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Abstract. Given a smooth R
d-valued diffusion (Xx

t , t ∈ [0, 1]) starting at point x, we
study how fast the Euler scheme Xn,x

1 with time step 1/n converges in law to the random
variable Xx

1 . Precisely, we look for which class of test functions f the approximate
expectation E [f (Xn,x

1 )] converges with speed 1/n to E [f (Xx
1 )].

When f is smooth with polynomially growing derivatives [14], or, under a uniform
hypoellipticity condition for X, when f is only measurable and bounded [1], it is known
that there exists a constant C1f(x) such that

(1) E [f (Xn,x
1 )] − E [f (Xx

1 )] = C1f(x)/n + O
`

1/n2
´

.

If X is uniformly elliptic, we expand this result to the case when f is a tempered
distribution. In such a case, E [f (Xx

1 )] (resp. E [f (Xn,x
1 )]) has to be understood as

〈f, p(1, x, ·)〉 (resp. 〈f, pn(1, x, ·)〉) where p(t, x, ·) (resp. pn(t, x, ·)) is the density of Xx
t

(resp. Xn,x
t ). In particular, (1) is valid when f is a measurable function with polynomial

growth, a Dirac mass or any derivative of a Dirac mass. We even show that (1) remains
valid when f is a measurable function with exponential growth. Actually our results are
symmetric in the two space variables x and y of the transition density and we prove that

∂α
x ∂β

y pn(t, x, y) − ∂α
x ∂β

y p(t, x, y) = ∂α
x ∂β

y π(t, x, y)/n + rn(t, x, y)

for a function π and a O(1/n2) remainder rn which are shown to be of gaussian type.
We give applications to option pricing and hedging, proving numerical convergence rates
for prices, deltas and gammas.

1. Introduction and results

Let d, r ≥ 1 be two integers. Let (Ω,F ,P) be a probability space on which lives a
r-dimensional Brownian motion B. We denote by Ft = σ(Bs, 0 ≤ s ≤ t) the filtration
generated by B. Let us give two functions b : R

d → R
d and σ : R

d → R
d×r. We

systematically use (column) vector and matrix notations, so that b(x) should be thought
of as a vector of size d and σ(x) as a matrix of size d×r. We denote transposition by a star
and define a d × d matrix-valued function by putting a = σσ∗. For a multiindex α ∈ N

d,
|α| = α1 + · · · + αd is its length and ∂α is the differential operator ∂ |α|/∂xα1

1 · · · ∂xαd

d .

Equipping R
d with the euclidian norm ‖·‖, we denote by

• C∞
pol(R

d) the set of infinitely differentiable functions f : R
d → R with polynomially

growing derivatives of any order, i.e. such that for all α ∈ N
d, there exists c ≥ 0

and q ∈ N such that for all x ∈ R
d,

(2) |∂αf(x)| ≤ c (1 + ‖x‖q) ,

• C∞
b (Rd) the set of infinitely differentiable functions f : R

d → R with bounded

derivatives of any order, i.e. such that ∂αf ∈ L∞(Rd) for all α ∈ N
d.
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We shall make use of the following assumptions:

(A) For all i ∈ {1, . . . , d} and j ∈ {1, . . . , r}, bi and σi,j belong to C∞
pol(R

d) and have
bounded first derivatives.

(B) For all i ∈ {1, . . . , d} and j ∈ {1, . . . , r}, bi and σi,j belong to C∞
b (Rd).

(C) There exists η > 0 such that for all x, ξ ∈ R
d, ξ∗a(x)ξ ≥ η‖ξ‖2.

(C) is known as the uniform ellipticity condition.
It is well known that, given x ∈ R, the hypothesis (A) guarantees the existence and

the P-almost sure uniqueness of a solution Xx = (Xx
t , t ≥ 0) of the stochastic differential

equation (SDE)

(3) Xx
t = x+

∫ t

0
b(Xx

s ) ds+

∫ t

0
σ(Xx

s ) dBs.

1.1. Motivation. Let us fix a time horizon T > 0. Without loss of generality, we can and
do assume that T = 1. We try to estimate the law of Xx

1 . To do so, the most natural idea
is to approach Xx by its Euler scheme of order n ≥ 1, say Xn,x = (Xn,x

t , t ≥ 0), defined as
follows. We consider the regular subdivision Sn = {0 = tn0 < tn1 < · · · < tnn−1 < tnn = 1} of
the interval [0, 1], i.e. tnk = k/n, and we put Xn,x

0 = x and, for all k ∈ {0, . . . , n− 1} and
t ∈ [tnk , t

n
k+1],

Xn,x
t = Xn,x

tn
k

+ b
(

Xn,x
tn
k

)

(t− tnk) + σ
(

Xn,x
tn
k

)

(

Bt −Btn
k

)

.(4)

We measure the weak error between Xn,x
1 and Xx

1 by the quantities

∆n
1f(x) = E [f (Xn,x

1 )] − E [f (Xx
1 )]

and we try to find the largest space of test functions f for which for each x there exists a
constant C1f(x) such that

(5) ∆n
1f(x) = C1f(x)/n+O

(

1/n2
)

.

Practical interest of such an expansion has to be underlined (see, for instance, [7, 14]).
When (5) holds, one can use the Euler scheme plus a Monte-Carlo method to estimate

E [f (Xx
1 )] and then, in a time of order nN , gets an error of order 1/

√
N + 1/n, where

N stands for the number of independants copies of Xn,x
1 generated by the Monte-Carlo

procedure. Given a tolerance ε� 1, in order to minimize the time of calculus, one should
then choose N = O

(

n2
)

and gets a result in a time of order 1/ε3.
One can even do better using Romberg’s extrapolation technique: if one runs N in-

dependant copies (X2n,x
i,1 , Xn,x

i,1 ) of the couple (X2n,x
1 , Xn,x

1 ), which still requires a time of

order nN , then computing 1
N

∑N
i=1(2f(X2n,x

i,1 )−f(Xn,x
i,1 )) one gets an estimate of E [f (Xx

1 )]

whose accuracy is of order 1/
√
N + 1/n2, since (5) implies that E[2f(X2n,x

1 )− f(Xn,x
1 )] =

E[f(Xx
1 )] + O(1/n2). Given a tolerance ε � 1, one should now choose N = O

(

n4
)

and

gets a result in a time of order 1/ε5/2.

1.2. Previous results. Using Itô expansions, D. Talay and L. Tubaro [14] have shown
that (5) holds when f ∈ C∞

pol(R
d). Using Malliavin calculus, V. Bally and D. Talay

[1] have extended this result to the case of measurable and bounded f ’s, when X is
uniformly hypoelliptic. If (C) holds, Xn,x

1 and Xx
1 have densities, say pn(1, x, ·) and

p(1, x, ·) respectively (in this paper, densities are always taken with respect to the Lebesgue
measure). For each pair (x, y), the authors [2] get an expansion of the form

(6) pn(1, x, y) − p(1, x, y) = π(1, x, y)/n + rn(1, x, y)/n2.
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They also find constants c1 ≥ 0 and c2 > 0 such that for all n ≥ 1 and x, y ∈ R
d,

|π(1, x, y)|+ |rn(1, x, y)| ≤ c1 exp(−c2 ‖x− y‖2).
Besides, V. Konakov and E. Mammen [9] have proposed an analytical approach for

this problem based on the so-called parametrix method. If (C) holds, for each pair (x, y),
they get an expansion of arbitrary order j of pn(1, x, y) but whose terms depend on n:

(7) pn(1, x, y) − p(1, x, y) =

j−1
∑

i=1

πn,i(1, x, y)/n
i +O

(

1/nj
)

.

For each i, they also find constants c1 ≥ 0 and c2 > 0 such that for all n ≥ 1 and
x, y ∈ R

d, |πn,i(1, x, y)| ≤ c1 exp(−c2 ‖x− y‖2). To do so, the authors use upper bounds
on the partial derivatives of p - which they find in [4] - and prove analogous bounds on
pn’s ones.

For a link with generalized Watanabe distributions on Wiener’s space, see [12]. For the
general case of Lévy driven stochastic differential equations, (4) holds under regularity
assumptions on f and integrability conditions on the Lévy process (see [7, 13]). For the
rate of convergence of the process (Xn,x

t −Xx
t , t ∈ [0, 1]), see [5, 6]. As for the simulation

of densities, see [8].

1.3. Main results. Our main result can be seen as an improvement of (6). It gives a first
order functional expansion for pn. In order to state it shortly, we introduce an increasing
family of functional spaces

(

Gl(R
d), l ∈ Z

)

. For l ∈ Z, we define Gl(R
d) as the set of all

measurable functions π : (0, 1] × R
d × R

d → R such that

• for all t ∈ (0, 1], π(t, ·, ·) is infinitely differentiable,
• for all α, β ∈ N

d, there exists two constants c1 ≥ 0 and c2 > 0 such that for all
t ∈ (0, 1] and x, y ∈ R

d,

(8)
∣

∣

∣
∂α

x ∂
β
y π(t, x, y)

∣

∣

∣
≤ c1t

−(|α|+ |β|+d+l)/2 exp
(

−c2 ‖x− y‖2 /t
)

.

We say that a subset B ⊂ Gl(R
d) is bounded if, in (8), c1 and c2 can be chosen indepen-

dently on π ∈ B. We also introduce the space G(Rd) defined in the same way as Gl(R
d)

with (8) replaced by the following two conditions:
∣

∣

∣∂α
x ∂

β
y π(t, x, y)

∣

∣

∣ ≤ c1t
−(|α|+ |β|+d)/2 exp

(

−c2 ‖x− y‖2 /t
)

,(9)
∣

∣

∣∂α
x

(

π
(

t, x, x+ y
√
t
))∣

∣

∣ ≤ c1t
−d/2 exp

(

−c2 ‖y‖2
)

.(10)

We say that a subset B ⊂ G(Rd) is bounded if, in (9) and (10), c1 and c2 can be chosen
independently on π ∈ B. We are now able to state our main result as follows.

Theorem 1. Under (B) and (C),

(i) for all t ∈ (0, 1] and x ∈ R
d, Xx

t has a density p(t, x, ·) and p ∈ G(Rd),
(ii) for all t ∈ (0, 1], x ∈ R

d and n ≥ 1, Xn,x
t has a density pn(t, x, ·) and (pn, n ≥ 1)

is a bounded sequence in G(Rd),
(iii) there exists π ∈ G1(R

d) and a bounded sequence (πn, n ≥ 1) in G4(R
d) such that

for all n ≥ 1,

(11) pn − p = π/n+ πn/n
2.
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Statement (i) is already known (see [4], theorem 7, page 260). Statement (ii), which has
essentially been proved in [9], and statement (iii) are proved in Section 3.2. The function
π can be expressed in terms of p by

(12) π(t, x, y) =
1

2

∫ t

0

∫

Rd

p(s, x, z)L∗
2(p(t− s, ·, y))(z) dzds,

where the differential operator L∗
2 is explicitely given in terms of the functions a and b by

(13) − L∗
2 =

d
∑

i=1

(

b · ∇bi +
1

2
tr
(

a∇2bi
)

)

∂i

+

d
∑

i,j=1

(

1

2
b · ∇ai,j + aj · ∇bi +

1

4
tr
(

a∇2ai,j

)

)

∂ij +
1

2

d
∑

i,j,k=1

ak · ∇ai,j∂ijk.

Here, ·, ak, tr, ∇ and ∇2 respectively stand for the inner product in R
d, the k-th column

of a, the trace of a matrix, the gradient vector and the hessian matrix. In the case when
t = 1, (12) agrees with V. Bally and D. Talay’s expression for π ([2], definition 2.2,
page 100), but seems preferable because it does not involve differentiation with respect
to t and makes clearly appear that the space differential operator L∗

2 is of order less than
3, when V. Bally and D. Talay’s operator U involves a fourth order differentiation in
space.

As a consequence, we can state

Corollary 2. Under (B) and (C), for all α, β ∈ N
d, there exists c1 ≥ 0 and c2 > 0 such

that for all n ≥ 1, t ∈ (0, 1] and x, y ∈ R
d,

∂α
x∂

β
y pn(t, x, y) − ∂α

x ∂
β
y p(t, x, y) =

1

n
∂α

x ∂
β
y π(t, x, y) + rn(t, x, y)

and

|rn(t, x, y)| ≤ c1n
−2t−(|α|+ |β|+d+4)/2 exp

(

−c2 ‖x− y‖2 /t
)

.

We shall now prove that if X is elliptic the expansion (5) is valid in the very general
case when f is a tempered distribution. Let us denote by S(Rd) Schwartz’s space, i.e. the
space of infinitely differentiable functions ϕ : R

d → R such that x 7→ xα∂βϕ(x) ∈ L∞(Rd)
for all α, β ∈ N

d (xα stands for xα1

1 · · · xαd

d ), and let us denote by S ′(Rd) the space of

tempered distributions. The seminorms (Nq, q ∈ N) are defined on S(Rd) by

Nq(ϕ) =
∑

|α|≤q,|β|≤q

sup
x∈Rd

∣

∣

∣
xα∂βϕ(x)

∣

∣

∣
,

and the order #S of S ∈ S ′(Rd) is the smallest integer q such that there is a c ≥ 0 such
that |〈S, ϕ〉| ≤ cNq(ϕ) for all ϕ ∈ S(Rd). Note that whenever π ∈ Gl(R

d), π(t, x, ·) and

π(t, ·, y) belong to S(Rd). More precisely, for B ⊂ Gl(R
d) bounded, there exists c ≥ 0 such

that for all π ∈ B, t ∈ (0, 1] and x, y ∈ R
d,

Nq(π(t, x, ·)) ≤ ct−(d+l+q)/2 (1 + ‖x‖q) and Nq(π(t, ·, y)) ≤ ct−(d+l+q)/2 (1 + ‖y‖q) .

Applying a tempered distribution S to (11), t and x or t and y being fixed, we imme-
diately deduce from Theorem 1
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Theorem 3. Under (B) and (C), for all S ∈ S ′(Rd), there exists c ≥ 0 such that for all
n ≥ 1, t ∈ (0, 1] and x, y ∈ R

d,

〈S, pn(t, x, ·)〉 − 〈S, p(t, x, ·)〉 =
1

n
〈S, π(t, x, ·)〉 + r′n(t, x),

〈S, pn(t, ·, y)〉 − 〈S, p(t, ·, y)〉 =
1

n
〈S, π(t, ·, y)〉 + r′′n(t, y),

and
∣

∣r′n(t, x)
∣

∣+
∣

∣r′′n(t, x)
∣

∣ ≤ cn−2t−(d+4+#S)/2
(

1 + ‖x‖#S
)

.

Let us define E [S(Y )] by 〈S, pY 〉 when S ∈ S ′(Rd) and Y is a random variable with den-
sity pY ∈ S(Rd). Note that, when S is a measurable and polynomially growing function,
this definition coincides with the usual expectation. We then have proved that, under (B)
and (C), (5) is valid for f ’s being only tempered distributions, and not only for t = 1, but
also for any time t ∈ (0, 1], and we have even explicited the way the O(1/n2) remainder

depends on t, f and x. Precisely, this remainder grows slower than ‖x‖#f as x tends to
infinity, and explodes slower than t−(#f+d+4)/2 as t tends to 0.

As the particular case when S is a measurable and polynomially growing function, let
us state

Corollary 4. Assume (B) and (C). Let f : R
d → R be a measurable function such that

there exists c′ ≥ 0 and q ∈ N such that for all x ∈ R
d, |f(x)| ≤ c′(1 + ‖x‖q). Then there

exists c ≥ 0 such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R
d,

(14) E[f(Xn,x
t )] − E[f(Xx

t )] =
1

n

∫

Rd

f(y)π(t, x, y) dy + rn(t, x)

and
|rn(t, x)| ≤ cn−2t−2 (1 + ‖x‖q) .

Proof. Multiplying (11) by f(y) and integrating in y leads to (14) with the remainder
rn(t, x) = n−2

∫

Rd f(y)πn(t, x, y)dy. Since |f(y)| ≤ c′(1+‖y‖q) and (πn, n ≥ 1) is bounded

in G4(R
d), we can find c1 ≥ 0 and c2 > 0 such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R

d,

|rn(t, x)| ≤ c1n
−2t−(d+4)/2

∫

Rd(1 + ‖y‖q) exp(−c2 ‖x− y‖2 /t) dy. Setting ζ = (y − x)/
√
t

leads to |rn(t, x)| ≤ c1n
−2t−2

∫

Rd exp(1 +
∥

∥x+ ζ
√
t
∥

∥

q
) exp(−c2 ‖ζ‖2) dζ. To complete the

proof, it remains to observe that there exists c ≥ 0 such that for all t ∈ (0, 1] and x, ζ ∈ R
d,

∥

∥x+ ζ
√
t
∥

∥

q ≤ c(‖x‖q + ‖ζ‖q). �

As far as extending the class of f ’s for which (5) holds is concerned, we can even do
better. Indeed, if for µ ∈ (0, 2) we denote by Eµ the set of all measurable functions

f : R
d → R such that there exists c1, c2 ≥ 0 such that for all y ∈ R

d,

|f(y)| ≤ c1 exp (c2 ‖y‖µ) ,

it is easy to adapt the preceding proof to get

Corollary 5. Under (B) and (C), for all µ ∈ (0, 2) and f ∈ Eµ, there exists c1, c2 ≥ 0

such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R
d, f(Xx

t ) and f(Xn,x
t ) are integrable and

(15) E[f(Xn,x
t )] − E[f(Xx

t )] =
1

n

∫

Rd

f(y)π(t, x, y) dy + rn(t, x)

with
|rn(t, x)| ≤ c1n

−2t−2 exp (c2 ‖x‖µ) .
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In particular, (5) remains true under (B) and (C) when f ∈ E = ∪µ∈(0,2)Eµ. In the
same way, differentiating (5) α times in x, multiplying by f(y) and integrating in y leads
to

Corollary 6. Under (B) and (C), for all α ∈ N
d, µ ∈ (0, 2) and f ∈ Eµ, there exists

c1, c2 ≥ 0 such that for all n ≥ 1, t ∈ (0, 1] and x ∈ R
d,

(16) ∂α
x E[f(Xn,x

t )] − ∂α
x E[f(Xx

t )] =
1

n

∫

Rd

f(y)∂α
xπ(t, x, y) dy + rn(t, x)

with
|rn(t, x)| ≤ c1n

−2t−(|α|+4)/2 exp (c2 ‖x‖µ) .

This result can now be used in the context of financial markets.

1.4. Application to option pricing and hedging. Let Sv = (Sv,1, . . . , Sv,d) be a
basket of assets satisfying

dSv,i
t

Sv,i
t

= µi(S
v
t ) dt+

r
∑

j=1

σi,j(S
v
t ) dBj

t , Sv,i
0 = vi > 0,

with µ, σ ∈ C∞
b (Rd) and σ satisfying (C). Given a measurable and polynomially growing

function φ, we try to estimate the price Price = E[φ(Sv
t )], the deltas Deltai = ∂ei

v E[φ(Sv
t )]

and the gammas Gammai,j = ∂
ei+ej
v E[φ(Sv

t )] of the european option of maturity t and

payoff φ ((e1, . . . , ed) is the canonical base of R
d). To do so, let us set x = ln v (i.e.

xi = ln vi) and Xx,i
t = ln(Sv,i

t ). Then X is the solution of (3) with b = µ − ‖σ‖2 /2 ∈
C∞

b (Rd), where ‖σ‖2
i (x) =

∑r
j=1 σ

2
i,j(x). If we set exp(x) = (exp(x1), . . . , exp(xd)) and

f(x) = φ(exp(x)), we define a function f ∈ E1 and, since Price = E[f(Xx
t )], (15) leads to

Pricen − Price = CPrice
t φ(v)/n+O

(

n−2t−2 exp (c2 ‖ln v‖)
)

,

where Pricen stands for the approximated price E[f(Xn,x
t )] and

CPrice
t φ(v) =

∫

(R∗

+)d

φ(u)
π(t, ln v, ln u)

u1 · · · ud
du.

Besides, if we set Deltan
i = ∂ei

v E[f(Xn,ln v
t )] and Gamman

i,j = ∂
ei+ej
v E[f(Xn,ln v

t )], (16)
shows that

Deltan − Delta = CDelta
t φ(v)/n+O

(

n−2t−5/2 exp (c2 ‖ln v‖)
)

,

Gamman − Gamma = CGamma
t φ(v)/n+O

(

n−2t−3 exp (c2 ‖ln v‖)
)

,

where

CDelta
t φ(v)i =

∫

(R∗

+)d

φ(u)
∂ei

2 π(t, ln v, ln u)

u1 · · · ud
du,

CGamma
t φ(v)i,j =

∫

(R∗

+)d

φ(u)
∂

ei+ej

2 π(t, ln v, ln u)

u1 · · · ud
du.

Eventually we have proved that applying the Euler scheme of order n to the logarithm
of the underlying leads to approximations of the price, the deltas and the gammas which
converge to the true price, deltas and gammas with speed 1/n, at least when the drift and
volatility of the underlying satisfy (B) and (C), which in the context of financial markets
seems not to be a restricting hypothesis. Note that the principal part of the error explodes
as t tends to 0 as t−1/2 for the prices, t−1 for the deltas and t−3/2 for the gammas.
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1.5. A preliminary result. In order to prove Theorem 1, we first seek an expansion for
the error operator

∆n
t = P n

t − Pt

where, for f ∈ C∞
pol(R

d) and x ∈ R
d, we have set Ptf(x) = E[f(Xx

t )] and P n
t f(x) =

E [f(Xn,x
t )]. Precisely, we look for operators Ct and Rn

t such that Rn
t = O(1/n2) and

∆n
t = Ct/n + Rn

t . The following theorem, interesting in itself, is proved in Section 2. It
can be seen as an improvement of [14]. It not only gives explicit formulas for Ctf(x) and
Rn

t f(x) but also provides useful information about their dependencies on n, t, f and x.
Note that it does not require neither (B) nor (C). In order to state it shortly, let us

• denote by L
(

C∞
pol(R

d)
)

the space of endomorphisms of C∞
pol(R

d),

• say that a subset B ⊂ C∞
pol(R

d) is bounded if, in (2), c and q can be chosen
independently on f ∈ B,

• say that T ∈ L
(

C∞
pol(R

d)
)

is bounded if for all bounded B ⊂ C∞
pol(R

d), {Tf |f ∈ B}
is a bounded subset of C∞

pol(R
d),

• denote by Lb

(

C∞
pol(R

d)
)

the space of bounded endomorphisms of C∞
pol(R

d),

• say that a Lb

(

C∞
pol(R

d)
)

-valued family (Ti, i ∈ I) is bounded if for all bounded

B ⊂ C∞
pol(R

d), {Tif |f ∈ B, i ∈ I} is a bounded subset of C∞
pol(R

d),

• say that (Ti, i ∈ I) is a O(h(i)) family in Lb

(

C∞
pol(R

d)
)

if the family (h(i)−1Ti, i ∈ I)
is bounded.

It is already known that (Pt, t ∈ [0, 1]) is a bounded family in Lb

(

C∞
pol(R

d)
)

. A proof
can de found in [11], lemma 3.9, page 15. Using Lemma 25, this proof straightforwardly
adapts uniformly in n so that (P n

t , t ∈ [0, 1], n ≥ 1) is also bounded in Lb

(

C∞
pol(R

d)
)

. We
are now in the position to state the main result of the first step:

Theorem 7. Under (A), (∆n
t , t ∈ [0, 1], n ≥ 1) is a O(1/n) family in Lb

(

C∞
pol(R

d)
)

, and

there exists a O(t) process (Ct, t ∈ [0, 1]) and a O(1/n2) family (Rn
t , t ∈ [0, 1], n ≥ 1) in

Lb

(

C∞
pol(R

d)
)

such that

∆n
t = Ct/n+Rn

t .

Moreover, Ct is explicitely given in terms of (Pt, t ∈ [0, 1]) and of L∗
2 (see (13)) by

Ct =
1

2

∫ t

0
PsL

∗
2Pt−s ds.

1.6. Organization of the paper. Section 2 is our first step on the way to prove Theorem
1. It is dedicated to the proof Theorem 7. We also derive an expansion for ∆n

t of arbitrary
order, but whose terms depend on n, see (26), and we explain how to recursively construct
the differential operators which appear in it.

Section 3 is our second and final step. It is devoted to the proof of Theorem 1. To
sum up, we use Theorem 7 and express Ct and Rn

t in terms of the densities of Xx
t and

Xn,x
t , making appear kernels for C and Rn. The section begins with a study of the space

convolution in G(Rd) which allows to control these kernels. As in Section 2, we also give
a functional expansion for pn − p of arbitrary order, but whose terms depend on n, see
(43), thus improving (7).

Eventually, Section 4 is an appendix where we have gathered useful results on the Euler
scheme and technical lemmas that are used in Sections 2 and 3.
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2. First step: expansion for E [f (Xn,x
t )]

2.1. Operators associated with the Euler scheme. Let us denote by L the infinites-
imal generator of the diffusion X and by (Lx, x ∈ R

d) its tangent infinitesimal generator,
i.e.

L =
d
∑

i=1

bi∂
ei +

1

2

d
∑

i,j=1

ai,j∂
ei+ej and Lx =

d
∑

i=1

bi(x)∂
ei +

1

2

d
∑

i,j=1

ai,j(x)∂
ei+ej .

We use the convention that L and Lx act on y, so that, for instance, Lψ(t, x, y) and
Lxψ(t, x, y) respectively stand for L (ψ(t, x, ·)) (y) and Lx (ψ(t, x, ·)) (y). Lx is the infini-
tesimal generator of (Xn,x

t , t ∈ [0, 1/n]). Besides, for each x ∈ R
d we define a sequence of

operators (Lx
j , j ∈ N) by putting Lx

0 = I (the identity operator) and

Lx
j+1 = LxLx

j − Lx
jL,

and we set L∗
jf(x) = Lx

j f(x). Observe that L∗
1 = 0. Besides, L∗

2 is given by (13) so that,

under (A), L∗
2 ∈ Lb

(

C∞
pol(R

d)
)

and there exists a family (g∗2,α, 1 ≤ |α| ≤ 3) in C∞
pol(R

d)
such that

(17) L∗
2 =

∑

1≤|α|≤3

g∗2,α∂
α.

Under (A), L and Lx belong to Lb

(

C∞
pol(R

d)
)

for each x ∈ R
d, and, by induction, so

does Lx
j . We can describe Lx

j more precisely. Indeed, defining the powers of an operator

A by A0 = I and Aj+1 = AAj , inductions on j lead to Lx
j =

∑j
i=0(−1)i

(j
i

)

(Lx)j−iLi and

to the existence of a family (gj,α, hj,α, j ∈ N
∗, 1 ≤ |α| ≤ 2j) in C∞

pol(R
d) such that

∀x ∈ R
d, (Lx)j =

∑

1≤|α|≤2j

gj,α(x)∂α and Lj =
∑

1≤|α|≤2j

hj,α∂
α.

Hence, for each j ∈ N
∗ one can find a family (mj,α, 1 ≤ |α| ≤ 2j) of integers and a family

(gj,α,l, hj,α,l, 1 ≤ |α| ≤ 2j, 1 ≤ l ≤ mj,α) in C∞
pol(R

d) such that for all x ∈ R
d,

(18) Lx
j =

∑

1≤|α|≤2j

(mj,α
∑

l=1

gj,α,l(x)hj,α,l

)

∂α.

Remark 8. Note that when (B) holds, the functions gj,α,l, hj,α,l and g∗2,α all belong to

C∞
b (Rd) (in fact they are polynomial in b, σ and their derivatives).

We are now in the position to define the families of operators Φj = (Φn,j
tn
k
,s,t, t ∈ [0, 1], n ≥

1, k ∈ {0, . . . , bntc}, s ∈ [tnk , t
n
k+1 ∧ t]) and Ψj = (Ψn,j

tn
k
,t, t ∈ [0, 1], n ≥ 1, k ∈ {0, . . . , bntc})

as follows:

(19) ∀f ∈ C∞
pol(R

d), Φn,j
tn
k
,s,tf(x) = E

[

L
Xn,x

tn
k

j Pt−sf (Xn,x
s )

]

and Ψn,j
tn
k
,t = Φn,j

tn
k
,tn

k
,t.

Observe that since s ∈ [tnk , t
n
k+1]

(20) Φn,j
tn
k
,s,t =

∑

1≤|α|≤2j

mj,α
∑

l=1

P n
tn
k
(gj,α,lP

n
s−tn

k
(hj,α,l∂

αPt−s)) and Ψn,j
tn
k
,t = P n

tn
k
L∗

jPt−tn
k
.

Then we have
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Proposition 9. Under (A), Φj and Ψj are bounded families in Lb

(

C∞
pol(R

d)
)

.

Proof. (Pt, t ∈ [0, 1]) and (P n
t , t ∈ [0, 1], n ≥ 1) are bounded families in Lb

(

C∞
pol(R

d)
)

, see

the discussion preceding Theorem 7. Besides, multiplication by a function in C∞
pol(R

d) and

differentiation are bounded operators on C∞
pol(R

d). As a sum of compositions of bounded

families in Lb

(

C∞
pol(R

d)
)

, Φj is a bounded family in Lb

(

C∞
pol(R

d)
)

. Then obviously so is

Ψj . �

2.2. Itô expansions. We recall (see [11], theorem 3.11, page 16) that for f ∈ C∞
pol(R

d),

(s, y) 7→ Pt−sf(y) is infinitely differentiable on [0, t] × R
d and

(21) ∀(s, y) ∈ [0, t] × R
d, (∂s + L)Pt−sf(y) = 0.

Since ∂s and Lx
j commute, (21) and the definition of Lx

j imply

(22) (∂s + Lx)Lx
jPt−s = Lx

j+1Pt−s.

For a measurable family (As) in Lb

(

C∞
pol(R

d)
)

, we denote by
∫ t2
t1
As ds the element of

L
(

C∞
pol(R

d)
)

which maps f to x 7→
∫ t2
t1
Asf(x)ds. The following lemma states that Φn,j+1

tn
k
,·,t

is the derivative of Φn,j
tn
k
,·,t on the interval [tnk , t

n
k+1 ∧ t].

Lemma 10. Under (A), for all j ∈ N, t ∈ [0, 1], n ≥ 1, k ∈ {0, . . . , bntc} and s ∈
[tnk , t

n
k+1 ∧ t],

(23) Φn,j
tn
k
,s,t = Ψn,j

tn
k
,t +

∫ s

tn
k

Φn,j+1
tn
k
,s′,t ds

′.

Proof. Conditionaly on Ftn
k
, for f ∈ C∞

pol(R
d), (s, y) 7→ L

Xn,x

tn
k

j Pt−sf(y) is infinitely differ-

entiable on [tnk , t
n
k+1 ∧ t]×R

d so that we can apply Itô’s formula to it and to Xn,x between
tnk and s. Using (22) for the second equality, we get

L
Xn,x

tn
k

j Pt−sf (Xn,x
s ) − L

Xn,x

tn
k

j Pt−tn
k
f
(

Xn,x
tn
k

)

−Ms

=

∫ s

tn
k

(

∂

∂s
+ L

Xn,x

tn
k

)

L
Xn,x

tn
k

j Pt−s′f
(

Xn,x
s′

)

ds′ =

∫ s

tn
k

L
Xn,x

tn
k

j+1 Pt−s′f
(

Xn,x
s′

)

ds′

whereMs =
∑d

i=1

∑r
j=1 σi,j(X

n,x
tn
k

)
∫ s
tn
k
∂ei

(

L
Xn,x

tn
k

j Pt−s′f
(

Xn,x
s′

)

)

dBj
s′ . Since {Lx

jPt−s′f |s′ ∈

[tnk , t
n
k+1 ∧ t]} is bounded in C∞

pol(R
d), (54) imply that (Ms, s ∈ [tnk , t

n
k+1 ∧ t]) is a square-

integrable martingale and thus has zero mean. Hence, taking expectations and using (19)
and Fubini’s theorem, we have

Φn,j
tn
k
,s,tf(x) − Ψn,j

tn
k
,tf(x) =

∫ s

tn
k

E

[

L
Xn,x

tn
k

j+1 Pt−s′f
(

Xn,x
s′

)

]

ds′ =

∫ s

tn
k

Φn,j+1
tn
k
,s′,tf(x) ds′,

which concludes the proof. �
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2.3. Proof of Theorem 7. For n ≥ 1 and 0 ≤ s′ ≤ s ≤ t, let us set Qn
s,t = P n

s Pt−s and
∆Qn

s′,s,t = Qn
s,t −Qn

s′,t. Observe that P n
t = Qn

t,t and Pt = Qn
0,t so that

(24) ∆n
t = P n

t − Pt = Qn
t,t −Qn

0,t =

bntc−1
∑

k=0

∆Qn
tn
k
,tn

k+1
,t + ∆Qn

bntc/n,t,t.

Since Qn
s,t = Φn,0

tn
k
,s,t, by iterating (23), and using the convention that a sum over an empty

set is zero, we then have for k ∈ {0, . . . , bntc − 1} and j ≥ 1,

∆Qn
tn
k
,tn

k+1
,t = Φn,0

tn
k
,tn

k+1
,t − Φn,0

tn
k
,tn

k
,t =

j
∑

i=2

Ψn,i
tn
k
,t

i!ni
+Rn,j+1

tn
k
,t

(note that Ψn,1
s,t = 0 since L∗

1 = 0) and

∆Qn
bntc/n,t,t = Φn,0

bntc/n,t,t − Φn,0
bntc/n,bntc/n,t =

j
∑

i=2

(t− bntc/n)i

i!
Ψn,i

bntc/n,t +Rn,j+1
bntc/n,t

where, for k ∈ {0, . . . , bntc},

(25) Rn,j+1
tn
k
,t =

∫ tn
k+1

∧t

tn
k

∫ s1

tn
k

· · ·
∫ sj

tn
k

Φn,j+1
tn
k
,sj+1,t dsj+1 · · · ds2ds1.

From Proposition 9, (Rn,j+1
tn
k
,t , t ∈ [0, 1], n ≥ 1, k ∈ {0, . . . , bntc}) is a O(1/nj+1) family in

Lb

(

C∞
pol(R

d)
)

. Using (24) we finally get for j ≥ 1,

(26) ∆n
t =

j
∑

i=2

1

i!ni

bntc−1
∑

k=0

Ψn,i
tn
k
,t +Rn,j

t ,

where

(27) Rn,j
t =

bntc
∑

k=0

Rn,j+1
tn
k
,t +

j
∑

i=2

(t− bntc/n)i

i!
Ψn,i

bntc/n,t.

Note that (Rn,j
bntc/n, t ∈ [0, 1], n ≥ 1) is a O(t/nj) family in Lb

(

C∞
pol(R

d)
)

but that because

of the second term of the r.h.s. of (27), (Rn,j
t , t ∈ [0, 1], n ≥ 1) is only O(1/nj∧2).

In the particular case when j = 1, we have ∆n
t = Rn,1

t so that we have proved that
(∆n

t , t ∈ [0, 1], n ≥ 1) is O(1/n) in Lb

(

C∞
pol(R

d)
)

, which was the first statement of Theorem
7.

In the particular case when j = 2, if we set

(28) Ψ
(2)
s,t = PsL

∗
2Pt−s
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and

Ct =
1

2

∫ t

0
Ψ

(2)
s,t ds,(29)

An
1,t =

1

2n





1

n

bntc−1
∑

k=0

Ψ
(2)
tn
k
,t −

∫ t

0
Ψ

(2)
s,t ds



 ,(30)

An
2,t =

1

2n2

bntc−1
∑

k=0

(

Ψn,2
tn
k
,t − Ψ

(2)
tn
k
,t

)

,(31)

Rn
t = An

1,t +An
2,t +Rn,2

t ,(32)

we have

(33) ∆n
t = Ct/n+Rn

t .

As a composition of bounded families, (Ψ
(2)
s,t , 0 ≤ s ≤ t ≤ 1) is a bounded family in

Lb

(

C∞
pol(R

d)
)

, so that (Ct, t ∈ [0, 1]) is O(t) in Lb

(

C∞
pol(R

d)
)

. It remains to prove that

(Rn
t , t ∈ [0, 1], n ≥ 1) is O(1/n2) in Lb

(

C∞
pol(R

d)
)

. We have already proved that it is true

of (Rn,2
t , t ∈ [0, 1], n ≥ 1).

For (An
1,t, t ∈ [0, 1], n ≥ 1), observe that, if we set L#

3 = LL∗
2 − L∗

2L ∈ Lb

(

C∞
pol(R

d)
)

, as

∂sPs = LPs = PsL, we have ∂sΨ
(2)
s,t = PsLL

∗
2Pt−s − PsL

∗
2LPt−s = PsL

#
3 Pt−s. Hence the

family (Ψ
(2)
tn
k
,t − Ψ

(2)
s,t , t ∈ [0, 1], n ≥ 1, k ∈ {0, . . . , bntc − 1}, s ∈ [tnk , t

n
k+1]) satisfies

(34) Ψ
(2)
tn
k
,t − Ψ

(2)
s,t = −

∫ s

tn
k

PuL
#
3 Pt−u du

and thus is O(1/n) in Lb

(

C∞
pol(R

d)
)

. As a consequence,

(35) An
1,t =

1

2n

bntc−1
∑

k=0

∫ tn
k+1

tn
k

(

Ψ
(2)
tn
k
,t − Ψ

(2)
s,t

)

ds− 1

2n

∫ t

bntc/n
Ψ

(2)
s,t ds

is O(1/n2) in Lb

(

C∞
pol(R

d)
)

.
As for (An

2,t, t ∈ [0, 1], n ≥ 1), note that from (28) and (20) applied with j = 2,

(36) Ψn,2
tn
k
,t − Ψ

(2)
tn
k
,t = P n

tn
k
L∗

2Pt−tn
k
− Ptn

k
L∗

2Pt−tn
k

= ∆n
tn
k
L∗

2Pt−tn
k
.

Since (∆n
t , t ∈ [0, 1], n ≥ 1) is O(1/n) in Lb

(

C∞
pol(R

d)
)

, so is the family (Ψn,2
tn
k
,t − Ψ

(2)
tn
k
,t, t ∈

[0, 1], n ≥ 1, k ∈ {0, . . . , bntc − 1}), as the composition of a bounded family by a O(1/n)
family in Lb

(

C∞
pol(R

d)
)

. This completes the proof of Theorem 7.

Remark 11. It is noteworthy that the family (R′n
t , t ∈ [0, 1], n ≥ 1) defined by

R′n
t = Rn

t +
1

2n

∫ t

bntc/n
Ψ

(2)
s,t ds−

1

2
(t− bntc/n)2 Ψn,2

bntc/n,t

is O(t/n2) in Lb

(

C∞
pol(R

d)
)

. In particular, (Rn
bntc/n, t ∈ [0, 1], n ≥ 1) is O(t/n2) in

Lb

(

C∞
pol(R

d)
)

.

3. Second step: expansion for the density of Xn,x
t

This section is devoted to the proof of Theorem 1.
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3.1. Space convolutions. Let us denote by T1 the unit triangle {(s, t) ∈ R
2|0 < s < t ≤

1}. For l ∈ Z, we define Hl(R
d) as the space of measurable functions ρ : T1×R

d×R
d → R

such that

• for all (s, t) ∈ T1, ρ(s, t, ·, ·) is infinitely differentiable,
• for all α, β ∈ N

d, there exists two constants c1 ≥ 0 and c2 > 0 such that for all
(s, t) ∈ T1 and x, y ∈ R

d,

(37)
∣

∣

∣
∂α

x∂
β
y ρ(s, t, x, y)

∣

∣

∣
≤ c1t

−(|α|+ |β|+d+l)/2 exp
(

−c2 ‖x− y‖2 /t
)

.

We say that a subset B ⊂ Hl(R
d) is bounded if, in (37), c1 and c2 can be chosen indepen-

dently on ρ ∈ B. We also introduce the space H(Rd) which is defined in the same way as
Hl(R

d) with (37) replaced by
∣

∣

∣
∂α

x∂
β
y ρ(s, t, x, y)

∣

∣

∣
≤ c1t

−(|α|+ |β|+d)/2 exp
(

−c2 ‖x− y‖2 /t
)

,(38)
∣

∣

∣
∂α

x

(

ρ
(

s, t, x, x+ y
√
t
))∣

∣

∣
≤ c1t

−d/2 exp
(

−c2 ‖y‖2
)

,(39)

and we say that a subset B ⊂ H(Rd) is bounded if, in (38) and (39), c1 and c2 can be
chosen independently on ρ ∈ B.

For π1, π2 ∈ G(Rd) (see (9)-(10) for the definition of this space), g ∈ C∞
b (Rd) and

γ ∈ N
d, we define a function π1 ∗g,γ π2 on T1 × R

d × R
d by putting

(π1 ∗g,γ π2) (s, t, x, y) =

∫

Rd

g(z)π1(s, x, z)∂
γ
2 π2(t− s, z, y) dz.

Notation ∂2 means differentiation with respect to the second argument, here z. We parti-
tion the unit triangle T1 into T −

1 = {(s, t) ∈ T1|0 < s ≤ t/2} and T +
1 = {(s, t) ∈ T1|t/2 <

s < t}, and, for ε = ±, we define (π1 ∗g,γ π2)ε (s, t, x, y) = 1T ε
1
(s, t) (π1 ∗g,γ π2) (s, t, x, y),

so that π1 ∗g,γ π2 = (π1 ∗g,γ π2)− + (π1 ∗g,γ π2)+.

Proposition 12. Let B1 and B2 be two bounded subsets of G(Rd), g ∈ C∞
b (Rd) and

γ ∈ N
d. Then {π1 ∗g,γ π2|π1 ∈ B1, π2 ∈ B2} is a bounded subset of H|γ|(R

d).

Before proving Proposition 12 and for the sake of clarity, let us state apart the following
technical lemma, whose proof is a straightforward application of Lebesgue’s dominated
convergence theorem:

Lemma 13. Let l ∈ Z, (χi, i ∈ I) be a family of measurable functions mapping T1 ×R
d ×

R
d × R

d into R such that

• for all i ∈ I, (s, t) ∈ T1 and ζ ∈ R
d, χi(s, t, ·, ·, ζ) is infinitely differentiable,

• for all α, β ∈ N
d, there exists two constants c1 ≥ 0 and c2 > 0 such that for all

i ∈ I, (s, t) ∈ T1 and x, y, ζ ∈ R
d,

(40)
∣

∣

∣
∂α

x ∂
β
yχi(s, t, x, y, ζ)

∣

∣

∣
≤ c1t

−(|α|+ |β|+d+l)/2 exp
(

−c2 ‖x− y‖2 /t− c2 ‖ζ‖2
)

,

and let us define I(χi)(s, t, x, y) =
∫

Rd χi(s, t, x, y, ζ) dζ. Then {I(χi)|i ∈ I} is a bounded

subset of Hl(R
d).

Proof of Proposition 12. It is enough to show that both Bε ≡ {(π1 ∗g,γ π2)ε|π1 ∈ B1, π2 ∈
B2} are bounded.

Step 1. Let us first treat B−. After the change of variables z = x + ζ
√
s, we get

(π1 ∗g,γ π2)− = I(χ−
π1,π2

) with

χ−
π1,π2

(s, t, x, y, ζ) = 1T −

1
(s, t)sd/2g(x + ζ

√
s)π1(s, x, x+ ζ

√
s)∂γ

2π2(t− s, x+ ζ
√
s, y).
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It is enough to check that the family
(

χ−
π1,π2

, (π1, π2) ∈ B1 ×B2

)

satisfies the assumptions
of Lemma 13 with l = |γ|. The first point is obvious. In order to check the second one, let

us fix α, β ∈ N
d. According to Leibniz’s formula, ∂α

x∂
β
y χπ1,π2

(s, t, x, y, ζ) can be written as
a weighted sum of terms of the form

χ−,α1,α2,α3
π1,π2

(s, t, x, y, ζ) = 1T −

1
(s, t)sd/2∂α1g(x+ ζ

√
s)

∂α2
x

(

π1(s, x, x+ ζ
√
s)
)

∂γ+α3

2 ∂β
3 π2(t− s, x+ ζ

√
s, y),

with |α1|+ |α2|+ |α3| = |α|, so that in order to check (40) it is enough to show that for
each such (α1, α2, α3) one can find c1 ≥ 0 and c2 > 0 such that for all (π1, π2) ∈ B1 × B2,

(s, t) ∈ T1 and x, y, ζ ∈ R
d, |χ−,α1,α2,α3

π1,π2 (s, t, x, y, ζ)| is less than the r.h.s. of (40), with
l = |γ|. Now, B1 and B2 are bounded subsets of G(Rd) so that one can find c3, c5 ≥ 0 and
c4 > 0 such that for all (π1, π2) ∈ B1 × B2, (s, t) ∈ T1 and x, y, ζ ∈ R

d,
∣

∣∂α2
x

(

π1(s, x, x+ ζ
√
s)
)∣

∣ ≤ c3s
−d/2 exp

(

−c4 ‖ζ‖2
)

and

1T −

1
(s, t)

∣

∣

∣∂
γ+α3

2 ∂β
3 π2(t− s, x+ ζ

√
s, y)

∣

∣

∣

≤ 1T −

1
(s, t)c3(t− s)−(|α3|+ |β|+ |γ|+d)/2 exp

(

−c4
∥

∥x− y + ζ
√
s
∥

∥

2
/(t− s)

)

≤ 1T −

1
(s, t)c5t

−(|α|+ |β|+ |γ|+d)/2 exp
(

−c4
∥

∥x− y + ζ
√
s
∥

∥

2
/t
)

where, for the last inequality, we have used the fact that when (s, t) ∈ T −
1 , t/2 ≤ t− s ≤

t ≤ 1. Now, using the fact that ‖x− z‖2 ≥ ‖x‖2 /2 − ‖z‖2 for all x, z ∈ R
d, we see that

for all (s, t) ∈ T −
1 , ‖ζ‖2 + ‖x− y + ζ

√
s‖2

/t ≥ (‖x− y‖2 /t+ ‖ζ‖2)/2. Since g ∈ C∞
b (Rd),

we can eventually find c1 ≥ 0 and c2 > 0 such that for all (π1, π2) ∈ B1 × B2, (s, t) ∈ T1

and x, y, ζ ∈ R
d,

∣

∣χ−,α1,α2,α3
π1,π2

(s, t, x, y, ζ)
∣

∣ ≤ c1t
−(|α|+ |β|+d+|γ|)/2 exp

(

−c2 ‖x− y‖2 /t− c2 ‖ζ‖2
)

,

which completes Step 1.
Step 2. Let us now treat B+. After |γ| integrations by parts, we have

(π1 ∗g,γ π2)+(s, t, x, y) = 1T +
1

(s, t)

∫

Rd

∂γ
z (g(z)π1(s, x, z))π2(t− s, z, y) dz.

Using Leibniz’s formula and making the change of variables z = y − ζ
√
t− s, we get that

(π1 ∗g,γ π2)+ is a weighted sum of terms of the form I(χ+,γ1,γ2
π1,π2 ) with

χ+,γ1,γ2
π1,π2

(s, t, x, y, ζ) = 1T +
1

(s, t)(t− s)d/2∂γ1g(y − ζ
√
t− s)

∂γ2

3 π1(s, x, y − ζ
√
t− s)π2(t− s, y − ζ

√
t− s, y)

and |γ1|+ |γ2| = |γ|, so that we are now in the position to apply the same arguments as

in Step 1 and get that the family (χ+,γ1,γ2
π1,π2 , (π1, π2) ∈ B1 ×B2) satisfies the assumptions of

Lemma 13 with l = |γ|, which completes the proof. �

We also have

Proposition 14. Let B1 and B2 be two bounded subsets of G(Rd) and g ∈ C∞
b (Rd). Then

{π1 ∗g,0 π2|π1 ∈ B1, π2 ∈ B2} is a bounded subset of H(Rd).
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Proof. From Proposition 12, we know that {π1 ∗g,0 π2|π1 ∈ B1, π2 ∈ B2} is a bounded

subset of H0(R
d). It remains to prove that (39) holds for ρ = π1 ∗g,0 π2 with constants c1

and c2 which do not depend on (π1, π2) ∈ B1 × B2. As in the proof of Proposition 12, we
treat (π1 ∗g,0 π2)− and (π1 ∗g,0 π2)+ separately but analogously. For instance, let us treat
the first term. We have (π1 ∗g,0 π2)− = I(χ−

π1,π2
) with

χ−
π1,π2

(s, t, x, y, ζ) = 1T −

1
(s, t)sd/2g(x+ ζ

√
s)π1(s, x, x+ ζ

√
s)π2(t− s, x+ ζ

√
s, y).

Then we write ∂α
x

(

χ−
π1,π2

(

s, t, x, x+ y
√
t, ζ
))

as a weighted sum of terms of the form

χ̃−,α1,α2,α3
π1,π2

(s, t, x, y, ζ) = 1T −

1
(s, t)sd/2∂α1g(x+ ζ

√
s)

∂α2
x

(

π1(s, x, x+ ζ
√
s)
)

∂α3
x

(

π2(t− s, x+ ζ
√
s, x+ y

√
t)
)

,

with |α1|+ |α2|+ |α3| = |α|. Then we use (10) twice and the same arguments as in the
preceding proof to get c1 ≥ 0 and c2 > 0 such that for all (π1, π2) ∈ B1×B2, (s, t) ∈ T1 and

x, y, ζ ∈ R
d, |χ̃−,α1,α2,α3

π1,π2 (s, t, x, y, ζ)| ≤ c1t
−d/2 exp(−c2 ‖y‖2 −c2 ‖ζ‖2), which completes

the proof. �

3.2. Proof of Theorem 1. In this section, we assume (B) and (C).

Lemma 15. Under (B) and (C), for all t ∈ (0, 1], n ≥ 1 and x ∈ R
d, Xn,x

t has a density
pn(t, x, ·) and (pn, n ≥ 1) is a bounded sequence in G(Rd).

Proof. It is known that for all n ≥ 1, k ∈ {1, . . . , n} and x ∈ R
d, Xn,x

tn
k

has a density

pn,k(x, ·) such that pn,k is infinitely differentiable and satisfies (9)-(10) with t = tnk and
two constants c1 and c2 which do not depend on n and k (see the proof of theorem 1.1,
page 278, in [9]). Since bntc/n ≥ t/2 for all t ≥ 1/n, this shows that the sequence
(p̃n, n ≥ 1) defined by p̃n(t, x, y) = 1{nt≥1}pn,bntc(x, y) is bounded in G(Rd). If we denote

by Γ(t, x, ·) the density of x + b(x)t + σ(x)Bt (t ∈ (0, 1], x ∈ R
d), we observe that when

k ∈ {1, . . . , n− 1} and t ∈ (tnk , t
n
k+1), X

n,x
t has the density pn(t, x, ·) =

∫

Rd pn,k(x, z)Γ(t −
tnk , z, ·) dz = (p̃n ∗1,0 Γ)(tnk , t, x, ·). Hence, for all t ∈ (0, 1], n ≥ 1 and x ∈ R

d, Xn,x
t has the

density

pn(t, x, ·) =







pn,k(x, ·) if t = tnk , k ∈ {1, . . . , n},
Γ(t, x, ·) if t ∈ (0, tn1 ),
(p̃n ∗1,0 Γ)(tnk , t, x, ·) if t ∈ (tnk , t

n
k+1), k ∈ {1, . . . , n− 1}.

Observing that Γ ∈ G(Rd) and applying Proposition 14, we get that (pn, n ≥ 1) is a
bounded sequence in G(Rd). �

Recall (33). We shall now explicit Ct and Rn
t as integral operators on R

d. To this end,
note that, applying recursively Lebesgue’s dominated convergence theorem, we have that
for all t ∈ (0, 1], f ∈ C∞

pol(R
d), x ∈ R

d and α ∈ N
d,

(41) ∂αPtf(x) =

∫

Rd

f(y)∂α
2 p(t, x, y) dy.

The next lemma explicits Ct as an integral operator. The function π which appears
there should be thought of as the kernel of C.
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Lemma 16. Under (B) and (C), there exists π ∈ G1(R
d), given by (12), such that for all

t ∈ (0, 1], f ∈ C∞
pol(R

d) and x ∈ R
d,

Ctf(x) =

∫

Rd

f(y)π(t, x, y) dy.

Proof. Using (28)-(29) for the first equality, (17) for the third one and (41) for the fourth
one, we have

2Ctf(x) =

∫ t

0
PsL

∗
2Pt−sf(x) ds

=

∫ t

0

∫

Rd

p(s, x, z)L∗
2Pt−sf(z) dzds

=
∑

1≤|α|≤3

∫ t

0

∫

Rd

g∗2,α(z)p(s, x, z)∂αPt−sf(z) dzds

=
∑

1≤|α|≤3

∫ t

0

∫

Rd

∫

Rd

f(y)g∗2,α(z)p(s, x, z)∂α
2 p(t− s, z, y) dydzds.

Using Fubini’s theorem, we see that to complete the proof it is enough to show that the
function π defined by

(42) π(t, x, y) =
1

2

∑

1≤|α|≤3

∫ t

0
(p ∗g∗2,α,α p)(s, t, x, y) ds

belongs to G1(R
d). Now, p ∈ G(Rd) and, from Remark 8, g∗2,α ∈ C∞

b (Rd) so that we can

apply Proposition 12: p∗g∗2,α,αp ∈ H|α|(R
d). In particular,

∫ t
0 (p∗g∗2,α,αp)(s, ·, ·, ·)ds ∈ G|α|−2.

Since |α| ≤ 3 and by monotonicity of (Gl(R
d), l ∈ Z), we finally get that π ∈ G1(R

d). To
complete the proof, note that (42) can be rewritten as (12). �

We have a similar representation for An
1,t, recall (30). We say that a sequence (πn, n ≥ 1)

is O(1/nj) in Gl(R
d) if (njπn, n ≥ 1) is bounded in Gl(R

d).

Lemma 17. Under (B) and (C), there exists a O(1/n2) sequence (πn
1 , n ≥ 1) in G2(R

d)
such that for all t ∈ (0, 1], f ∈ C∞

pol(R
d) and x ∈ R

d,

An
1,tf(x) =

∫

Rd

f(y)πn
1 (t, x, y) dy.

Proof. Recall (34). From Remark 8, there is a family (g#
3,α, 1 ≤ |α| ≤ 4) in C∞

b (Rd) such

that L#
3 =

∑

1≤|α|≤4 g
#
3,α∂

α, so that, using (41) twice, we have

Ψ
(2)
tn
k
,tf(x) − Ψ

(2)
s,t f(x) = −

∑

1≤|α|≤4

∫ s

tn
k

∫

Rd

∫

Rd

f(y)g#
3,α(z)p(u, x, z)∂α

2 p(t− u, z, y) dydzdu.

Using (35), we get An
1,tf(x) =

∫

Rd f(y)πn
1 (t, x, y) dy with πn

1 = πn
1,1 + πn

1,2 and

πn
1,1(t, x, y) = − 1

2n

∑

1≤|α|≤4

bntc−1
∑

k=0

∫ tn
k+1

tn
k

∫ s

tn
k

(

p ∗
g#
3,α,α

p
)

(u, t, x, y) duds,

πn
1,2(t, x, y) = − 1

2n

∑

1≤|α|≤3

∫ t

bntc/n
(p ∗g∗2,α,α p)(s, t, x, y) ds.
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Now Proposition 12 states that p ∗
g#
3,α,α

p and p ∗g∗2,α,α p belong to H|α|(R
d). Hence

(
∫ tn

k+1

tn
k

∫ s
tn
k
(p ∗

g#
3,α,α

p)(u, ·, ·, ·) duds, n ≥ 1, k ∈ {0, . . . , bntc − 1}) is O(1/n2) in G|α| and

(
∫ ·
bntc/n(p ∗g∗2,α,α p)(s, ·, ·, ·) ds, n ≥ 1) is O(1/n) in G|α|. As a consequence, (πn

1,1, n ≥ 1)

(resp. (πn
1,2, n ≥ 1)) is O(1/n2) in G2(R

d) (resp. G1(R
d)). Eventually, (πn

1 , n ≥ 1) is

O(1/n2) in G2(R
d). �

We shall now prove analogous lemmas for An
2,t and Rn,2

t .

Lemma 18. Under (B) and (C), there exists a O(1/n2) sequence (πn
2 , n ≥ 1) in G3(R

d)
such that for all t ∈ (0, 1], f ∈ C∞

pol(R
d) and x ∈ R

d,

An
2,tf(x) =

∫

Rd

f(y)πn
2 (t, x, y) dy.

Proof. From (20) and (28), Ψn,2
0,t = Ψ

(2)
0,t so that (31) reads

2n2An
2,tf(x) =

bntc−1
∑

k=1

(

Ψn,2
tn
k
,t − Ψ

(2)
tn
k
,t

)

=

bntc−1
∑

k=1

(P n
tn
k
− Ptn

k
)L∗

2Pt−tn
k
f(x)

=

bntc−1
∑

k=1

∫

Rd

(pn − p)(tnk , x, z)L
∗
2Pt−tn

k
f(z) dz

=
∑

1≤|α|≤3

bntc−1
∑

k=1

∫

Rd

(pn − p)(tnk , x, z)g
∗
2,α(z)∂αPt−tn

k
f(z) dz

=
∑

1≤|α|≤3

bntc−1
∑

k=1

∫

Rd

∫

Rd

(pn − p)(tnk , x, z)g
∗
2,α(z)f(y)∂α

2 p(t− tnk , z, y) dydz

where we have used (36) for the second equality, (17) for the fourth one and (41) for the
fifth one. From Remark 8, g∗2,α ∈ C∞

b (Rd) so that to complete the proof it is enough to

show that whenever g ∈ C∞
b (Rd) and α ∈ N

d, the sequence (πn, n ≥ 1) defined by

πn(t, x, y) =

bntc−1
∑

k=1

∫

Rd

(pn−p)(tnk , x, z)g(z)∂α
2 p(t−tnk , z, y)dz =

bntc−1
∑

k=1

((pn−p)∗g,αp)(t
n
k , t, x, y)

is bounded in G|α|(R
d). And to do so, it is enough to show that the sequence (ρn

tn
k
, n ≥

1, k ∈ {1, . . . , n− 1}) defined by

ρn
tn
k
(t, x, y) = 1T1

(tnk , t) ((pn − p) ∗g,α p) (tnk , t, x, y)

is O(1/n) in G|α|+2(R
d). Let us write ρn,−

tn
k

(t, x, y) = 1T −

1
(tnk , t)ρ

n
tn
k
(t, x, y) and ρn,+

tn
k

(t, x, y) =

1T +
1

(tnk , t)ρ
n
tn
k
(t, x, y) so that ρn

tn
k

= ρn,−
tn
k

+ ρn,+
tn
k

.

Let us first prove that (ρn,−
tn
k
, n ≥ 1, k ∈ {1, . . . , n − 1}) is O(1/n) in G|α|+2(R

d). Note

that ρn,−
tn
k

= P n
tn
k
πtn

k
− Ptn

k
πtn

k
≡ ∆n

tn
k
πtn

k
(see (46) in the appendix for the definition of P n

s π
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and Psπ when π ∈ Gl(R
d)) where the sequence (πtn

k
, n ≥ 1, k ∈ {1, . . . , n− 1}) defined by

πtn
k
(t, x, y) = 1T −

1
(tnk , t)g(x)∂

α
2 p(t− tnk , x, y) is bounded in G|α|(R

d). Thus, from (26)-(27)

and (25) applied with j = 1,

ρn,−
tn
k

=
k−1
∑

m=0

∫ tnm+1

tnm

∫ s1

tnm

Φn,2
tnm,s2,tn

k
πtn

k
ds2ds1,

and, since k ≤ bntc when (tnk , t) ∈ T1, Proposition 24 in the appendix gives the result.
Let us now prove the same for ρn,+. After |α| integrations by parts and after setting

z = y − ζ
√
t− s, we get that ((pn − p) ∗g,α p)+ is a weighted sum of terms of the form

I(χn,+
α1,α2) - see Lemma 13 - with

χn,+
α1,α2

(s, t, x, y, ζ) = 1T +
1

(s, t)(t− s)d/2∂α1g(y − ζ
√
t− s)

∂α2

3 (pn − p)(s, x, y − ζ
√
t− s)p(t− s, y − ζ

√
t− s, y)

and |α1|+ |α2| = |α|. Now, from Corollary 22 in the appendix, (pn − p, n ≥ 1) is O(1/n)
in G2(R

d) so that, using the same arguments as in Step 2 of the proof of Proposition 12,

we get that ((pn − p) ∗g,α p)+ is O(1/n) in H|α|+2. Since ρn,+
tn
k

(t, x, y) = 1T +
1

(tnk , t)((pn −
p) ∗g,α p)+(tnk , t, x, y), we conclude that (ρn,+

tn
k
, n ≥ 1, k ∈ {1, . . . , n − 1}) is O(1/n) in

G|α|+2(R
d). �

Lemma 19. Under (B) and (C), there exists a O(1/n2) sequence (πn
3 , n ≥ 1) in G4(R

d)
such that for all t ∈ (0, 1], f ∈ C∞

pol(R
d) and x ∈ R

d,

Rn,2
t f(x) =

∫

Rd

f(y)πn
3 (t, x, y) dy.

Proof. From (27) and (25) applied with j = 2,

Rn,2
t f(x) =

bntc
∑

k=0

∫ tn
k+1

∧t

tn
k

∫ s1

tn
k

∫ s2

tn
k

Φn,3
tn
k
,s3,tf(x) ds3ds2ds1 +

1

2
Ψn,2

bntc/n,t (t− bntc/n)2 .

It is enough to apply Lemmas 21 and 23 to conclude. �

Theorem 1 follows from Lemmas 15, 16, 17, 18 and 19.

Remark 20. Note that (26)-(27) and (25) combined with Lemmas 21 and 23 imply that
we have an expansion of arbitrary order j for pn − p:

(pn − p)(t, ·, ·) =

j
∑

i=2

1

i!ni

bntc−1
∑

k=0

ψn,i
tn
k

(t, ·, ·) +

j
∑

i=2

(t− bntc/n)i

i!
ψn,i
bntc/n(t, ·, ·)

+

bntc
∑

k=0

∫ tn
k+1

∧t

tn
k

∫ s1

tn
k

· · ·
∫ sj

tn
k

ϕn,j+1
tn
k

(sj+1, t, ·, ·) dsj+1 · · · ds2ds1.

Since (ϕn,j
tn
k
, n ≥ 1, k ∈ {0, . . . , n}) and (ψn,j

tn
k
, n ≥ 1, k ∈ {0, . . . , n}) are respectively

bounded in H2j(R
d) and G2j(R

d), this gives

(43) pn − p =

j−1
∑

i=1

πn,i

ni
+

j
∑

i=2

(t− bntc/n)i π′n,i + rn
j
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where (πn,i, n ≥ 1) and (π′n,i, n ≥ 1) are respectively bounded in G2i−2(R
d) and G2i(R

d)

and (rn
j , n ≥ 1) is O(1/nj) in G2j(R

d). In particular, when t = 1 and no differentiation is
applied neither in x nor in y, this boils down to the result of V. Konakov and E. Mammen

[9]. Expansion (43) is much richer in the sense that it allows for infinite differentiation in
x and y and also precises the way the coefficients explode when t tends to 0.

4. Appendix

4.1. Kernels of Φ and Ψ. Here we explicit the kernels of Φn,j
tn
k
,s,t and Ψn,j

tn
k
,t.

Lemma 21. Under (B) and (C), for each j ∈ N
∗, there exists a bounded sequence

(ϕn,j
tn
k
, n ≥ 1, k ∈ {0, . . . , n}) in H2j(R

d) such that for all t ∈ (0, 1], n ≥ 1, k ∈ {0, . . . , bntc},
s ∈ (tnk , t

n
k+1 ∧ t), f ∈ C∞

pol(R
d) and x ∈ R

d,

(44) Φn,j
tn
k
,s,tf(x) =

∫

Rd

f(y)ϕn,j
tn
k

(s, t, x, y) dy.

Proof. From (19), (18) and (41) and using Fubini’s theorem, we have (44) with

ϕn,j
tn
k

(s, t, x, y) = 1]tn
k
,tn

k+1
[(s)

∑

1≤|α|≤2j

mj,α
∑

l=1

∫

Rd

∫

Rd

pn(tnk , x, z1)gj,α,l(z1)pn(s− tnk , z1, z2)

hj,α,l(z2)∂
α
2 p(t− s, z2, y) dz1dz2,

if k ≥ 1 and

ϕn,j
0 (s, t, x, y) = 1]0,1/n[(s)

∑

1≤|α|≤2j

mj,α
∑

l=1

∫

Rd

gj,α,l(x)pn(s, x, z2)hj,α,l(z2)∂
α
2 p(t− s, z2, y) dz2.

As (pn, n ≥ 1) is bounded in G(Rd), Proposition 12 shows that (ϕn,j
0 , n ≥ 1) is bounded in

H|α|(R
d), so that to prove the lemma it is enough to show that whenever g, h ∈ C∞

b (Rd)

and α ∈ N
d, the sequence (φn,j

tn
k
, n ≥ 1, k ∈ {1, . . . , n}) of functions defined on T1×R

d ×R
d

by

φn,j
tn
k

(s, t, x, y) = 1]tn
k
,tn

k+1
[(s)

∫

Rd

(pn ∗g,0 pn)(tnk , s, x, z2)h(z2)∂
α
2 p(t− s, z2, y) dz2

is bounded in H|α|(R
d). Now, setting qn

tn
k
(s, x, z) = 1]tn

k
,tn

k+1
[(s)(pn ∗g,0 pn)(tnk , s, x, z), it

follows from Proposition 14 that (qn
tn
k
, n ≥ 1, k ∈ {1, . . . , n}) is a bounded sequence in

G(Rd). Then Proposition 12 shows that φn,j
tn
k

= qn
tn
k
∗h,α p is bounded in H|α|(R

d). �

Corollary 22. Under (B) and (C), (pn − p, n ≥ 1) is O(1/n) in G2(R
d).

Proof. From (26) applied with j = 1 and (25), we have for all f ∈ C∞
pol(R

d)

∫

Rd

f(y)(pn − p)(t, x, y) dy =

bntc
∑

k=0

∫ tn
k+1

∧t

tn
k

∫ s1

tn
k

Φn,2
tn
k
,s2,tf(x) ds2ds1,

so that Lemma 21 implies that

(pn − p)(t, x, y) =

bntc
∑

k=0

∫ tn
k+1

∧t

tn
k

∫ s1

tn
k

ϕn,2
tn
k

(s2, t, x, y) ds2ds1

is O(1/n) in G2(R
d). �
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Setting ψn,j
tn
k

(t, x, y) = φn,j
tn
k

(tnk , t, x, y), we deduce from Lemma 21

Lemma 23. Under (B) and (C), for each j ∈ N
∗, there exists a bounded sequence

(ψn,j
tn
k
, n ≥ 1, k ∈ {0, . . . , n}) in G2j(R

d) such that for all t ∈ (0, 1], n ≥ 1, k ∈ {0, . . . , bntc},
f ∈ C∞

pol(R
d) and x ∈ R

d,

(45) Ψn,j
tn
k
,tf(x) =

∫

Rd

f(y)ψn,j
tn
k

(t, x, y) dy.

4.2. Operators on Gl(R
d). When π ∈ Gl(R

d), π(t, ·, y) ∈ L∞(Rd) so that for s ∈ [0, 1]
and n ≥ 1 we can define two functions Psπ and P n

s π on (0, 1] × R
d × R

d by Psπ(t, ·, y) =
1{s≤t}Ps(π(t, ·, y)) and P n

s π(t, ·, y) = 1{s≤t}P
n
s (π(t, ·, y)), i.e.

(46) Psπ(t, x, y) = 1{s≤t}E [π (t,Xx
s , y)] and P n

s π(t, x, y) = 1{s≤t}E [π (t,Xn,x
s , y)] .

We also write ∆n
sπ = P n

s π − Psπ. For j ∈ N
∗ we denote by Φj the family (Φn,j

tnm,s′,s, s ∈
[0, 1], n ≥ 1,m ∈ {0, . . . , bnsc}, s′ ∈ [tnm, t

n
m+1 ∧ s]) of operators on Gl(R

d) defined as in
(19) by

Φn,j
tnm,s′,sπ(t, x, y) = E

[

L
Xn,x

tnm

j Ps−s′π
(

t,Xn,x
s′ , y

)

]

,

i.e., using (18),

(47) Φn,j
tnm,s′,s =

∑

1≤|α|≤2j

mj,α
∑

l=1

P n
tnm

(

gj,α,lP
n
s′−tnm

(hj,α,l∂
α
xPs−s′)

)

.

Denoting by Lb(Gl(R
d),Gl′(R

d)) the space of all morphisms mapping any bounded subset
of Gl(R

d) into a bounded subset of Gl′(R
d), we then have

Proposition 24. Under (B) and (C), (Ps, s ∈ [0, 1]) and (P n
s , s ∈ [0, 1], n ≥ 1) are

bounded families in Lb(Gl(R
d)), and Φj is a bounded family in Lb(Gl(R

d),Gl+2j(R
d)).

Proof. Let us first deal with (Ps). Let π ∈ Gl(R
d). Ps is measurable. Moreover, Lebesgue’s

dominated convergence theorem shows that Psπ(t, x, ·) is infinitely differentiable and that
for all β ∈ N

d

∂β
yPsπ(t, x, y) = 1{s≤t}E

[

∂β
3 π (t,Xx

s , y)
]

.

Hypothesis (A) ensures that a version ofXx can be chosen such that for each t ≥ 0, the map

x 7→ Xx
t is infinitely differentiable (see, for example, [10]). Since ∂β

3 π(t, ·, y) ∈ C∞
pol(R

d),

it follows from Theorem 3.14 page 16 in [11] that ∂β
yPsπ(t, ·, y) is infinitely differentiable

and that for all α ∈ N
d there exists universal polynomials (Πα,µ, |µ| ≤ |α|) such that

(48) ∂α
x ∂

β
yPsπ(t, x, y) = 1{s≤t}

∑

|µ|≤|α|
E

[

∂µ
2 ∂

β
3 π (t,Xx

s , y) Πα,µ (∂ν
xX

x
s , |ν| ≤ |α|)

]

with

(49) sup
s∈[0,1],x∈Rd

E[Πα,µ (∂ν
xX

x
s , |ν| ≤ |α|)2] <∞

for all |µ| ≤ |α|. As a consequence, Psπ(t, ·, ·) is infinitely differentiable and using Cauchy-
Schwarz’s inequality, (8) and (49), we see that for all bounded B ⊂ Gl(R

d) and α, β ∈ N
d,
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there exists two constants c1 ≥ 0 and c2 > 0 such that for all π ∈ B, s ∈ [0, 1], t ∈ (0, 1]
and x, y ∈ R

d,

(50)
∣

∣

∣∂α
x ∂

β
y Psπ(t, x, y)

∣

∣

∣ ≤ c11{s≤t}t
−(|α|+ |β|+d+l)/2

E

[

exp
(

−c2 ‖Xs
x − y‖2 /t

)]1/2
.

Now, partitioning Ω into {‖Xs
x − y‖ ≤ ‖x− y‖ /2} and {‖Xs

x − y‖ > ‖x− y‖ /2}, we have

(51) E

[

exp
(

−c2 ‖Xs
x − y‖2 /t

)]

≤ P (‖Xs
x − y‖ ≤ ‖x− y‖ /2)+exp

(

−c2 ‖x− y‖2 /4t
)

.

Using (10) for p ∈ G(Rd) for the fourth inequality, we can find c3, c5 ≥ 0 and c4, c6 > 0
such that for all s ∈ (0, 1] and x, y ∈ R

d,

P (‖Xx
s − y‖ ≤ ‖x− y‖ /2) ≤ P (‖Xx

s − x‖ ≥ ‖x− y‖ /2)

=

∫

Rd

1{‖z−x‖≥‖x−y‖ /2}p(s, x, z) dz

=

∫

Rd

1{‖ξ‖≥‖x−y‖ /2
√

s}p(s, x, x+ ξ
√
s)sd/2 dξ

≤ c3

∫

Rd

1{‖ξ‖≥‖x−y‖ /2
√

s} exp(−c4 ‖ξ‖2) dξ

≤ c5 exp
(

−c6 ‖x− y‖2 /s
)

.(52)

Eventually, from (51) and (52), we can find c7 ≥ 0 and c8 > 0 such that for all s ∈ [0, 1],
t ∈ (0, 1] and x, y ∈ R

d,

1{s≤t}E
[

exp
(

−c2 ‖Xs
x − y‖2 /t

)]

≤ c5 exp
(

−c6 ‖x− y‖2 /t
)

+ exp
(

−c2 ‖x− y‖2 /4t
)

≤ c7 exp
(

−c8 ‖x− y‖2 /t
)

.(53)

It is enough to inject (53) into (50) to complete the proof for (Ps).
This proof naturally extends to the case of (P n

s ). Indeed, (48) holds with (Xn, P n)
instead of (X,P ). Moreover, from Lemma 26, (49) holds uniformly in n with Xn instead
of X. Eventually, (52) holds with Xn instead of X, uniformly in n because (pn, n ≥ 1) is
bounded in G(Rd).

As for Φj, it is enough to use (47), the boundedness of (Ps) and (P n
s ), Remark 8 and

the facts that multiplication by a function in B belongs to Lb(Gl(R
d),Gl(R

d)) and that
∂α

2 ∈ Lb(Gl(R
d),Gl+|α|(R

d)). �

4.3. Moments for the Euler scheme and its derivatives. Let us assume (A). Then
it is known that Xn,x

t has bounded moments of any order and that for all q ∈ N, one can
find c ≥ 0 such that for all x ∈ R

d,

(54) sup
t∈[0,1],n≥1

E
[

‖Xn,x
t ‖q] ≤ c (1 + ‖x‖q)

(see [15]). From (4), x 7→ Xn,x
t is infinitely differentiable and we shall see that analogous

upper bounds hold for its derivatives. Following [11], for m ≥ 1, we denote by X
(m),n,x
t

the m-th derivative of x 7→ Xn,x
t at point x. It should be thought of as a d× dm matrix.

For instance, X
(1),n,x
t is the jacobian matrix of x 7→ Xn,x

t . Differentiating (4), we have

(55) X
(1),n,x
t = I +

∫ t

0
b(1)(Xn,x

bnsc/n)X
(1),n,x
bnsc/n ds+

r
∑

j=1

∫ t

0
σ

(1)
j (Xn,x

bnsc/n)X
(1),n,x
bnsc/n dB

j
s ,
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where I stands for the identity matrix and σj is the j-th column of σ. Besides, by induction,
there are for each m ≥ 2 universal polynomials Pm,j , j ∈ {0, . . . , r}, such that

(56) X
(m),n,x
t =

∫ t

0
b(1)(Xn,x

bnsc/n)X
(m),n,x
bnsc/n ds+

r
∑

j=1

∫ t

0
σ

(1)
j (Xn,x

bnsc/n)X
(m),n,x
bnsc/n dBj

s

+

∫ t

0
Qn,x

m,0,bnsc/n ds+

r
∑

j=1

∫ t

0
Qn,x

m,j,bnsc/n dB
j
s ,

where
{

Qn,x
m,0,t = Pm,0(b

(2)(Xn,x
t ), . . . , b(m)(Xn,x

t ), X
(1),n,x
t , . . . , X

(m−1),n,x
t ),

Qn,x
m,j,t = Pm,j(σ

(2)
j (Xn,x

t ), . . . , σ
(m)
j (Xn,x

t ), X
(1),n,x
t , . . . , X

(m−1),n,x
t ).

(57)

This is analogous to (1.8) page 4 in [11]. Then we have

Lemma 25. Under (A), for all m ≥ 1 and q ∈ N, there exists c ≥ 0 and q ′ ∈ N such that
for all x ∈ R

d,

(58) sup
t∈[0,1],n≥1

E

[∥

∥

∥
X

(m),n,x
t

∥

∥

∥

q]

≤ c
(

1 + ‖x‖q′
)

.

Proof. We give a proof by induction on m. Let us first assume that m = 1. Let q ∈ N.

From (55), and observing that (A) states that b(1) and all the σ
(1)
j are bounded, Jensen’s

and Burkholder-Davis-Gundy’s inequalities lead to the existence of c ≥ 0 such that for all
t ∈ [0, 1], n ≥ 1 and x ∈ R

d,

E

[∥

∥

∥X
(1),n,x
t

∥

∥

∥

q]

≤ c

(

1 +

∫ t

0
E

[∥

∥

∥X
(1),n,x
bnsc/n

∥

∥

∥

q]

ds

)

.

Taking this inequality at time bntc/n and applying Gronwall’s lemma, we get that

sup
t∈[0,1],n≥1,x∈Rd

E

[∥

∥

∥X
(1),n,x
bntc/n

∥

∥

∥

q]

<∞.

From (4), one easily checks that the same holds at time t instead of bntc/n, so that (58)
holds for m = 1 with q′ = 0.

Let us now assume that (58) holds for the m − 1 first derivatives. Let q ∈ N. From

(56), and observing again that (A) states that b(1) and all the σ
(1)
j are bounded, Jensen’s

and Burkholder-Davis-Gundy’s inequalities lead to the existence of c1 ≥ 0 such that for
all t ∈ [0, 1], n ≥ 1 and x ∈ R

d,

(59) E

[∥

∥

∥
X

(m),n,x
t

∥

∥

∥

q]

≤ c1





∫ t

0
E

[∥

∥

∥
X

(m),n,x
bnsc/n

∥

∥

∥

q]

ds+

∫ t

0

r
∑

j=0

E

[∥

∥

∥
Qn,x

m,j,bnsc/n

∥

∥

∥

q]

ds



 .

Using (57), the induction hypothesis, (A) and (54), we find c2 ≥ 0 and q′ ∈ N such that
for all s ∈ [0, 1], n ≥ 1 and x ∈ R

d,
r
∑

j=0

E

[∥

∥

∥Q
n,x
m,j,bnsc/n

∥

∥

∥

q]

≤ c2

(

1 + ‖x‖q′
)

.

Thus, taking (59) at time bntc/n and applying Gronwall’s lemma, we find c ≥ 0 such that
for all x ∈ R

d,

sup
t∈[0,1],n≥1

E

[∥

∥

∥X
(m),n,x
bntc/n

∥

∥

∥

q]

≤ c
(

1 + ‖x‖q′
)

.
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From (4), one easily checks that the same holds at time t instead of bntc/n, which completes
the proof. �

Observe that, under (B), the above proof holds with q ′ = 0 so that we have

Lemma 26. Under (B), for all m ≥ 1 and q ∈ N,

sup
t∈[0,1],n≥1,x∈Rd

E

[∥

∥

∥
X

(m),n,x
t

∥

∥

∥

q]

<∞.
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