulation of piston compression

We first implement a preliminary thermalization. The particles are taken initially at rest
at their equilibrium positions. We then randomly draw displacements xn and velocities ẋn

according to the probability density

dν =

∞⊗

n=−∞

Z−1e−
1

2
βx(x2

n
+ẋ2

n
) dxndẋn , (6)
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Z−1 being a normalization factor. The initial displacements and velocities are then of order
1√
βx

. Notice that we take small initial displacements, so we approximate the full potential

V (x) by its harmonic part 1
2x2. This approximation is of course justified at the beginning

of the simulation, when displacements are small enough. After this initial perturbation,
we let the system free to evolve during a typical time Tinit = 10. The simulations were
performed using a Velocity Verlet scheme, the time step being chosen to have a relative

energy conservation
∆E

E
of about 10−5.

At time Tinit the piston impact begins: the first particle is kept moving toward the right
at constant velocity up.

We emphasize that the shock patterns are robust, in the sense that they remain essentially
unchanged when initial thermal pertubations are supplied. This point was already noted in
[18] where the authors gave numerical evidence of that fact. While rigorously proven only in
the Toda lattice case for a lattice initially at rest at equilibrium, the above shock description
seems then to remain qualitatively valid for a quite general class of potentials and with
random initial conditions. We make a comparison of the different profiles in Figures 6 to 8:
the patterns on the left are those of a shock using thermal initial conditions, the patterns on
the right are those of a lattice initially at rest at equilibrium. The profiles are indeed quite
conserved, especially the density profiles.
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Figure 6: Relative displacement profiles for a thermalized strong shock using a Toda potential
with b = 10, and comparison with the reference profile corresponding to a lattice initially at
rest. The piston speed is up = 0.3 so that a = 3, 1√

βx

= 0.02.

For strong shocks (a > 2), the shock front thickens linearly with time as can be seen in
Figure 9. This is in contradiction with what is observed in shock propagation experiments
as well as in 3D numerical simulations. Moreover the velocity distribution behind the shock
front shows that the downstream particles experience a (quasi-)oscillatory motion in the range
[0, 2up]. This is of course not the case for 3D simulations, where the particle velocities are
much less correlated, and appears to be a pure 1D effect.

We emphasize once again that initial thermal perturbations are not sufficient to remedy
these spurious 1D effects since the patterns obtained in Figures 6 to 8 are very similar. In the
sequel we are going to build a 1D model that enables us to get rid of these undesired effects.
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Figure 7: Velocity profiles for the same conditions as for Figure 6
.
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Figure 8: Local density profiles corresponding to Figure 6 with M = 50. Dashed line:
reference profile. Solid line: Thermalized profile. Notice that both patterns almost coincide.

2.2.4 Simulation of relaxation waves

In order to study the relaxation waves, the piston is removed after a compression time t0, and
the systems evolves freely during time t1 − t0.

The results are once again not physically satisfactory. The soliton train of Figure 10,
which was less visible in Figure 6, is not destroyed by the relaxation waves. It travels on and
widens since the solitons move away from each others (the distance between the fastest ones,
that is, the more energetic ones, and the slowest ones, increases). This kind of dispersion
can be seen in Figure 11. A zoom of the end of the soliton train is shown in Figure 12. We
emphasize that the energy remains localized in those waves, so there is no damping of these
solitons. Rarefaction is only observed in the region behind the soliton train.

On the other hand, in 3D simulations or in experiments, one observes a progressive damp-
ing of the whole compressive wave. This is a second spurious effect of the 1D model we would
like to get rid of and that our model will able to deal with.
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Figure 9: Relative displacement patterns for the same conditions as in Figure 6 (reference
case). Left: Snapshot at time T1 = 200. The shock front corresponds (roughly) to the zone
between particle nmin = 60 and particle nmax = 350. Right: Snapshot at time T2 = 800. The
shock front corresponds to the zone between particle number nmin = 250 and particle number
nmax = 1500. Thus the shock front is indeed growing linearly in time.
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Figure 10: Relative displacement and speed profiles for the same parameters as in figure 6.
The compression time is now t0 = 50, and the relaxation time is t1 − t0 = 350.

3 Introduction of mean higher-dimensional effects

The results of the previous section indicate the need for a modeling of perturbations aris-
ing from the transverse degrees of freedom existing in higher dimensional simulations. Such
perturbations will interfere with the soliton train at the front, and possibly damp it. Pertur-
bations in the longitudinal direction, such as thermal initialization for the xn, cannot do this,
as shown by Figures 6 to 8.

Actually, some facts are already known about the influence of 3D effects for shock waves.
In [14, 17] Holian and al. pointed out the fact that even a 1D shock considered in 3D (that
is to say, a piston compression along a principal direction of a crystal for example) may not
look like the typical 1D pattern of Figures 1 or 2. If the crystal is at zero temperature, then
the compression pattern in 3D is the same as the 1D one, with a soliton train at the front.
But if positive temperature effects are considered, the interactions of the particles with their
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Figure 11: Behavior of the soliton train in time. Left: Velocity profile for the same parameters
as in figure 10. Right: Same parameters except higher relaxation time t1 − t0 = 900. Notice
that the solitons remain unchanged, but there is dispersion within the soliton train, since the
the solitons do not have the same velocities.
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Figure 12: Zoom of the end of the soliton train of Figure 10 - Right. The solitons are localized
waves moving on and are unaffected by the relaxation of the downstream domain.

neighbors - especially in the transverse directions - lead to the destruction of the coherent
soliton train at the front, and a steady-regime can be reached (shock with constant thickness).

To the best of the author’s knowledge, there is no existing model that could both account
for these higher dimensional effects and be mathematically tractable. We introduce a classical
heat bath model, as an idealized way to couple the longitudinal modes of the atom chain to
other modes. This model is justified to some extent by heuristic considerations in section 3.1.
We are then able to derive a generalized Langevin equation describing the evolution of the
system.

3.1 Form of the perturbations arising from higher dimensional degrees of

freedom

Consider the system described in Figure 13. We still consider a 1D atom chain, but each
particle in the 1D chain also interacts with two particles outside the horizontal line. These
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particles are supposed to mimic some effects of transverse degrees of freedom. The transverse
particles are placed in the middle of the springs and have only one degree of freedom, namely
their ordinates yn. The particles in the 1D chain are still supposed to have only one degree
of freedom as well. This means that we constrain them to remain on the horizontal line. The
interactions between the particles in the chain and the particles outside the chain are ruled
by a pairwise interaction potential, for example the same potential as for interactions in the
1D chain.
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Figure 13: Notations for the interaction of a transverse particle with particles on the 1D atom
chain.

We consider small displacements around equilibrium positions. All the computations are
done at first order in the displacements xn, yn. Therefore, we can consider the pairwise
interaction potentials to be of harmonic type. Up to a normalization, and for a displacement
x from equilibrium position, V (x) = 1

2x2.

We first turn to the case θ = π
3 corresponding to a 2D regular lattice. At first order,

dn =



(

1

2
(1 + xn+1 − xn)

)2

+

(√
3

2
+ yn

)2



1/2

= 1 +
1

2
(xn+1 − xn) +

√
3

2
yn .

We now focus on the evolution of xn. Considering only interactions with the neighboring
particles on the horizontal line, and the additional interaction with the particle yn,

ẍn =
5

4
(xn+1 − 2xn + xn−1) +

√
3

2
(yn − yn−1) .

The equation governing the evolution of yn is:

ÿn = −3

2
yn −

√
3

2
(xn+1 − xn) .

More generally, consider the system of Figure 13 with a general angle θ. The equilibrium
distance is now d0 = 1

2 cos θ , and the corresponding normalized harmonic potential is V (d) =
1
2( d

d0 − 1)2.
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The normalized distance d̄n =
dn

d0
is now

d̄n = 1 + 2 cos2 θ(xn+1 − xn) + 2 sin θ cos θ · yn .

The additional longitudinal force exerted on xn by yn is then

fn = 2 cos2 θ [cos θ(xn+1 − xn) + sin θ · yn] .

Summing over N particles that do not interact with each other, each one being characterized
by an angle θi, the additional force on xn is seen to be of the form

Fn = AN (xn+1 − 2xn + xn−1) +

N∑

i=1

Ki(y
i
n − yi

n−1) ,

with Ki = 2 cos2 θi sin θi and AN =
∑N

i=1 2 cos3 θi. So, the equation of motion for xn is

ẍn = (1 + AN )(xn+1 − 2xn + xn−1) +
N∑

i

Ki(y
i
n − yi

n−1) . (7)

The equations for the yi
n can be obtained in the same way as before:

ÿi
n = −aiy

i
n − Ki(xn+1 − xn) . (8)

These linear perturbations are only valid for small displacements, i.e. when the approxi-
mation of the full potential by its harmonic part is justified. Notice moreover that we discard
any type of interaction of the y particles with each others.

However, this motivates an attempt to take into account missing degrees of freedom by
introducing a heat bath whose form will lead to equation of motion similar to (7) - (8). We
now turn to this task.

3.2 Description of the heat bath model

We consider the following Hamiltonian for a coupled system consisting of the system under
study (S) and a heat bath (B) described by bath variables {yj

n} (n ∈ Z, j = 1, . . . , N). To
use a heat bath is classical but was never done in the context of 1D chains to the author’s
knowledge.

The full Hamiltonian reads:

H({xn, yj
n}) = HS({xn}) + HSB({xn, yj

n}) (9)

where HS is given by (2), and

HSB({xn, yj
n}) =

∞∑

n=−∞

N∑

j=1

1

2
mj(ẏ

j
n)2 +

1

2
kj

(
γj(xn+1 − xn) − yj

n

)2
(10)

The interpretation is as follows: We consider each spring length δxn = xn+1 − xn as
thermostated by a heat bath {yj

n}, in the spirit of [7, 25]. The parameter kj is the spring

constant of the j-th oscillator, mj its mass, γj weights the coupling between ∆xn and y
j
n. Note
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that although more general cases can be considered [19, 21], the coupling is taken bilinear
in the variables, for it allows for an exact mathematical treatment. Indeed, a generalized
Langevin equation (GLE) can be easily recovered (see [7, 25] for seminal examples). To our
knowledge, it is also the only case where the limit N → ∞ can be rigorously justified.

Other physical motivations may be presented, such as the representation of extra variables
in Fourier modes leading to a Hamiltonian similar to (9), see [1]. These extra degrees of
freedom allow for some “transverse” radiation of the energy.

3.3 Derivation of the generalized Langevin equation

3.3.1 General procedure

Up to a rescaling of y
j
n, we may assume that all masses mj are 1. The only parameters left

for the coupling are the coupling factors γj.
We also introduce the pulsations ωj given by:

ωj =

(
kj

mj

)1/2

= k
1/2
j .

The equations of motion read:

ẍn = gN (xn+1 − xn) − gN (xn − xn−1) −
N∑

j=1

γjω
2
j (y

j
n − y

j
n−1) , (11)

ÿj
n = −ω2

j

(
yj

n − γj(xn+1 − xn)
)

, (12)

where

gN (x) = V ′(x) +




N∑

j=1

γ2
j ω2

j


x . (13)

Notice the strucutral similarities of (11) with (7) and of (12) with (8).
The procedure is classical [25]: We integrate (12) for {yj

n} and then insert the solutions
in (11) for {xn}. The integrability of the system is clear (once initial conditions in velocities
and displacements are set) when the force gN is globally Lipschitz. This is for example the
case when the sum

∑N
j=1 γ2

j ω2
j is finite, and when V ′ is globally Lipschitz, which is indeed

true for the Toda potential (5). For the Lennard-Jones potential (4) it remains true as long
as the energy of the system is finite (since the potential diverges when x → −1, the bound on
the total energy implies x > x0 > −1, and a bound on the Lipschitz constant can be given
by V ′(x0)).

The computation gives:

yj
n(t) = yj

n(0) cos(ωjt) +
ẏ

j
n(0)

ωj
sin(ωjt) +

∫ t

0
γjωj sin(ωjs)(xn+1 − xn)(t − s) ds .

Integrating by parts and inserting in (11):

ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+

∫ t

0
KN (s)(ẋn+1 − 2ẋn + ẋn−1)(t − s) ds + rN

n (t) ,
(14)
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where

KN (t) =
N∑

j=1

γ2
j ω2

j cos(ωjt) ,

rN
n (t) = −

N∑

j=1

(yj
n(0) − y

j
n−1(0))γjω

2
j cos(ωjt) + (ẏj

n(0) − ẏ
j
n−1(0))γjω

2
j

sin(ωjt)

ωj

−γ2
j kj cos(ωjt)(xn+1 − 2xn + xn−1)(0)

.

Formally, (14) looks like a GLE, provided rN
n is a random forcing term. The dissipation

term involves a memory kernel KN and an ”inner” friction ẋn+1 − 2ẋn + ẋn−1 (which is a
discrete quantity analogous to the second viscosity in hydrodynamics [13]). So, we are left
with a description of the system only in terms of {xn}. To further specify the terms, we have
to describe the choice of the heat bath spectrum {ωj}, the coupling constant γj and the initial
conditions for the bath variables.

3.3.2 Choice of the constants

We choose the values:

ωj = Ω

(
j

N

)k

, γ2
j ω2

j = λ2f2(ωj) (∆ω)j , f2(ω) =
2α

π

1

α2 + ω2
(15)

where (∆ω)j = ωj+1 − ωj, α, λ > 0 and k > 0.

The function f 2 is defined this way for reasons that will be made clear in section 3.4.
The heat bath spectrum {ωj} is more dense as N increases. The exponent k accounts for
the repartition of the pulsations. More general choices could be made, involving randomly
sampled pulsations [20]. However, we restrict ourselves to the case of deterministic pulsations.

We emphasize here once again that the constants chosen and the form of the coupling are
not new. A similar choice is made in [20]. The novelty is in the application to a 1D chain,
that is, we consider independent heat baths, each heat bath corresponding to a spring length.

We now motivate (15). Notice that we impose an upper bound to the heat bath spectrum:
this is related to the discreteness of the medium. Indeed, for a system at rest with particles
distant from 1, the higher pulsation allowed is π, corresponding to an oscillatory motion
of spatial period 2. When particles come closer (for example if the mean distance between
particles is a < 1), the higher pulsation increases to the value π

a since the lowest spatial
period is now 2a. Taking then lower bound dm for the minimal distance between neighbouing
particles, we get an upper bound for the spectrum, namely Ω = π

dm
.

The choice of the coupling constants between the system and the bath is an important
issue. The only purpose of the heat bath in a 1D shock simulation is to mimic some effects of
dimensionality, such as energy transfer to the tranverse modes. This energy transfer can be
quantified using (12). Indeed, the total energy transfer for a harmonic oscillator of pulsation
ω subjected to an external forcing σ is known [1]. More precisely, consider the following
harmonic oscillator:

z̈ + ω2z = h(t) , (16)

where h is an external time-dependent forcing term. Then the total energy transfered by the
external forcing to the system (from t = −∞ to t = +∞ for a system at rest at t = −∞) is

13



∆E = 1
2 |ĥ(ω)|2. The energy transfer to the heat bath occurs as described by (12). This gives

a total energy transfer for a spring xn+1 − xn considered initially at rest:

∆En =
1

2

N∑

j=1

γ2
j ω4

j |∆̂xn(ωj)|2 . (17)

As a first approximation, a shock profile can be described as a self-similar jump: ∆xn(t) =
δH(t − nτ), where δ < 0 is the jump amplitude, τ the shock speed, and H is the Heaviside

function. Then, |∆̂xn(ω)| = ω−1. The energy transfer (17) is then

∆En =
1

2

N∑

j=1

γ2
j ω2

j .

With the spectrum (15), the condition ∆En → C with 0 < C < ∞ is satisfied:

∆En =
λ2

2

N∑

j=1

f2(ωj)(∆ω)j →
λ2

2

∫ Ω

0
f2 = λ2σ(Ω) .

The last expression is bounded since f 2 is integrable (We recall

∫ ∞

0
f2 = 1). σ is a C∞

function. Notice that the above convergence results from the convergence of the Riemann
sum appearing on the left.

3.3.3 Choice of the initial conditions.

We consider initial conditions {yj
n(0), ẏ

j
n(0)} randomly drawn from a Gibbs distribution with

inverse temperature 2βy. This distribution is conditioned by the intial data {xn, ẋn}. The
quadratic nature of the Hamiltonian (9) shows that the Gibbs measure is Gaussian. More
precisely, we set

yj
n(0) = γj(xn+1 − xn)(0) +

(
1

2βykj

)1/2

χn
j (18)

ẏj
n(0) =

(
1

2βy

)1/2

µn
j (19)

where χn
j , µn

j ∼ N (0, 1) are independent sequences of standard Gaussian.
With these choices,

rN
n (t) =

1√
2βy

N∑

j=1

ωjγj cos(ωjt)(χ
j
n − χ

j
n−1) + ωjγj sin(ωjt)(µ

j
n − µ

j
n−1) . (20)

The probability space is induced by the mutually independent sequences of independently
and identically distributed (i.i.d.) random variables χ

j
n, µ

j
n. In fact, the random variables

χ
j
n − χ

j
n−1 and µ

j
n − µ

j
n−1 are also independent Gaussian random variables (with respect to

the index j), with mean 0 and variance 2. We denote them
√

2ξ
j
n,

√
2ηj

n. So,

rN
n (t) =

λ√
βy

N∑

j=1

f(ωj) cos(ωjt)ξ
j
n + f(ωj) sin(ωjt)η

j
n (∆ω)

1/2
j .
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For fixed N , the above expressions give

E(rN
n (t)rN

n (s)) =
1

βy
KN (t − s) . (21)

This relation is known as the fluctuation-dissipation relation, linking the random forcing term
and the memory kernel. The behavior of the system when N → ∞ is then an interesting
issue, that can help us to get a better understanding of the phenomenas at play.

3.4 Limit when N → ∞
3.4.1 Limit of the dissipation term

The memory kernel can be seen as a Riemann sum. The limit is then:

KN (t) = λ2
N∑

j=1

f2(ωj) cos(ωjt)(∆ω)j → λ2

∫ Ω

0
f2(ω) cos(ωt) dt =: λ2KΩ(t) (22)

when N → ∞, the convergence holding in L1[0, T ], T > 0.
The special choice (15) implies KΩ(t) → e−αt when Ω → ∞ in the norm of continuous

functions. The memory kernel is then exponentially decreasing.

3.4.2 Limit of the fluctuation term

The limit N → ∞ gives the convergence in a weak sense in C[0, T ] (see the Appendix and
[20]) toward a stochastic integral (Wiener integral):

rN
n (t) → λrΩ

n (t) :=
λ√
βy

∫ Ω

0
f(ω) cos(ωt)dW n,1

ω + f(ω) sin(ωt)dW n,2
ω (23)

where W
n,1
ω ,W

n,2
ω (n ∈ Z) are independent standard Brownian motions.

3.4.3 Limit of the equation

Formally, we obtain in the limit N → ∞ a stochastic integro-differential equation (IDE):

ẍn(t) = V ′(xn+1 − xn) − V ′(xn − xn−1)

+λ2

∫ t

0
KΩ(s)(ẋn+1 − 2ẋn + ẋn−1)(t − s) ds +

λ√
βy

rΩ
n (t) ,

(24)

with

KΩ(t) =

∫ Ω

0
f2(ω) cos(ωt)dω −−−−→

Ω→∞
e−αt ,

rΩ
n (t) =

∫ Ω

0
f(ω) cos(ωt)dW n,1

ω + f(ω) sin(ωt)dW n,2
ω ,

and the fluctuation-dissipation relation

E(rΩ
n (t)rΩ

n (s)) =
1

βy
KΩ(t − s) . (25)
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The random process rΩ
n is the stationary Gaussian process with zero mean and autocovariance

function KΩ. It is in fact an Ornstein-Uhlenbeck process.
The way the solutions of (14) converge to the solutions of (24) can be made rigorous by a

direct adaptation of the results of [20]: the convergence of xN
n solution of (14) to xn solution

of (24) is weak in C2[0, T ] (in the sense of continuous random processes). We refer to the
Appendix for some precisions on the proof.

The limiting equation (23) shows the main effects of the heat-bath interaction: The pure
1D equation (3) is supplemented by two terms, one dissipation term with an exponentially
decreasing memory, and a random forcing. Therefore the heat bath acts first as an energy
trap, absorbing some of the energy of the shock when it passes. This energy is then given
back to the system through the random forcing term to an amount precised by (25). This
allows the equilibration of the downstream domain. This heuristic interpretation is confirmed
by some numerical simulations of (14) in section 4.

3.5 Generalization of the system-bath interaction

The Hamiltonian of the system can be written in an abstract form as

H(x, yN ) =
1

2
|ẋ|2 + F (x) +

1

2
|M ˙yN |2 +

1

2
|Ax − ByN |2 (26)

where x = (. . . , xn−1, xn, xn+1, . . .) and yN = (. . . , y1
n−1, . . . , y

N
n−1, y

1
n, . . . , yN

n , . . .). The ma-
trix M is a mass matrix (operator), A and B are general operators, F (x) =

∑∞
n=−∞ V (xn+1−

xn).
In the previous example, B was diagonal. But more generally, B could be considered

as tridiagonal: this could model the interaction of two neighboring heat baths linked to
neighboring spring lengths.

4 Numerical results

We integrate the equations of motion (11), (12) for a given N . The system is initialized
with velocities and displacements that are randomly sampled, using (18) and (19) in the y-

coordinates, and (6) in the x coordinates. Note that the quantities
1

βx
and

1

βy
may differ.

The system is then first let to evolve freely, so that the coupling between transverse and
longitudinal directions starts.

Shock waves are generated using a piston in the same fashion as in 2.2.3, giving Figures
14 to 16. We then study relaxation waves (Figures 20 to 21).

The time-step ∆t is chosen to ensure a relative energy conservation of 10−5. Typically,
∆t = 0.01. The spectrum density parameter k in (15) is taken to be k = 1. Other choices
lead to the same kind of simulation results.

Notice that, if L represents the size of the 1D chain, the algorithmic complexity scales as
O(LN). The computations were made on an usual desktop computer (Pentium 1.0 GHz),
and only took about a couple of hours for the most demanding ones.

4.1 Sustained shock waves

Figures 14 to 19 show the different patterns obtained in the case of a system coupled to a
heat bath. The profiles of the thermalized shock of Figures 6 to 8 are reproduced on the right

16



of each figure for the sake of comparison.

Notice that the upper bound to the spectrum, Ω, is of order π since the shock is not too
strong, and hence the medium is not too compressed. The parameter α is taken less or equal
to Ω so that KΩ and σ(Ω) are sufficiently close from their limiting values. The parameter λ is
fitted numerically to obtain sharp profiles. If λ is too small, the coupling is too weak and the
profiles look like the pure 1D ones. If λ is too high, the forcing may be too strong, leading to
the collapse of two neighboring particles. A good choice of λ involves a good rate of energy
transfer to the transverse modes.

The results show that the introduction of transverse degrees of freedom has important
consequences on the pure 1D pattern. The soliton train at the front is destroyed, and the
shock thickness is constant along time, and indeed as sharp as possible in view of the value
of λ, instead of growing in time as in the pure 1D case.

This is to the author’s knowledge the first result of this kind for a 1D chain. Thus a
steady regime can now be reached, and these simulations really seem to deserve the name
“shock waves”. In contrast to the pure 1D model results, these simulations have now the
same qualitative behavior as 3D simulations or experiments.
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Figure 14: Relative displacement profiles for the system coupled to a heat bath (left), and
comparison with a thermalized shock (right). For the thermalized shock, the parameters are
up = 0.3, b = 10 and 1√

βx

= 0.01. For the system coupled to a heat bath, the additional

parameters are 1√
βy

= 0.02, α = 5, Ω = 10, λ = 0.5. The number of transverse oscillators is

N = 25.

4.2 Rarefaction waves

As can be seen in Figures 20 and 21, a rarefaction wave develops and progressively weakens
the shock (notice that the velocities decrease and that the relative displacement increase
compared to Figures 14 to 16). This is indeed the expected physical behavior for a viscous
fluid. This dissipation can be interpreted as energy transfer to the transverse modes.

Besides, no soliton train survives, contrarily to the pure 1D case, where the solitons are
not destroyed and move on unperturbed. In the pure 1D case, there is no weakening of the
initial wave, only dispersion. Once again, to our knowledge, this is the first time a 1D discrete
model behaves as expected.
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Figure 15: Velocity profiles for the same simulations as in Figure 14.
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Figure 16: Local density profiles for the same simulations as in Figure 14.

5 Conclusion

This study indicates a possible track to thermostate a 1D lattice in a deterministic way, with-
out fixing the temperature as would require a Langevin simulation. Indeed, when the shock
passes, the temperature changes, and a Langevin simulation asks for an a priori knowledge
of the temperature in the shocked region.

The interactions of the chain and the bath naturally lead to memory effects, and can
be described by a memory kernel, at least in some limiting regime. Numerical experiments
illustrate the success of this method.

This model indeed qualitatively reproduces the most important features of shock waves
(sharpness of the shock front, existence of relaxation waves, equilibration after the shock has
passed). This is in contrast with the classical pure 1D model.

However, this heat-bath thermalization is better suited for shocks that are not too strong.
On the other hand, for strong shocks, nonlinear effects should play an important role in the
energy transfer in the transverse modes, and a bilinear coupling such as (10) may not be a
relevant modelling. In this case, a nonlinear coupling in the spirit of [19] should be more
adapted.

An interesting issue is now to compare those reduced 1D profiles with profiles arising from
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Figure 17: Same parameters as for Figure 14, except for the system coupled to a heat bath,
N = 100.
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Figure 18: Velocity profiles for the same simulations as in Figure 14.

full 3D simulations, and to precise the comparison in a more quantitative way.
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Appendix

The proof of the convergence of the solutions of (14) to the solutions of (24) can be done
as in [20]. We have to extend it here to the multi-dimensional case in order to deal with
convergence of sequences.

We note xN
n the solution of (14) for a given number N of transverse variables. We set

δxN
n = xN

n+1 − xN
n . The solution of (24) is noted xn. We set λ = 1 to simplify notations. The

extension to more general values of λ is straightforward.
The space of real sequences in noted H = R

�
, and is equiped with the usual l∞-norm.

For a sequence z = {zn} ∈ H:
|z|l∞ = sup

n∈ �
|zn| .

The space H endowed with this norm is then a separable complete metric space.
Consider the array of spring lenghts

QN =




...
δxN

n
...




and the array of random forcing terms

GN =
1

βy




...
rN
n
...


 .

We similarly define Q and G for the sequence {xn}.
The linear operator A, acting on sequences z = {zn} ∈ H, is defined by Az = {Azn} =

{zn+1 − 2zn + zn−1}. It follows |Az|l∞ ≤ 4|z|l∞ .
Equation (14) can be rewritten as (recall λ = 1)

Q̈N = AF (QN ) +

∫ t

0
KN (s)AQ̇N (t − s) ds + GN (t) .

Introducing KN (t) =
∫ t
0 KN (s) ds and integrating the convolution term by parts, (14)

becomes

Q̈N −
(

AF (QN ) +

∫ t

0
KN (s)AQ̈N (t − s) ds

)
= GN (t) − AQ̇N (0)KN (t) . (27)

This equation can be rewritten under a fixed point form as

(Id + RN )Q̈N (t) = FN (t) . (28)
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As F is Lipschitz, ||RN || is small for small T . An usual Picard argument gives the existence
and uniqueness of Q̈N ∈ C([0, T ],H) solving (28) for T small enough (see [12], section 12, for
an analogous proof). Standard results also give the continuity of Q̈N on KN ∈ L1[0, T ] and
UN = GN − AQN (0)KN ∈ C([0, T ],H). The mapping (KN , UN ) 7→ QN is then continuous
from L1[0, T ] × C([0, T ],H) to C([0, T ],H) with the corresponding norms.

The convergence of KN in L1[0, T ] is straightforward, and implies the convergence of KN

in L1[0, T ].
The convergence of UN results from the convergence of KN ∈ L1[0, T ] and from the

convergence of GN to G (in a way to precise). We refer to [11], section VI.4., Theorem 2.
Considering the collection of continuous real-valued stochastic processes GN with values in
H (which is a separable complete metric space), we have to show:

1. The finite-dimensional distributions of GN weakly converge to those of G, which is a
continuous process.

2. A tightness inequality of the form

E
[
|GN (t + u) − GN (t)|2l∞

]
≤ C|u| .

Then it follows GN ⇒ G in C([0, T ],H)-weak.
These two points are straightforward generalizations of the proof in [20] (in the case of

non-random pulsations ωj) when extended to sequences with values in H. Point 1 can be
verified since the components of GN are i.i.d. Gaussian random variables. We then get the
convergence UN ⇒ U in C([0, T ],H)-weak.

The convergences of KN to K in L1[0, T ] and UN to U in C([0, T ],H) in a weak sense
then give the convergence of Q̈N in C([0, T ],H) in a weak sense. Therefore, QN ⇒ Q in
C2([0, T ],H)-weak. This implies the convergence in a weak sense for all the components of
QN for T small enough.

For general t, consider e−γtQN for γ large enough, and rescale appopriately the operators
appearing in (28). The proof then follows the same lines.
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