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Abstract In this paper, we study a new model for dislocation dynamics with a
mean curvature term. We prove a short time existence and uniqueness result for our
model. We also prove a lipschitz a priori estimate for a class of second order operator
and an estimate of the the modulus of continuity in time of the solution by using a
regularization of the initial condition. As far as we know, these two ideas, which are
crucial for our argument to work, are new.
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1 Introduction

1 Physical motivation

Plastic deformation is mainly due to the movement of linear defects called dislocations, whose
typical length in metallic alloys is of the order of 10~%m and thickness of the order of 10~?m.
In the face centered cubic structure, dislocations move in well defined cristallographic planes.
Since the beginning of the 90’s, the research field of dislocation is enjoying a new boom, in
particular thanks to the power of computers which now makes possible to simulate dislocations
in a 3D domain. In certain models in 3D, dislocations are discribed, for example, by the
interconnection of straight dislocation segments, with only a few given orientations (see for
example Devincre, Kubin [18]).

More recently, a new approch has been introduced:phase field model of dislocations (see
for example Rodney, Le Bouar, Finel [26] and Garroni, Miiller [22]). One of the advantage
of this method is that the possible topological changes during the dislocation movement are

automatically taken into account. For a more complete introduction on dislocations and for



more references, we refer to Alvarez, Hoch, Le Bouar, Monneau [3] and [4].

Here, we consider a new model which contains a mean curvature term. In order to model
the movement of a dislocation « in its crystallographic plane, we assume that I' is the edge of
a smooth bounded set Q C R? and we define:

1 in €,
p:{o in  R2/Q. (1)

Then, we consider the energy associated to this dislocation of the form:

5:/}1@—%(@*/)),0—1-/11’7(77),

where 77 is the normal to the curve, the kernel ¢y depends only on the space variables, x denotes
the convolution in space and < is an energy of tension line (see Remark 1.1 for an explicit
example of ¢y and 7). In the following section, we derive in a heuristic way the dislpacement
velocity of the curve I' in the normal direction by computing the first variation of the energy.
This gives a velocity ¢ = (¢o * p) + A(7)x, where k is the mean curvature, A = v + +” and
%§ = ¢|Dp|. We can then reformulate the problem by a “level set” equation on the set {u < 0}

of a smooth function w which then satisfies:

w = (co  [u] + A(®)r)| D,

with:
] 1 if wu>0
= Ul = s
P 0 if u<o0 @
2
- _ D
= [Dul
Kk = div %

2 Description of the problem

We describe the model in an heuristic way. Let us consider an orthonormal basis (e, es, e3) of
R? and we denote the coordinates by x = (1, 22, 23). The energy of the dislocation along the
line is singular. To solve this problem, Brown [11], [12] then Barnett [9] and Gavazza, Barnett
[10] propose to surround the dislocation I" by a tube T, of size € and to consider the energy of
the form:

1
£ = Aeclass.eclass_i_/ 'YO(ﬁ)v (3)

R3\T, 2 T.

class

where A represents the elastic coefficients, vy is an energy of tension line and e is a defor-

mation and is solution of:
div(Aecass) = 0,
inc(e??%%) = —inc(pdo(3)e’) where e = 2(b® e3 + e3 @ b), (4)

e“l253(z) — 0 when |z| — oo.



Figure 1: The cutoff tube of radius e.

Here, T' belongs to the plane (e, e2), the vector eg is the vector normal to the plane, b € R? is
a constant vector (called Burgers vector) associated to the dislocation line and the operator of
incompatibility inc is defined for a field e = (e;;) € S3, the set of symetric 3 x 3 matrix, by:

3
(inc(e);; = > €ityinCijujaOia O Cingr 123 = 1,2,3
i1,51=1
where we note as usual
if  (ijk) 1is a positive permutation of (123),
gijk =19 —1 if  (ijk) is a negative permutation of (123),
0 if two indices are the same.

The solution e/ of (4) satisfies e“/®** ~ L, for r small, where r is the distance to the dislocation
(cf Alvarez et al. [3] for a description of the physical model). Finally, the cutoff tube is
represented by the figure 1. We consider an approximate model of this one where the field e is

class

given by e = x xe , with x a regularizing core function (connected to €) to be ajusted, and

the energy (3) is replaced by the following energy:

1
&= —Ae-e+n/'yo(ﬁ),
R3 2 r

where 7 is to be adjusted and connected to e. We set (77) = nyo(7). In order to compute the
dislocation dynamics, we compute the first variation of the energy (see Alvarez et al. [3]). We
defined I'5(s) = I'(s) + 0h(s).7ir(s). Then, the following holds

= / c.h,
§=0 r

with ¢ = ¢ox p+ \(7)k, where ¢y = co(x1,x2) only depends on A and x, A\(77) = (y(77) +~"(7)).
Thus, the evolution is postulated to be %? = ¢|Dp| with p defined in (1) and I' = 9.

_dE(Ts)
dd

REMARK 1.1 (Explicit example for ¢y and ~)

If b= |ble1, then, for the isotropic elasticity, one can give the value of cy:

a(e) = Y o/ (M)
? V& +&8



and the form of v:

1—v

where 7 = (ny,n2) is the normal vector to the curve, C is a prefactor (which depends on the

1
(i) =C <n% + n%) ,

Burgers vector and elasticity coefficients), ( > 0 is a physical parameter (depending on the
material), v is the Poisson ratio and p is the Lamé coefficient. We refer to Alvarez et al. [3]
section 6 for the expression of co and to Hirth, Lothe [23] chapter 6 and 7 for the form of ~.

@:/—czgo.
dt T

The model we study is pertinent with respect to the one studying in Alvarez et al. [3], since

REMARK 1.2 Formally, we have:

we add a mean curvature term which better approximates the energy near the dislocation. We

found this term in Gavazza, Barnett [10] and Brown [11].

3 Main result

The goal of the paper is to prove short time existence and uniqueness of the function u. Since
the Hamiltonian intervening in the equation is not continuous (and even not defined when
|Dul| is zero), a natural framework for the study is the theory of viscosity solutions (for a good
introduction to this theory, we refer to Barles [6], [7], Crandall, Ishii, Lions [15], Crandall,
Lions [16], [17], Ishii [24] and Ishii, Lions [25] and for an introduction to viscosity solution for
evolving fronts, we refer to Ambrosio [5]|, Barles, Soner, Souganidis [8], Chen, Giga, Goto [13],
Evans [20], Evans, Spruck [21] and Souganidis [28]). We consider the following problem : find

u(z,t) solution of

{ut = (co * [u])|Du| — F(Du, D*u) in R"™ x (0,T), 5

u(z,t =0) = up(z) in R,
where [u] is the characteristic function of the set {u > 0} (see (2)). Moreover, we assume
co € Ly (R™) N BV (R™), (6)
where BV (R™) is the space of bounded variations functions and
Lg(R™) ={f:R" > R: HfHLiC;ft(Rn) < oo}
with
1l zge, wn) = /Rn 1 £1l 2o (@)

and Q(x) is the unit square centered at x:
1
Qz) = {x/ ER™: |o; — )] < 5}

The assumptions (H F') on the operator I are the next ones:



(i) The operator F is elliptic, ie, VX, Y € S", Vp € R,
if X <Y then F(p,X) > F(p,Y), (7)
where S™ (the set of symetric n x n matrix) is equiped with its natural order.
(ii) F is locally bounded on R™ x S™, continuous on R™\{0} x S™ and
F*(0,0) = Fx(0,0) =0, (8)

where F* (resp. F\) is the upper-semicontinous (usc) envelope (resp. lower semicontinu-
ous (Isc) envelope) of F, ie the smallest usc function > F' (resp. the greatest lsc function
<F).

(iii) F' is geometric, ie
F(vp,vA+ pup @ p) = vF(p, A), Vv >0,ueR,Ae S 9)
The main result is:

THEOREM 1.3 (Short time existence and uniqueness)

Let ug : R™ — R be a lipshitz continuous function on R™ such that

|Dug| < By in R" (10)
and 5
a—z: >by >0 inR" (11)

Let cq satisfying (6). Then, under the assumptions (HF'), there exists

1 b b 1 1 by € n
T* = inf 71n<1+_0>, -0 7 (142 |col gy (®n)
|CO|BV(R") 2By By 16||CO||L?;?¢(R”) |CO|BV(]R”) By 8||CO||Lio:t

such that there exists a unique viscosity solution of the problem (5) in R™ x [0,T*). Moreover,

the solution satisfies

|Du(z,t)] < 2By on R" x[0,77), (12)
%(w,t) >bp/2>0 on R"xI[0,TF). (13)

REMARK 1.4 This theorem gives, in particular, in the case of dimension two, and for

o0 0(E)

with X > 0 and smooth, short time existence and uniqueness for dislocation dynamics with a

mean curvature term.



REMARK 1.5 A short time existence and uniqueness result for the problem:

ug = (co * [u] + c1)|Dul in R? x (0,T),
u(z,t = 0) = up(x) in R?,

is proved by Alvarez, Hoch, Le Bouar, Monneau [3], [4] and Alvarez, Carlini, Monneau, Rouy
[2] and a long time ezistence and uniqueness result for positive velocity is proved by Alvarez,
Cardaliaguet, Monneau [1]. Our problem is more general than this one since we add a second

order term.

For the proof of this theorem, we will use a fix point method. To do that, we will need to prove
a lipschitz a priori estimate for second order operator of the form H(z,t, Du) + F(Du, D?u)
with smooth initial condition. We will also prove an estimate of the modulus of continuity in
time of the solution by using a regularization of the initial condition. As far as we know, these

two ideas, which are crucial for our argument to work, are new.

4 Organization of the article

In section 2, we give some preliminary results on a local problem. First, in section 2.1, we
recall the definition of viscosity solutions and we give an existence and uniqueness result for
the local problem. Then, in section 2.2, we give some results on the regularity of the solution
of the local problem. In section 3, we prove Theorem 1.3 for the non-local problem. Finally,

we give, in appendix, the proof of the parabolic Ishii Lemma used in section 2.

2 Preliminary results for a local problem

Given T > 0, we consider the following problem:

{ut + G(z,t, Du, D?>u) = 0 in (0,7T) x R", (15)

u(z,t =0) = up(z) in R,
with the following assumptions (Hyp):
(i) G(z,t,p, X) = —c(z,t)|p| + F(p, X) and F satisfies the assumptions (HF),

(i) ¢ : R" x (0,T) — R is bounded, lipschitz in space (we note L. its lipschitz constant)
and uniformly continuous in time (we note w. its modulus of continuity, defined by:
Ve e R", Vs, t € [OaT)7 \c(x,t) - C(I’,S)‘ < wc(‘t - SD)’

(iii) wup is lipschitz (we note By its lipschitz constant).



1 Existence and uniqueness for the problem (15)

We define the following sets:
USC(R" x [0,T)) = {u:R" x [0,T7) — R locally bounded, upper semicontinuous}
LSC(R" x [0,T)) = {u: R" x [0,T) — R locally bounded, lower semicontinuous}

We then define the solutions of (15) in the following way:

DErFINITION 2.1 (Viscosity subsolution, supersolution and solution)
A function u € USC(R™ x [0,T)) is a viscosity subsolution of (15) if it satisfies:

(i) w(z,t =0) < ug(z) in R",
(ii) for every (xo,to) € R™ x (0,T) and for every test function ® : (R™ x (0,T)) — R, C! in

time and C? in space, that is tangent from above to u at (xg,to), the following holds:

O
57 (@0, to) + G (z0,t0, D®, D*®) < 0.

A function v € LSC(R™ x [0,T)) is a viscosity supersolution of (15) if it satisfies:
(i) (.t = 0) > wolx) in B,
(ii) for every (zo,tp) € R™ x (0,T) and for every test function ® : (R" x [0,T)) — R, C! in
time and C? in space, that is tangent from below to v at (zo,t0), the following holds:

0P
E(l‘o,to) +G* (1‘0, to, D®P, D2(I>) > 0.
A function u € C°(R"™ x [0,T)) is a viscosity solution of (15) if, and only if, it is a sub and a

supersolution of (15).

REMARK 2.2 The condition ¢ is C' in time and C? in space means that ¢ is differentiable in

time, twice differentiable in space and ¢, ¢y, Db, D2¢ are continuous in space and time.

We give another equivalent definition. In order to do that, we define the parabolic sub and
superdifferential. If u : R™ x (0,7) — R, then P*u is defined by (a,p,X) € R x R" x S
belongs to Pt u(x,t) if (x,t) € R x (0,T) and

—

u(y,s) <u(z,t)+als —t) + (p,y —x) + =(X(y —x),y — ) + o (|s —t| + |y — z|*)

[\)

as R x (0,7) 3 (y,s) — (x,t). Similarly, P~u = —P*(—u). We also define the two following
sets:
(a,p, X) € R X R" x 8™ I (n,tn,an,Pn, Xn) € R X R x R x R™ x ™
Pru(z,t) = such that (a,pn, Xn) € Pru(zn,, t,)
and (2, tn, w(Tn, tn), @n, Py, Xn) — (2,1, u(z,1),a,p, X)



The set P~ u(z,t) is defined in a similar way. We then have the following definition for the
solutions of (15), which is equivalent to the definition 2.1 (see Crandall et al. [15]):

DEFINITION 2.3 (Equivalent definition for viscosity solutions)
A function u € USC(R™ x [0,T)) is a viscosity subsolution of (15) if it satisfies:

(i) u(z,t =0) <ugp(z) in R,
(i1) for every (z,t) € R" x (0,T) and for every (a,p, X) € PTu(x,t), we have:

a+ Gy (z,t,p, X) <0.

A function v € LSC(R™ x [0,T)) is a viscosity supersolution of (15) if it satisfies:
(i) v(z,t =0) > ug(x) in R",
(ii) for every (x,t) € R™ x (0,T) and for every (a,p, X) € P~ v(x,t), we have:

a+ Gy (z,t,p, X) > 0.

A function v € C°(R"™ x [0,T)) is a viscosity solution of (15) if, and only if, it is a sub and a
supersolution of (15).

Assumption (C) We say that an usc function w satisfies the compacity assumption (C') if for
every (z,s) € R" x R, there exists r > 0 such that, for every M > 0, there exists C' such that,
[(z,t) = (z,8)| <
(1,p, X) € Ptw(z,t) =7<C.
jw(z, t)] + |p| + | X] < M

We recall the parabolic Ishii lemma, proved in appendix (section 4):

LEMMA 2.4 (Parabolic Ishii)

Let U and V be open sets of R", u € USC(UxR") andv € LSC(V xR™). Let¢: UxV xRt —
R of class C?. Assume that (z,y,t) — u(x,t) —v(y,t) — ¢(z,y,t) reaches a local mazimum in
(z,y,t) € U x V x Rf. We note 7 = 0,¢(Z,7,t), p1 = Dy¢p(Z,7,1), p2 = —Dyp(Z,7,t) and
A = D?¢(z,9,t). Assume also that u and —v satisfy the assumption (C). Then, for every
a > 0 such that aA < I, there exists 71, 2 € R and X, Y € S™ such that:

_ T =T — T2, _
(Tlapl’X) € P+u(f,f), (TQ,I)QaY) € ’P_’U(g,f),

71(6 ?)g(i _OY>§(I—aA)1A.

REMARK 2.5 The assumption (C) is satisfied by u and —v as soon as u is a subsolution and v

s a supersolution of a parabolic equation.



We also recall the fundamental property of geometric equations:

LEMMA 2.6 (Fundamental property of geometric equations)
Let 0 : R — R be a continuous, non decreasing scalar function and u be a subsolution (respec-

tively a supersolution) of (15), then 0(u) is also a subsolution (resp. a supersolution).

For the proof of this Lemma, we refer to Soner [27] (Theorem 1.11).

We now prove the following comparison principle:

THEOREM 2.7 (Comparison principle)

Let u € USC(R™ x [0,T)) be a subsolution and v € LSC(R™ x [0,T)) be a supersolution of (15).
Assume that ug(x) = u(0,2) < v(0,x) = vo(x) in R™, then, under the assumptions (Hy), u < v
in R™ x [0, 7).

Proof of theorem 2.7

Let us consider for the moment that u and v are bounded. Moreover, we remark that for v > 0,

U = u — 7 is a subsolution of (15) and satisfies, in the viscosity sense:

~ ~ 2~ - -
Ut+G*($,t,DU,D U)Sm Sﬁ
Indeed, D@ = Du, D*4 = D?u and @y = uy — ﬁ So:
iy + Gy (@, t, Dit, D) = ——— 4wy + G, (2, t, Du, D*u) < — L
Y ) (T—t)Q Y ) —_ (T—t)Q

This is written in a formal way but it is easy to show it by using test functions.
Since u < v follows from @ < v in the limit v — 0, it will simply suffice to prove the comparison

principle under the additional assumptions:

-
G, (z,t, Du, D*u) < — < 0
ut+ *(:Ea , YU, u) = T2 < ’ (]_6)
lim u(t, z) = —o0.
t—T
We set:
M = sup {u(z,t) —v(x,t)}.

(2,t)ER" X [0,T)
We want to show that M < 0. Assume M > 0. So, there exists (z*,t*) such that u(z*,t*) —

v(x*,t*) > 0. Then, we duplicate the variables in space by considering:

4

_ T —y o

M = sup {u(m,t) —u(y,t) — | 1 | -3 (!m\z + \y!Q)} .
(z,y,t)ER™ xR" % [0,T) €

We remark that M > u(x*,t*) — v(z*,t*) — alz*|?, and so M > 0 for a small enough. Thanks
to the term $(|z[* + |y[?), this supremum is reached (because u and v are bounded). We then

note (Z,y,t) a point of maximum. We will now use the following lemma:



LEMMA 2.8 (Passing to the limit in « and ¢)

We set M' = lim sup (u(z,t) —v(y,t)). Then, the following holds:
h=0|y—z|<n, te[0,T)

(i) lim az = lim ay =0,
a—0 a—0

(ii) lim |z —g|* =0,
e—0

(iii) lim lim A = M,

e—0a—0

1
. li li LR S
(iv) lim lim =|z — 5" =0,

(v) lim lim o(|z* + |5]*) = 0.
e—0a—0

We finish the proof of the theorem before proving this lemma.

Then, we distinguish two cases:

1%¢ case: Ve > 0,3 € (0,¢) such that ¢ = 0. Then, there exists sequences ¢, — 0 and a;,, — 0 such
that £, = 0 and:

0< M < u(a’cn,O) - U(gruo) < UO(i'n) - Uo(ﬂn) < BO(‘in - gn’)a
where By is the lipschitz constant of ug. We then obtain a contradiction because |z, —

Un| — O (see the item 2. of Lemma 2.8).

2"d case: Assume that there exists e > 0 such that for every a € (0,¢), we have £ > 0. We can

choose € small enough (else, we apply the argument of the first case), ie, such that:

= _ 4
|z Ey’ < QTZLC' (17)
We set a(z,t) = u(z,t) — ¢|z|? and 9(z,t) = v(z,t) + $|z[*. Then, we have:
M = sup {ﬁ(m,t) — 0(y,t) — M} .
(2,y,£)ER™ xR % [0,T") de
Then, we consider the test function ¢(x,y,t) = % and we set p = x — y. We use the

parabolic Ishii Lemma. With the same notations, the following holds:

T =0,



_IpPp _
b1 = = P2,
€
2 9 VAREY/A I p®p
_E|p| (—Z 7 ) avec Z = —+ BN

and for every (§ such that §A < I, there exists X, Y € S™ and two reals 7 and 75 such
that:

2 1)=(3 3 )su-aar

The last inequality implies that X <Y. We use the following lemma;:

LEMMA 2.9 (Matrix estimates)

We have the following estimates on the matriz A

—A<I

204 o
p
4] <

if 6 = ——, then (I — 5A) " A < 2||A||T < _| 521,

2IIAII

AC.
where |A]| = sup M

CeRQn C

We finish the proof of the theorem before proving this lemma.

We can rewrite the matrix inequality in the following form:

—121p2 (T 0 (X 0 <12|13|2 I0
€ o01)=-\0 -Y )~ ¢ 0 1)

Thus X and Y are bounded independently of « (it is already the case for p according to
item 2. of Lemma 2.8). In particular, #WI <X <L %I. So there exists a;,, — 0

such that ¢ — t, P — Poo and (X,Y) — (X, Yoo). Moreover, since u is a subsolution

and v is a supersolution, by using the condition (16), one finds:

PP

1 + G, <x t, ——i—anx,X—i—anI) <0
€

T2




Then, by using the ellipticity of the equation and the matrix inequality X <Y, we obtain:

T+ G* < ’p‘p—any,X—anI>20.
€
Subtracting the two inequalities, yiedls:
=+ Gl 1, Pl Lt an, X+ anl) < G311, |p|€p — g, X — anl)
ie:
Ipl2 Ipl P
c(z,1) + anZ| — c(y,1) any
2 =12~
_F, <’p‘ + ani, X+anl> +F <m —ang, X — oan> > %
€ €

We let o go to 0. By using item 1 of Lemma 2.8 and the fact that ¢ is bounded, we

obtain:

3 2 2
(et ol ) P (PP ) g e (D ) >

Moreover,

3 L 4
(@, — (g, ) P2 < LelPcl”,
€ €

where L. is the Lipshitz constant of ¢. This implies:

Lc|p00|4 |poo|2poo * |poo|2poo Y
_— = _ _— >
; F, ; s Xoo | + F . y Xoo | > T2

By using (17), we obtain:

¥ [Poc]?Poo « { IPoc]?Poo v
T p, (Pl P pr(PoclPoo v ) 5 T
272 ( € OO) * ( € ) =12

We then distinguish two cases:

15t case: poo = 0. In this case, we have X, = 0 and F,(0,0) = F*(0,0) = 0. So, we obtain:

B
0> —
-_ 2T27

what is absurd.
20d case: po # 0. In this case F, = F* = F. So, we have:

B
0> —
- 2T2’

what is absurd.



Figure 2: A truncature function 7}.

To achieve the proof in the case where the functions are not bounded, it suffices to use the
fundamental property of geometric equations. We then consider the truncature functions T}
(see figure 2). For every k, we then have Ti(u) < Ti(v) and by letting k£ go to infinity, we
obtain the result. O

We now prove Lemma 2.8.
Proof of Lemma 2.8
The function (z,y) — wu(z,t) — v(y,t) is bounded (because u and v are bounded). Moreover,
we have assumed that M > 0. We then have:
z —gI*
4e

[072P _
+ 502+ 151 < C
>From which
o _
% (e + 1) < ©
and
’j - 9’4 < C€,

e—0 a—0 a—0

We set M, = sup (u(z,t) —
|z—y|<h, t€[0,T)

v(yl th)y > My, — % with |2 — y"| < h (2" and y" do not depend on a). We then have

and so hm|:L“—y]—Oand lim az = hm ay = 0.
v(y,1t)

). Let (z!,y" th) be such that w(al th) —

n»'n

- e = h|2 h2
Mh n de 9 (’xn +’yn’)
h h|4
h h 25 — Yl @
<u(al, th) = v(yh, th) — =2 — 2 (a2 + lyhf?)

<M

Su(fv E) - U(gv E)



We let a go to 0:
1 At

My — — — — <hm1nf( (z,t) —v(y,t))
n 4e a—0
Shmsup(u(‘raf) - U(gvf))

a—0

(We have used the fact that 2" and y” do not depend on «). We let h go to 0 and we obtain:

M — 1 <hm1nf( (Z,t) —v(y,t))

n a—0

<lim Sup(u HZ’, E) - U(y, E))

a—0

We let € go to 0:

1
M — = <hm1nfhm1nf( w(Z,t) — v(y,t))

n e—0 a—0

<lim sup lim sup(u(Z, t) — v(y, t))

e—0 a—0

< lim sup lim sup sup  (u(z,t) — v(y,t))

1
e—0 a—0 |o—y|<ced

<limsup sup (u(z,t)—v(y,t))
h—0 " |z—y|<h

=M.

so lim lim w(Z,y) — v(y,t) = M'. In the same way, we have lim hm M = M'. Therefore,

e—0a—0 e—0a—0

L Z—gl" a0 ) - - Y _ ! r_
1%3—%<T+§(’m’ +91%) ) = lim lim (u(z,9) —v(g,t) = M) = M' = M' = 0.

a—0
So,
~ 4
lim lim L ] =0,
e—0 oz—»O €
lim lim = (\9612 +1g1%) =
e—0a—0
What achieves the proof of Lemma 2.8. O

We now prove Lemma 2.9.

Proof of Lemma 2.9
By definition of the norm of A, we have: AC C < |4, so % I({.C, what gives the first result
of the lemma.

Let ¢ = < gl > € R?". We then have:
2

ACC=2IP 26~ )G - @)
<CPPZGG+ G G)

4
<=IpP11Z gl



So, it suffices to show that ||Z| < 3:

2 — —

Zeg :E+p§’§2p§
&

-2

3 2

555 .

+ &2

For the last item, it suffices to notice that if B > 0 and C' > 0 with B,C € S™ such that
BC = CB, then CB > 0. Indeed, CB£.£ = 03%5.3%5 > 0 (we have used the fact that
B is positive, then symetric and finally that C is positive). So, if B > C and D > 0 with
DB —-C) = (B—-C)D, then DB > DC'. So, it suffices to show that A < 2|/ A||(I —0A4) =
2||A|I — A, ie A <||A||I what is true by definition of the norm of A.

What achieves the proof of Lemma 2.9. O

We now give an existence result by using the classic Perron’s method (for the proof, we

refer to Droniou, Imbert [19]):

THEOREM 2.10 (Existence and uniqueness)
Assume that there exists a subsolution U~ € USC(R"™ x [0,T)) and a supersolution Ut €
LSC(R™ x [0,T)) of (15) such that U™ (x,0) = U™ (z,0) = ug(z), then, there exists a unique

continuous solution of (15).

We now construct a sub and a supersolution which satisfy the initial condition. We begin
by studying the problem u; + F(Du, D?u) = 0. We have the following Lemma:

LeEmMMA 2.11 (Existence and uniqueness, case ¢ = 0)

There exists a unique solution u of the problem

{ut + F(Du, D*u) = 0, (18)

u(z,0) = up(z).

Moreover, u is uniformly continuous in time and its moudulus of continuity, wr, depends only

on the lipschitz constant of ug, By. So, u satisfies:
Vt,s € [0,T), Ve € R"  |u(z,t) —u(z,s)| <wp(|t —s|).

Proof of Lemma 2.11
We assume, in a first time, that up € CZ = {u C?,3 C, ||Du||p=, ||D?ul|r~ < C}. We
set ut = wy £+ O1t with O = infyepn{—F*(Dug, D*ug), F.(Dug, D?*ug)} (C; depends only

on the bounds of Dug and D?ug). Tt then easy to checks that u* is a supersolution and v~



is a subsolution. Then, there exists a unique solution of (18) (Theorem 2.10) and, by the

comparison principle, the following holds:
vVt €[0,T), Vo € R", |u(z,t) —up(x)| < Cht. (19)

We then set v(z,t) = u(x,t + h). So v is solution of (18) and, by the comparison principle, we
obtain:
w(x, t + h) — u(x, t) < sup(u(z, h) —ug) < Cih.

Similarly, we have:
u(z,t) —u(z,t + h) <sup(u(z,h) —ug) < Chh,

and so:
lu(z,t + h) — u(z,t)| < sup(u(x, h) —ug) < Cih.

We now assume that ug is only lipschitz. We set u = ug*p, where p, is a regularizing sequence,
ie p. = 2 p(2) where p € C2°(R",R) and satisfies:

p >0, supp(p) C B(0,1), / p(x)dx = 1.

Then u? € C? and || Dul| oo gy, [[D*u| oo (mn) < 222, Indeed:

Du0(x)| =|Dup * pel2)|
| Dupte - y)pe(y)dy‘
RTL
< [ IDuste — )l pelw)iy
SBo/n pe(y)dy

—B,
and
|D*u(x)| =|Dug * Dpe(z)]
_ /Rn |Dug(z — y)| | Dpe(y)|dy
SBOE/HW% Dp ()] dy

1
:BOEHDPHU(R")-




Moreover, |lug — USHLDO(RW,) < Bye. Indeed, since [p, pe(z)dr =1

Jup — u0(2)] < / o () — oz — )| pe(y)dy

n

<B / [y|pe(y)dy
B(0,¢)

SGBO/ pe(y)dy = eBo.

B(0,¢)

We note u. the solution with initial condition u. Then, by the comparison principle, ||u. (-, t)—
Ue (-, t)[| oo (rr) < |l —u?| Lo (Rn), and 80 u. converge uniformly (since u? converge uniformly)
to uw which is, by stability (see Theorem 2.3 of Barles [6]), the solution of (18) with initial
condition ug. We then have, by the comparison principle, [Juc(-,t) — u(-,t)|| oo @n) < [Jud —

uo|| oo (rn)- We then deduce:

eyt + ) =l )| oo gy <2lluo — ull| ooy + lue(, ¢+ h) = uel, )| oo )

B
<2Bye + C4 (Bo, OEC2> h.

By taking the minimum on €, we obtain the modulus of continuity of u, wr, which depends
only on By. O

REMARK 2.12 In the case of dislocation dynamics, ie with F' gived by (14), we have Cy (Bo, B°C2) ~

€

B(]CQ% and so wp(d) ~ V6. In this case, an alternative proof can be founded in Chen, Giga,

Goto [13], based on selfsimilar solutions (Wulff Shape) of the mean curvature motion.

LemMA 2.13 (Existence of sub and supersolutions, general case)
There exists U (respectively U~ ) supersolution (respectively subsolution) of (15) such that:

uo(x) — wr(t) — |lell oo ®n xjo,7)) Bot <U™ (z,t)
<SUT(x,t) < up(@) +wr(t) + |lcll oo rnx[0,7)) Bot-

for every (x,t) € R™ x (0,T).

Proof of Lemma 2.13
First, we study the problem (18). According to the Lemma 2.11, this problem has a unique

continuous solution, u, which satisfies:
up(z) — wr(t) < u(t,x) < uo(x) +wr(t).

We prove that || Du| oo gn x(0,1y) < [[Dtiol| o (rn)- Indeed, let us consider the function u”(z,t) =
w(z + h,t) + || Dug|| oo (rn) |h]. Then u” is still solution of (18). Therefore, u"(z,0) = uo(z +



h) + || Dug|| oo (mny |h| > uo(z). So, by the comparison principle, we have ul > u. We deduce
that, for every h € R",
u(w,t) —u(x + h,t) < |[Dugl|poc rny [P,
and so
[ Dul| oo ®r x 0,1)) < Dol oo (m)

We then set U+($,t) = U(ZE,t)+||C||Loo(RnX[O7T))BOt. Then, ||DU+HL00(R7L><(O7T)) < ||DU||L00(]R7L><(O7T)) <
By and U™ is solution of:

vy — €|l oo ®n x[0,7)) Bo + F(Dv, D*v) = 0,
U(.’E, 0) = Uuo,

and so U™ is supersolution of (15) and satisfies:
U™ (x,t) =u(x,t) + ||/l Lo rn x[0,7)) Bot
<ug(z) + wp(t) + [l Lo ®nx[0,1)) Bot-

Similarly, we construct a subsolution U~ such that U™ (x,t) > ug(x)—wr(t)—|c|| oo ®r x [0,7)) Bot
by setting U™ (z,t) = u(z,t) — [|¢|| oo rr x[0,7))Bot. To achieve the proof, it suffices to apply
the comparison principle to U~ and U™T. O

Finally, we proved the following Theorem:

THEOREM 2.14 (Existence and uniqueness for the local problem)
Let T' > 0. Then, under the assumptions (Hy), there erists a unique viscosity solution of the
problem (15) in R™ x [0,T).

2 Estimate on the solution of problem (15)

LEMMA 2.15 (A priori estimate)
Assume that || Dug||pec(zn) < Bo and 3%1 > by, with By > 0 and by > 0. Then, the solution of
(15) gived by the Theorem 2.10 satisfies

ou
[ Du(-, t)[| oo rny < B(t) and . > b(t),

with B(t) = Boe! and b(t) = by — Bo(eX<t — 1). Moreover, u is uniformly continuous in time

and its modulus of continuity in time w,, defined by:
Vz € ]Rn, VS, te [OaT)a |U(CL‘,t) - u(m,s)| < wu(|t - SD’
satisfies:
T
u(0) £ wrl0) + el Bud + 0, 0) [ Bs)ds,
0

where w. is the modulus of continuity in time of ¢, and wr is the modulus of continuity in time
of the solution of (18) (see Lemma 2.11).



Proof of Lemma 2.15 For the proof of the lipschitz estimate in space, we assume in
a first time that u is bounded. We set ¢(z,y,t) = B(t) (lx —y|* + 62)1/2. We prove that
u(z,t) —u(y,t) < ¢f. We set:

M = sup {u(m,t) - u(yat) - (be(x’y?t)} )

(z,y,t)ER™ xR" x[0,T)

Assume that M > 0. Then we set:

M = sup {u(:p,t) —u(y,t) — ¢(z,y,t) — %(|x|2 + |y|2) _ L} .

(z,y,t) ER" xR™ % [0,T) T—t

For a > 0, v > 0 small enough, we have M > 0. Moreover u is bounded, so the sup is reached
in (Z,7,t) (with  # g) and

a _

S+ <C
and so aZ — 0 and ayy — 0. We prove that ¢ > 0. Indeed, assume the opposite. Then, we have

uo(Z) — uo(y) — ¢°(z,9,0) > 0,
ie
uo(z) — uo(y) > Bo (|17 — g* + ¢ ) > Bolz — gl

what is absurd since || Dug|| oo ®n) < Bo. We set
_ o —-1/2 ,_  _ o,
p=Dy¢ = (|- 7% + 62) / (z —y)B(t) = —Dy¢® # 0 (because Z # ),

Z =02 = ((z =52+ 1= (la - g2+ &)@ -y @ @-19) Bt) = D",

e ( Z -z
A:D2¢_<_Z Z>.

Then, by parabolic Ishii Lemma, applied to @ = u(z,t) — %|z|?, 0(y,t) = v(y,t) + $|y|* and
o(z,y,t) = ¢%(x,y,t) + 7, for every § such that BA < I, there exists 71, 7 € R and
X, Y € 5" such that:

+ LB(t) (17— g2 +¢%) 7,

T — T2 = 7,7
T -0
(t1,p+az, X +al) € ﬁ*u(a?,f),

(72,p—ayaY—OJ E (y7t_)

Flor)=(v 5 )=umon

71 —c(Z,t)|p+ aZ| + Fu(p+ az, X + ol) <0,

So, the following holds



o —c(y,0)|p — ay| + F*(p — ay,Y — al) > 0.

The matrix inequality implies, in particular, that X <Y, so, by using the ellipticity of F', we
deduce:
o — (g, t)|p — ayl+ F*(p — ay, X —al) > 0.

>From that, by substracting:

g . .
EF?B§+LJﬂwUx—m2+8V—wﬁmﬁp+wﬂ+d%ﬂm—aw

+F.(p+az,X +al)—F*(p—ay,X —al) <0.
We let a go to 0 (p and X are bounded so they converge and we still note p and X their limit):

1
ﬁ +1im (LBW) (17 = 52 +€)? + (—e(@, D) + (5. D) |8l + Fu(p, X) — F*(p, X) < 0.
Now, p # 0, therefore Fi(p, X) = F*(p, X). Moreover,
1/2 _ _
LeB(t) (Jr — yl? + ) — e, t)[pl + ey, t)[p

x—y|B
=(Jz — Y2 + 62)1/2 (LCB(t) - % (c(z,t) — c(y,t)))
_M—yPMBW)
PRSI

(LCB(t) - LcB(t))

> (o= + )" (L)

Z (‘.%' —Z/‘Q +€2)1/2

>0,
SO

2
— <0
(T—1>~ "

what is absurd. So u(z,t) — u(y,t) < ¢. By letting € go to 0, we obtain:
u(z,t) —uly,t) < B(t)|z —yl.
Exchanging x and y, yields
lu(z,t) —u(y,t)| < B(t)lz —yl,

what gives the first result in the case where v is bounded. If u is not bounded, we consider
the truncature functions 7T} (see figure 2). Then T (u) is bounded and solution of the problem,

and so:
|Te(u(z, 1)) — Ti(uly, )| < B(t)|lz —yl.

Letting &k go to infinity, yields:

u(e,t) = uly,t)] < B(t)|z - yl,



and we obtain the first estimate.
For the second estimate, we set, for z = (2/,x,,), u*(x,t) = u(x’, 2, + \, t) — Ab(t). We have
w2, 0) =u(z’, z, + A) — by
>u(x’, z,,0).
Moreover,
ui‘ +G* (ac/, T, t, DU, D2u>‘>
=up — AV (t) — (', 2, t)| Du| + F* (Du, D*u)
—u; + ABoLeePet — c(a!, xp, t)|Du| + F* (Du, Dzu)
>uy + AByLee™! — (c(2', 2, + A\, t) + AL.) |Du| + F* (Du, D*u)
>A\ByLeelet — ABoLeelt + uy + G* (2, 2, + A, t, Du, D*u)
>0

)

where u;, Du, D?u are taken at the point (2, x,,,t). This is written in a formal way and that is
justified by using a test function. So, we obtain that u* is a supersolution. By the comparison

principle, we deduce u* > u, and so
w(@' my + A t) —u(@, zp, t) > Ab(2).

what proves the second estimate. It thus remains to be shown that w is uniformly continuous in
time. We set § > 0. For every (z,t) € R"x (0,T) such that t+0 < T, we set v(z,t) = u(z,t+9).
Then, v is a subsolution of

wy — we(9)B(t +9) — c(x,t)|Dw| + F (Dw,Dgw) =0
on R™ x (0,7 — ) in the sense of definition 2.1 (i7). Indeed, we have

v — ¢ (z,t +8) |Dv| + F (Dv, D*v) = 0,
and
—c(x,t +98)|Dv| > —w(0)B(t 4+ 0) — ¢(x,t)|Dv|,

what gives in a formal way:
vt — we(8)B(t + 8) — c(x,t)|Dv| + F (Dv, D*v) < 0.
6 p

0
we(0) g+6 B(s)ds is a supersolution and v(z,0) < 4(x,0). By Lemma 2.13 and the comparison

Moreover, u+w.(9) (s)ds is solution of the same problem. So @ = u+sup,cgn (u(z,d) — ug(2)) "+

principle, we then have:

)
u(z,t +0) —u(z,t) < sup (u(z,d) —ug(z))™ + wc(é)/o B(s)ds

zER™

T
<wp(6) + ||ef|pe Bod + wc(é)/ B(s)ds.
0



Similarly, v is a supersolution of

wi + we(9)B(t +9) — c(x,t)|Dw| + F (Dw,Dzw) =0

t+4 B

and @ = u — sup,egn (u(x,6) —ug(r))” —we(9) J,

(s)ds is subsolution. So, by the compar-
ison principle, we have

t+6
w(z,t) — u(z,t +0) <wp(d) + ||c|| oo BI + we(d) /0 B(s)ds

T
<wr(9) + ||| oo Bod —|—wc(5)/ B(s)ds,
0
ie
T
u.t) — ulayt + 8 < wil8) + el Bod +.(6) [ Bls)ds,
0

what achieves the proof of the lemma. O

3 The non local problem : proof of Theorem 1.3
For the proof of Theorem 1.3, we will need the three following lemmas:

LemMA 3.1 (Estimate on the characteristic functions)
Let u! € C(R™) satisfying

1
oy,
ox, —
in the distributions’ sense for some b > 0 and u® € Lix (R™) satisfying the same condition.
Then, we have the following estimate:
2
2 1 2 1
62— el < 2 =l (20

For the proof of this Lemma, we refer to the proof of Alvarez et al. [2] in the case n = 2,

which adapts without difficulty to the case of any dimension.

LEMMA 3.2 (Convolution inequality)
For every f € L} .(R") and g € LS, (R™), the convolution product f*g is bounded and satisfies

unif int
”f*QHLOO(Rn) < HfHLllmif(R”)”gHL?’o (R™)-

int

For the proof, we refer to Alvarez et al.[3].
LEMMA 3.3 (Stability of the solution with respect to the velocity)
Let T > 0. We consider for i = 1,2 two different equations:

uj = ¢'(x,t)|Du’| — F (Du', D*u") in R™ x (0,T),
u'(x,0) = up(x).



where ¢ satisfy the assumption (Ho)(ii), uo satisfies (Hy)(iii) and F satisfies the assumptions
(HF). Then, for every t € [0,T"), we have

t
(1 8) = w2, )| ey < €t — L @rxomy) /0 B(s)ds,

where u’ are the solutions of (21) (see Theorem 2.14), B(t) = Boe! with L. = sup; Ly (L.
is the Lipcshitz constant of ¢ ).

Proof of Lemma 3.3
We set K = ||c! — ¢®|| oo (rnx(0,7))- We remark that u! is subsolution of

up — ¢*(z,t)|Du| + F (Du, D*u) — KB(t) = 0.
Indeed, we have:

uf — A(z,t)|Dul| + F (Du', D*u') <c'(z,t)|Du'| — F (Du', D*u') — ¢*(z,t)|Du' | + F (Du', D*u")
<llet = | oo @ x (0,7 B(t)
<KDB(t).

It is a routine exercice to check that the differential inequality actually holds in the viscosity

sense. Moreover, u?+ K fg B(s)ds is solution of the same problem. By the comparison principle
(Theorem 2.7), we deduce

t
ut §u2+K/ B(s)ds.
0

>From what

t
(1 8) = w2, )| ey < 6t — L rxom) /0 B(s)ds.

We now prove Theorem 1.3.
Proof of Theorem 1.3
We set w(d) = wr(d) + ||col| 1 Bod, where wp is defined in Lemma 2.11 | and we define the set

|Du(x,t)| < 2By,

b
E={ueL® x[0,T), | —(zt)>2
Oxy, 2
u is uniformly continuous in time and w,,(J) < 2w(9)

where w,, is the modulus of continuity in time of u, defined by

Ve € R, Vs, t € [0,T%), |u(z,t) — u(z,s)| < wy(|t — s]|).



For u € F, we set c(x,t) = (co * [u(-,t)]) (x). We see that ¢ is bounded, lipschitz in space (with
L = |cg|py as lipschitz constant) and uniformly continuous in time. Indeed,

||C||L°°(R"><[O,T*)) <sup [|col| 1| [u(-, t)]HLOO(Rn)
teR
<llcoll L1 &n)-

Moreover, for every t

[ De(-, )| Lo rry = Deo * [ul-, )| oo (rn)
<||Deol| pr ey 1wl )] Loo &)

<|eo|BV -

Finally, for 0 < t,s <T™:

ez, 1) = e(x, )] =|(co x [ul(- )]) () = (co* [ul-; 5)]) ()]
=leo ([u(, )] = [u(-, 8)]) (2)]
<llcoll g [ITu(, )] = ful $)ll 2y rey

4lleol|zes
_Tmllu(-,t) —u(:, 8)| Loo ()

4||c oo
<O i~ s
bo

8lle oo
Smw(,t_ s)),
bo

8lleollLoe,
—pw(

w(9).

For u € E, we then define v = ®(u) as the unique viscosity solution (see Theorem 2.14) of

so ¢ is uniformly continuous in time and w.(4) <

(22)

{vt = (co * [u])|Dv| — F(Dv, D%v) in R™ x (0, T*),
v(z,t =0) =wup(x) in R,

with ug defined in Theorem 1.3. We show that ® : £ — E'is a contraction. First, we show that
® is well defined. We have ||Duv(-,t)|| < B(t) < Boel™" < 2By, by definition of T* (see Lemma,
2.15). Moreover, 8871; > b(t) = by — Bo(e"* — 1) (see Lemma 2.15), and we want 8871; > %“, ie

S

Bo(e"t —1) < 2
2
b
Lt 0
< —+1
e < 2B, +

In (% +1)
t<—22 J
=71



what is true according to the choice of 7. It thus remains to be shown that v is uniformly
continuous with w,(d) < 2w(d). Now, by the estimate of Lemma 2.15 on the modulus of
continuity in time of the solution, we have:

T*

wy(0) < wp(9) + ||c|| Loe Bod + we(6) ; B(s)ds.

Since |¢]] poo (g x[o.7+)) < llcoll L1, it suffices to show that we(6) [ B(s)ds < w(d), ie

8lcoll e ”
7‘“%)(5)/ B(s)ds < w(9)
bo 0

T bO
Bls)ds < — 0
0

~ 8llcollrge,
1 . b
L 8B |coll L,
Lbg
— L 7

what is true according to the choice of 7" and so v € E.
It thus remains to be shown that ® is a contraction. For v' = ®(u'), according to the
Lemmas 3.3 then 3.2 and 3.1, we have

[v* — UlHLOO(R”x(O,T*)) <2BT*(|eo * [u?] — co % [U1]||L°°(R"><(O,T*))
<2BoT"(|col| 155, mn) sup [u? (-, )] — [Ul(',t)]HLllmif(Rn)
te(0,7)

8ByT™
< b llcoll o<
0

int

&) [[4® — || oo (Rrx (0,74))
L2 1
_QHU U ”LOO(R"X(O,T*))-

And so @ is a contraction on F which is a closed set for L>° topology. So, there exists a unique
viscosity solution of (5) in F on (0,7%). O

4 Appendix: proof of the Ishii Lemma

We are going to prove the parabolic Ishii Lemma (see Crandall Ishii [14]). The result is classic,
but we give the proof for the reader’s convenience. To do that, we will use an elliptic Ishii

Lemma. First, we give some definitions:



DEFINITION 4.1 (Sub and superdifferential of order two)
Ifu : R™ — R, then the superdifferential of order two of u, D>V u, is defined by (p, X) € R" x S™
belongs to D>V u(z,t) if v € R and

1

u(y) < u(@) + Py —2) + 5 (X(y =),y = 2) +o(ly — 2

as R > y — z. In a similar way, we defined the subdifferential of order two by D* v =
—D?*(—u). We also defined the two following sets:

@2’+u(x,t):{ (an)E]R x S™, H(Z‘n,pn,Xn)GR X R" xS }

such that (pn, X,,) € D>Tu(zy,) and (zn,u(ry), P, Xn) — (z,u(),p, X)

The set D*>~u(x,t) is defined in a similar way. Lastly, we defined D*u(z) = D>t u(x) N
D>~ u(x).

LEMMA 4.2 (elliptic Ishii)

Let U and V be two open sets of R™, u: U — Ruscandv:V — Rlsc. Let p: U xV — R be of
class C?. Assume that (z,y) — u(z)—v(y)—@(z,y) reaches a local mazimum in (z,7) € UX V.
We note p1 = Dy¢(,4), po = —Dy¢(Z,7) and A = D?*¢(z,y). Then, for every o > 0 such
that aA < I, there exists X, Y € S™ such that:

(plaX) € ’[)Zv"'u(;f)? (p2,Y) € ’[)2’_’0(5)7
(T =(3 )

For the proof, we refer to Droniou, Imbert [19]. We now prove the parabolic Ishii Lemma:

Proof of Lemma 2.4

The principle of this proof is to duplicate the variables in time and then pass to the limit using
the compacity assumption (C'). The key point is to regularize by sup-convolution using two
different parameter for space and time.

We duplicate the variables by considering:
t—s|?
U(.%',t) - U(y, 8) - ¢($,y,t) - %

This function admits a local maximum in (x, Ye, te, S¢) wWith (x¢, ye, te, s¢) — (Z,7, ¢, t) (because
u and v are locally bounded). We note A, = D? <¢(x, y,t) + Lt~

s|?
2e
we have: for every o and o such that:

). By elliptic Ishii Lemma,

Q I~

=
A
Q=

Q |~

R~



(This assumption holds for « such that «A < I and ' small enough) there exists X, Y. € S™,
C, D € R" and A, o € R such that:

(et ) (0 S ))ezﬂ*u@ﬂux (23)
() (5 D)erens

=1 X. C
= A

and

3]
|
~
IN

< B&Y, (25)

=1 -Y. -D
—tD —¢o

~=

where p§ = Dy,¢(-), p§ = Dyo¢(-) and B¢ " is the regularized by sup-convolution in the sense

of quadratic form of parameters o and o' of:

D2¢p  vi  Dyyd 0
R e

Dy 02 Dl 0 |’
0 —1 0 1

N
a

|

a =

where v1 = ¢yt(+) and va = Gyi(-). So, for £ = (¢,&nt1), 1= (1, Mnt1) € R, we have:

pelemien = s L AMGDED a6 CREIT AT

crermtixgert |~ ([6nt1 = G + [Tngs — moga[?

Moreover, we can see B¢' ’ as the regularized by supconvolution of the regularized by supcon-
volution of a quadratic form, so B¢ s still a quadratic form (see the proof of Elliptic Ishii in

Droniou, Imbert [19])). Equations (23) and (24) imply in particular:
ts — Se ¢ N+
¢t($eaye,te)+ ?,plaXe epP u(me,te)a

te — S
(5 € Eaan > 673 v(yea 6)3

We note p. = ¢(xe, Ye, te) + te’Tsﬁ and v = tﬁ’Tsﬁ We remark that ¢¢(xc, Ye,te) = pPe — Ve
Applying the vector (¢/,0,7,0) to the matrix inequality (25), yields:

-1 X ) aal (¢l / ! !
a (é ?>(€',n’)-(€',n’)§< 0 —%/6 >(€/,77’)-(€,77)SBE’ (¢',0,7,0).(£,0,1",0).
(26)



We show that the right hand go to A%(¢,n').(¢',n) as &/ — 0, where A® is the regularized by
sup-convolution of A = D2¢. Indeed, B = (B*)“'. So

B&(¢,0,1',0).(¢',0,7',0) = B&(¢',0,7,0).(¢,0,7',0) when o’ — 0

- 1
= sup {AE(Cla 07F/7O)'(C/7 07F/7O) - (‘g’ - Cl‘z + ‘77, - P,‘Z)}
(¢’,I")eR™ xR™ [0

1
. {A(C’,F’)-(C’,F’) eI r’P)}
(¢",I'")eR™ xR™ @

:Aa(§,7 77,)'(5/7 77/)7

-1/71 0 X, 0 o .
(L) (%0 Y ana

We then have, for a subsequence, p{ — p1, p5 — p2 and (X, Ye) — (X,Y) (because p{, p5, X

what gives

and Y, are bounded) . We choose € small enough such that |(z,?) — (z.,tc)| < r where r is
defined in the assumption (C). Then (p,p, X¢) € P>t u(xc,t.). Moreover, u(z.,t.), p; and
X, are bounded (because u is locally bounded and by the last matrix inequality for X.), so,
by the compacity assumption (C'), pe is bounded from above. Similarly, by using the fact that
(—Yes =05, —Ye) € PT(—=v)(Ye, 8¢), Ve is bounded from below. So, p. = ¢; + v and 7. are

bounded. So, for a subsequence, we have: p. — p and 7. — . Passing to the limit, yields:
T=p=7
(p.p1, X) € PTu(z, 8),
(7,p2,Y) € P7o(g,1),

“1/71 0 X o0 . .
?(0 I>§<0 —Y>§A = ([ —ad)7 4,

what achieves the proof. O
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