EULER SCHEME AND TEMPERED DISTRIBUTIONS
JULIEN GUYON

ABSTRACT. Given a smooth R%valued diffusion (XF,t € [0, 1]) starting at point z, we
study how fast the Euler scheme X"* with time step 1/n converges in law to the random
variable X{. Precisely, we look for which class of test functions f the approximate
expectation E [f (X]"")] converges with speed 1/n to E[f (XT)].

When f is smooth with polynomially growing derivatives [14], or, under a uniform
hypoellipticity condition for X, when f is only measurable and bounded [1], it is known
that there exists a constant C f(z) such that
(1) E[f (X[")] —E[f (X7)] = C1f(@)/n+ O (1/n°).

If X is uniformly elliptic, we expand this result to the case when f is a tempered
distribution. In such a case, E[f (XT)] (resp. E[f (X;"")]) has to be understood as
(f,p(1,z,-)) (resp. {f,pn(1,z,-))) where p(t,z,-) (resp. pn(t,x,-)) is the density of X¥
(resp. X;"”"). In particular, (1) is valid when f is a measurable function with polynomial
growth, a Dirac mass or any derivative of a Dirac mass. We even show that (1) remains
valid when f is a measurable function with exponential growth. Actually our results are
symmetric in the two space variables z and y of the transition density and we prove that

850, pn(t,x,y) — 850y p(t, x,y) = 050y m(t,x,y)/n + ra(t, z,y)

for a function m and a O(1/n?) remainder r, which are shown to be of gaussian type.
We give applications to option pricing and hedging, proving numerical convergence rates
for prices, deltas and gammas.

1. INTRODUCTION AND RESULTS

Let d,r > 1 be two integers. Let (2, F,[P) be a probability space on which lives a
r-dimensional Brownian motion B. We denote by F; = 0(Bs,0 < s < t) the filtration
generated by B. Let us give two functions b : RY — R? and o : RY — R We
systematically use (column) vector and matrix notations, so that b(x) should be thought
of as a vector of size d and o(z) as a matrix of size d x r. We denote transposition by a star
and define a d x d matrix-valued function by putting a = oo*. For a multiindex o € N,
la| = a1 + -+ + g is its length and 9% is the differential operator 9!°l/0x{" --- 9z §*.
Equipping R? with the euclidian norm ||-||, we denote by

o C%(R?) the set of infinitely differentiable functions f : R¢ — R with polynomially

pol
growing derivatives of any order, i.e. such that for all o € N?, there exists ¢ > 0
and ¢ € N such that for all z € R?,

(2) 0°f ()] < e (1 + [[z]|7),

o C°(R?) the set of infinitely differentiable functions f : R? — R with bounded
derivatives of any order, i.e. such that 9%f € L>°(R?) for all a € N¢.
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We shall make use of the following assumptions:
orall?el,..., and 7 € {1,...,r}, b; and o; ; belong to an ave
A) For all 4 1 d dj 1 b; and o; ; bel C’ggle dh
bounded first derivatives.
(B) Forallie {1,...,d} and j € {1,...,7}, b; and o, ; belong to C°(RY).
(C) There exists n > 0 such that for all x,¢ € RY, £*a(x)€ > nl|€]|2.

(C) is known as the uniform ellipticity condition.

It is well known that, given = € R, the hypothesis (A) guarantees the existence and
the P-almost sure uniqueness of a solution X% = (X7,¢ > 0) of the stochastic differential
equation (SDE)

t t
(3) X =z+ / b(XY)ds+ / o(X7) dBs.
0 0

1.1. Motivation. Let us fix a time horizon 7" > 0. Without loss of generality, we can and
do assume that 7' = 1. We try to estimate the law of X{. To do so, the most natural idea
is to approach X? by its Euler scheme of order n > 1, say X% = (X;"",t > 0), defined as
follows. We consider the regular subdivision &,, = {0 =t <t} <--- <t]_; <t} =1} of
the interval [0, 1], i.e. ¢t} = k/n, and we put X" = z and, for all k € {0,...,n — 1} and
t € [ty thil,

(4) X[ = XpT 4 b <Xt’if) (t—t}) +o (X{ff) (B — By).

We measure the weak error between X" and X7 by the quantities

1f(@) =E[f (X{")] - E[f (X7)]
and we try to find the largest space of test functions f for which for each x there exists a
constant Cy f(z) such that

() 1f(z) = Cif(x)/n+ 0 (1/n?).

Practical interest of such an expansion has to be underlined (see, for instance, [7, 14]).
When (5) holds, one can use the Euler scheme plus a Monte-Carlo method to estimate
E[f (X¥)] and then, in a time of order nN, gets an error of order 1/v/N 4 1/n, where
N stands for the number of independants copies of X{"* generated by the Monte-Carlo
procedure. Given a tolerance € < 1, in order to minimize the time of calculus, one should
then choose N = O (n?) and gets a result in a time of order 1/?.

One can even do better using Romberg’s extrapolation technique: if one runs N in-

dependant copies (Xf?’m, X" of the couple (an’x, X1""), which still requires a time of

order n.N, then computing + Zf\il(Qf(Xirf’x)—f(XZix)) one gets an estimate of E [f (X7)]
whose accuracy is of order 1/v/N + 1/n2, since (5) implies that E[2f(X"") — f(X )] =
E[f(X{)] + O(1/n?). Given a tolerance ¢ < 1, one should now choose N = O (n?) and
gets a result in a time of order 1/¢°%/2.

1.2. Previous results. Using It6 expansions, D. TALAY and L. TUBARO [14] have shown
that (5) holds when f € ngl(Rd). Using Malliavin calculus, V. BALLY and D. TALAY
[1] have extended this result to the case of measurable and bounded f’s, when X is
uniformly hypoelliptic. If (C) holds, X{"* and X{ have densities, say p,(1,z,-) and
p(1, x,-) respectively (in this paper, densities are always taken with respect to the Lebesgue
measure). For each pair (z,y), the authors [2] get an expansion of the form

(6) pu(Lz,y) — p(La,y) = (1, 2,y)/n+ro(1,2,y)/n°.
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They also find constants ¢; > 0 and ¢ > 0 such that for all n > 1 and z,y € R,
(1,2, )|+ ra(L, 2, 9)| < e1 exp(—cz [z — yII).

Besides, V. KoNAKOV and E. MAMMEN [9] have proposed an analytical approach for
this problem based on the so-called parametrix method. If (C) holds, for each pair (x,y),
they get an expansion of arbitrary order j of p,(1,z,y) but whose terms depend on n:

7j—1

(7) po(l,2,y) = p(L,2,y) = Y mi(l,2,y) /0 + O (1/n7).
i=1

For each i, they also find constants ¢; > 0 and ¢y > 0 such that for all n > 1 and
2,y € R |mni(1,2, )] < ¢1exp(—ca ||z — y]|?). To do so, the authors use upper bounds
on the partial derivatives of p - which they find in [4] - and prove analogous bounds on
Pr’S ones.

For a link with generalized Watanabe distributions on Wiener’s space, see [12]. For the
general case of Lévy driven stochastic differential equations, (4) holds under regularity
assumptions on f and integrability conditions on the Lévy process (see [7, 13]). For the
rate of convergence of the process (X;"* — X t € [0,1]), see [5, 6]. As for the simulation
of densities, see [8].

1.3. Main results. Our main result can be seen as an improvement of (6). It gives a first
order functional expansion for p,. In order to state it shortly, we introduce an increasing
family of functional spaces (G;(R%),l € Z). For | € Z, we define G;(R?) as the set of all
measurable functions 7 : (0,1] x R? x R? — R such that
e for all t € (0,1], m(¢,-,) is infinitely differentiable,
e for all o, 3 € N%, there exists two constants ¢; > 0 and ¢ > 0 such that for all
t € (0,1] and z,y € RY,

(8)

We say that a subset B C G;(R?) is bounded if, in (8), ¢; and ¢y can be chosen indepen-
dently on 7 € B. We also introduce the space G(R?) defined in the same way as G;(R9)
with (8) replaced by the following two conditions:

(9)
(10)

o0 (t,2,y)| < ext (TN o (a2 /1)

oeopr(tiey)| < et (I ey (o |z — gl /1),
oy (7T <t,x,x + y\/z_f))‘ < et™¥?exp (—02 ||y||2> .

We say that a subset B C G(RY) is bounded if, in (9) and (10), ¢; and ¢y can be chosen
independently on m € B. We are now able to state our main result as follows.

Theorem 1. Under (B) and (C),
(i) for all t € (0,1] and x € RY, XF has a density p(t,z,-) and p € G(RY),
(ii) for allt € (0,1], z € RY and n > 1, X;"" has a density p,(t,z,-) and (pp,n > 1)
is a bounded sequence in G(R?),
(iii) there exists m € G1(R?) and a bounded sequence (mn,n > 1) in G4(R?) such that
foralln>1,

(11) pn—p:ﬂ'/n—i—ﬁn/nz.
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Statement (i) is already known (see [4], theorem 7, page 260). Statement (ii), which has
essentially been proved in [9], and statement (iii) are proved in Section 3.2. The function
7 can be expressed in terms of p by

(12) 7(t,z,y) / / s,x,2)L5(p(t — s,-,y))(2) dzds,
R4
where the differential operator L3 is explicitely given in terms of the functions a and b by

d

" 1
(13) — L= Z <b -Vb; + 5 tr (aV2b¢)> 0;

i=1

d
1 1
+ Z (5 b-Va;;+aj-Vb; + 1 tr (aV2am ) 0ij + Z ay, - Va; ;0jjk.
i,j=1 Jk 1

Here, -, ay, tr, V and V2 respectively stand for the inner product in R?, the k-th column
of a, the trace of a matrix, the gradient vector and the hessian matrix. In the case when
t =1, (12) agrees with V. BALLY and D. TALAY’s expression for 7 ([2], definition 2.2,
page 100), but seems preferable because it does not involve differentiation with respect
to ¢t and makes clearly appear that the space differential operator L3 is of order less than
3, when V. BALLY and D. TALAY’s operator U involves a fourth order differentiation in
space.
As a consequence, we can state

Corollary 2. Under (B) and (C), for all o, 3 € N9, there exists ¢c; > 0 and c2 > 0 such
that for allm > 1, t € (0,1] and x,y € RY,

(0% (6% 1 (6%
02 0)pn(t, ,y) — 0205 p(t, x,y) = 0 Wr(t,x,y) +ra(t,z,y)

and
rat,y)| < im0 D2 e (e o~y /2)

We shall now prove that if X is elliptic the expansion (5) is valid in the very general
case when f is a tempered distribution. Let us denote by S(R?) Schwartz’s space, i.e. the
space of infinitely differentiable functions ¢ : R — R such that x — 2°0%p(x) € L>®°(R?)
for all o, 3 € N¢ (2 stands for z{*---25%), and let us denote by S’(RY) the space of
tempered distributions. The seminorms (N, ¢ € N) are defined on S(R?) by

Ny(p)= > sup |z°0%p(x)
la|<q,|8|<q “ER?

)

and the order #S of S € S'(R?) is the smallest integer ¢ such that there is a ¢ > 0 such
that (S, p)| < cN,(¢) for all ¢ € S(R?). Note that whenever © € G;(R?), 7(¢,z,-) and
7(t,-,y) belong to S(R?). More precisely, for B C G;(R?) bounded, there exists ¢ > 0 such
that for all m € B, t € (0,1] and =,y € RY,

Ny(n(t @, ) < et T2 (14 Jlz|7) and  Ny(a(t,-,y)) < et” D2 (14 |ly||) .

Applying a tempered distribution S to (11), ¢t and x or ¢ and y being fixed, we imme-
diately deduce from Theorem 1
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Theorem 3. Under (B) and (C), for all S € S'(R?), there exists ¢ > 0 such that for all
n>1,te(0,1] and z,y € RY,

<Sapn(t’x7 )> - <S,p(t,l‘, )> =

<Sapn(t"7y)> - <S’p(t7'7y)> =

<Sv77(ta$a )> + ’I“;L(t,:x),

SI=3=

<S?7T(ta 7y)> + 7";;(75,3/),

and
[Pt )+ [t )| < en™ 2 @2 (1 |2 #5).

Let us define E[S(Y)] by (S, py) when S € S'(R%) and Y is a random variable with den-
sity py € S(R?). Note that, when S is a measurable and polynomially growing function,
this definition coincides with the usual expectation. We then have proved that, under (B)
and (C), (5) is valid for f’s being only tempered distributions, and not only for ¢ = 1, but
also for any time ¢ € (0, 1], and we have even explicited the way the O(1/n?) remainder

|| #/ as 2 tends to

depends on t, f and x. Precisely, this remainder grows slower than
infinity, and explodes slower than ¢~#/+4+4/2 55 ¢ tends to 0.
As the particular case when S is a measurable and polynomially growing function, let

us state

Corollary 4. Assume (B) and (C). Let f : R? — R be a measurable function such that
there exists ¢ > 0 and q € N such that for all z € R, |f(x)| < (1 + ||z||?). Then there
exists ¢ > 0 such that for alln > 1, t € (0,1] and z € R,

n,xr x 1
(14) EIf (X)) = E[f(XP)] = ~ y f)m(t, z,y) dy + ra(t, x)

n
and
[ra(t, )] < en™272 (1 + [l]|7).

Proof. Multiplying (11) by f(y) and integrating in y leads to (14) with the remainder
ra(t,z) =n2 [pa f(y)mn(t, @, y) dy. Since |f(y)| < (1+|y||?) and (7,7 > 1) is bounded
in G4(R%), we can find ¢; > 0 and ¢y > 0 such that for all n > 1, ¢t € (0,1] and = € RY,
[ra(t,2)] < ern™ 24 D2 Lo (1 [lyll?) exp(—e2 o — y||* /1) dy. Setting ¢ = (y —2)/ V1
leads to |rp(t, )| < cin™2t72 [paexp(1 + Hx + C\/ﬂ’q) exp(—cs ||¢]|?) d¢. To complete the
proof, it remains to observe that there exists ¢ > 0 such that for all t € (0,1] and z, ¢ € R9,
[l + CVE||* < e(ll ]| + 1)) O

As far as extending the class of f’s for which (5) holds is concerned, we can even do
better. Indeed, if for p € (0,2) we denote by &, the set of all measurable functions
f: R% — R such that there exists c1, ¢ > 0 such that for all y € Rd,

W) < crexp ez [lyl")
it is easy to adapt the preceding proof to get

Corollary 5. Under (B) and (C), for all p € (0,2) and f € E,, there exists c1,ca > 0
such that for alln > 1, t € (0,1] and z € RY, f(XF) and f(X"") are integrable and

(15) BLACG )~ B = - | F@)rlta.y) dy+ rm(t.2)

with
rn(t,2)| < ein™?t % exp (c2 ||Jz]|*) .
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In particular, (5) remains true under (B) and (C) when f € & = U,¢(02)€u- In the
same way, differentiating (5) o times in z, multiplying by f(y) and integrating in y leads
to

Corollary 6. Under (B) and (C), for all o« € N, p € (0,2) and f € &,, there exists
c1,¢2 > 0 such that for alln > 1, t € (0,1] and z € Rd,

(1) LB - RSO = 1 [ () dy+ )
with
Irn (£, )| < ern =260 D72 oxp (g [|2|") -

This result can now be used in the context of financial markets.

1.4. Application to option pricing and hedging. Let S¥ = (S¥!,...,8%%) be a
basket of assets satisfying

dsy" 4 ,

S—;Z = 11i(SY) dt+20” (Sv)dBl,  SU =v'>0,
t 7j=1

with p,o € C’g’o(Rd) and o satisfying (C). Given a measurable and polynomially growing

function ¢, we try to estimate the price Price = E[p(S})], the deltas Delta; = 95 E[o(S})]

and the gammas Gamma;; = ogite E[¢(S})] of the european option of maturity ¢ and

payoff ¢ ((e1,...,eq) is the canonical base of R%). To do so, let us set z = Inv (i.e.

7' = Inv') and X“ In(S;""). Then X is the solution of (3) with b = u — ||o]|* /2 €
C2°(R?), where HO’” () = >0 azj(x). If we set exp(z) = (exp(z!),...,exp(z?)) and
f(z) = ¢(exp(x)), we define a function f € &; and, since Price = E[f(X})], (15) leads to

Price” — Price = C;"“¢(v)/n + O (n*t 2 exp (c2 || Inv])) ,
where Price” stands for the approximated price E[f(X;"")] and

m(t,Inv,Inwu) J
————~ du

oo = [ o™

ul...ud

Besides, if we set Delta] = 9SE[f(X. nlnv)] and Gamma;';, = 8el+6JE[f(Xn vy (16)
shows that

Delta™ — Delta = CP""*¢(v)/n + O (n_zt_S/Q exp (co Hlnv”)) :

Gamma" — Gamma = C*™¢(v)/n+ O (n~* 3 exp (2 [[Inv]])) ,
where
ot Inv,l
o = [ pwBTETRL g,
St (t, Inw, 1
Cfamma¢(v)i,j — / ¢(U) 62 ﬂ-(tv nv, H'LL) du.
(R*) U - Ug

Eventually we have proved that applying the Euler scheme of order n to the logarithm
of the underlying leads to approximations of the price, the deltas and the gammas which
converge to the true price, deltas and gammas with speed 1/n, at least when the drift and
volatility of the underlying satisfy (B) and (C), which in the context of financial markets
seems not to be a restricting hypothesis. Note that the principal part of the error explodes
as t tends to 0 as t~1/2 for the prices, t~! for the deltas and ¢t~3/2 for the gammas.
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1.5. A preliminary result. In order to prove Theorem 1, we first seek an expansion for
the error operator

where, for f € C(R?) and x € R? we have set Pif(z) = E[f(X})] and PIf(z) =

pol
E[f(X;"")]. Precisely, we look for operators C; and R} such that R} = O(1/n?) and
A} = Cy/n + R}. The following theorem, interesting in itself, is proved in Section 2. It
can be seen as an improvement of [14]. It not only gives explicit formulas for C} f(x) and
R} f(z) but also provides useful information about their dependencies on n,t, f and x.

Note that it does not require neither (B) nor (C). In order to state it shortly, let us
denote by L (C°° (Rd)) the space of endomorphisms of €' (R?),

pol pol

e say that a subset B C ngl(Rd) is bounded if, in (2), ¢ and g can be chosen
independently on f € B,

e say that T' e L (ngl(Rd)) is bounded if for all bounded B C C’Sﬁl(Rd), {Tf|f € B}

is a bounded subset of C22(RY),
e denote by £;, (C5(R?)) the space of bounded endomorphisms of C’;’gl(Rd),

ol
e say that a L (Cp'ggl(Rd))—valued family (7;,7 € I) is bounded if for all bounded
B C C35(RY), {T;f|f € B,i € I} is a bounded subset of C5%(RY),
e say that (7;,i € I)isa O(h(7)) family in £, (ngl(Rd)) if the family (h(i)~'T},i € I)
is bounded.

It is already known that (P;,¢ € [0,1]) is a bounded family in £, (C53(R?)). A proof
can de found in [11], lemma 3.9, page 15. Using Lemma 25, this proof straightforwardly
adapts uniformly in n so that (P}*,t € [0,1],n > 1) is also bounded in £ (ngl(Rd)). We
are now in the position to state the main result of the first step:

Theorem 7. Under (A), (A7,t € [0,1],n > 1) is a O(1/n) family in L, (CSY(RY)), and
[

pol
there exists a O(t) process (Cy,t € [0,1]) and a O(1/n?) family (R?,t € [0,1],n > 1) in
Ly, (C5(RY)) such that

pol

A} = Cy/n+ R}.
Moreover, Cy is explicitely given in terms of (Py,t € [0,1]) and of L% (see (13)) by

1 t
Cy = —/ PsLiP, g ds.
2 Jo

1.6. Organization of the paper. Section 2 is our first step on the way to prove Theorem
1. It is dedicated to the proof Theorem 7. We also derive an expansion for A} of arbitrary
order, but whose terms depend on n, see (26), and we explain how to recursively construct
the differential operators which appear in it.

Section 3 is our second and final step. It is devoted to the proof of Theorem 1. To
sum up, we use Theorem 7 and express C; and R} in terms of the densities of X} and
X;"" making appear kernels for C' and R". The section begins with a study of the space
convolution in G(RY) which allows to control these kernels. As in Section 2, we also give
a functional expansion for p,, — p of arbitrary order, but whose terms depend on n, see
(43), thus improving (7).

Eventually, Section 4 is an appendix where we have gathered useful results on the Euler
scheme and technical lemmas that are used in Sections 2 and 3.
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2. FIRST STEP: EXPANSION FOR E [f (X;"")]

2.1. Operators associated with the Euler scheme. Let us denote by L the infinites-
imal generator of the diffusion X and by (L®, z € R?) its tangent infinitesimal generator,
ie.

d d
L= Z b; 0% + = Z a; ae,-ﬁ-ej and I* — Zbi(x)aei + % Z a@j(x)ae”_ej.
i,j=1 i=1 i,j=1

We use the convention that L and L* act on y, so that, for instance, Li(t,x,y) and
L¥Y(t,x,y) respectively stand for L (¢(t, z,-)) (y) and L* (¢(t,z,-)) (y). L* is the infini-
tesimal generator of (X,"* ¢ € [0,1/n]). Besides, for each 2 € R? we define a sequence of
operators (L7, j € N) by putting L§ = I (the identity operator) and
¢ = L°LY — YL,

and we set L f(z) = L7 f(z). Observe that L] = 0. Besides, L3 is given by (13) so that,
under (A), L3 € Ly (ngl( 4)) and there exists a family (90,1 < Ja] £3) in ngl(Rd)
such that

(17) Ly= Y g5.0%
1<|a|<3
Under (A), L and L* belong to Ly (ngl(Rd)) for each x € R?, and, by induction, so

does L7. We can describe L more precisely. Indeed, defining the powers of an operator

Aby AY = I and A7+ = AAJ, inductions on j lead to L? = 7 (= )’() (L*Y ™' Li and

=0
to the existence of a family (gj.a,Rja,j € N*, 1 < |af < 25) in C;’S](Rd) such that
Vz € RY, (L*) = Z Gj.a(x)0 and L= Z hj.a0%.
1<|a|<2j 1<|a|<2j

Hence, for each j € N* one can find a family (m; ., 1 < |a] < 27) of integers and a family
(Gj.ats hjags 1 <o <25,1 <1 <mj,)in ngl(Rd) such that for all z € RY,

mj o
(18) Lj Z (Zgjal Jozl)a :
1<]|al<2j

Remark 8. Note that when (B) holds, the functions g; ., hja. and g5, all belong to
Cye (RY) (in fact they are polynomial in b, o and their derivatives).

We are now in the position to define the families of operators &7 = (@?ﬁ] sl € [0,1],n >

Lk eA{0,...,|nt]},s € [t7,t7 4 At]) and BT = (\I/?,{jt,t €0,1,n > 1,k € {0,...,[nt]})
as follows:

X"
(19) Ve CHEY, W ) =B (L Peg ()] ad v - e,
Observe that since s € [t} 1}, ]
mj o
(200 @l = D > Ph(gaiPilip(hjeid®Piy)) and Wil = PELIP .
1<|a|<2j 1=1

Then we have
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Proposition 9. Under (4), ®/ and ¥/ are bounded families in Ly (CSS(R?)).

pol
Proof. (P;,t € [0,1]) and (P/*,t € [0,1],n > 1) are bounded families in £, (CS5(R?)), see
the discussion preceding Theorem 7. Besides, multiplication by a function in C’Sﬁl(Rd) and
differentiation are bounded operators on ngl(Rd). As a sum of compositions of bounded
families in £ (ngl(Rd)), @7 is a bounded family in £, (ngl(Rd)). Then obviously so is

W7, (]

2.2. Itd expansions. We recall (see [11], theorem 3.11, page 16) that for f € C’f,’gl(Rd),
(s,y) — Pi_sf(y) is infinitely differentiable on [0,#] x R¢ and

(21) V(s,y) € [0,]] x RY, (95 + L)Ps f(y) = 0.
Since J5 and L7 commute, (21) and the definition of LT imply
(22) (0s + L*) L Py—s = L1 Pi—s.

For a measurable family (A4;) in £y (ngl(Rd)), we denote by fttf As ds the element of
L (C5(RY)) which maps ftox— fttf Asf(z)ds. The following lemma states that @?2{]7—;1
is the derivative of CI)?Z]'? on the interval [}, 17, At].
Lemma 10. Under (A), for all j € N, t € [0,1], n > 1, k € {0,...,|nt]} and s €

(17 R N2,

S
ng  _ qy™J n,J+1 4.1
(23) Py = \I/tz,t + /t” thz,s’,t ds'.

k20
k

X'n/r{x
Proof. Conditionaly on Fp, for f € CF3 (RY), (s,y) — L; £ P,_sf(y) is infinitely differ-

pol
entiable on [t}, ] A t] x R? so that we can apply Itd’s formula to it and to X™* between
ty and s. Using (22) for the second equality, we get

X;kf n,xr X;kf n,r
L% P f (X0 = L P f (X5T) = M

t

n,T n,x

s o X;Zz th n,z / s 34 n,x !
=, 5 T L)L Pooo f(XG") ds' = | Ly P f (X57) ds

n n
k tk:

X .
where M, = 2?21 Z§:1 O’Z‘J(ngm) ftzl 0% (Lj T P_gf (Xsn,’x)> dB’,. Since {L]m»Pt,s/f]s/ €
[ti,th, 1 At} is bounded in C3F (RY), (54) imply that (Mj,s € [t th 1 At]) is a square-

ol
integrable martingale and thus has zero mean. Hence, taking expectations and using (19)
and Fubini’s theorem, we have
. . s ;n;iz § +1
n, n, n,xr / n, /
(I)tgj,s,tf(x) - \Iltzj,t (.%') = /t" E |:Lj+]i Pt*S/f (Xs’ ):| ds = ln q)tzj,s’,t (.%') ds ’
k k

which concludes the proof. O
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2.3. ProofofTheorem7 Forn >1and 0 < s’ <s <t let us set Q7 t—P P_g and
AQY ;= Q5 — Q% ;. Observe that " = Qf, and P, = Qg so that

[nt]—1
(24) Al =P — Qtt Qo = bt Z Ath, (7R + AQTLLntJ/n,t,t'
k=0

Since Qf, = <I>tn by iterating (23), and using the convention that a sum over an empty

N2

set is zero, we then have for k € {0,...,|nt] —1} and j > 1,

j n,t

n,0 n,0 o byt n,j+1
AQtﬁ,tﬁ_H, (I)tg,tg+l,t (I)t;;,t;;,t = Z; N, —i-thﬂf
1=
(note that \I'Z’tl = 0 since L} =0) and
n,0 n,0 (t_ LntJ/n) n,i n,j+1
AQTt it = Pttt = @t ot ot = Z T Wt e T Bt nt
=2

where, for k € {0, ..., |nt]},

Nt
(25) g = [ O sy dsads
thot tn tn tn posje1st oIl 2821

From Proposition 9, (R?L{j;rl,t € [0,1],n > 1,k € {0,...,|nt]}) is a O(1/ni*!) family in
Ly, (C25(RY)). Using (24) we finally get for j > 1,

pol

[nt]—1

(26) Z 'nl Z \I/nlt—i-Rn’]

where

[nt] J

,]+1 — nt /n
(27) Z Rty Z v \_ntj/n,t'

=2

Note that (Rfr;ij/n’ t€[0,1],n > 1) is a O(t/n?) family in £, (CS5(R?)) but that because

of the second term of the r.h.s. of (27), (R’ ¢ € [0,1],n > 1) is only O(1/ni"?2).

In the particular case when j = 1, we have A} = R} 1 so that we have proved that
(A7, t€[0,1],n > 1)is O(1/n) in Ly (Cgﬁl(Rd)), which was the first statement of Theorem
7.

In the particular case when j = 2, if we set

(28) v = PP,
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and
1 t
(29) G = _/ ‘I’gt)d&
2 Jo ’
[nt]—1 ¢
n 1 1 2 2
(30) T 3 \11§Z3t_ / v ds |
k=0 0
1 [nt]—1
n n,2 2
(31) 2t — ﬁ Z <‘I’t;€l,t_\1’§g)¢),
k=0
(32) R? = 7ll,t+Ag,t+R?72’
we have
(33) Ay = Ci/n+ Ry

As a composition of bounded families, (\11222 ,0 < s <t <1)is a bounded family in
Ly (C25(R?)), so that (Cy,t € [0,1]) is O(t) in Ly, (C53(RY)). It remains to prove that
(Rp,t €[0,1],n > 1) is O(1/n?) in £, (CS5(R?)). We have already proved that it is true
of (R t € 0,1],n > 1).

For (A7,,t € [0,1],n > 1), observe that, if we set L? = LL; — LyL € L;, (C33(RY)), as
0sP, = LP, = P,L, we have 0,9} = P.LL3P,_; — PL3LP,— = P,L¥ P,_. Hence the

family @g;{t 0@ e [0,1],n>1,k€{0,..., |nt] — 1},5 € [t} 7, ,]) satisfies

) v vl = | PR
k
and thus is O(1/n) in Ly, (C53(R?)). As a consequence,
\_nt]—l tn t

1 @ g®) 1 (2)
(35) Ay = 5= / Win'y —Woi) ds — — Wi ds

2n ];) ty < k> > 2n |nt|/n
is O(1/n?) in Ly, (C5(RY)).

As for (A34,t € [0,1],n > 1), note that from (28) and (20) applied with j = 2,
(36) UEE — WD, = PRLSPgy — Py LsPiogy = A L3Py,

Since (A}, ¢ € [0,1],n > 1) is O(1/n) in £, (C55(R)), so is the family (075 — w2 ¢ €

[0,1],n > 1,k € {0,...,|[nt] — 1}), as the composition of a bounded family by a O(1/n)
family in £, (COO (Rd)). This completes the proof of Theorem 7.

pol

Remark 11. It is noteworthy that the family (R;",t € [0,1],n > 1) defined by

t

. n 1 2 1 "v
R’i = R+ n [nt]/n \I]gnf) ds — 9 (t - LntJ/n)2 \I]Ln?tj/n,t

is O(t/n?) in Ly (ng’l(Rd)). In particular, (R?ntj/n’
Ly (C25(RY)).

pol

t € [0,1],n > 1) is O(t/n?) in

3. SECOND STEP: EXPANSION FOR THE DENSITY OF X,"*

This section is devoted to the proof of Theorem 1.
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3.1. Space convolutions. Let us denote by 7; the unit triangle {(s,t) € R?|0 < s <t <
1}. For | € Z, we define H;(R?) as the space of measurable functions p : 73 x R x R¢ — R
such that
o for all (s,t) € 71, p(s,t,-,-) is infinitely differentiable,
e for all o, 3 € N%, there exists two constants ¢; > 0 and ¢ > 0 such that for all
(s,t) € T and z,y € RY,

(37) Bgagp(s,t, x, y)‘ < eyt~ el +1BI+d+D/2 oy, <—02 |z — yH2 /t) )

We say that a subset B C H;(R?) is bounded if, in (37), ¢; and ¢z can be chosen indepen-
dently on p € B. We also introduce the space H(R?) which is defined in the same way as
H;(R?) with (37) replaced by

(38) 5585/’(37@3?;?/)‘ < et~ (e F1BI+d)/2 oxpy (—02 |z —y|? /t) )

7 (p (sstaa+yvi))| < et e (e lyl?).

and we say that a subset B C H(R?) is bounded if, in (38) and (39), c¢; and ¢y can be
chosen independently on p € B.

For 71,m € G(RY) (see (9)-(10) for the definition of this space), ¢ € C{°(RY) and
v € N%, we define a function g~ T2 0N Tq X R? x R? by putting

(39)

(1 *gy T2) (8, t,2,9) = /d g(z)m (s, z, 2)3;7T2(t —8,2,y) dz.
R

Notation d» means differentiation with respect to the second argument, here z. We parti-
tion the unit triangle 77 into 7,” = {(s,t) € T30 < s < t/2} and 7,7 = {(s,t) € T1|t/2 <
s < t}, and, for € = &, we define (71 x4, m2), (5,t,7,y) = L7e(s,1) (71 %95 T2) (8,1, 7,9),
so that 7y %g T2 = (71 %g T2)— + (71 %g~ T2) 4.
Proposition 12. Let By and By be two bounded subsets of G(R?), g € C*(RY) and
v € N4, Then {m g4 T2|T1 € Bi,m2 € Ba} is a bounded subset of HM(Rd).

Before proving Proposition 12 and for the sake of clarity, let us state apart the following

technical lemma, whose proof is a straightforward application of Lebesgue’s dominated
convergence theorem:

Lemma 13. Letl € Z, (xi,i € I) be a family of measurable functions mapping T1 x R x
R? x RY into R such that
o forallicI, (s,t) € Ty and ¢ € RY, x;(s,t,-,-,C) is infinitely differentiable,
e for all a, 3 € N9, there exists two constants ¢; > 0 and ¢ > 0 such that for all
i€l1, (s,t) €Ty and x,y,¢ € RY,

(0)  |oolxils,twy, Q)] < et WD 2 ey (—y o — y? ft = e3¢
and let us define I(x;)(s,t,2,y) = Jga Xi(s,t,2,y,¢) d¢. Then {Z(x;)|i € I} is a bounded
subset of H;(RY).

Proof of Proposition 12. It is enough to show that both B, = {(m %4~ m2)c|m1 € B1,m2 €
Bs} are bounded.
Step 1. Let us first treat B_. After the change of variables z = x + (4/s, we get

(71 %94 T2) = = (X7, mp) With

Xoryma (86, %,9,C) = 17— (5,)s¥2g(x + CV/s)mi (s, @, + (V/3)0g ma(t — s, + CV/s, y).
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It is enough to check that the family (X;l,m? (m1,m2) € By x By) satisfies the assumptions
of Lemma 13 with [ = |y|. The first point is obvious. In order to check the second one, let

us fix o, f € N?. According to Leibniz’s formula, 8;‘(95)(”177@(5, t,x,y,() can be written as
a weighted sum of terms of the form

X s, 1, 2,9, ) = Ly (s, )5%/20% g & + C/B)

6(52 (7T1(S,CL',CL' + C\/g)) a;JraSagﬂ-Q(t — 5T + C\/g’ y)a

with ||+ |ag| 4+ |as| = |al, so that in order to check (40) it is enough to show that for
each such (a1, ag,as) one can find ¢; > 0 and c¢p > 0 such that for all (71, 72) € By x By,
(s,t) € T; and x,y,¢ € RY, |xa 55 Y (s,t,2,9,¢)| is less than the r.h.s. of (40), with
I = |y|. Now, By and By are bounded subsets of G(R?) so that one can find c3, c5 > 0 and
¢4 > 0 such that for all (71, 72) € By x B, (s,t) € 7y and z,y,¢ € RY,

1022 (m1(s, 2,2 + (Vs))| < c3s % exp <—C4 HCH2>

and
1717(8,75) ‘(9;+a38§772(t — s,z + C\/E,y)‘
< 1y (s, D)ey(t — )~ (sl FIHPIHD/2 o (_04 e =y + 3|/t — S))
< 17—17 (s’t)c5t*(|a\+\ﬁ|+|7|+d)/2 exp <—C4 Hx —y+ C\/EHZ /t)

where, for the last inequality, we have used the fact that when (s,t) € 7,7, ¢/2 <t —s <

t < 1. Now, using the fact that ||z — z||> > ||z[* /2 — ||z||? for all z,z € RY, we see that
- 2 .

for all (s,t) € 7,7, [¢I1* + | — y + V5] /t = (lz = yl* /¢ + [[C]*) /2. Since g € C°(RY),

we can eventually find ¢; > 0 and ¢ > 0 such that for all (w1, m2) € By x By, (s,t) € Tq

and z,y,( € RY,

i s, Q)] < eqt (0T F PN/ 0 (ol — 21— e 1)

1,72

which completes Step 1.
Step 2. Let us now treat B,. After |v| integrations by parts, we have

(7T1 *g,y 7T2)+(S,t,(l,‘,y) = 1’]‘1+(5?t) /d 8Z(Q(Z)W1(S,$,Z))7T2(t - s,z,y) dz.
R

Using Leibniz’s formula and making the change of variables z =y — {1/t — s, we get that
(71 %4~ 2)+ is a weighted sum of terms of the form Z(x;%;7?) with

X (st 2.y, C) = Ly (s, 1)(t = 8) 207 g(y — CVE— )
3;271'1(8,%,?; — (V= s)ma(t — s,y — CVE—s,Y)

and |v1|+ |v2| = |7/, so that we are now in the position to apply the same arguments as
in Step 1 and get that the family (x4, (11, m) € By x By) satisfies the assumptions of
Lemma 13 with | = ||, which completes the proof. O

We also have

Proposition 14. Let By and B be two bounded subsets of G(RY) and g € C°(R?). Then
{m1 *g,0 ma|m1 € Bi,m2 € Ba} is a bounded subset of H(RY).
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Proof. From Proposition 12, we know that {my x40 ma|m € By, m € By} is a bounded
subset of Ho(R?). It remains to prove that (39) holds for p = m; %g.0 T2 With constants ¢
and ¢ which do not depend on (71, 7m2) € By X By. As in the proof of Proposition 12, we
treat (mq %g,0m2)— and (71 %40 72)4 separately but analogously. For instance, let us treat
the first term. We have (71 *4,0 m2)— = Z(Xx, r,) With

X;1,7T2 (S, t? z,Y, C) = 1’]’17 (S, t)Sd/2g(.%' + C\/g)ﬂ-l (37 z,x + C\/E)T"Q(t -5 + C\/gv y)

Then we write 0% (X;h7T2 (s, t,z, x + yvt, C)) as a weighted sum of terms of the form

)27?1’%127042,a3(5,t’$7y7<) = l'Tl_ (S,t)sd/QaOélg(l. + C\/g)
007 (mi(s,2,2+ CV5)) 0 (malt = s,z + (Vs,a + VD))

with |a|+ |ae| + |ag] = |a|. Then we use (10) twice and the same arguments as in the
preceding proof to get ¢; > 0 and ¢ > 0 such that for all (71, m2) € By x Ba, (s,t) € 77 and
—1,02,3

r,y,¢ € Rd’ |>~(7r1,7r2 (s,t,x,y,()| < Clt_d/2 exp(—02 ||y||2 —C2 ||C||2)7 which completes
the proof. O

3.2. Proof of Theorem 1. In this section, we assume (B) and (C).

Lemma 15. Under (B) and (C), for allt € (0,1], n > 1 and z € RY, X;"* has a density
pu(t,z,-) and (pn,n > 1) is a bounded sequence in G(R?).

Proof. Tt is known that for all n > 1, k € {1,...,n} and = € R, ngm has a density
Pnk(2,-) such that p,j is infinitely differentiable and satisfies (9)-(10) with ¢t = ¢} and
two constants ¢; and ¢ which do not depend on n and k (see the proof of theorem 1.1,
page 278, in [9]). Since |nt]|/n > t/2 for all ¢ > 1/n, this shows that the sequence
(Pn;n > 1) defined by p,(t,z,y) = 1{ni>11Pn,[nt) (T, y) is bounded in G(R?). If we denote
by T'(t,x,-) the density of z + b(x)t + o(z)B; (t € (0,1],2 € R?), we observe that when
ke{l,...,n—1} and t € (t}, 1}, ), X" has the density pn(t,z,-) = [ga Pnk(z, 2)T(t —
t,z,-) dz = (Pp *1,0 ) (t%, t,2,-). Hence, for all t € (0,1], n > 1 and = € R%, X;"* has the
density

pn,k('x") if t:tz’k e{l,...,n},
pu(t,z,)) =< T(t,z,-) if te(0,t7),
(ﬁn *1,0 F)(tz,t,x,-) if te (t£7tz—|—1)7k€ {1,...,77,—1}.

Observing that I' € G(R%) and applying Proposition 14, we get that (p,,n > 1) is a
bounded sequence in G(R?). O

Recall (33). We shall now explicit C; and R} as integral operators on R?. To this end,
note that, applying recursively Lebesgue’s dominated convergence theorem, we have that
for all t € (0,1], f € C=(R?), x € R? and o € N4,

pol

(a1) 0P@) = | F)05p(t.2.9) dy.

The next lemma explicits Cy as an integral operator. The function 7 which appears
there should be thought of as the kernel of C.
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Lemma 16. Under (B) and (CO), there exists m € G1(R?), given by (12), such that for all
€ (0,1], f € C(R?) and = € R4,

po Cif(a /f n(t,,y) dy

Proof. Using (28)-(29) for the first equality, (17) for the third one and (41) for the fourth
one, we have

t
20, f(z) = /O P3P, f () ds

= /t/ p(s,z,2)L5P,_s f(2) dzds

- Z // 93.0(2)p(8,2,2)0% Pr—s f(2) dzds

1<]e|<3
= Z / / / 92a )p(s,x,2)08p(t — s, 2,y) dydzds.
1<]a|<3 Rd JR4

Using Fubini’s theorem, we see that to complete the proof it is enough to show that the
function 7 defined by

(42) 7(t,x,y) Z / p*g2 p)(s,t,x,y) ds

1<\a|<3
belongs to G (R%). Now, p € G(R?) and, from Remark 8, 954 € C2°(R?) so that we can
apply Proposition 12: pxgs op € Hy (RY). In particular, fg(P*g; Lab)(8,57)ds € G| —a.

Since |a| < 3 and by monotonicity of (G;(R9),l € Z), we finally get that 7 € G1(R?). To
complete the proof, note that (42) can be rewritten as (12). O

We have a similar representation for A7, recall (30). We say that a sequence (7", n > 1)
is O(1/n7) in G;(RY) if (n/7™,n > 1) is bounded in G;(RY).

Lemma 17. Under (B) and (C), there exists a O(1/n?) sequence (7,n > 1) in Go(R?)
such that for all t € (0,1], f € CS(R?) and x € RY,

o) = [ )i ta.) dy

Proof. Recall (34). From Remark 8, there is a family (g;%a, 1 <la| < 4) in C°(R?) such
that L?f = > 1<|a|<4 gfaaa so that, using (41) twice, we have

v 7)) - 9 @) =~ 3 / [ | 10t (@ptu.n, 2008 p(t — u.2.) dydzau.
R4 JRA
1<| |<4
Using (35), we get A7, = Jga f(W)7T(t, 2, y) dy with 7f = 7{; 4+ 77, and
[nt|—

k:+1
it r,y) = Z Z/ /t” P¥g# oP (u,t,m,y)duds,

1<\a|<4 k=0

Moty = —— 3 / (045 0 2) (5, o, ) dis.
n

" <jaj<s  ntl/m
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Now Proposition 12 states that p x ot o P and p g p belong to H‘a‘(Rd). Hence
(fm Hh ft” prg  p)(u,--) duds,n > 1,k € {0,...,[nt] —1}) is O(1/n?) in G, and

g3 fres
(antJ/n P *gs p)(S,+ ) ds,n > 1) is O(1/n) in Gla|- As a consequence, (771”71,71 > 1)
(resp. (mg,n > 1)) is O(1/n?) in Go(RY) (resp. G1(RY)). Eventually, (77,n > 1) is
O(1/n?) in Go(RY). O

We shall now prove analogous lemmas for A7, and R?’Q.

Lemma 18. Under (B) and (C), there exists a O(1/n?) sequence (75, n > 1) in G3(R?)
such that for all t € (0,1], f € C(RY) and = € RY,

o) = [ 1) ta.) dy

Proof. From (20) and (28), \I’Ot = \IJ((]g so that (31) reads

[nt]—1
wiAL o) = Y (- v)
k=1
[nt]—1
= Y (Ph—Py)LiPig f(x)
k=1
[nt]—1

= Z /Rd p)(th,z, 2) L5 Pryn f(2) dz

[nt]—1

YD / D)2, 2)g8.o(2)0° Prys f(2) d2
1<|a|<3 k=1
[nt]—1

SD D S B N N T S P

1<[a|<3 k=1

where we have used (36) for the second equality, (17) for the fourth one and (41) for the
fifth one. From Remark 8, g5 , € Cg’o(]Rd) so that to complete the proof it is enough to

show that whenever g € Cp°(R9) and a € N9, the sequence (7",n > 1) defined by

[nt]—1 [nt]—1
"(t,2,y) Z / Po—p) (17, 2, 2)g(2)08 pt—t7, 2,9)dz = > (pn—p)*g.0p)(ts 1, 2, y)
k=1

is bounded in QM(Rd). And to do so, it is enough to show that the sequence (p?z,n >
1,k e {1,...,n—1}) defined by
pin(t,x,y) = 11 (67, 1) ((Pn — P) *g.a P) (t, E, 2, y)
is O(1/n) in Gjo| 42(RY). Let us write p&;_(t, ,y) = 1o— ()P (£, z, y) and p&fr(t, T,y) =
Lr+ (tz,t)pgz (t,z,y) so that p?z = p:i{_ + p:ifr.
Let us first prove that (pgj_,n >1,ked{l,....,n—1}) is O(1/n) in Q‘QHQ(Rd). Note
that ,0?2{_ = Piimy — Ppmg = A?ZW'?Z (see (46) in the appendix for the definition of Pl'm
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and P,m when 7 € Gi(R%)) where the sequence (mip,m > 1,k € {1,...,n —1}) defined by
Tin (t, @, y) = 1r- (ty,t)g(x)0sp(t — t, x,y) is bounded in Q|a‘(Rd). Thus, from (26)-(27)
and (25) applied with j =1,

n.— m+1
P = ‘Ptn s, TR dsadst,
k tn tn

and, since k < |[nt] when (¢}, ) € Tl, Proposition 24 in the appendix gives the result.
Let us now prove the same for p™*. After |a| integrations by parts and after setting
z =y — (Vt—s, we get that ((pn, — p) *g,a P)+ is a weighted sum of terms of the form

T(xW as) - see Lemma 13 - with
a5, 62.3.0) = L (s, )(t = 9)V20% gy — CVT—5)
85?2(1)” —p)(s,x,y—(Vt—S)p(t—s,y—Cvt—s,y)

and |aq| + |ag| = |a|. Now, from Corollary 22 in the appendix, (p, —p,n > 1) is O(1/n)
in Go(RY) so that, using the same arguments as in Step 2 of the proof of Proposition 12,
we get that ((pn — p) *g,a D)+ is O(1/n) in H|q) +2- Since p%fr(t,:n,y) = lTl+ () ((pn —
P) *g.a P)+(t},t,2,y), we conclude that (p?zfr,n > 1L,k e {l,....,n—1}) is O(1/n) in
g\a|+2(Rd)' O
Lemma 19. Under (B) and (C), there ezists a O(1/n?) sequence (7%,n > 1) in G4(R?)
such that for all t € (0,1], f € C(RY) and = € RY,

pol

R 1) = [ ) t) do

Proof. From (27) and (25) applied with j = 2,

[nt] AL
2 2
R“f Z/t /t" /t" t2,83 J(x) dszdsadsy + — \I]\_ntj/nt (t—|nt]/n)".
It is enough to apply Lemmas 21 and 23 to conclude. O

Theorem 1 follows from Lemmas 15, 16, 17, 18 and 19.

Remark 20. Note that (26)-(27) and (25) combined with Lemmas 21 and 23 imply that
we have an expansion of arbitrary order j for p,, — p:

[nt]—1

J J —Intl/n)¢ ..
<pn_p)(t"")zzi!2i Z wtnnz ) +Z%¢%J/n(t"")

=2 =2
Nt
K41
,J+1
/ / / (,Otn Sj+17 y ,-) d8]+1 -dsods;.
i ty i

Since (cp?;{j,n > 1,k € {0,...,n}) and (w%{j,n > 1,k € {0,...,n}) are respectively
bounded in Haj(R?) and Ga;(RY), this gives

LtJ

7—1

J
s
(43) —p= Zgz’l—l—z (t — |nt]/n)'w ,'w-—l—rjn

=1 =2
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where (1,7 > 1) and (7 m,n > 1) are respectively bounded in Go;_2(R?Y) and Go;(R%)
and (rj,n > 1) is O(1 /n?) in Goj(RY). In particular, when ¢ = 1 and no differentiation is
apphed neither in x nor in y, this boils down to the result of V. KONAKOV and E. MAMMEN
[9]. Expansion (43) is much richer in the sense that it allows for infinite differentiation in
x and y and also precises the way the coeflicients explode when ¢ tends to 0.

4. APPENDIX
4.1. Kernels of ® and V. Here we explicit the kernels of <I> st and \Iltn +
Lemma 21. Under (B) and (C), for each j € N*, there exzsts a bounded sequence
(go%;],n > 1,k € {0,...,n}) in Haj(RY) such that for allt € (0,1], n > 1, k € {0,..., |nt]},
s€(tp,th N, feCly (RY) and = € R,

pol

(44) k787tf / fly sotn s,t,2,y) dy.
Proof. From (19), (18) and (41) and using Fubini’s theorem, we have (44) with
mj o
w?;; (s,t,2,9) = Lymm (( Z Z/ / Pn(th, T, 21)9j,0,1(21)Pn(s — ti, 21, 22)
1<\a|<2j =1 R
hja,i(22)05p(t — s, 22,y) dz1dza,
if k> 1 and
mj o

G t) = gl 3 D [ gir ol 2 s (2350l ~ 5.20,0) don

1<|a|<2j 1=1

As (pp,n > 1) is bounded in G(R), Proposition 12 shows that (Lpg’j, n > 1) is bounded in
'HM(Rd), so that to prove the lemma it is enough to show that whenever g,h € Cg°(R%)

and a € N, the sequence (¢}, i I on>1,ke€{l1,...,n}) of functions defined on 7; x R% x R?
by

¢Z€’ (5.t 2,7) = g ot kH[(S)/ (Pn *g,0 Pn) (1, 5, @, 22)1(22) 05 p(t — 5, 22, y) d22
R4

is bounded in 'H|a|(]Rd). Now, setting qtn(s x,z) = l]tk7 k+1[( 5)(Dn *g,0 Pn) (L, 8,2, 2), it
follows from Proposition 14 that (qtn,n > 1,k € {1,...,n}) is a bounded sequence in
G(R?). Then Proposition 12 shows that qbt i = = qpp *ha P IS bounded in 'H|a|(]Rd). O
Corollary 22. Under (B) and (C), (p, — p,n > 1) is O(1/n) in Go(R%).

Proof. From (26) applied with j = 1 and (25), we have for all f € C9(R%)

pol
LntJ

nA .
Pl =) (t5.9) dy = / / BI2, [(x) dsadsy,
R4 tn t”

so that Lemma 21 implies that

"tJ AL st
n,2
(pn ) t x y / / Spt;j (327t,$,y) dSstl
tn tg

is O(1/n) in Go(R?). O
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Setting 7 (¢, z,y) = ¢’ (t7,t, 2, y), we deduce from Lemma 21
k k

Lemma 23. Under (B) and (C), for each j € N*, there exists a bounded sequence
(¢ i Ion> 1,k €{0,...,n}) in Go;(RY) such that for allt € (0,1], n > 1, k € {0,..., [nt]},
f€CX(RY) and x € Rd,

pol

(45) \I/:tw / fly t x,y) dy.

4.2. Operators on G;(R%). When 7 € G(R?), 7(t,-,y) € L¥(RY) so that for s € [0, 1]
and n > 1 we can define two functions Pym and P77 on (0,1] x R? x R? by Pyr(t,-,y) =

l{sﬁt}PS(ﬂ-(t? 7y)) and Psnﬂ-(ta '7y) = 1{s§t}Psn(7T(t7 'ay))a Le
(46) Pm(t,z,y) = l{sﬁt}E [ (¢, X5, y)] and Psnﬂ-(tv T,y) = l{sﬁt}E [ (¢, X, y)] -
We also write A"r = Pt — Pyr. For j € N* we denote by ®/ the family ((I)t" 5508 €

0,1],n > 1,m € {0,...,ns|}, s € [th,t7 1 A s]) of operators on G;(R?) defined as in
(19) by

Xt
<I>tn s/sw(txy) E|L; P, o (6L X0 y) |,

i.e., using (18),

mj o
(47) op = S N P <g]alP/ i (10105 P, S)).
1<|al<2j 1=1

Denoting by Ly(G;(R%), Gy (R?)) the space of all morphisms mapping any bounded subset
of G;(R?) into a bounded subset of Gy (R?), we then have

Proposition 24. Under (B) and (C), (Ps,s € [0,1]) and (Pl',s € [0,1],n > 1) are
bounded families in Ly(G(RY)), and ®7 is a bounded family in Ly(Gi(R?), G11a;(RY)).

Proof. Let us first deal with (Ps). Let 7 € G;(R%). P; is measurable. Moreover, Lebesgue’s
dominated convergence theorem shows that Pym(t, z,-) is infinitely differentiable and that

for all 3 € N
agpsﬂ-(ta xr, y) = l{sgt}E [agﬂ- (t7 X;Ba y)] :

Hypothesis (A) ensures that a version of X* can be chosen such that for each ¢ > 0, the map
x +— X is infinitely differentiable (see, for example, [10]). Since a§ m(t,-,y) € CX(RY),

pol

it follows from Theorem 3.14 page 16 in [11] that 85 Pym(t,-,y) is infinitely differentiable
and that for all o € N there exists universal polynomials (Il, ,, |u| < |a|) such that

(48) a(;agpsﬂ-(t? Z, y) = 1{s§t} Z E |:8ga§7r (ta Xsma y) Ha,,u (a:llesma |l/| < ’a|):|
1l <le
with

(49) sup  Eflla, (X7, |v] < |a)?] < oo
s€[0,1],x€RY

for all |u] < |a|. As a consequence, Psm(t,-,-) is infinitely differentiable and using Cauchy-
Schwarz’s inequality, (8) and (49), we see that for all bounded B C G;(R?) and o, 3 € N,
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there exists two constants ¢; > 0 and ¢ > 0 such that for all 7 € B, s € [0,1], t € (0,1]
and z,y € R?,

1/2
(50)  |00f Ptz )| < erlqsegt” (UTHIHEDRE fexp (—cy X2yl /t) |

Now, partitioning  into {|| X2 — y|| < ||z — y|| /2} and {|| X5 — y|| > || — y|| /2}, we have
(51) E [exp (—c2 | X5 =yl /t)| <PUIXE =yl < llz =yl /2) +exp (—ealle — yll” /42)

Using (10) for p € G(R?) for the fourth inequality, we can find c3,c5 > 0 and c4,c6 > 0
such that for all s € (0,1] and z,y € R?,

POIXS =yl <llz—yll/2) < PX5 -2zl >z—yl/2)
= / L{jjz—al|>|lz—y] /2 P(8, T, 2) dz
Rd

_ /Rd 1l oyl /20y P(5: 2, + Ev/3)sY/2 de

< e /Rd L)z oyl /25y XP(—ca [I€]]*) dé

(52) < csexp (—colle—yl?/s).-

Eventually, from (51) and (52), we can find ¢7 > 0 and cg > 0 such that for all s € [0, 1],
t €(0,1] and z,y € RY,

1< E [exp (—ea X3 =yl /t)]

(53)

IN

es exp (=g lz = y|* /t) +exp (—ez |l — y* /4¢)

crexp (s llo =y /1)

It is enough to inject (53) into (50) to complete the proof for (Ps).

This proof naturally extends to the case of (PJ"). Indeed, (48) holds with (X", P™)
instead of (X, P). Moreover, from Lemma 26, (49) holds uniformly in n with X" instead
of X. Eventually, (52) holds with X" instead of X, uniformly in n because (p,,n > 1) is
bounded in G(R).

As for @7 it is enough to use (47), the boundedness of (Ps) and (P"), Remark 8 and
the facts that multiplication by a function in B belongs to Eb(gl(Rd) G(R?)) and that

05 € Ly(Gi(R?), Gr1ja) (RY)). O

4.3. Moments for the Euler scheme and its derivatives. Let us assume (A). Then
it is known that X;"* has bounded moments of any order and that for all ¢ € N, one can
find ¢ > 0 such that for all z € RY,

(54) sup B[ X)) < e (1 + [l
t€[0,1],n>1

IN

(see [15]). From (4), = — X,"" is infinitely differentiable and we shall see that analogous

upper bounds hold for its derivatives. Following [11], for m > 1, we denote by Xt(m)’n’m

the m-th derivative of z — X;"* at point z. It should be thought of as a d x d™ matrix.

J™T i the jacobian matrix of z — X;"*. Differentiating (4), we have

t
1)z _ 1) [y, 1)nx n,x (1),n,z j
(55) Xt =1+ /0 b (XLnsJ/n ns|/n ds + Z/ X |ns|/n X[nsJ/n dB

1
For instance, X t(
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where I stands for the identity matrix and o is the j-th column of o. Besides, by induction,
there are for each m > 2 universal polynomials P, ;, j € {0,...,7}, such that

t
(m)nz _ (1) (m),n,z (m),n,z j
(56) Xt _/0 b (XLnSJ/”)X [ns|/n ds +Z/ nsJ/n XLnsJ/n dB

/QmOLns d5+2/ Q m,J, LnSJ/n S

where

n,xr n,r m n,r 1),n,x m—1),n,x
(57) {Qw;,o,t = Pro0@ (X)) (X)), XD, X,

Quty = Pug(@ (X)L oM xp), X x e,

This is analogous to (1.8) page 4 in [11]. Then we have

Lemma 25. Under (A), for allm > 1 and q € N, there exists ¢ > 0 and q¢' € N such that
for all x € RY,

(58) sup E [th(’”)’”’x
te[0,1],n>1

| <e(i+ ).

Proof. We give a proof by induction on m. Let us first assume that m = 1. Let ¢ € N.

From (55), and observing that (A) states that (1) and all the O'j(»l) are bounded, Jensen’s
and Burkholder-Davis-Gundy’s inequalities lead to the existence of ¢ > 0 such that for all

t€0,1, n > 1 and x € RY,
(x| <o (1 [e )] o).

Taking this inequality at time |nt|/n and applying Gronwall’s lemma, we get that

sup [HX(
tel0,1],n>1,zeR?

From (4), one easily checks that the same holds at time ¢ instead of |nt]/n, so that (58)
holds for m = 1 with ¢’ = 0.
Let us now assume that (58) holds for the m — 1 first derivatives. Let ¢ € N. From

(56), and observing again that (A) states that b(") and all the 0](.1) are bounded, Jensen’s
and Burkholder-Davis-Gundy’s inequalities lead to the existence of ¢; > 0 such that for
allt €[0,1], n>1 and z € RY,

] s

o [Eltil] o [ ZElem

Using (57), the induction hypothesis, (A) and (54), we find ¢2 > 0 and ¢’ € N such that
for all s € [0,1], n > 1 and = € RY,

> [[05

Thus, taking (59) at time |nt|/n and applying Gronwall’s lemma, we find ¢ > 0 such that

for all z € R?,
q ’
} §c<1—|—||x||q).

O] < oo

(59) E[|ximne

T<e(1+1).

(m),n,x
e ol
€[0,1],n>1 ntl/
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From (4), one easily checks that the same holds at time ¢ instead of |nt|/n, which completes
the proof. 0

Observe that, under (B), the above proof holds with ¢’ = 0 so that we have
Lemma 26. Under (B), for allm >1 and q € N,

sup E H’Xt(m)’n’m
te[0,1],n>1,2€RE

q
]<oo.
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