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Abstract

In order to develop a differential calculus for error propagation (cf [3]) we study
local Dirichlet forms on probability spaces with carré du champ ∆– i.e. error struc-
tures – and we are looking for an object related to ∆ which is linear and with a
good behaviour by images. For this we introduce a new notion called the measure
valued gradient which is a randomized square root of ∆. The exposition begins with
inspecting some natural notions candidate to solve the problem before proposing
the measure-valued gradient and proving its satisfactory properties.
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1 Preamble

Our main purpose being to study images, in order to avoid unessential dif-
ficulties, we restrict us to Dirichlet forms defined on probability spaces. On
a probability space (W, W , m) let us consider a local Dirichlet form (ID, E)
with carré du champ operator Γ. This is equivalent (cf.[4], [6]) to the data of

(1) a dense sub-vector space ID of L2(W, W , m),

(2) a symmetric positive bilinear operator Γ from ID×ID into L1(m) satisfying
the following functional calculus : if u ∈ IDm, v ∈ IDn, and F, G are Lipschitz
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and C1 from IRm [resp. IRn] into IR then F (u) ∈ ID and G(v) ∈ ID and

Γ[F (u), G(v)] =
∑
i,j

F ′
i (u)G′

j(v)Γ[ui, vj] m-a.e.

(3) and such that the form E given by

E [u, v] =
1

2

∫
Γ[u, v] dm

is closed in L2(W,W , m), i.e. ID is complete with the norm

‖ . ‖ID =
(
‖ . ‖2

L2(m) + E [ . ]
)1/2

.

We write always Γ[u] for Γ[u, u]. A term S = (W, W , m, ID, Γ) satisfying
properties (1) (2) (3) is called an error structure. The notion of error structure
is stable by products, even infinite products, and this feature gives easily error
structures on spaces of stochastic processes like the Wiener space (cf. books
[4], [6] and [3], and examples of application [1], [2]).

Such a term (W, W , m, ID, Γ) is also easily transported by images : If
X ∈ IDd, let us consider the space C1 ∩ Lip(IRd, IR) of functions u of class C1

and Lipschitz from IRd into IR (which are such that u◦X ∈ ID), then the term
SX = (IRd, B(IRd), X∗m, IDX , ΓX) where X∗m is the image measure of m
by X, IDX is the closure of C1 ∩ Lip(IRd, IR) for the norm ‖u‖IDX

= ‖u ◦X‖ID

and
ΓX [u](x) = IE[Γ[u ◦ X] | X =x]

satisfies still properties (1) (2) (3), i.e. is still an error structure.

The question we attempt to answer here, is to find an object related to Γ
which be linear and preserved by image. Let us first look at some existing
objects in the literature.

The generator (A, DA) of the strongly continuous semigroup on L2(W, W , m)
associated with the error structure is a linear operator and is transformed by
image into the generator of the image structure by a relation similar to that
defining the image of Γ :

∀f : f ◦ X ∈ DA AX [f ](x) = IE[A[f ◦ X] | X =x]

(cf. [4] chapter V prop. 1.1.7 and 1.1.8) but the calculations with A involve
non linear operations because of the presence of Γ: if f ∈ C2

bb and if Γ[Xi, Xj] ∈
L2(m) we have

A[f ◦ X] =
∑

i

A[Xi]
∂f

∂xi

(X) +
1

2

∑
i,j

Γ[Xi, Xj]
∂2f

∂xi∂xj

(X).
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A Dirichlet-gradient or shortly D-gradient for the error structure
(W, W , m, ID, Γ) is defined with an auxiliary separable Hilbert space H
as a linear map D from ID into L2(m, H) s.t.

(i) ∀U ∈ ID ‖D[U ]‖2
H = Γ[U ].

Such an operator satisfies necessarily

(ii) ∀F ∈ Lip, ∀U ∈ ID D[F ◦ U ] = F ′ ◦ U.D[U ]

(iii) ∀F ∈ C1 ∩ Lip(IRd), ∀U ∈ IDd D[F ◦ U ] =
∑

i F
′
i ◦ U.D[Ui].

Any error structure admits a D-gradient as soon as ID is separable (Moko-
bodzki, cf. [4] exercise 5.9).

Let us emphasize nevertheless that a D-gradient does not give by image a
D-gradient for the image structure :

Let SX = (IRd, B(IRd), X∗m, IDX , ΓX) be the image of S by X ∈ IDd, then
the formula IE[D[F ◦X] | X =x] does not define a D-gradient for X∗S because

(∗)




< IE[D[F ◦ X] | X =x] , IE[D[F ◦ X] | X =x] >
H

=/ IE[< D[F ◦ X], D[F ◦ X] >
H

| X =x] (= ΓX [F ](x)).

A D-gradient is not a canonical notion, there is latitude in its definition. The
space H in particular may be chosen in different ways depending on what is
the most convenient and simple in the examples.

The Feyel-la-Pradelle derivative is a particular case of D-gradient which is
canonical in the case the measure m is Gaussian and W a vector space (cf
[5]). It can be generalized to non-Gaussian cases by taking for H the space
L2(Ŵ , Ŵ , m̂) where (Ŵ , Ŵ , m̂) is a copy of (W,W , m) (cf [5] and [4] chap-
ter III§2 and chapter VII§1). With respect to our question, it has the same
weakness as any D-gradient of being not preserved by images because of the
inequality (*).

2 The measure valued gradient

The object we shall define possesses, like the D-gradient, some latitude in its
definition and depends on an auxiliary Hilbert space.

We suppose S = (W, W , m, ID, Γ) admits a D-gradient defined with the
separable Hilbert space H. For our purpose, let us recall the notion of Gaus-
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sian white noise measure based on a measurable space (E,F) with associated
positive measure µ.

Definition 1. Let µ be a bounded positive measure on the measurable space
(E,F). A Gaussian white noise measure ν on (E,F) defined on the probabil-
ity space (Ω,A, IP) with associated positive measure µ is a map from F into
L2(Ω,A, IP) s. t.

(j) ∀A ∈ F , ν(A) is a centered Gaussian r.v. with variance µ(A),

(jj) A �→ ν(A) is σ-additive in L2(Ω,A, IP),

(jjj) if A1, . . . , Ak ∈ F are pairwise disjoint the r.v. ν(A1), . . . , ν(Ak) are
independent.

Then ν extends uniquely from F to L2(E,F , µ) and we write ν(f) for f ∈
L2(E,F , µ). Given a measured space (E,F , µ) such that L2(E,F , µ) is sep-
arable such a white noise measure may be constructed as a classical Wiener
integral in the following way : let us take (Ω,A, IP) = (IR,B(IR),N (0, 1))IN so
that the coordinate mappings (gn) are i.i.d. Gaussian reduced r.v. Then for
f ∈ L2(E,F , µ), we can put

ν(f) =
∑
n

(f, ξn)L2(µ) gn

where (ξn) is an orthonormal basis of L2((E,F , µ). If L2(E,F , µ) is no more
supposed to be separable, such a white noise measure may be constructed as
Gaussian process indexed by F by Kolmogorov theorem.

The positive measure µ associated with the white noise measure ν will be
often denoted by the symbolic notation IEIP[(dν)2].

Similarly, given on (E,F) a symmetric matrix of bounded measures


 µ11 µ12

µ12 µ22




such that


 µ11(A) µ12(A)

µ12(A) µ22(A)


 be positive ∀A ∈ F , we can define a bivariate

white noise measure which to each A ∈ F associates a pair of Gaussian vari-
ables (ν1(A), ν2(A)) satisfying properties analogous to (j), (jj), (jjj). Such a
bivariate white noise may be transformed in different ways :

a) It may be multiplied by a function ϕ ∈ L2(E,F , µ11 + µ22) :

(ϕν)(A) =




∫
A ϕ dν1∫
A ϕ dν2
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is a bivariate white noise measure with associated matrix ϕ2


 µ11 µ12

µ12 µ22


 .

b) For x = (x1, x2) ∈ IR2 we can define the scalar white noise measure (x, ν) =

x1ν1 + x2ν2 whose associated measure is xt


 µ11 µ12

µ12 µ22


 x.

c) As a mixing of a) and b) let ψ = (ψ1, ψ2) be in L2(E,F , µ11 + µ22; IR
2). We

can define the scalar white noise measure (ψ, ν) by

(ψ, ν)(A) =
∫
A

ψ1dν1 +
∫
A

ψ2dν2

whose associated positive measure is

ψt


 µ11 µ12

µ12 µ22


 ψ = ψ2

1µ11 + 2ψ1ψ2µ12 + ψ2
2µ22.

More generally, we will need a notion of white noise measure with Hilbertian
values :

Definition 2. Given a bounded positive measure µ on a measurable space
(E,F) and a separable Hilbert space H, we call H-valued white noise measure
defined thanks to the auxiliary probability space (Ω,A, IP) with positive measure
µ, a map from F into L2((Ω,A, IP); H) such that :

(α) ∀A ∈ F , ∀h ∈ H, < ν(A), h >H is a centered Gaussian variable with
variance µ(A)‖h‖2

H

(β) A ∈ F −→ ν(A) is σ-additive in L2((Ω,A, IP); H)

(γ) If A1, . . . , Ak ∈ F are pairwise disjoint, ∀h ∈ H the r.v. < ν(A1), h >
, . . . , < ν(Ak), h > are independent.

Such ν naturally extends to functions f ∈ L2(E,F , µ) and ∀h ∈ H < ν(f), h >H

is a centered Gaussian variable with variance
∫

f 2dµ‖h‖2
H .

To construct such a ν, let us consider a sequence of independent copies νn of
a real white noise measure on (E,F) with associated positive measure µ, and
for f ∈ L2(E,F , µ) let us put

ν(f) =
∑
n

νn(f)χn
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where χn is a complete orthonormal system of H.

Similarly to the bivariate case, such a ν may be transformed in different ways.

a) multiplying by ϕ ∈ L2(E,F , µ)

(ϕν)(A) =
∫

1A ϕ dν

ϕν is a H-valued white noise measure, s.t. ∀f ∈ L∞(E,F , µ), ∀h ∈ H

var[< (ϕν)(f), h >H ] =
∫

f 2ϕ2 dµ.‖h‖2
H .

b) For x ∈ H, we can define the scalar white noise measure (x, ν) by

(x, ν)(A) =< x, ν(A) >H .

whose associated positive measure is ‖x‖2µ.

c) For ψ ∈ L2((E,F , µ); H) we can define the scalar white noise measure
(ψ, ν) with associated positive measure ‖ψ‖2

H .µ in the following way :

if ψ is decomposable ψ =
∑k

i=1 ψi(w).hi then we put

(ψ, ν) =
k∑

i=1

ψi(w).(hi, ν)

where (hi, ν) is defined in b). The associated positive measure is

∑
ij

ψi(w)ψj(w) < hi, hj >H .µ = ‖
k∑

i=1

ψi(w)hi‖2
H .µ.

For the general case, let ψn be decomposable s.t. ψn → ψ in L2((E,F , µ); H),
then we put

(ψ, ν)(A) = lim
n

(ψn, ν)(A) in L2(Ω,A, IP).

After these preliminaries, we can propose an answer to our initial question: let
us consider an error structure S = (W, W , m, ID, Γ) admitting a D-gradient
D constructed with the help of the separable Hilbert space H.

To any X ∈ ID we shall associate a real white noise measure that will be called
its measure-valued gradient with satisfactory properties by image.

Definition 3. Let ν be an H-valued white noise measure on (W,F) with
associated positive measure m. Let X ∈ ID, and let DX be its D-gradient
constructed with the Hilbert space H. The scalar white noise measure

(DX, ν)

6



defined as in c) above, will be called the measure-valued gradient of X and
denoted

dGX.

Thus ∀f ∈ L2(W,W , m) we have

dGX(f)
(
=

∫
fdGX

)
=< DX, ν(f) >H .

Similarily if X ∈ IDd its measure-valued gradient is defined as the column-
vector of the measure-valued gradients of its components. It is therefore an
IRd-valued white noise measure 1 .

Proposition 1. Let X ∈ ID. Let us denote

IEIP(dGX)2

the associated positive measure of dGX. We have IEIP(dGX)2 << m and

IEIP(dGX)2

dm
= Γ[X].

Proof. Let f ∈ L∞(W,W , m). The Gaussian r.v.
∫

fdGX =< DX, ν(f) >H

is defined on (Ω,A, IP) and has as variance
∫

f 2 < DX, DX >H dm by the
construction c) defining (DX, ν). Hence, IEIP(dGX)2 has a density with respect
to m equal to Γ[X]. Q.E.D.

Similarly, if X ∈ IDd

IEIP(dGX(dGX)t) = Γ[X, X t].m.

where Γ[X, X t] is the matrix with elements Γ[Xi, Xj].

Proposition 2.

a) ∀X ∈ ID, ∀F ∈ Lip dG(F ◦ X) = F ′(X)dGX

b) ∀X ∈ IDd, ∀F ∈ C1 ∩ Lip(IRd) dG(F ◦ X) =
∑d

i=1 F ′
i (X) dGXi.

Proof. These properties are straightforward from the corresponding ones of
the D-gradient.

1 The G of dGX is for Gauss who may be considered as the founder of error prop-
agation calculus cf [1].
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3 Images

Let us look now at what happens by image. Let X ∈ IDd and let
SX = (IRd, B(IRd), X∗m, IDX , ΓX) be the image by X of the error structure
S = (W, W , m, ID, Γ).

For F ∈ IDX , to define dGF we put

dGF = X∗(dG(F ◦ X))

i.e. dGF is the image by X of the white noise measure dG(F ◦ X)
= (D(F ◦ X), ν). It is defined as a usual image of measure by

(dGF )(A) = (dG(F ◦ X))(X−1(A)) ∀A ∈ B(IRd)

or
∫

ut.dGF =
∫

ut ◦ X.dGF ◦ X for u ∈ L∞(X∗m, IRd).

Similarly if Φ = (Φ1, . . . , Φk) ∈ IDk, dGΦ is defined as the column vector
(dGΦi).

Proposition 3.

a) ∀F ∈ IDX the positive measure associated to dGF is absolutely continuous
w.r. to X∗m and

IEIP(dGF )2

dX∗m
= ΓX [F ].

b) ∀F ∈ C1 ∩ Lip(IRd)

dGF = ∇F t.dGI

where ∇F is the usual gradient of F and I is the identity map from IRd onto
IRdwhich belongs to (IDX)d. The IRd-valued white noise measure dGI = X∗dGX
has for associated positive matrix of measures (ΓX [Ii, Ij].X∗m)ij.

Proof. a) From the fact that IEIP[(dG(F ◦ X))2] = Γ[F ◦ X].m, the image of
the white noise measure dG(F ◦ X) by X has for associated positive measure
IE[Γ[F ◦X]|X = x].X∗m because of the definition of the conditional expecta-
tion, i.e. ΓX [F ].X∗m. This part of the proposition shows that the property of
proposition 1 is preserved by image.

b) We know by proposition 2 that if F ∈ C1 ∩ Lip

dG(F ◦ X) = (∇F )t ◦ X dGX

the result follows taking the image. Q.E.D.
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Let us denote L2(IRd, Γ
X

[I].X∗m) the space of d-uples of functions

v = (v1, . . . , vd) defined on (IRd,B(IRd)) equipped with the norm given by
‖v‖2 =

∫
vtΓ

X
[I]v dX∗m. We obtain the main result of our study :

Proposition 4. For every F ∈ IDX , there exists an element of L2(IRd, Γ
X

[I].X∗m)
denoted ∇XF such that

dGF = (∇XF )tdGI.

We have Γ
X

[F ] = (∇XF )tΓ
X

[I]∇XF and on the initial structure we have also

dG(F ◦ X) = (∇XF )t ◦ X dGX.

Proof. Let (Fn) be a sequence of C1 ∩ Lip functions converging to F in IDX .
Denoting EX the Dirichlet form of the structure SX , we have

EX [Fn − Fm] =
1

2

∫
∇(Fn − Fm)tΓ

X
[I]∇(Fn − Fm) dX∗m

hence ∇Fn converges in L2(IRd, Γ
X

[I].X∗m). Its limit ξ doesn’t depend on the

used sequence. For all u ∈ L∞(IRd, X∗m) the Gaussian variables
∫

u dGFn =∫
u(∇Fn)t dGI converge in L2(Ω,A, IP) to

∫
u ξt dGI in other words the Gaus-

sian variables
∫

u◦X dGFn ◦X converge in L2(Ω,A, IP) to
∫

u◦X ξt ◦X dGX.
It follows that dGF = ξt dGI and dG(F ◦ X) = ξt ◦ X dGX. Q.E.D.

For a function U ∈ (IDX)p with values in IRp we denote ∇XU the matrix of
the ∇X of its components. We obtain a differential calculus :

Proposition 5. Let U be a map from IRd into IRp such that U ∈ (IDX)p and
V a map from IRp into IRq such that V ◦U ∈ (IDX)q and V ∈ (IDU◦X)q. Then

(∇X(V ◦ U))t = (∇U◦XV )t ◦ U.(∇XU)t.

Proof. By proposition 4 applied to U we have

dGU = (∇XU)t dGId, dG(U ◦ X) = (∇XU)t ◦ X dGX,

by proposition 4 applied to V ◦ U we have

dG(V ◦U) = (∇X(V ◦U))t dGId, dG(V ◦U ◦X) = (∇X(V ◦U))t ◦X dGX,

now by proposition 4 applied to V on the image structure by U ◦ X we have

dGV = (∇U◦X)t dGIp, dG(V ◦ U ◦ X) = (∇U◦XV )t ◦ U ◦ X dG(U ◦ X).

It follows that

(∇X(V ◦ U))t ◦ X = (∇U◦XV )t ◦ U ◦ X.(∇XU)t ◦ X
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equality in the space L2(E,F , Γ[X].m) and

(∇X(V ◦ U))t = (∇U◦XV )t ◦ U.(∇XU)t

equality in the space L2(IRd, Γ
X

[I].X∗m). The argument comes therefore from
the fact that the notions are defined thanks to images of measures. Q.E.D.

Let MX be a measurable square root (non necessarily positive) of the matrix
Γ

X
[I], i.e. such that M t

XMX = Γ
X

[I].

Corollary For F ∈ IDX let us define

DXF = (∇XF )tM t
X

then DX is a Dirichlet-gradient for the image structure SX defined with the
Hilbert space IRd.

Proof. (DXF, DXF )IRd = (∇XF )tΓ
X

[I]∇XF which is equal to Γ
X

[F ] by
proposition 4. Hence DX is a D-gradient for SX . Q.E.D.

4 Example

Let us consider the classical Wiener space (W,W , m) with W = C0[0, 1], W its
Borel σ-field and m the Wiener measure equipped by the Ornstein-Uhlenbeck
structure (W,W , m, ID, Γ) characterized by

∀f ∈ L2[0, 1], Γ[
∫

f dw] = ‖f‖2
L2

the space ID is usually denoted D2,1 or ID2
1 (cf [4], [7], [8], [9]). We con-

sider the Feyel-la-Pradelle gradient denoted #, it is a linear map from ID
into L2(m, L2(Ŵ , Ŵ , m̂)) where (Ŵ , Ŵ , m̂) is a copy of (W,W , m). Thanks
to the functional calculus it is characterized by its values on the first chaos :

∀f ∈ L2[0, 1], (
∫

f dw)# =
∫

f dŵ

the Hilbert space H is L2(Ŵ , Ŵ , m̂). Let (Zn) be an orthonormal basis of
L2(W,W , m) for instance composed with a basis of each Wiener chaos, (Ẑk)
the corresponding basis of L2(Ŵ , Ŵ , m̂) and let gn,k be i.i.d. reduced Gaussian
variables defined on a probability space (Ω,A, IP).

Putting for Y ∈ L2(W,W , m)

∫
Y dν =

∑
k,n

IEm[Y Zn]Ẑk gn,k
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defines according to definition 2 an H-valued white noise measure on (W,W)
with positive measure m.

If X ∈ ID according to definition 3 for Y ∈ L∞(W,W , m)

∫
Y dGX =

∑
k,n

IEm[Y ZnIEm̂[X#Ẑk]]gn,k

and we have

IEIP[(
∫

Y dGX)2] = (
∑

k,n IEm[Y ZnIEm̂[X#Ẑk]])
2

=
∑

k IEm[(Y IEm̂[X#Ẑk])
2] = IEm[Y 2Γ[X]]

so that the positive measure associated with dGX is indeed Γ[X].m and the
study applies.

These results mean that a differential calculus may be defined on an error
structure and its images, satisfying the expected coherence property, which
coincides with the usual differential calculus on C1 ∩ Lip functions but exists
also by completion for any function in the Dirichlet spaces of the images
structures, coherence being preserved, thanks to the fact that the image of a
gradient is now defined as the usual image of a measure. The tools introduced
here are not intrinsic, this would be an interesting program to geometrize them.
But in the applications, for studying the sensitivity of stochastic models, we
are mostly concerned with computations in situations where an error structure
is defined on the Wiener space (e.g. the Ornstein-Uhlenbeck structure or a
generalized Mehler-type structure) or on the Poisson space or both, and all is
about images of this structure (cf. [3]) the preceding study is relevant from
this point of view.
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