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Abstract

In this paper, we focus on the simulation of the CIR processes and present several discretization

schemes of both the implicit and explicit types. We study their strong and weak convergence. We

also examine numerically their behaviour and compare them to the schemes already proposed by

Deelstra and Delbaen [5] and Diop [6]. Finally, we gather all the results obtained and recommend,

in the standard case, the use of one of our explicit schemes.

1 Introduction

The aim of this paper is to present an overview on the discretization schemes that can
be used for the simulation of the square-root diffusions of Cox-Ingersoll-Ross type. These
processes, initially introduced to model the short interest rate (Cox, Ingersoll and Ross
[4]), are now widely used in modelling because they present interesting features like the
nonnegativity and the mean reversion. Moreover, some standard expectations can be
analytically calculated which can be useful especially for calibrating the parameters. Thus,
they have also been used in finance to model the stochastic volatility of the stock price
(Heston [9]) or the credit spread (Brigo and Alfonsi [3]). We will use in this paper the
following notation for this diffusion: (Xt) will denote a Cox-Ingersoll-Ross (CIR for short)
process of parameter (k, a, σ, x0) if

{

Xt = x0 +
∫ t

0
(a− kXs)ds+ σ

∫ t

0

√
XsdWs, t ∈ [0, T ]

x0, σ, a ≥ 0, k ∈ R.
(1)

Under the above assumption on the parameters that we will suppose valid through all
the paper, it is well known that this SDE has a nonnegative solution, and this solution is
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pathwise unique (see for example Rogers and Williams [13]). Let us recall here that under
the assumption (see for example Lamberton and Lapeyre [11])

2a > σ2 and x0 > 0 (2)

the process is always positive.
When k > 0, it is common to define θ = a/k and rewrite the SDE dXt = k(θ−Xt)dt+

σ
√
XtdWt. Indeed, θ appears as the asymptotic mean of Xt toward which the process is

attracted. In practice, this more intuitive parametrization is preferred.
In the sequel, (Ft, t ≥ 0) will denote the natural filtration of the Brownian motion

W , and we will consider the regular grid tni = iT
n
. Except in cases where it is important

to remind the dependency in n, we will write ti rather than tni . It is well known that
the increments of the CIR process are non-central chi-squared random variables that can
be simulated exactly. Thus, we can inductively simulate a random vector distributed
according to the law of (Xt0 , ..., Xtn) (see Glasserman [7], pp. 120-134). However, the exact
simulation in general requires more time than a simulation with approximation schemes.
It may also be restrictive if one wishes to correlate this diffusion with another diffusion via
the Brownian motions as in Brigo and Alfonsi [3] where two correlated CIR processes are
considered. At least for both these reasons, studying approximation schemes is relevant.

It is important to remark first that the natural way to simulate this process, that is the
explicit Euler-Maruyama scheme

X̂n
ti+1

= X̂n
ti
+
T

n
(a− kX̂n

ti
) + σ

√

X̂n
ti(Wti+1

−Wti)

with X̂n
t0

= x0 can lead to negative values since the Gaussian increment is not bounded
from below. Thus, this scheme is not well defined. To correct this problem, Deelstra and
Delbaen [5] have proposed to consider:

X̂n
ti+1

= X̂n
ti
+
T

n
(a− kX̂n

ti
) + σ

√

X̂n
ti1X̂n

ti
>0(Wti+1

−Wti)

while Diop proposes in [6]:

X̂n
ti+1

= |X̂n
ti
+
T

n
(a− kX̂n

ti
) + σ

√

X̂n
ti(Wti+1

−Wti)|.

However, we can as proposed in Brigo and Alfonsi [3] obtain the positivity using an im-
plicit scheme. More precisely, if we rewrite the CIR process with the posticipated stochastic
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integral, we get, since d〈
√
X,W 〉s = σ

2
ds:

Xt = x0 +

∫ t

0

(a− kXs)ds+ σ

∫ t

0

√

XsdWs

= x0 + lim
n→∞

{
∑

i;ti<t

(a− kXti+1
)
T

n
+ σ

∑

i;ti<t

√
Xti+1

(Wti+1
−Wti)

−σ
∑

i;ti<t

(
√
Xti+1

−
√

Xti)(Wti+1
−Wti)

}

= x0 + lim
n→∞

{
∑

i;ti<t

(a− σ2

2
− kXti+1

)
T

n
+ σ

∑

i;ti<t

√
Xti+1

(Wti+1
−Wti)

}

.

It is then natural to consider the following implicit scheme that is well defined under
the hypothesis (2) at least when the time step is small enough:

X̂n
ti+1

= X̂n
ti
+ (a− σ2

2
− kX̂n

ti+1
)
T

n
+ σ
√

X̂n
ti+1

(Wti+1
−Wti).

More precisely, when X̂n
ti
≥ 0 and T

n
≤ 1/k− (where y− = max(−y, 0)),

√

X̂n
ti+1

can then

be chosen as the unique positive root (since 2a > σ2, P (0) < 0) of the second-degree
polynomial P (x) = (1 + k T

n
)x2 − σ(Wti+1

−Wti)x− (X̂n
ti
+ (a− σ2

2
)T
n
), and we get

X̂n
ti+1

=




σ(Wti+1

−Wti) +
√

σ2(Wti+1
−Wti)

2 + 4(X̂n
ti + (a− σ2

2
)T
n
)(1 + k T

n
)

2(1 + k T
n
)





2

. (3)

This scheme is well defined and it is also easy to check that it preserves the monotonicity
property satisfied by the CIR process: if x0 < x′0 are two initial conditions, the scheme
satisfies X̂n

ti
< X̂n

ti
′. This is an interesting example of implicit scheme on the diffusion

coefficient whose general form is given by Milstein and al. (2002) since it leads to an
analytical formula. In the same spirit, we can look at the SDE that drives the square-root:

d
√

Xt =
a− σ2/4

2
√
Xt

dt− k

2

√

Xtdt+
σ

2
dWt

and consider the scheme obtained by impliciting the drift. This gives also a second-degree

equation in
√

X̂n
ti+1

:

(

1 +
kT

2n

)

X̂n
ti+1

−
[
σ

2
(Wti+1

−Wti) +

√

X̂n
ti

]√

X̂n
ti+1

− a− σ2/4

2

T

n
= 0
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that has also only one positive root when σ2 < 4a and T
n
< 2/k−, and it gives:

X̂n
ti+1

=







σ
2
(Wti+1

−Wti) +
√

X̂n
ti +

√

(σ
2
(Wti+1

−Wti) +
√

X̂n
ti)

2 + 4(1 + kT
2n
)a−σ2/4

2
T
n

2(1 + kT
2n
)







2

.

(4)
In this case X̂n

ti+1
is still an increasing function of X̂n

ti
so that the monotonicity property

is satisfied. One can wonder whether we can get other schemes looking at the implicit
scheme (implicit on the drift and the diffusion coefficients) with the SDE satisfied by Xα.
It is not hard to see that the only two values of α that give a second-degree equation are
1 and 1/2. The other powers do not lead to analytical formulas and require a numerical
resolution.

It is then interesting to make a rough Taylor expansion of order 1 of these schemes, i.e.
we fix X̂n

ti
and only conserve the terms in T

n
, (Wti+1

−Wti) and (Wti+1
−Wti)

2. We get
respectively for the first scheme (3) and the second (4):

X̂n
ti+1

≈ X̂n
ti

(

1− k
T

n

)

+ σ

√

X̂n
ti(Wti+1

−Wti) + σ2/2(Wti+1
−Wti)

2 + (a− σ2/2)
T

n

X̂n
ti+1

≈ X̂n
ti

(

1− k
T

n

)

+ σ

√

X̂n
ti(Wti+1

−Wti) + σ2/4(Wti+1
−Wti)

2 + (a− σ2/4)
T

n

This indicates us a family of explicit schemes E(λ) for 0 ≤ λ ≤ a − σ2/4 that ensure
nonnegative values but not the property of monotonicity:

X̂n
ti+1

=

((

1− kT

2n

)√

X̂n
ti +

σ(Wti+1
−Wti)

2(1− kT
2n
)

)2

(5)

+(a− σ2/4)T/n+ λ[(Wti+1
−Wti)

2 − T/n].

It is well defined for kT/n 6= 2. The expansion of the scheme (3) corresponds then to
λ = σ2/4 while the scheme (4) to λ = 0. It is interesting here to notice that the implicit
scheme on the square-root and the explicit scheme E(0) have the same expansion (up to
order 1) as the Milstein scheme for (1) (which can lead to negative values like the Euler
scheme when k > 0) and for k = 0, E(0) is exactly the Milstein scheme. Let us mention
also that we could have considered as well the schemes obtained by replacing the factor
1− kT

2n
by
√

1− kT/n in (5).
This paper aims to get results on the weak and strong convergence of these schemes.

Let us mention here that Deelstra and Deelbaen have proven in [5] a strong convergence
result for their scheme. Diop also gets a strong convergence result in [6] but under some
strong assumptions on the coefficients. She also obtains a weak convergence rate that
depends on parameters. We introduce a framework in Section 2 that will allow us to study
simultaneously several schemes presented above. In Section 3, we will thus establish a
result of strong convergence for the schemes that satisfy an hypothesis denoted by (HS).
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Then we analyze the weak error in Section 4, establishing a convergence result with a 1/n
rate for schemes satisfying an hypothesis denoted by (HW ). Moreover, an expansion of the
weak error is given for the schemes E(λ). Section 5 presents numerical results. We study
in particular the strong convergence speed numerically and also calculate the computing
time required by the several schemes. All the properties put in evidence by our analysis are
listed in the conclusion, and E(0) seems to be the scheme that gathers the most interesting
properties.

2 Notations and preliminary lemmas

2.1 Some results on the CIR process

Lemma 2.1. The moments of (Xt)t∈[0,T ] are uniformly bounded by a constant that depends
only on the parameters (k, a, σ, x0), T , and the order of the moment p ∈ N

∗. More precisely,
setting ũp(t, x0) = E[Xp

t ], there exists smooth functions ũj,p(t) that depend on (k, a, σ) such
that:

ũp(t, x0) =

p
∑

j=0

ũj,p(t)x
j
0.

Proof: We have ũ0(t, x0) = 1 and in the case p = 1, ũ1(t, x0) = x+
∫ t

0
(a− kũ1(s, x0))ds

than can be solved:

ũ1(t, x0) = x0e
−kt + a

1− e−kt

k

with the convention that 1−e−kt

k
= t for k = 0. Let us consider p ≥ 2 and assume the result

true for 1 ≤ j ≤ p − 1. One has d(ũp(t,x0))

dt
= [ap + 1

2
p(p − 1)σ2]ũp−1(t, x0) − kpũp(t, x0).

Hence, we have

ũp(t, x0) = (e−kt)p
(

xp
0 +

∫ t

0

[ap+
1

2
p(p− 1)σ2](eks)pũp−1(s, x0)ds

)

and we get the induction relations

∀j ≤ p− 1, ũj,p(t) = (e−kt)p
∫ t

0

[ap+
1

2
p(p− 1)σ2](eks)pũj,p−1(s)ds

ũp,p(t) = (e−kt)p.

This gives the desired result, and we remark incidentally that ũj,p(t) can be written as a
polynomial of e−kt or t depending on whether we are in the case k 6= 0 or k = 0. ¤

2.2 Introduction of the notations O(1/nδ) and O(1/nδ)

In this section, we introduce Landau type notations for sequences of random variables that
will considerably simplify formulas later. To allow the multiplication of two O, we suppose
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the existence of moments of any order. The results presented here are elementary, and will
largely be used later.

Definition 2.2. Let us consider a doubly indexed family of random variables Z = (Zn
γ )n,γ

with n ∈ N and γ ∈ Γn a nonempty set. We will say that Z is of order δ ∈ R - and use
the notation Zn

γ = O(1/nδ) - if there exists a family of positive random variables (An
γ)γ,n

that have moments of any order uniformly bounded (i.e ∀p ∈ N
∗,∃κ(A, p) > 0,∀n ∈

N
∗, sup

γ∈Γn

E[(An
γ)

p] ≤ κ(A, p) ) and such that:

|Zn
γ | ≤ An

γ/n
δ

This is clearly equivalent to the following property:

∀p ∈ N
∗,∃κ(p) > 0,∀n ∈ N

∗, sup
γ∈Γn

E[(nδ|Zn
γ |)p] ≤ κ(p)

When in particular the (Zn
γ )γ,n are deterministic, this is equivalent to the boundedness of

(nδZn
γ )γ,n and we use the standard notation Z

n
γ = O(1/nδ).

Remarks 2.3. 1. It is obvious but important to observe that Zn
γ = O(1/nδ) implies that

E[Zn
γ ] = O(1/nδ).

2. Typically we will use in the paper this definition for Γn = {t0, t1, .., tn}.
3. A simple but fundamental example is Wtni+1

−Wtni
= O(1/

√
n) which is clear since

√
n|Wtni+1

−Wtni
| law= |N (0, T )| has moments of any order.

Proposition 2.4. If (Zn
γ )n∈N,γ∈Γn and (Z ′nγ′ )n∈N,γ′∈Γ′n are two families such that Z

n
γ =

O(1/nδ) and Z ′nγ′ = O(1/nδ′), we have:

1) ∀c ∈ R
∗, cZn

γ = O(1/nδ) 2) ∀d ∈ R, Zn
γ /n

d = O(1/nδ+d)

3) Zn
γ + Z ′nγ′ = O(1/ninf(δ,δ

′)) 4) ∀d > 0, (Zn
γ )

d = O(1/ndδ)

5) Zn
γZ

′n
γ′ = O(1/nδ+δ′)

where the families in 3) and 5) are indexed in Γn × Γ′n. In particular, if we have a family
of functions hn : Γn → Γ′n, we have also:

3′) Zn
γ + Z ′nhn(γ) = O(1/ninf(δ,δ

′)) 5′) Zn
γZ

′n
hn(γ)

= O(1/nδ+δ′).

Proof : 1) and 2) are obvious. To prove 3), let us assume for example that δ ≤ δ ′.
Then, it is not hard to see that Z ′ni = O(1/nδ). Since a sum of Lp random variables is Lp,
we conclude easily. 4) comes immediately from the definition while 5) requires the use of
Cauchy-Schwarz inequality to get the boundedness of the moments.¤

By Jensen’s inequality, we also easily check the following result.

Lemma 2.5. Let us consider a family (Gγ′)γ′∈Γ′n of σ-algebras and (Zn
γ )n∈N,γ∈Γn a family

of random variables such that Zn
γ = O(1/nδ), then E(Zn

γ |Gγ′) = O(1/nδ).
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2.3 On the moments of the discretization schemes

First of all, we need the following lemma to control the moments of the schemes presented
here.

Lemma 2.6. Let us suppose that (X̂n
ti
) is an nonnegative adapted scheme (i.e. X̂n

ti
is

Fti-measurable) such that for all n ∈ N,

X̂n
t0

= x0

∀i ≤ n− 1, X̂n
ti+1

≤ (1 + b/n)X̂n
ti
+ σn

ti

√

X̂n
ti(Wti+1

−Wti) +O(1/n)

where (σn
ti
) is also supposed to be adapted with σn

ti
= O(1) and b > 0. Then, (X̂n

ti
) has

uniformly bounded moments, that is X̂n
ti
= O(1).

Proof : Let us first remark that it is sufficient to study the case b = 0. Indeed,
(1 + b/n)−iX̂n

ti
satisfies the condition above with b = 0 : we have for x ∈ [0, n], 1 ≤

(1 + b/n)x ≤ eb and thus on the one hand, (1 + b/n)−1−i/2σn
ti
is adapted and thanks to

Proposition 2.4 is a O(1), and on the other hand (1 + b/n)−i−1O(1/n) = O(1/n). We
observe then that X̂n

ti
= O(1)⇐⇒ (1 + b/n)−iX̂n

ti
= O(1).

By Definition 2.2, there is An
i = O(1) such that we can rewrite the inequality (with

b = 0) as follows :

X̂n
ti+1

≤ X̂n
ti
+ σn

ti

√

X̂n
ti(Wti+1

−Wti) + An
i /n.

We denote in this proof κ(A, p) = sup
i,n

E[|An
i |p]. We are going to check by on p that

∀p ∈ N, sup
i,n

E

[

(X̂n
ti
)p
]

< ∞. It is easy to check that E[X̂n
ti
] ≤ x0 + κ(A, 1) since we have

E[X̂n
ti+1

] ≤ E[X̂n
ti
]+κ(A, 1)/n. Let us assume for any q ≤ p−1, there is a positive constant

κ(q) such that
E[(X̂n

ti
)q] ≤ κ(q).

Since (X̂n
ti+1

)p ≤ ∑

l1+l2+l3=p

p!
l1!l2!l3!

(X̂n
ti
)l1+l2/2

(
σn
ti
(Wti+1

−Wti)
)l2 (An

i /n)
l3 , it is sufficient to

control E(l1, l2, l3) = E

[

(X̂n
ti
)l1+l2/2

(
σn
ti
(Wti+1

−Wti)
)l2 (An

i /n)
l3
]

for l1 + l2 + l3 = p. If

l1 + l2/2 ≤ p− 3/2, we have necessary l3 + l2/2 ≥ 3/2 and Hölder inequality gives

E(l1, l2, l3) ≤ (κ(p− 1))1/αE

[((
σn
ti
(Wti+1

−Wti)
)l2 (An

i /n)
l3
)β
]1/β

≤ C(l1, l2, l3)

n3/2

where α = p−1
l1+l2/2

and 1/α + 1/β = 1. Thus, there is a positive constant Cte such that :

E[(X̂n
ti+1

)p] ≤ E[(X̂n
ti
)p] +

p

n
E[(X̂n

ti
)p−1An

i ] +
p

n
E[(X̂n

ti
)p−1/2σn

ti
]E(Wti+1

−Wti)

+
p(p− 1)

2n
E[(X̂n

ti
)p−1(σn

ti
)2] + Cte/n.
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Using once again the Hölder inequality to bound E[(X̂n
ti
)p−1An

i ] from above, have for a
constant C > 0

E[(X̂n
ti+1

)p] ≤ E[(X̂n
ti
)p] +

C

n
(E[(X̂n

ti
)p] + 1) = E[(X̂n

ti
)p](1 +

C

n
) +

C

n

and then we easily conclude that E[(X̂n
ti
)p] + 1 ≤ (xp

0 + 1)eC .¤
Now, we present a quite general framework that includes, as we will see, the implicit

scheme (3) and the explicit schemes E(λ). The hypotheses that are stated below will be
useful later to get results of strong and weak convergence.
Hypothesis (HS) We will say that (X̂

n
ti
) satisfies (HS) if it is a nonnegative adapted

scheme such that:

X̂n
ti+1

= X̂n
ti
+
T

n
(a− kX̂n

ti
) + σ

√

X̂n
ti(Wti+1

−Wti) +mn
ti+1

−mn
ti
+O(1/n3/2) (6)

where mn
ti+1

−mn
ti
is a martingale increment (i.e. E[mn

ti+1
−mn

ti
|Fti ] = 0) of order 1:

mn
ti+1

−mn
ti
= O(1/n). (7)

If it is satisfied, we get immediately that X̂n
ti+1

≤ X̂n
ti
+ |k|T

n
X̂n

ti
+ σ

√

X̂n
ti(Wti+1

−Wti) +

O(1/n) using that |a − kX̂n
ti
| ≤ a + |k|X̂n

ti
. Therefore, we can apply the Lemma 2.6 and

deduce that X̂n
ti
= O(1). We define in that case the discrete martingale (Mn

ti
) by

{
Mn

t0
= 0

Mn
ti+1

−Mn
ti
= σ

√

X̂n
ti(Wti+1

−Wti) +mn
ti+1

−mn
ti
.

(8)

Thanks to Proposition 2.4 and Remark 2.3, we get

Corollary 2.7. Under hypothesis (HS), X̂
n
ti
has uniformly bounded moments, and we have:

(Mn
ti+1

−Mn
ti
)2 = σ2X̂n

ti
(Wti+1

−Wti)
2 +O(1/n3/2)

X̂n
ti+1

− X̂n
ti

= O(1/
√
n).

However, as we will see when studying the weak error, it can be useful to make a
stronger assumption to get a faster convergence.

Hypothesis (HW ) We say that a scheme (X̂n
ti
) satisfies (HW ) if it already satisfies

(HS) and moreover

X̂n
ti+1

= X̂n
ti
+
T

n
(a− kX̂n

ti
) + σ

√

X̂n
ti(Wti+1

−Wti) +mn
ti+1

−mn
ti
+O(1/n2) (9)

E

[

(X̂n
ti+1

− X̂n
ti
)2|Fti

]

= σ2X̂n
ti
T/n+O(1/n2). (10)

The absence of term of order 3/2 in (10) and the knowledge of the expansion of the scheme
(9) up to order 2 play a key role to get a weak error at most proportional to the time step.
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Remark 2.8. Let us suppose that there is a function ψn(x,w) which is even with respect
to its second argument w such that:

mn
ti+1

−mn
ti
= ψn(X̂n

ti
, (Wti+1

−Wti)) +O(1/n3/2).

Then, (X̂n
ti+1
− X̂n

ti
)2 = σ2X̂n

ti
(Wti+1

−Wti)
2+2σ

√

X̂n
tiψ

n(X̂n
ti
, (Wti+1

−Wti))(Wti+1
−Wti)+

O(1/n2), and therefore condition (10) is automatically satified thanks to Lemma 2.5.

2.4 Study of the expansion of the different schemes

In this section we examine each scheme presented in the introduction and our aim is to
discuss whether it satisfies or not Hypotheses (HS) and (HW ) defined before.

2.4.1 Expansion of the implicit scheme (3)

We assume here that 2a > σ2, and expand the relation that defines the implicit scheme (3):

X̂n
ti+1

=
1

4(1 + kT/n)2

(

2σ2(Wti+1
−Wti)

2 + 4(X̂n
ti
+ (a− σ2

2
)T/n)(1 + kT/n)

+2σ(Wti+1
−Wti)

√

σ2(Wti+1
−Wti)

2 + 4(X̂n
ti + (a− σ2

2
)T/n)(1 + kT/n)

)

(11)

Let us now observe that

|
√

σ2(Wti+1
−Wti)

2 + 4(X̂n
ti + (a− σ2

2
)T/n)(1 + kT/n)− 2

√

X̂n
ti(1 + kT/n)|

≤
√

σ2(Wti+1
−Wti)

2 + 4(a− σ2

2
)(1 + kT/n)T/n = O(1/

√
n), (12)

using Proposition 2.4. Thus, we have

X̂n
ti+1

= 1
1+kT/n

X̂n
ti
+ 1

(1+kT/n)3/2
σ

√

X̂n
ti(Wti+1

−Wti) +O(1/n)

which gives that X̂n
ti
= O(1) using Lemma 2.6. Once we know this, we can continue the

expansion thanks to Proposition 2.4 and it is not hard to get:

X̂n
ti+1

− X̂n
ti
=
T

n
(a− kX̂n

ti
) +

σ2

2
[(Wti+1

−Wti)
2 − T/n] + Ṁn

ti+1
− Ṁn

ti
+O(1/n2) (13)

where Ṁn
ti
is a discrete Fti-martingale defined by Ṁn

t0
= 0 and

Ṁn
ti+1

= Ṁn
ti
+
σ(Wti+1

−Wti)

2(1 + kT/n)2

√

σ2(Wti+1
−Wti)

2 + 4

(

X̂n
ti + (a− σ2

2
)
T

n

)

(1 + kT/n).
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Indeed, we have E(Ṁn
ti+1
|Fti) =

Ṁn
ti
+

σ
√
T

2
√
2πn(1 + kT/n)2

∫ ∞

−∞

xe−
x2

2

√

σ2T

n
x2 + 4(X̂n

ti + (a− σ2

2
)T/n)(1 + kT/n)dx

︸ ︷︷ ︸

0

= Ṁn
ti
.

Moreover, we have (Ṁn
ti+1

− Ṁn
ti
)2 = σ2(Wti+1

− Wti)
2X̂n

ti
+ O(1/n2) and in particular

Ṁn
ti+1

− Ṁn
ti
= O(1/

√
n). Now, we can define the martingale (mn

ti
) by

mn
ti+1

−mn
ti
=
σ2

2
[(Wti+1

−Wti)
2 − T/n] + Ṁn

ti+1
− Ṁn

ti
− σ

√

X̂n
ti(Wti+1

−Wti)

and it is easy from (13) to see that the properties (6) and (9) are satisfied. Inequality (12)

gives us that Ṁn
ti+1

− Ṁn
ti
− σ

√

X̂n
ti(Wti+1

−Wti) = O(1/n) and therefore property (7) is

satisfied by mn since σ2

2
[(Wti+1

−Wti)
2 − T/n] = O(1/n). We have first shown thus that

(HS) is satisfied. Now, using the Proposition 2.4, we get that:

(X̂n
ti+1

− X̂n
ti
)2 = σ2(Wti+1

−Wti)
2X̂n

ti

+[σ2((Wti+1
−Wti)

2 − T/n) + 2(a− kX̂n
ti
)T/n](Ṁn

ti+1
− Ṁn

ti
) +O(1/n2)

and that the term of order 3/2, [σ2((Wti+1
−Wti)

2−T/n)+ 2(a− kX̂n
ti
)T/n](Ṁn

ti+1
− Ṁn

ti
),

has a null conditional expectation respect to Fti since it can be written as an odd function
respect to the Brownian increment. This shows that we have (10) and (HW ) is also satisfied
by this implicit scheme.

2.4.2 Expansion of the implicit scheme (4)

Let us assume here that 4a > σ2. Expanding (4), we get:

X̂n
ti+1

=
1

4(1 + kT
2n
)2

[

2

(
σ

2
(Wti+1

−Wti) +

√

X̂n
ti

)2

+ 4

(

1 +
kT

2n

)
a− σ2/4

2
T/n

+ 2

(
σ

2
(Wti+1

−Wti) +

√

X̂n
ti

)
√
(
σ

2
(Wti+1

−Wti) +

√

X̂n
ti

)2

+ 4

(

1 +
kT

2n

)
a− σ2/4

2

T

n



 .

Thus, using the inequality x2+x
√

x2 + y ≤
{

2x2 + y/2 if x > 0
0 if x ≤ 0

for y ≥ 0, we get that

X̂n
ti+1

≤ 1

(1 + kT
2n
)2

[(
σ

2
(Wti+1

−Wti) +

√

X̂n
ti

)2

+

(

1 +
kT

2n

)
a− σ2/4

2
T/n

]

and we can therefore apply Proposition 2.6 to deduce that X̂n
ti

has bounded moments.

Unfortunately, if we try now to get an expansion of X̂n
ti
up to order 3/2 by expanding the
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square-root, we get a term in 1
q

X̂n
ti

O(1/n3/2) which is hard to manage. Despite the good

numerical convergence of this scheme, our approach in this paper did not enable us to
obtain theoretical results for it.

2.4.3 Expansion of the explicit scheme E(λ)

Let us assume here that 4a ≥ σ2 and consider λ ∈ [0, a− σ2/4]. Expanding (5), we get

X̂n
ti+1

− X̂n
ti

= (a− kX̂n
ti
)
T

n
+
k2

4
X̂n

ti

(
T

n

)2

+
kσ2

8

2− kT/(2n)

(1− kT/(2n))2

(
T

n

)2

+σ

√

X̂n
ti(Wti+1

−Wti) +

(
σ2

4(1− kT/(2n))2
+ λ

)

((Wti+1
−Wti)

2 − T/n)

≤ σ

√

X̂n
ti(Wti+1

−Wti) +

(

k− +
k2

4

T

n

)

X̂n
ti

T

n
+O(1/n).

We can then apply Lemma 2.6 to deduce that X̂n
ti
= O(1). We have then an expansion

analogous to that obtained for the implicit scheme, that is

X̂n
ti+1

− X̂n
ti
=
T

n
(a− kX̂n

ti
) + σ

√

X̂n
ti(Wti+1

−Wti) +mn
ti+1

−mn
ti
+O(1/n2) (14)

where mn
ti
is a Fti-martingale defined by mn

t0
= 0 and mn

ti+1
− mn

ti
= (σ

2

4
+ λ)[(Wti+1

−
Wti)

2 − T/n]. It is in this case straightforward to see that we have the properties (6) and
(9) and that the martingale increments satisfy (7) and (10) thanks to Remark 2.8. Hence,
explicit scheme E(λ) fulfills the conditions of (HS) and (HW ).

3 Strong convergence

In all this section, we consider a scheme (X̂n
ti
) that satisfies the hypothesis (HS). We

will prove the strong convergence for it, following the method proposed by Deelstra and
Delbaen [5] that relies on Yamada’s functions. Thus, we first need to build a continuous
adapted extension of our scheme in order to use then Itô’s formula. For that purpose, we
need to explicit the O terms and first define Zn

ti
= O(1/n3/2) as:

X̂n
ti+1

= X̂n
ti
+
T

n
(a− kX̂n

ti
) +Mn

ti+1
−Mn

ti
+ Zn

ti

We can suppose that Zn
ti
is Fti-measurable. Indeed, if it were not the case, it would be

sufficient then to consider the martingale increment

M̃n
ti+1

− M̃n
ti
=Mn

ti+1
−Mn

ti
+ Zn

ti
− E[Zn

ti
|Fti ]

and Z̃n
ti
= E[Zn

ti
|Fti ] instead of respectively Mn

ti+1
−Mn

ti
and Zn

ti
. Thus, we have M̃n

ti+1
−

M̃n
ti
+ Z̃n

ti
=Mn

ti+1
−Mn

ti
+Zn

ti
and, thanks to Lemma 2.5, we get that Z̃n

ti
= O(1/n3/2), and

also M̃n
ti+1

− M̃n
ti
= σ

√

X̂n
ti(Wti+1

−Wti) +O(1/n).
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Now, we apply the martingale representation theorem to the martingales {E(mn
ti+1
|Ft)−

mn
ti
, t ∈ [ti, ti+1]} to get the existence of an Ft-adapted process (Rn

t , 0 ≤ t ≤ T ) such that

E(mn
ti+1
|Ft)−mn

ti
=

∫ t

ti

Rn
sdWs.

In particular, we know that
∫ t

ti
Rn

sdWs = O(1/n) and so (
∫ t

ti
Rn

sdWs)
2 = O(1/n2) which

gives us that, for t ∈ [ti, ti+1]:
∫ t

ti

E[(Rn
s )
2]ds = O(1/n2). (15)

Now, we are able to build a continuous extension (X̂n
t , 0 ≤ t ≤ T ) Ft-adapted of our

discretization scheme. Indeed, we define for t ∈ [ti, ti+1]:

X̂n
t = X̂n

ti
+ (t− ti)(a− kX̂n

ti
+
n

T
Zn

ti
) +

∫ t

ti

(σ

√

X̂n
ti +Rn

s )dWs.

Thus, naming η(t) the function defined on [0, T ] by η(t) = ti for t ∈ [ti, ti+1), we can rewrite
our scheme as follows:

X̂n
t = x0 +

∫ t

0

(a− kX̂n
η(s) +

n

T
Zn

η(s))ds+

∫ t

0

(σ
√

X̂n
η(s) +Rn

s )dWs. (16)

Let us now introduce a family of Yamada’s functions (see Karatzas and Shreve [10]) ψε,m

parametrized by two positive numbers ε and m. Since we have
∫ ε

εe−σ
2m

1
σ2u

du = m, there

exists a continuous function ρε,m with a compact support in ]εe−σ2m, ε[ such that ρε,m(x) ≤
2

σ2xm
for x > 0 and

∫ ε

εe−σ
2m ρε,m(u)du = 1. We then consider

ψε,m(x) =

∫ |x|

0

∫ y

0

ρε,m(u)dudy

that can be viewed as a sequence of smooth approximation of x→ |x| when m is large and
ε tends to 0. Indeed functions ψε,m thus satisfies:

|x| − ε ≤ ψε,m(x) ≤ |x|, |ψ′ε,m(x)| ≤ 1, 0 ≤ ψ′′ε,m(x) = ρε,m(|x|) ≤
2

σ2|x|m.

Following the method used by Deelstra and Delbaen [5], we first write

|X̂n
t −Xt| ≤ ε+ ψε,m(X̂

n
t −Xt) (17)

and then apply Itô’s formula :

ψε,m(X̂
n
t −Xt) =

∫ t

0

(kXs − kX̂n
η(s) +

n

T
Zn

η(s))ψ
′
ε,m(X̂

n
s −Xs)ds

+

∫ t

0

(σ
√

X̂n
η(s) +Rn

s − σ
√

Xs)ψ
′
ε,m(X̂

n
s −Xs)dWs

+
1

2

∫ t

0

(σ
√

X̂n
η(s) +Rn

s − σ
√

Xs)
2ψ′′ε,m(X̂

n
s −Xs)ds

=: I1(t, n) + I2(t, n) + I3(t, n).
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The absolute value of the first integral can be bounded using that ‖ψ ′ε,m‖∞ ≤ 1 :

I1(t, n) ≤ |k|
∫ t

0

(|Xs − X̂n
s |+ |X̂n

s − X̂n
η(s)|)ds+

∫ t

0

n

T
|Zn

η(s)|ds.

For the third integral, we have that

(σ
√

X̂n
η(s) +Rn

s − σ
√

Xs)
2 ≤ 2(σ2|Xs − X̂n

η(s)|+ (Rn
s )
2)

≤ 2(σ2|Xs − X̂n
s |+ σ2|X̂n

s − X̂n
η(s)|+ (Rn

s )
2). (18)

Therefore, using that ψ′′ε,m(x)|x| ≤ 2
σ2m

and ‖ψ′′ε,m‖∞ ≤ 2eσ
2m

σ2εm
we get:

I3(t, n) ≤
2t

m
+

2eσ
2m

εm

∫ t

0

(|X̂n
s − X̂n

η(s)|+
1

σ2
(Rn

s )
2)ds.

Using Lemma 2.1, Corollary 2.7 and (15), we check that E[I2(t, n)] = 0. Now, taking
the expectation in (17), we get

∀t ∈ [0, T ],E(|X̂n
t −Xt|) ≤ ε+ |k|

∫ t

0

E(|X̂n
s −Xs|)ds+

2T

m
+

(

2eσ
2m

σ2εm
+ |k|

)

Cte√
n

for some Cte > 0, using that |X̂n
s − X̂n

η(s)| = O(1/
√
n) and n

T
Zn

η(s) = O(1/
√
n). Gronwall’s

lemma leads then to

∀t ∈ [0, T ],E(|X̂n
t −Xt|) ≤ e|k|T

[

ε+
2T

m
+

(

2eσ
2m

σ2εm
+ |k|

)

Cte√
n

]

. (19)

Now, taking m = 1
4σ2 ln(n) and ε = 1/ ln(n), we get that

sup
0≤t≤T

E(|X̂n
t −Xt|) = O(1/ ln(n)). (20)

Now, we would like to exchange the supremum and the expectation. Doob’s inequality

gives E[ sup
0≤s≤t

|I2(s, n)|] ≤ C

√

E

[∫ t

0
(σ
√

X̂n
η(s) +Rn

s − σ
√
Xs)2(ψ′ε,m(X̂

n
s −Xs))2ds

]

. We use

that ‖ψ′ε,m‖∞ ≤ 1 and the inequality (18), and then control each terms thanks to relations

(20) and (15), and observing that |X̂n
s − X̂n

η(s)| = O(1/
√
n):

E[ sup
0≤s≤t

|I2(s, n)|] = O(1/
√

ln(n)).

We can then use the same controls as before for I1 and I3 to conclude that

E

(

sup
0≤t≤T

|X̂n
t −Xt|

)

= O(1/
√

ln(n)). (21)

We sum up our results in the proposition that follows.
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Proposition 3.1. Let us consider a discretization scheme (X̂n) that satisfies the hypothesis
(HS). Then, there exists a positive constant C depending on T and on the parameters
(k, a, σ, x0) but not on n such that:

sup
0≤i≤n

E(|X̂n
ti
−Xti |) ≤ C/ ln(n)

E

(

sup
0≤i≤n

|X̂n
ti
−Xti |

)

= C/
√

ln(n).

4 Weak convergence

In this section, we will establish a result that gives the convergence rate of E[f(X̂n
T )] to

E[f(XT )]. We will use the method introduced by Talay and Tubaro (1990) to study that
weak error and get also a convergence rate in 1/n provided that f is regular enough. We
thus introduce the notation Xx

t to denote the CIR process with initial value x, and we first
need to establish the following technical result.

Proposition 4.1. Let us consider f : R+ → R a Cq function with q ≥ 2, such that there
is A > 0 and m ≥ q, m ∈ N such that

∀x ≥ 0, |f (q)(x)| ≤ A(1 + xm).

Then u : [0, T ] × R+ → R defined by u(t, x) = E[f(Xx
T−t)] has successive derivatives

∂l
x∂

l′

t u(t, x) for l, l
′ ∈ N and l + 2l′ ≤ q, that satisfy the following property:

∃C > 0,∀(t, x) ∈ [0, T ]× R+, max
l+2l′≤q

|∂l
x∂

l′

t u(t, x)| ≤ C(1 + xm+q+l′) (22)

and is a classical solution of the PDE:

{

∂tu(t, x) + (a− kx)∂xu(t, x) +
σ2

2
x∂2xu(t, x) = 0

u(T, x) = f(x).
(23)

More generally, let us assume that (fθ, θ ∈ Θ) is a family of Cq functions with q ≥ 2, such
that there is A > 0 and m ≥ q, m ∈ N such that

∀θ ∈ Θ, ∀x ≥ 0, |f (q)θ (x)| ≤ A(1 + xm) and ∀l < q, |f (l)θ (0)| ≤ A. (24)

For 0 ≤ τ ≤ T , we consider uθ,τ (t, x) = E[fθ(X
x
τ−t)] for 0 ≤ t ≤ τ and x ≥ 0. Then there

is a constant C > 0 that does not depend on τ and θ such that

∀θ ∈ Θ, τ ∈ [0, T ], ∀(t, x) ∈ [0, τ ]× R+, max
l+2l′≤q

|∂l
x∂

l′

t uθ,τ (t, x)| ≤ C(1 + xm+q+l′) (25)

The proof of this proposition, mainly based on the analytical formula available for the
transition density of the CIR process is made in the Appendix A.

We are now able to prove the main results of this section:
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Proposition 4.2. Let f : R+ → R be a C4 function such that ∃A,m > 0,∀x ≥ 0, |f (4)(x)| ≤
A(1 + xm). Let us suppose moreover that the scheme (X̂n) satisfies the hypothesis (HW ).
Then, the weak error is in 1/n:

E[f(X̂n
T )] = E[f(XT )] +O(1/n).

More generally, if (fθ, θ ∈ Θ) is a family of C4 functions satisfying condition (24) for q = 4,

E[fθ(X̂
n
tnj
)] = E[fθ(Xtnj

)] +O(1/n)

where O(1/n) has to be understood in the sense of Definition 2.2 with (θ, tnj ) ∈ Γn =
Θ× {tn0 , ..., tnn}.
Proof : We have E[f(X̂n

T )] = E[u(T, X̂n
T )] and E[f(XT )] = u(0, x0) so that:

E[f(X̂n
T )]− E[f(XT )] = E[u(T, X̂n

T )− u(0, x0)] =
n−1∑

i=0

E[u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
)].

Let us consider (t, x) and (s, y) in [0, T ] × R+. We can apply the Taylor formula to
t 7→ u(t, y) up to order 2 and get:

u(s, y) = u(t, y) + (s− t)∂tu(t, y) + (s− t)2
∫ 1

0

(1− τ)∂2t u(t+ τ(s− t), y)dτ.

Now, we apply Taylor formula to y 7→ u(t, y) and y 7→ ∂tu(t, y) and we finally get

u(s, y) =
∑

0≤l+2l′<4

∂l
x∂

l′

t u(t, x)
(s− t)l

′
(y − x)l

l!l′!
+ (s− t)2

∫ 1

0

(1− τ)∂2t u(t+ τ(s− t), y)dτ

+(s− t)(y − x)2
∫ 1

0

(1− ξ)∂2x∂tu(t, x+ ξ(y − x))dξ

+
(y − x)4

3!

∫ 1

0

(1− ξ)3∂4xu(t, x+ ξ(y − x))dξ.

Proposition 4.1 allows us then to get:
∣
∣
∣
∣
∣
u(s, y)−

∑

0≤l+2l′<4

∂l
x∂

l′

t u(t, x)
(s− t)l

′
(y − x)l

l!l′!

∣
∣
∣
∣
∣

≤ C(1 + max(x, y)6+m)
[
(s− t)2 + |s− t|(y − x)2 + (y − x)4

]

and we apply this bound to (ti, X̂
n
ti
) and (ti+1, X̂

n
ti+1

). Proposition 2.4 and Corollary 2.7 give

immediately that C(1+max(X̂n
ti
, X̂n

ti+1
)6+m)[(T/n)2+(X̂n

ti+1
−X̂n

ti
)2T/n+(X̂n

ti+1
−X̂n

ti
)4] =

O(1/n2) and therefore:

u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
) =

∑

0<l+2l′<4

∂l
x∂

l′

t u(ti, X̂
n
ti
)
(T/n)l

′
(X̂n

ti+1
− X̂n

ti
)l

l!l′!
+O(1/n2). (26)
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Now we expand the powers of (X̂n
ti+1

− X̂n
ti
) up to order 2 using the Hypothesis (HW ):

X̂n
ti+1

− X̂n
ti

=
T

n
(a− kX̂n

ti
) + σ

√

X̂n
ti(Wti+1

−Wti) +mn
ti+1

−mn
ti
+O(1/n2)

(X̂n
ti+1

− X̂n
ti
)3 = σ3(X̂n

ti
)3/2(Wti+1

−Wti)
3 +O(1/n2)

Therefore, we get that

E

[

X̂n
ti+1

− X̂n
ti

∣
∣Fti

]

=
T

n
(a− kX̂n

ti
) +O(1/n2)

E

[

(X̂n
ti+1

− X̂n
ti
)3 |Fti

]

= O(1/n2)

and according to (10), E

[

(X̂n
ti+1

− X̂n
ti
)2 |Fti

]

= σ2X̂n
ti
T/n+O(1/n2).

The bound (22) and Lemma 2.6 ensure that ∂ l
x∂

l′

t u(ti, X̂
n
ti
) = O(1) for l + 2l′ < 4. Thus,

using Lemma 2.5, we can deduce from (26) :

E

[

u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
) |Fti

]

=
∑

0<l+2l′<4

∂l
x∂

l′

t u(ti, X̂
n
ti
)
(T/n)l

′
E

[

(X̂n
ti+1

− X̂n
ti
)l |Fti

]

l!l′!
+O(1/n2)

= ∂tu(ti, X̂
n
ti
)T/n+ ∂xu(ti, X̂

n
ti
)
T

n
(a− kX̂n

ti
) + ∂2xu(ti, X̂

n
ti
)
σ2

2
X̂n

ti
T/n+O(1/n2)

= O(1/n2)

since u solves the PDE (23). Therefore, there is a constant C > 0 that does not depend

on i such that
∣
∣
∣E

[

u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
)
]∣
∣
∣ ≤ C/n2 and so, we finally get that

∣
∣
∣E[f(X̂n

T )]− E[f(XT )]
∣
∣
∣ ≤ C/n

which is the desired result.
Now let us explain why this proof can be generalized easily to the case of the family

of functions fθ that satisfy (24) and all times tnj . We apply as before Taylor formula to
functions uθ,tnj

and thanks to Proposition 4.1, the bounds we have on its derivatives do not

depend on (θ, tnj ) and we get for 0 ≤ i < j ≤ n as in (26)

uθ,tnj
(ti+1, X̂

n
ti+1

)−uθ,tnj
(ti, X̂

n
ti
) =

∑

0<l+2l′<4

∂l
x∂

l′

t uθ,tnj
(ti, X̂

n
ti
)
(T/n)l

′
(X̂n

ti+1
− X̂n

ti
)l

l!l′!
+O(1/n2)

with the difference that the O symbol is now meant with Γn = {(tni , tnj ), 0 ≤ i < j ≤ n}×Θ
instead of {tni , 0 ≤ i ≤ n} before. Then, the proof is the same, noticing that we still have
∂l
x∂

l′

t uθ,tnj
(ti, X̂

n
ti
) = O(1) for l + 2l′ ≤ q. ¤
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Remark 4.3. We desired to get a weak error in 1/n as in the case of the Euler scheme for
stochastic differential equations with coefficients regular enough (C4 and bounded deriva-
tives). Using the argument of Talay and Tubaro, we need then a control on u(ti+1, X̂

n
ti+1

)−
u(ti, X̂

n
ti
) up to order 2. This is why we assume to know the relation (9) between X̂n

ti+1
and

X̂n
ti
up to order 2. Expanding u(ti+1, X̂

n
ti+1

)− u(ti, X̂
n
ti
), we see that the term of order 1/2

has a null expectation, the term of order 1/n is null since u solves the PDE (23), but we
need to require condition (10) so that the term of order 3/2 has a null expectation. If we
had only assumed that the scheme satisfies (HS), we would have obtained a weak error in
1/
√
n.

Now, we would like to expand further the weak error, in particular to justify the use
the Romberg method that mainly relies on the following remark: if we know that there is
c1 ∈ R such that E[f(X̂n

T )] = E[f(XT )] + c1/n + O(1/n2), then 2E[f(X̂2n
T )]− E[f(X̂n

T )] =
E[f(XT )] + O(1/n2) converges thus faster toward the desired expectation. If we want to
adapt the previous proof, we see that we need to add the following assumptions to get a
weak error up to order ν ∈ N

∗:

• f is regular enough (C4ν) and its derivatives have a polynomial growth.

• We know the relation between X̂n
ti+1

and X̂n
ti
up to order ν + 1.

Moreover, if we wish to have as for the Euler scheme an error that expands only on the
integer orders: E[f(X̂n

T )] = E[f(XT )] + c1/n + c2/n
2 + .. + cr−1/n

ν−1 + O(1/nν), we need
to make assumptions of the same kind as (10) for any power of (X̂n

ti+1
− X̂n

ti
) to get terms

of order “integer + one half” with null expectation. However these assumptions would be
hardly readable, and practically, they would be clearly satisfied only by the explicit schemes
E(λ). That’s why we prefer to state here directly the result for the explicit schemes E(λ).

Proposition 4.4. Let ν ∈ N
∗ and f : R+ → R that we suppose C∞ and such that ∀q,∃Aq >

0,mq ∈ N, |f (q)(x)| ≤ Aq(1 + xmq). Let (X̂n) be the explicit scheme E(λ) with 0 ≤ λ ≤
a− σ2/4. Then, the weak error has an expansion up to order ν:

E[f(X̂n
T )] = E[f(XT )] + c1/n+ c2/n

2 + ..+ cr−1/n
ν−1 +O(1/nν)

where c1 = T
∫ T

0
E[ψE(λ)(t,Xt)]dt with ψE(λ) defined below in (28).

Proof : With the same argument as in Proposition 4.2, first using the Taylor expansion
respect to t and then to x, we get that there is C(ν) > 0 and M(ν) ∈ N:

∣
∣
∣
∣
∣
u(s, y)−

∑

0≤l+2l′<2ν+2

∂l
x∂

l′

t u(t, x)
(s− t)l

′
(y − x)l

l!l′!

∣
∣
∣
∣
∣

≤ C(ν)(1 + max(x, y)M(ν))
ν+1∑

j=0

|s− t|ν+1−j(y − x)2j.
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Similarly, we get that

u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
) =

∑

0<l+2l′<2ν+2

∂l
x∂

l′

t u(ti, X̂
n
ti
)
(T/n)l

′
(X̂n

ti+1
− X̂n

ti
)l

l!l′!
+O(1/nν+1).

and then

E

[

u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
)|Fti

]

=
∑

0<l+2l′<2ν+2

∂l
x∂

l′

t u(ti, X̂
n
ti
)
(T/n)l

′
E

[

(X̂n
ti+1

− X̂n
ti
)l|Fti

]

l!l′!

+O(1/nν+1).

Let us first expand (5) to get:

X̂n
ti+1

= X̂n
ti
+ σ

√

X̂n
ti(Wti+1

−Wti) + (a− kX̂n
ti
)
T

n
+

(

λ+
σ2

4

)

((Wti+1
−Wti)

2 − T/n)

+
k2

4
X̂n

ti
(T/n)2 +

σ2

4
(Wti+1

−Wti)
2

(

1
(
1− kT

2n

)2 − 1

)

.

Since 1

(1− kT
2n )

2 − 1 =
∑

j≥1(j + 1)(k/2)j(T/n)j, we get that

X̂n
ti+1

− X̂n
ti

= σ

√

X̂n
ti(Wti+1

−Wti) + (a− kX̂n
ti
)
T

n
+

(

λ+
σ2

4

)

((Wti+1
−Wti)

2 − T/n)

+
k2

4
X̂n

ti
(T/n)2 +

σ2

4
(Wti+1

−Wti)
2

ν−1∑

j=1

(j + 1)(k/2)j(T/n)j +O(1/nν+1).

All the terms here are of integer order but σ
√

X̂n
ti(Wti+1

− Wti) that is of order 1/2.

Now, taking the power l of these expansion, we get using Proposition 2.4 an expansion of
(X̂n

ti+1
−X̂n

ti
)l up to order ν+1 (even ν+1+(l−1)/2). What is important to remark is that

the term of order “integer + one half” comes from an odd power of σ
√

X̂n
ti(Wti+1

−Wti) and

a product of the other terms. Since all these other terms are even respect to (Wti+1
−Wti),

we finally get that all the terms of order “integer + one half” have a null conditional
expectation. Thus, we see that we can write for l ∈ N

E

[

(X̂n
ti+1

− X̂n
ti
)l|Fti

]

=
ν∑

j≥l/2

φl,j(X̂n
ti
)(T/n)j +O(1/nν+1)

where φl,j are polynomial functions that we do not explicit and satisfy φl,j(X̂n
ti
) = O(1).

Thus, (T/n)l
′
E

[

(X̂n
ti+1

− X̂n
ti
)l|Fti

]

=
∑

l/2≤j≤ν

φl,j(X̂n
ti
)(T/n)j+l′ +O(1/nν+1)
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=
∑

l+2l′≤2j<2ν+2

φl,j−l′(X̂n
ti
)(T/n)j +O(1/nν+1) and so, E

[

u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
)|Fti

]

=

ν∑

j=1

(T/n)j

(
∑

0<l+2l′≤2j

∂l
x∂

l′

t u(ti, X̂
n
ti
)
φl,j−l′(X̂n

ti
)

l!l′!

)

+O(1/nν+1). (27)

For ν = 2, one obtains:

E

[

X̂n
ti+1

− X̂n
ti
|Fti

]

= (a− kX̂n
ti
)T/n+

k2X̂n
ti
+ kσ2

4
(T/n)2 +O(1/n3)

E

[

(X̂n
ti+1

− X̂n
ti
)2 |Fti

]

= σ2X̂n
ti
T/n+

[

(a− kX̂n
ti
)2 + 2(λ+ σ2/4)2

]

(T/n)2 +O(1/n3)

E

[

(X̂n
ti+1

− X̂n
ti
)3 |Fti

]

= 3σ2X̂n
ti

[

a− kX̂n
ti
+ 2(λ+ σ2/4)

]

(T/n)2 +O(1/n3)

E

[

(X̂n
ti+1

− X̂n
ti
)4 |Fti

]

= 3σ4(X̂n
ti
)2(T/n)2 +O(1/n3)

E

[

(X̂n
ti+1

− X̂n
ti
)5 |Fti

]

= O(1/n3)

and so:

E

[

u(ti+1, X̂
n
ti+1

)− u(ti, X̂
n
ti
) |Fti

]

= (T/n)2ψE(λ)(ti, X̂
n
ti
) +O(1/n3)

where

ψE(λ)(t, x) =
1

2
∂2t u(t, x) +

k2x+ kσ2

4
∂xu(t, x) + (a− kx)∂x∂tu(t, x) (28)

+
1

2

[
(a− kx)2 + 2(λ+ σ2/4)2

]
∂2xu(t, x) +

σ2

2
x∂2x∂tu(t, x)

+
σ2

2
x
[
a− kx+ 2(λ+ σ2/4)

]
∂3xu(t, x) +

σ4

8
x2∂4xu(t, x).

Therefore, summing and taking the expectation, we get that E[f(X̂n
T )] = E[f(XT )] +

(T/n)2
∑n−1

i=0 E[ψE(λ)(ti, X̂
n
ti
)] + O(1/n2). We then apply Proposition 4.2 to the family of

functions x 7→ ψE(λ)(ti, x) which satisfies condition (24) thanks to (22) (we incidentally
remark that it is sufficient to have f C8 to get the expansion with ν = 2). It gives that
E[ψE(λ)(ti, X̂

n
ti
)] = E[ψE(λ)(ti, Xti)] +O(1/n). Since ∂tE[ψE(λ)(t,Xt)] is bounded on [0, T ],

we have that (T/n)
∑n−1

i=0 E[ψE(λ)(ti, Xti)] =
∫ T

0
E[ψE(λ)(t,Xt)]dt+O(1/n) and then:

E[f(X̂n
T )] = E[f(XT )] + (T/n)

∫ T

0

E[ψE(λ)(t,Xt)]dt+O(1/n2). (29)

To get the expansion for ν = 3 and further, one has to check by induction the desired
result for any ν using the same methodology. ¤
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5 Numerical results

In this section, we will analyze numerically the convergence of the discretization schemes.
For the theoritical study, an interesting feature of the implicit schemes (3) and (4) and of
the explicit schemes E(λ), is their “automatic” nonnegativity for the following parameters:

Scheme Condition on (a, σ)
Implicit (3) σ2 ≤ 2a
Implicit (4) σ2 ≤ 4a
E(λ) 0 ≤ λ ≤ a− σ2/4

(30)

Indeed, contrary to the schemes using a reflection technique as those proposed by Deelstra-
Delbaen or Diop, there is no need to control the reflection. However, we can use the
following trick to extend schemes (3), (4) and E(λ) to all the values of the parameters
(k, a, σ):

• For the implicit schemes which are defined with second-degree polynomials, we will
set X̂n

ti+1
= 0 when the discriminant is negative and else use formulas (3) and (4).

• For the explicit schemes E(λ), we simply define X̂n
ti+1

as the positive part of the
left-hand side of (5)

We will use these extensions when needed for the simulations presented in this section.

5.1 Numerical study of the strong convergence

In this paragraph we present a numerical analysis of the strong convergence of various
schemes. It does not seem possible to compute the limit process on the same probability
space, and we overcome this difficulty using the following lemma that says that it is suffi-
cient to study the difference between the values obtained with a scheme for a given time
step and the ones obtained with the same scheme and a time step twice smaller. Let us
recall here that tin = iT/n = t2i2n.

Lemma 5.1. Let us consider a scheme (X̂n
ti
) that converges toward a continuous process

Xt in the following sense:

E

[

sup
0≤i≤n

|X̂n
tni
−Xtni

|
]

−→
n→∞

0. (31)

Then, for any α > 0 and β ≥ 0,

E

[

sup
0≤i≤n

|X̂n
tni
−Xtni

|
]

= O(
(lnn)β

nα
)⇐⇒ E

[

sup
0≤i≤n

|X̂n
tni
− X̂2n

t2n2i
|
]

= O(
(lnn)β

nα
).

The condition (31) has been established in this paper for the explicit schemes E(λ) and
for the implicit scheme (3) and it has also been proved for the scheme of Deelstra-Delbaen
[5]. Under some restrictive conditions of the parameters, the scheme proposed by Diop
converges with a 1/

√
n rate [6]. For the other parameters and for the Implicit scheme
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on the square-root (4), we can check numerically the condition (31) doing the comparison
with a scheme on which this comparison has been proved.

Proof of the Lemma. If there is K > 0 such that ∀n ∈ N
∗,E

[

sup
0≤i≤n

|X̂n
tni
−Xtni

|
]

≤ K (lnn)β

nα
,

then

E

[

sup
0≤i≤n

|X̂n
tni
− X̂2n

t2n2i
|
]

≤ K

(
(lnn)β

nα
+

(lnn+ ln 2)β

(2n)α

)

≤ K ′ (lnn)
β

nα
.

Reciprocally, since sup
0≤i≤n

|X̂n
tni
−Xtni

| ≤
l∑

k=0

sup
0≤i≤n

|X̂n

t2
kn

2ki

− X̂2n

t2
k+1n

2k+1i

|+ sup
0≤i≤n

|X̂2n

t2
l+1n

2l+1i

−Xtni
|, we

get E

[

sup
0≤i≤n

|X̂n
tni
−Xtni

|
]

≤ K
l∑

k=0

(lnn+k ln 2)β

(2kn)α
+ E

[

sup
0≤i≤n

|X̂2n

t2
l+1n

2l+1i

−Xtni
|
]

and with l→∞,

E

[

sup
0≤i≤n

|X̂n
tni
−Xtni

|
]

≤ K
∞∑

k=0

Cβ
(lnn)β + (k ln 2)β

(2kn)α
≤ K ′ (lnn)

β

nα

for some constant K ′ > 0, using that
∑∞

k=0 k
β/2k <∞.¤

Now for the numerical study, we consider the standard time interval [0, 1] (T = 1) and

set Sn = E

[

sup
0≤i≤n

|X̂n
tni
− X̂2n

t2n2i
|
]

. The figures below show the convergence of Sn in function

of the time-step 1/n for different parameters. Let us first observe that the implicit scheme
(4) and the explicit scheme E(0) give errors smaller than the others, for all the values of
the parameters tested. Which is also interesting and nontrivial is that the behaviour of
the convergence depends on the parameters.

We notice that for the case 2a > σ2 the schemes (4) and E(0) present an error which
looks linear respect to the time-step while the others give a square-root shape (see Fig. 1).
This is not totally surprising because we have seen that these schemes correspond to the
Milstein expansion, and we also know that under this hypothesis, Xt never reaches 0 so
that the non-lipschitzian behaviour of the square-root is less important.

When 2a < σ2 < 4a, the schemes (3), E(σ2/8), E(σ2/4), Deelstra-Delbaen and Diop,
Sn still has a square-root behaviour (see Fig. 2). Finally, let us mention that for the last
case σ2 > 4a, the schemes (4) and E(0) still give the smaller value of Sn. However, we
have to say that when σ2 >> 4a, the convergence is really slow.

Lastly, concerning the impact of λ for the explicit schemes E(λ), we see (Fig. 1 and 2)
that λ = σ2/4 is the parameter that gives a strong convergence analogous to the schemes
of Diop, Deelstra-Delbaen and implicit (3); and the value of Sn for E(σ2/8) is as one can
expect between those of E(0) and E(σ2/4).

To get an idea of the speed of convergence in function of the parameters, we postu-
late that Sn ∼ C/nα with α > 0· Thanks to the lemma, this is equivalent to a strong
convergence speed in 1/nα. To estimate α, we remark that

log10(Sn)− log10(S10n) −→
n→+∞

α,

and we have reported log10(Sn)− log10(S10n) for n = 200 in Figure 3. We have plotted the
result in function of the parameter σ2/(2a) since it is the one that plays a key role. This
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Figure 1: Sn in function of the time-step 1/n for x0 = 1, k = 1, a = 1 and σ = 1.
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Figure 2: Sn in function of the time-step 1/n for x0 = 1, k = 1, a = 1 and σ =
√
3.
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Figure 3: Speed convergence of Sn: estimation of the α parameter in function of σ2/(2a) for

x0 = 1, k = 1 and a = 1.

can be understood easily with a time-scaling. For the schemes (4) and E(0), the estimated
α is close to 1 for σ2 < 2a and decreases from 1 to 1/2 for 2a < σ2 < 4a while for the
other schemes, the estimated value of α is close to 1/2 for σ2 < 4a. Intuitively, we can
understand this decrease because for σ2 > 2a, Xt can reach the origin, and a non negligible
time is spent in the neighbourhood of 0 where the square root is non Lipschitz. Obviously,
the speed of convergence may have a more complicated form than the one postulated, but
our method gives nonetheless a good idea of its behaviour.

5.2 Numerical study of the weak convergence

We have plotted in figures 4,5,6 and 7, for fixed parameters of the CIR process, the approx-
imation given by the scheme or a Romberg extrapolation of the expected value E[f(X1)]
for the function f(x) = 5+3x4

2+5x
. This function has been chosen to be sensitive to variation

for large and small values so that it catches the defaults of the schemes near 0 and ∞. We
have taken two sets of parameters that illustrate the cases σ2 ≤ 2a and 2a ≤ σ2 ≤ 4a.
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Implicit (3) Implicit (4) Diop Deelstra-Delbaen E(0) E(σ2/4) Exact
σ = 1 72 64 65 67 67 68 668

σ =
√
2 77 64 67 67 66 70 1092

Table 1: Simulation time (in s) for 106 paths with a time step equal to 10−3 and parameters
k = 1, a = 1 and x0 = 1.

Let us recall here that we have proved here the O(1/n) convergence only for regular
functions and for the schemes satisfying (HW ), that is (3) with σ2 < 2a and E(λ) with
0 ≤ λ ≤ a − σ2/4. What comes out from the computations (see Figures 4 and 5) is that
for the small values of σ (σ2 ≤ 2a, Fig. 4) all the schemes seem to have a behaviour in
O(1/n) while for the large values (σ2 > 2a, Fig. 5), only the Explicit schemes and the
Deelstra-Delbaen scheme give shapes compatible with a behaviour in in O(1/n). On the
contrary, the scheme of Diop shows clearly a root shape while the implicit schemes (3) and
(4) seem to converge a little bit slower than K/n.

Concerning the Romberg method to calculate E(f(X̂1)), the figure 6 show that in the
both cases σ2 ≤ 2a and σ2 > 2a, Diop’s and implicit schemes (3) and (4) do not show a
quadratic convergence. As expected, Explicit schemes have a quadratic shape in all the
cases even if, strictly speaking, we have not proved the speed convergence observed for
E(σ2/8), k = 1, a = 1 and σ =

√
3 since λ = σ2/8 > a − σ2/4. Concerning the Deelstra-

Delbaen scheme, let us first say that for large time-steps, negative values may be frequent
which explains the strange behaviour observed. However, for time-steps small enough, the
convergence seems compatible with a quadratic convergence.

5.3 Computation time required by the schemes

In this paragraph we compare the time required by the schemes and the exact method to
simulate 106 paths with a time step equal to 10−3 on the time interval [0, 1] (see Table
1). Concerning the exact simulation of the increment of the CIR process, we have used
the method proposed by Glasserman in [7] (see p. 120-128). As we could expect, this
method is more time-consuming (up to a factor 10). Thus, it should be used to compute
expectations that depend on the values of the process (Xt) at a few fixed times. On the
contrary, for expectations that depends on all the path (such as integrals), discretization
schemes should be preferred. As we see in Table 1, the time required by the schemes
presented are of the same order. Let us mention here that for the implicit scheme (4), one

has to be careful and store at each step the value of
√

X̂n
ti so that only one square-root has

to be computed at each time step.
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2+5x for x0 = 0, k = 1, a = 1 and σ =
√
3.



Discretization schemes for the CIR processes 26

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
1.479

1.481

1.483

1.485

1.487

1.489

1.491

PSfrag replacements

D-D

Diop

Imp (3)

Imp (4)

E(0)

E(σ2/8)

Figure 6: 2E(f(X̂2n
1 ))−E(f(X̂n

1 )) in function of 1/n with f(x) = (5 + 3x4)/(2 + 5x) for x0 = 0,

k = 1, a = 1 and σ = 1.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
2.6000

2.6211

2.6422

2.6633

2.6844

2.7056

2.7267

2.7478

2.7689

2.7900

PSfrag replacements

D-D

Diop

Imp (3)

Imp (4)

E(0)

E(σ2/8)

D-D

Diop
Imp (3)

Imp (4)
E(0)

E(σ2/8)
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k = 1, a = 1 and σ =
√
3.
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E
(λ
),
0
<
λ,

λ
≤ a
− σ
2 /4

Nonnegativity Y Y Y N Y Y
Monotonicity Y Y N N N N
Strong CV Y ? Y∗ Y Y Y
Weak CV rate in 1/n Y ? Y∗ ? Y Y
Weak error expansion ? ? ? ? Y Y

Table 2: Theoretical results

6 Conclusion

We have sum up in Table 2 the theoretical results obtained in this paper and those of
Diop, Deelstra and Delbaen [6, 5]. We first point out which scheme satisfy the algebraic
properties of positivity and monotonicity. Then, we examine among the several schemes
whether it has been proved

• a result of strong convergence,

• a weak convergence rate in 1/n,

• an expansion of the weak error along the powers of 1/n.

The star (Y∗) means that the result has been established under some assumption on the
parameters while the question mark indicates that no result has been shown yet. Let us
mention here that Diop in [6] has also obtained a strong convergence speed in 1/

√
n under

some restrictive conditions on parameters. Table 3 presents the results of the numerical
tests of Section 5.

All these results tend to show that the explicit scheme E(0) is the one that gathers the
most interesting properties. Moreover, it is really easy to implement and is not more time
consuming than the other schemes. That is why in the general case, it is recommended to
use this scheme, at least for σ2 ≤ 4a.

As a further work, it would be interesting to get an accurate mathematical study on
the dependence of the strong convergence of E(0) on σ2

2a
(see Fig. 3). It would be also

interesting to study the behaviour of the convergence of the various schemes for large values
of σ, (σ2 ≥ 4a). Since none of the scheme studied in this paper seems to be efficient for
these large values of σ, designing a relevant scheme appears to be an interesting challenge.
Lastly, in a different direction, it would be nice to relax the condition of regularity on f for
the weak error and prove estimates on the cumulated distribution function and the density
of XT , as in Bally and Talay [1, 2] or more recently Guyon [8].

Acknowledgement. I am grateful to Benjamin Jourdain (ENPC-CERMICS) for
his numerous and helpful comments. I also thank Chalinène Bassinah (Paris 13-Institut
Galilée) for having double checked some numerical results.
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E
(λ
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0
<
λ,

λ
≤ a
− σ
2 /4

Strong CV order ≈ 1/2 ≈ 1 ≈ 1/2 ≈ 1/2 ≈ 1 ≈ 1/2

σ
2
∈
[0
,2
a
]

Weak CV rate in 1/n Y Y Y Y Y Y

Romberg in 1/n2 N N N Y Y Y

Strong CV order ≈ 1/2 ' 1/2 ≈ 1/2 ≈ 1/2 ' 1/2 ≈ 1/2

σ
2
∈
[2
a
,4
a
]

Weak CV rate in 1/n ? ? N Y Y Y

Romberg in 1/n2 N N N Y? Y Y

Table 3: Numerical results

A Proof of the Proposition 4.1

We will focus for sake of simplicity on the case of one function and one time T before
explaining how to extend the results to the case of a family of functions that satisfy (24).

We will first prove
max
0≤l≤q

|∂l
xu(t, x)| ≤ C(1 + xq+m) (32)

for some constant C > 0, and then (23), so that (22) will outcome automatically by an
induction on l′, using that for l′ ≥ 1 such that l + 2l′ ≤ q,

∂l
x∂

l′

t u(t, x) = −∂l
x

(

(a− kx)∂x∂
l′−1
t u(t, x) +

σ2

2
x∂2x∂

l′−1
t u(t, x)

)

= −σ
2

2
x∂l+2

x ∂l′−1
t u(t, x)− (l

σ2

2
+ a− kx)∂l+1

x ∂l′−1
t u(t, x) + lk∂l

x∂
l′−1
t u(t, x).

Let us set ũ(t, x) = u(T − t, x) = E(f(Xx
t )). By Lemma 2.1, (32) holds for f(x) = xp

(p ∈ N) and therefore for any polynomial. Now, using the decomposition f(x) = f(x) −
P (x) + P (x) with P (x) =

∑q
l=0 f

(l)(0)xl/l!, we deduce that it is enough to prove (32) for
f ∈ Cq such that |f(x)| ≤ A(1 + xm) and f (l)(0) = 0 for l ≤ q.

Integrating successively, we get easily that |f (l)(x)| ≤ A(1 + xm+q−l) and so, ∀ l ≤ q,
|f (l)(x)| ≤ A(1 + xm+q). The density of Xx

t is known and is given by:

p(t, x, z) =
∞∑

i=0

e−λtx/2(λtx/2)
i

i!

ct/2

Γ(i+ v/2)

(ctz

2

)i−1+v/2

e−ctz/2
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where ct =
4k

σ2(1−e−kt)
, v = 4a/σ2 and λt = cte

−kt. Let us remark here that

ct ≥ cmin :=







4k
σ2 , k > 0
4

σ2T
, k = 0
4|k|

σ2(e|k|T−1)
, k < 0.

We have for t > 0:

ũ(t, x) =
∞∑

i=0

e−λtx/2(λtx/2)
i

i!
Ii(f, ct)

where

Ii(f, ct) =

∫ ∞

0

f(z)
ct/2

Γ(i+ v/2)

(ctz

2

)i−1+v/2

e−ctz/2dz.

Since for l ≤ q, |f (l)(z)| ≤ A(1 + zm+q), we have

∀i ∈ N, |Ii(f (l), ct)| ≤ A

(

1 +

(
2

ct

)m+q
Γ(i+m+ q + v/2)

Γ(i+ v/2)

)

. (33)

Taking l = 0, the convergence of the above series is ensured. Derivating successively in x,
we get that for l ≤ q,

∀t ∈ (0, T ], x ∈ R
+, ∂l

xũ(t, x) =
∞∑

i=0

e−λtx/2(λtx/2)
i

i!
∆l

t(Ii(f, ct)) (34)

where ∆t : R
N → R

N is an the operator defined on sequences (Ii)i≥0 ∈ R
N by ∆t(Ii) =

λt
2
(Ii+1− Ii) = e−kt

2
ct(Ii+1− Ii). Let us remark now that, since f (l−1)(0) = 0, an integration

by part gives for 0 < l ≤ q and i ≥ 1

Ii(f
(l), ct) =

∫ ∞

0

f (l−1)(z)
(ct/2)

2

Γ(i+ v/2)

(ctz

2

)i−1+v/2

e−ctz/2dz

−
∫ ∞

0

f (l−1)(z)
(ct/2)

2(i− 1 + v/2)

Γ(i+ v/2)

(ctz

2

)i−2+v/2

e−ctz/2dz

=
ct
2
(Ii(f

(l−1), ct)− Ii−1(f
(l−1), ct)).

Therefore, we get that ∆t(Ii(f, ct)) = e−ktIi+1(f
(1), ct) and finally:

∀t ∈ (0, T ], x ∈ R
+, ∂l

xũ(t, x) =
∞∑

i=0

e−λtx/2(λtx/2)
i

i!
Ii+l(f

(l), ct)e
−klt.

Using (33), it gives immediately that |∂ l
xũ(t, x)| ≤ A

(

1 + 2m+q

cm+q
t

∞∑

i=0

e−λtx/2(λtx/2)i

i!
Γ(i+l+m+q+v/2)

Γ(i+l+v/2)

)

.

The quotient Γ(i+l+m+q+v/2)
Γ(i+l+p+v/2)

is a polynomial of degree m+ q in i, and we note β0, . . . , βm+q



Discretization schemes for the CIR processes 30

its coefficients in the basis {1, i, i(i − 1), . . . , i(i − 1) · · · (i − (m + q) + 1)}. Thus, we get
that |∂l

xũ(t, x)| ≤ A+ A2m+q

cm+q
t

(β0 + β1λtx+ · · ·+ βm+q(λtx)
m+q) and since |λt| ≤ cte

|k|T ,

|∂l
xũ(t, x)| ≤ A+ Ae(m+q)|k|T

(
|β0|/cm+q

min + |β1|/cm+q−1
min x+ · · ·+ |βm+q|xm+q

)
.

This allows us to conclude that there is a constant C > 0 (that depends only on A, T and
the parameters (x0, k, a, σ)) such that

∀l ≤ q, ∀t ∈ (0, T ], x > 0, |∂ l
xũ(t, x)| ≤ C(1 + xm+q).

Proof of (23). We deduce from Lemma 2.1 that ũ0(T − t, x) and ũ1(T − t, x) solve the
PDE (23) and it is therefore sufficient to prove the result for functions f ∈ C2 that satisfy
|f(x)| ≤ A(x2+xm). Let us now observe that dct

dt
= −σ2ctλt/4 and dλt

dt
= −(σ2λt/4+ k)λt.

Then, it is no hard to get dIi(f,ct)
dt

= (σ2i/2 + a)∆t(Ii(f, ct)) and that for any bounded

sequence Ii,
d
dt

∞∑

i=0

e−λtx/2(λtx/2)i

i!
Ii = −(σ2λt

4
+ k)x

∞∑

i=0

e−λtx/2(λtx/2)i

i!
∆t(Ii). Combining these

results, we get using relation (34):

∂tũ(t, x) = −(σ
2λt

4
+ k)x

∞∑

i=0

e−λtx/2(λtx/2)
i

i!
∆t(Ii(f, ct))

+
∞∑

i=0

e−λtx/2(λtx/2)
i

i!
(
σ2i

2
+ a)∆t(Ii(f, ct))

= (a− kx)∂xũ(t, x) +
σ2

2

∞∑

i=0

e−λtx/2(λtx/2)
i

i!

(

−λtx

2
+ i

)

∆t(Ii(f, ct))

= (a− kx)∂xũ(t, x) +
σ2

2
x
∞∑

i=0

e−λtx/2(λtx/2)
i

i!

λt

2
(∆t(Ii+1(f, ct))−∆t(Ii(f, ct)))

= (a− kx)∂xũ(t, x) +
σ2

2
x∂2xũ(t, x).

Finally, the continuity of f ensures that ũ(t, x) = E(f(Xx
t ))→ f(x) when t→ 0 thanks to

Lebesgue’s theorem.
Let us explain now how to extend the result to a family of functions fθ and get (25).

Let us denote Pθ(x) =
∑q

l=0
1
l!
f
(l)
θ (0)xq. Condition (24) ensures that the coefficients of Pθ

are uniformly bounded in θ. Writing fθ(x) = Pθ(x) + (fθ(x)− Pθ(x)), one obtains (25) in
the same way as (22). ¤
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