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1 Introduction

Choice under uncertainty has a long history, starting with mathematicians, such as Bernoulli,
De Moivre, Pascal and Fermat who developed the first steps towards a formal probabilistic
decision theory, and with economists such as Dupuis who introduced the concept of utility.
These seminal studies have attracted the attention of many famous economists such as
Keynes (who wrote his first book on probabilities) or Knight (who discussed the idea of
uncertainty and provided the basis for the subjective utility theory). Knight’s work was
later on pursued by de Finetti and Savage, who started to formalize the ideas of risk and
uncertainty. Our paper is based on two streams of research related to risk and uncertainty
that we briefly sketch below.

The first stream, the study of choice undertaken by risk averse individuals facing risky

situations, has been formalized by expected utility theory. During the Second World War, a
difficult book was published, by von Neumann and Morgenstern ([15]). These authors, re-
ferred to as VNM, provided an original and seminal method to introduce risk in the standard
decision theory. Recall here that risk corresponds to a random variable which determines
the payoffs and whose distribution is known by the decision maker. Even if it has been chal-
lenged on many grounds by experimental economists and psychologists, such as Kahneman
and Tversky [10], till now VNM theory has remained the benchmark, not yet successfully
challenged (according to many scholars in decision theory).

The second stream of research is related to uncertainty. The prototype problem of choice
under uncertainty is the multi-armed bandit problem studied independently, as far as we
know, also during the Second World War1. The key difference is that when the decision
maker faces uncertainty, the distribution of the underlying random variable is not known by
the decision maker. For example, in the multi-armed bandit, a “job” should be performed
iteratively by selecting, time period after time period, one out of n machines. The perfor-
mances of the machines are unknown, but the decision maker acquires some information on
the machine by performing the job with it. Each time a machine is selected, it provides
information about its performance, but in a costly manner if the job is poorly done.

Situations of decision under risk provide limiting cases since, usually, individuals do not
know the degree of risk they are facing. In general, the level of uncertainty is endogeneous
and could be reduced if enough effort were provided by the decision maker. We will show that
the level of uncertainty reduction that the decision maker selects is a function of his degree
of risk aversion, which provides a link between risk aversion and uncertainty reduction.

In this paper, we wish to consider situations which contain the two facets mentioned
above (risk aversion and uncertainty reduction). To fix ideas, we briefly discuss below three
examples. Many other examples can be constructed in other fields, including in biology
(biological essays and experimental design), and in economics (search models).

1. Consider an individual who uses a known technology and contemplates to shift to
a new technology that has been introduced in the market. This new technology is

1Before we further discuss this problem, let us hear Professor Whittle, while he was commenting the fa-
mous Gittins’s paper about the multi-armed bandit problem: “the problem is a classic one; it was formulated

during the war, and efforts to solve it so sapped the energies and minds of Allied analysts that the suggestion

was made that the problem be dropped over Germany, as the ultimate instrument of intellectual sabotage”.
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unknown, and could be better or worse than the current one for this individual. In
order to acquire information about this new technology, the individual has to use it (it
is an experience good). Each period of time, the individual makes his mind and either
continues to use the current technology, or shift (but not necessarily in an irreversible
manner) to the new one. Should the individual try to know more about the new
technology, and what is the meaning of technology adoption in this context? We will
study how risk aversion modifies individual strategies and payoffs.

2. Consider now a risk averse investor who is ready to invest in two financial instruments:
money market and small business. The returns on money market can be assumed to
be known (this is realistic in nominal terms), while the investor may have some prior
about the returns in small business, which could lead to a higher expected return (risk
premium), but may also lead to a zero return (in case of bankrupcy). The investor could
initially select the random investment, and stick to it, or, after a learning period, may
discover that small business is not that attractive and shift back to the safe alternative.
Once he selects the money market investment, if he does not learn anything more
about the benefits and the danger of investing in small businesses, he should therefore
rationally stick to it.

3. Finally, in our third example, a commuter has access to two modes to go from home to
work. Either he can use a very reliable public transportation system (the travel time in
this case is given by the schedule) or he could use his car. However, the travel time by
car is not guaranteed but it could be assumed stationary. To economize on notations,
we will assume that the travel time on the road takes discrete values. These values are
known, but the probabilities of occurrence of these values are not known. For example,
the travel time could be 20 minutes under normal conditions, but 30 minutes when
an accident occurs, which implies that one lane is close. However, the driver does not
know the (stationary) frequency of closing. The model in this case will determine how
drivers select day after day each alternative.

In this paper, we analyze in depth a slight variant of this last example. In this context, we
compare different information regimes and also drivers who differ with respect to their degree
of risk aversion. The individual may acquire information either via an exogenous information
system or via personal experience. The traffic manager may have access to a large enough set
of past occurrence so that he is able to compute an estimate of the probability of good and bad
traffic conditions, in the simple case where travel time takes only two values. Alternatively,
the traffic manager may not have access to past data, and in this case, the only information
that could be transmitted is the realization of good or bad traffic conditions. With limited
information, the traffic manager may estimate the probability of occurrence of good and bad
traffic conditions, but these estimates depend on a prior about the probability of occurrence.
A better alternative is to provide the information about past occurrences, so that each driver
may construct his own posterior. For example, carriers sometimes provide the occurrence of
delays over a previous period of time and it is up to the user to estimate the probabilities
of good or bad state. If there is no information system, the user has only access to the
information he has collected. In this case, the random alternative is an experience good,
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since information about the state of an alternative requires the use of it (here the travel
conditions on the road can be observed only if the road is chosen).

We show that the optimal decision problem can be characterized rather easily, except
when the only source of information is personal experience. In this case, the choice has a
dual effect since it leads to some reward, but it also leads to additional experience, which
can be valuable for further choices. Note, however, that this type of dual aspects of choice
is not considered in the standard discrete choice theory used in transportation [14, 11].

We show that the road choice between a safe and a random alternative can be formulated
as a one-armed bandit problem, but with an extra dimension explored here, the degree of
risk aversion. More precisely, we examine in a dynamic context how risk aversion modifies
individual decisions under uncertainty. Note that, in our analysis, we do not need to resort
to assumptions with respect to aversion to ambiguity (see also [6]). Here we consider that
individuals have different attitudes towards risk, but we assume nothing with respect to
their attitude towards uncertainty. Such behavior will be an outcome of our rational model.
The optimal solution of this problem shows that the individuals have specific propensities to
actively and costly reduce the level of uncertainty, according to their degree of risk aversion.

In Section 2, we show how risk aversion can parametrize optimal dynamic strategies.
In Section 3, we introduce the model and four information regimes. while in Section 4 we
present the corresponding four optimal strategies. In Section 5, we concentrate our attention
on situations where users can only reduce incertainty by personnal experience and compare
the different solutions. Numerical results are presented in Section 6. Concluding comments
and future research directions are briefly provided in the last section. General mathematical
proofs are relegated to the Appendix.

2 Risk aversion and the one-armed bandit problem

2.1 Static decision under uncertainty

Consider a decision-maker facing two alternatives S (safe) and R (random). Alternative
S yields a deterministic payoff xS, while alternative R yields a random payoff X whose
distribution law ν on R is not known to the decision-maker. The preferences of the decision-
maker are characterized by a (strictly increasing2 and concave) utility function U .

In this static framework, one needs an additional behavioral assumption to solve this
binary choice problem. For example, a standart assumption is that the decision-maker
selects the alternative which maximizes the worst expectation under a family of distribution
laws on R (max-min strategies). Alternatively, the decision-maker is assumed to have a
prior on ν (a distribution law π0 on the space of distribution laws on R) and to maximize a
(doubly) expected utility. Note that, in this case, only the known mathematical expectation
of the prior matters and the initial choice under uncertainty is formally turned into choice
under risk.

2By a stricly increasing function f , we mean that x > y ⇒ f(x) > f(y). We reserve the term of increasing

for functions f such that x > y ⇒ f(x) ≥ f(y).
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2.2 Dynamic decision with costly learning

In a dynamic framework, the decision-maker may learn about ν by observing i.i.d. realiza-
tions (Xt) of the random payoff X and update his prior on ν each time he selects the alterna-
tive R. The decision-maker selects a vt ∈ {R, S} at every period t, which gives a stochastic
discounted intertemporal utility J(v(·)) =

∑+∞
t=0 ρtU(Φ(vt, Xt+1)), where Φ(S, Xt+1) = xS,

Φ(R, Xt+1) = Xt+1 and where ρ ∈ [0, 1[ is the discount rate. Given a prior π0 on ν, one thus
obtains a known distribution over the random sequence (Xt)t≥1, under which the decision-
maker maximizes the mathematical expectation of J(v(·)).

2.3 Relation with the “classical bandit problem”

The above problem is a case of so called “classical bandit problem”, where the state of arm
S is degenerate and the state of arm R is the belief π̂t of the decison-maker regarding the
“true” distribution ν. This is a one-armed bandit problem because the state of arm S is
deterministic stationary and returns a reward ΨS = xS. The other arm state π̂t forms a
Markov process whose transitions correspond to the Bayesian updating with respect to the
observation of Xt. The reward is ΨR(π) =

∫
π(dν)

∫
ν(dω)U(X(ω)). Our presentation of

bandit problems is quite sketchy, and we send the reader to specialized references such as
[7, 8, 16, 1].

The “classical bandit problem” is an example of stochastic control problem with partial
information. Such problems are generally turned into problem with full information by
introducing conditional laws as a new state as above (see details in [3]). Their solutions
are then given by stochastic dynamic programming. However, bandit problems have special
solutions, called index strategies, as a consequence of their specific structure: arms are
independent and their state only evolves when they are selected, and the decision-maker
maximizes a discounted intertemporal utility.

2.4 Index strategies

The “classical bandit problem” refers to a situation of partial information. However, once
one chooses as “new state” the conditional law of the “old state”, the classical bandit problem
becomes a simple “bandit problem”, that is one with full information.

Bandit problems with geometric discounting are well known (see [7, 8, 16, 1]) for having
optimal strategies that may be characterized by the so called Gittins indices (or dynamic
allocation indices). To each arm is associated a state and an index function depending upon
this state. At a given stage, one compares the values of the different indexes and the optimal
strategy of the decision-maker is to select the arm with the higher index. The selected state
evolves according to a given transition kernel while the other states remain fixed, and the
value of the index of the selected arm is updated in consequence. The process goes on at
the next time period.

Consider an arm with state space Z and reward Ψ : Z → R. Starting from state z0 ∈ Z

and always selecting this arm yields a stochastic process (zt)t≥0 in Z determined by the given
transition kernel. The Gittins index of this arm is the following supremum over stopping
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times τ > 0 (see [7]):

µ(z) = sup
τ>0

E[
∑τ−1

t=0 ρtΨ(zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
. (1)

This index may be regarded as an average reward over a stopping time, with the rule deter-
mining it chosen to maximize this average. Another interpretation is as follows. Allow the
additional option of retirement for a lump reward of L. Then, the index is the value of L
whicj makes the option of continuation or of retirement (with reward L) equally attractive
[16]. In our one-armed bandit problem, the index of arm S is constant (µS = ΨS = U(xS)),
while µR(π) has no analytical expression. Knowing µS, µR and the state zt = π̂t at time
t, the optimal strategy is as follows: select the arm with the higher index, that is arm S if
µS ≥ µR(π̂t) and arm R else.

2.5 Risk aversion and optimal strategies

We wish to examine how individual risk aversion modifies dynamics of optimal decisions.
Recall the Arrow-Pratt definition of absolute risk aversion [13, 9, 5]. By definition, decision-
maker with utility function UM is more risk averse than decision-maker with utility function
UL if UM is a concave transformation of UL. Notice that the transformation is necessary
strictly increasing because UM and UL are strictly increasing.

Proposition 1

Consider two decision-makers with common prior belief π0 and one more risk averse than
the other. Assume that, at the beginning, the more risk averse decision-maker selects arm
R based on π0. Then, so does the less risk averse decision-maker and, as long as the more
risk averse decision-maker selects arm R, so does also the less risk averse decision-maker.

Proof. Assume that decision-maker with utility function U M is more risk averse than decision-
maker with utility function UL. There exists a concave strictly increasing function ϕ such that
ϕ ◦ UL = UM . The state space is here Z = P(P(R)), the space of probabilities on the space of
probabilities on R, and the rewards are given by

ΨM,L
S = UM,L(xS) and ΨM,L

R (π) =

∫
π(dν)

∫
ν(dω)UM,L(X(ω)) , ∀π ∈ P(P(R)) . (2)

We have ΨM
S = UM (xS) = ϕ(UL(xS)) = ϕ(ΨL

S). On the other hand, we have:

ΨM
R (π) =

∫
π(dν)

∫
ν(dω)UM (X(ω))

=

∫
π(dν)

∫
ν(dω)ϕ(UL(X(ω))) since UM = ϕ ◦ UL

≤ ϕ(

∫
π(dν)

∫
ν(dω)UL(X(ω))) since ϕ is concave

= ϕ(ΨL
R(π)) .

The end of the proof follows with Proposition 10 in Appendix. 2

This Proposition implies that the decision-makers can be ranked by their degree of risk
aversion. The most risk averse decision-makers eventually select the safe road, while the
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least risk averse decision-makers select the random road and stick to it. This simple manner
to sort decision-makers will play an essential role when congestion will be taken into account.

A direct consequence of the above Proposition is the following Corollary.

Corollary 2

The mean time spent selecting arm R decreases with the degree of absolute risk aversion.

3 Road choice problem statement

In this section, we describe an elementary road choice problem, with one safe road with known
deterministic travel time, and one random in the sense that the travel time is stochastic.
For the sake of simplicity, we assume that this latter random travel time may take only
a finite number n of known values. Our results would remain valid (but at the price of
high technicality) if random travel time were a general random variable. We shall describe
different decision problems according to the information available to a driver.

3.1 Basic notations

Consider one origin, one destination and two roads in parallel. At every period [t, t + 1[
starting at t (for instance a day), denoted by period t in the sequel, the driver selects one of
the two roads (safe and random) characterized as follows:

1. The safe road S has constant known travel time xS.

2. The random road R has a random travel time Xt+1 realized at the end of period t.
Xt+1 takes n ≥ 2 values in {x1, . . . , xn}.

We suppose that xi occurs with probability pi ∈]0, 1[, i = 1, . . . , n, with p1 + · · · + pn = 1.
We assume that x1, . . . , xn are known to the driver and that

x1 < · · · < xn and x1 < xS < xn . (3)

An adequate sample space (states of nature) may be Ω = {x1, . . . , xn}
�
∗

with the σ-field
F = 2Ω of all subsets. The coordinates Xt(ω) = ω(t), t ∈ N∗, form the sequence of random
travel times on the random road. Let Sn−1 denote the simplex of dimension n:

Sn−1
def
= {(p1, . . . , pn) ∈ Rn

+ , p1 + · · ·+ pn = 1} . (4)

We define
p

def
= (p1, . . . , pn) ∈ Sn−1 (5)

(in fact, p belongs to the interior of Sn−1 by our assumption that pi ∈]0, 1[, i = 1, . . . , n) and
the probability Pp on Ω by the marginals, for any (z1, . . . , zt) ∈ {x1, . . . , xn}

t

Pp(X1 = z1, . . . , Xt = zt) =
t∏

s=1

[p11{zt=x1} + · · ·+ pn1{zt=xn}] . (6)
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The expectation under the probability Pp is denoted by Ep.
The decision vt ∈ {S, R} is the road chosen at the beginning of period t. The observation

at the end of period t depends on the information regimes envisaged (see Paragraph 3.3).
Information could be acquired either by direct observation or via some driver information
system which may forecast future travel conditions.

We shall denote by Yt+1 the travel time experienced by the driver at the end of period
t. It is either xS if he selects the safe road or Xt+1. Thus, the experienced travel time Yt+1

which depends upon both the decision vt and Xt+1 is given by the formula

Yt+1 = Φ(vt, Xt+1) , (7)

where the function Φ(·, ·) defined on {R, S} × {x1, . . . , xn} is given by

Φ(S, x1) = · · · = Φ(S, xn) = xS and Φ(R, x1) = x1 , . . . , Φ(R, xn) = xn . (8)

3.2 Preference model

The preferences of a driver are characterized by a utility function V and by the discount
rate ρ ∈ [0, 1[. We shall call it driver [V, ρ]. The utility function V is strictly decreasing3

concave, so that

V (x1) > · · · > V (xn) and V (x1) > V (xS) > V (xn) . (9)

The rational driver selects a road vt ∈ {S, R} at every period t ≥ 0. The nature of
the information available to the driver when he selects one of the roads is crucial: we shall
develop this point below (Paragraph 3.3). To a sequence v(·) = (v0, v1, . . .) of decisions is
associated a stochastic intertemporal utility

∑+∞
t=0 ρtV (Yt+1), where Yt+1 depends upon vt

by Eq. (7).
Let the reward G(v, x) be defined by the instantaneous utility resulting from road choice

and experienced travel time:

G(v, x)
def
= V (Φ(v, x)) , ∀v ∈ {R, S} , ∀x ∈ {x1, . . . , xn} . (10)

By Eq. (7), we have V (Yt+1) = G(vt, Xt+1). For a sequence v(·) = (v0, v1, . . .) of decisions,
the discounted reward J(v(·)) is the random variable

J(v(·))
def
=

+∞∑

t=0

ρtG(vt, Xt+1) =
+∞∑

t=0

ρtV (Φ(vt, Xt+1)) =
+∞∑

t=0

ρtV (Yt+1) . (11)

Optimal strategies are given by the maximization of the mathematical expectation (under
probability laws specified later) of this random discounted reward.

3This is because, in the transportation context, V is decreasing in its argument, the travel time.
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3.3 Information regimes

We recall that xS, x1, . . . , xn are known to the driver. We shall focus on four information
regimes and associated optimization problems with increasing difficulty.

1. At the beginning of every period t, i.e. before he makes his decision, the visionary

driver (υ) knows with certainty the travel time on the random road at the end of
period t.

2. The fully informed driver (φ) knows p = (p1, . . . , pn);

3. The globally informed driver (γ) does not know p (but has a prior π0 on p) and, at the
beginning of period t, knows all past random travel times X1,. . . , Xt unconditional on
road choice.

4. The locally informed driver (λ) does not know p (but has a prior π0 on p) and, at the
beginning of period t, knows only Y1,. . . , Yt given by Eq. (7), that is only past random
travel times when he has selected the random road.

In the first and second cases, the optimization problem is easily solved. In the third case,
the posterior distribution on p is revised at each period, unconditionaly on road choice, and
we give the optimal rule. In the fourth case, the posterior distribution on p depends on
previous decisions. We use Bayesian update rules. This is an illustration of the dual effect
of a decision which contributes both to improve the expected intertemporal utility and to
provide valuable information for future decisions. This latter case is naturaly formulated as
a one-armed bandit problem, and we shall give some insights on its solution.

4 Optimal strategies and information regimes

We provide below the optimal strategies for the four information regimes envisaged. Informa-
tion regimes are ranked as follows: the visionary driver (Paragraph 4.1) is the best informed
driver, while the locally informed driver (Paragraph 4.5) is the most poorly informed one.
Intermediary information regimes are considered in Paragraphs 4.2 and 4.4. For the first
three regimes, information is independent of the action (road choice) while the last regime
requires an active move from the driver to acquire information. As we will show, the last
information regime is far more complex to study.

Without loss of generality, we assume that in case of tight the driver selects the safe road.

4.1 The visionary driver

At the beginning of every period t, the visionary driver knows Xt+1, i.e. gets information
about the travel time on the random road at the end of period t. Let strategy vυ(·) consists
in maximizing each G(vt, Xt+1) since vt may depend upon Xt+1. Obviously, the driver selects
the random road if Xt+1 < xS, and the safe one otherwise. Since G(vυ

t , Xt+1) ≥ G(vt, Xt+1)
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for any vt, we clearly have the following inequality between random variables (that is for all
sample realizations!):

J(vυ(·)) =
+∞∑

t=0

ρtG(vυ
t , Xt+1) ≥ J(v(·)) =

+∞∑

t=0

ρtG(vt, Xt+1) . (12)

It is clearly optimal (stronger than in the mean sense under any probability) to select the
random road at the beginning of period t if the future travel time is known to be strictly
lower than xS, and the safe road if not. Thus, the visionary driver does better than any
other driver, let it be a causal one (that is one who knows no more than X1,. . . , Xt) or even
a fellow visionary who might know more than Xt+1, since the above inequality states that

J(vυ(·)) = sup
v(·)

J(v(·)) . (13)

Notice that the optimal strategy vυ does not depend upon risk aversion. This is not true for
the three subsequent regimes.

4.2 The fully informed driver

Recall that the fully informed driver knows p. Thus, he looks for a strategy vφ(·) =
(vφ

0 , vφ
1 , . . .) which maximizes the expectation of J(v(·)) under probability Pp:

Ep[J(vφ(·))] = sup
v(·)

Ep[J(v(·))] . (14)

Let the relevant road be the optimal road given the knowledge of p, defined as follows.

Definition 3

For driver [V, ρ], the relevant road is defined as the random road R if V (xS) < p1V (x1) +
· · ·+ pnV (xn) and as the safe road S otherwise.

For a risk-neutral driver (linear decreasing utility function), the relevant road is the random
road R if and only if xS > p1x1 + · · ·+ pnxn. The relevant road depends upon specifications
on V and p, and not upon our general assumptions. From now, we exclude the singular case
where V (xS) = p1V (x1) + · · ·+ pnV (xn), and we shall assume in the sequel that

V (xS) 6= p1V (x1) + · · · + pnV (xn) . (15)

It is clear that the optimal strategy vφ is to select the relevant road. The optimal expected
discounted reward is

Ep[J(vφ(·))] =
1

1 − ρ
max{V (xS), p1V (x1) + · · ·+ pnV (xn)} . (16)

Note that the optimal reward Ep[J(vφ(·))] of the fully informed driver is then smaller than the
optimal reward Ep[J(vυ(·))] of the visionary driver (in fact, strictly smaller since 0 < pi < 1
and by Eq. (9)).
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4.3 A common framework for globally and locally informed drivers

Both the globally and locally informed drivers cannot evaluate an expected discounted reward
like Ep[J(v(·))] since they do not know p. However, both have a prior law π0 over p: π0 is a
distribution over the simplex Sn−1. With π0, we may define the probability Pπ0 on Ω by the
marginals

Pπ0(X1 = z1, . . . , Xt = zt) =

∫

Sn−1

π0(dp1 · · ·dpn)

t∏

s=1

[p11{zt=x1} + · · ·+ pn1{zt=xn}] . (17)

The above formula must be understood as the integral of the function (p1, . . . , pn) ↪→∏t

s=1[p11{zt=x1} + · · ·+ pn1{zt=xn}], defined on the simplex Sn−1 against the distribution π0.
In particular, with our notation, the integral element π0(dp1 · · ·dpn) has to be understood
as one over the simplex Sn−1 and not over Rn. Eπ0 denotes the expectation under the prob-

ability Pπ0. When π0 = δp, we simplify Pp def
= Pδp (this is coherent with the definition Eq. (6)

of Pp).

A formulation with a state space of probabilities on Sn−1

To solve such problems where the element p of the simplex Sn is unknown, it is classical to
introduce the space P(Sn−1) of probabilities on Sn−1 as the state space. For this, let us first
introduce some notations. Let [π]i denote, for i = 1, . . . , n,

∀π ∈ P(Sn−1) , [π]i
def
=

∫

Sn−1

piπ0(dp1 · · ·dpn) , (18)

and
[π]

def
= ([π]1, . . . , [π]n) ∈ Sn−1 , (19)

For all v ∈ {R, S} and π ∈ P(Sn−1), let us define a new reward G̃(v, π) by

G̃(v, π)
def
= [π]1G(v, x1) + · · ·+ [π]nG(v, xn) . (20)

The reward for the safe road S is G̃(S, π) = V (xS), while for the random road R, it is

G̃(R, π) = [π]1V (x1) + · · ·+ [π]nV (xn).
For i = 1, . . . , n, let M i

t be one plus the number of periods in which xi has been realized:

M i
t

def
= 1 +

t∑

s=1

1{Xt=xi} . (21)

We have (M1
t − 1) + · · ·+ (Mn

t − 1) = t. Let π̂γ
t ∈ P(Sn−1) be defined by:

π̂γ
t (dp1 · · ·dpn)

def
=

π0(dp1 · · ·dpn)p
M1

t −1
1 · · ·p

Mn
t −1

n
∫

Sn−1
π0(dp1 · · ·dpn)p

M1
t −1

1 · · · p
Mn

t −1
n

. (22)

Note that π̂γ
t may be computed by induction:

π̂γ
t+1(dp1 · · ·dpn) =

π̂γ
t (dp1 · · ·dpn)[p11{Xt+1=x1} + · · · + pn1{Xt+1=xn}]∫

Sn−1
π̂γ

t (dp1 · · ·dpn)[p11{Xt+1=x1} + · · ·+ pn1{Xt+1=xn}]
. (23)
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The case of β priors

Recall that a beta law β(r, s) is defined on [0, 1] by (see [12])

β(r, s)
def
=

1

B(r, s)
pr−1(1 − p)s−11[0,1](p) where B(r, s) =

∫ 1

0

pr−1(1 − p)s−1dp . (24)

This corresponds to the case n = 2. This definition may easily be extended to distributions
over the simplex Sn−1. By the beta law β(m1, . . . , mn) on Sn−1, we mean

β(m1, . . . , mn)
def
=

ςn−1(dp1 · · ·dpn)p
m1−1
1 · · · pmn−1

n∫
Sn−1

ςn−1(dp1 · · ·dpn)pm1−1
1 · · · pmn−1

n

(25)

where ςn−1(dp1 · · ·dpn) is the uniform distribution over the simplex Sn−1. A computation by
induction on n gives

∀i = 1, . . . , n , [β(m1, . . . , mn)]i =
mi

m1 + · · ·+ mn

. (26)

When π0 = β(m0
1, . . . , m

0
n) (in particular the uniform law on Sn−1 for m0

1 = · · · = m0
n = 1),

then π̂γ
t = β(m1

1 + M1
t , . . . , m0

n + Mn
t ) and

∀i = 1, . . . , n , [π̂γ
t ]i =

m0
i + M i

t

m0
1 + M1

t + · · ·+ m0
n + Mn

t

. (27)

4.4 The globally informed driver

Problem statement

The information available to the globally informed driver is the so called history Xt up to

time t: Xt is the σ-field Xt
def
= σ(X1, . . . , Xt), that is all past travel times on the random

road. For every period t, the decision vt is measurable with respect to history Xt: we shall
denote this by vt � Xt.

Thus, the globally informed driver looks for a strategy vγ(·) = (vγ
0 , vγ

1 , . . .) to maximize
the expectation of J(v(·)) under probability Pπ0, where the decision vt at the beginning of
period [t, t + 1[ depend upon the information Xt available at this time:

Eπ0[J(vγ(·))] = sup
vt�Xt,t≥0

Eπ0[J(v(·))] . (28)

Optimal strategies

Proposition 4

The optimal globally informed driver

1. Selects the safe road if and only if

[π̂γ
t ]1V (x1) + · · ·+ [π̂γ

t ]nV (xn) ≤ V (xS) . (29)

12



2. Always selects the relevant road after a random number of periods, if its prior π0 is a
beta law.

Proof.

1. By Eq. (17), we may establish that, for any π0 ∈ P(Sn−1):

∀i = 1, . . . , n , Pπ0(Xt+1 = xi | Xt) = [π̂γ
t ]i . (30)

Thus, by Lemma 11 in the Appendix, we may write

Eπ0 [J(v(·))] = Eπ0 [

+∞∑

t=0

ρtG̃(vt, π̂
γ
t )] . (31)

This property, together with Eq. (23), turns the original problem Eq. (28) into an optimal
stochastic control problem with state π̂

γ
t . This state is interpreted as the posterior law of p

knowing history Xt.

We have

sup
vt�Xt,t≥0

Eπ0[J(v(·))] = sup
vt�Xt,t≥0

+∞∑

t=0

ρtEπ0 [G̃(vt, π̂
γ
t )] by Eq. (31)

=
+∞∑

t=0

ρt sup
vt�Xt

Eπ0[G̃(vt, π̂
γ
t )] ,

since π̂
γ
t depends upon Xt, and this latter does not depend upon any control vs. Thus,

the optimization problem has now become a sequence of distinct optimization problems
supvt�Xt

Eπ0 [G̃(vt, π̂
γ
t )]. Since π̂

γ
t is Xt-measurable, we have

sup
vt�Xt

Eπ0 [G̃(vt, π̂
γ
t )] = Eπ0 [ sup

vt∈{R,S}
G̃(vt, π̂

γ
t )] . (32)

Thus, the optimal strategy vt(·) is given by

∀t ≥ 0 , v
γ
t = arg max

v∈{R,S}
G̃(v, π̂

γ
t ) . (33)

With Eq. (20), this gives Eq. (29). In other words, denoting

Γ(p1, . . . , pn)
def
= p1V (x1) + · · · + pnV (xn) − V (xS) (34)

the driver selects road S if and only if Γ([π̂γ
t ]) ≤ 0.

2. Under probability Pp, (Xt)t≥1 are i.i.d. random variables and the law of large number gives

∀i = 1, . . . , n ,
M i

t

t
→t→+∞ pi , Pp a.s.

Thus by Eq. (27), we have that :

[π̂γ
t ] → p , Pp a.s. (35)

As a consequence
Γ([π̂γ

t ]) → Γ(p) , Pp a.s.

Having excluded the singular case where Γ(p) = 0, we have that, for t large enough, Γ([π̂γ
t ])

has the same sign than Γ(p). Thus, the globally informed driver selects the relevant road
after a random number of periods.

13
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The proof would still hold if π0 where a convex combination of beta laws.

4.5 The locally informed driver as a one-armed bandit problem

The locally informed driver has the same information as the globally informed driver up to
the point where the former leaves the random road.

Problem statement

The information available to the locally informed driver consists only of experienced travel
times up to period t. We represent this by the σ-field

Yt
def
= σ(Y1, . . . , Yt) = σ(Φ(v0, X1), . . . , Φ(vt−1, Xt)) , (36)

where Φ is defined in Eq. (8). The decision vt is measurable with respect to information Yt

(vt � Yt). The difficulty comes from the fact that now Yt depends upon past v0,. . . , vt−1 as
may be seen in Eq. (36).

For the locally informed driver, the prior law π0 differs from δp since p is not known. The
optimization problem

Eπ0 [J(vγ(·))] = sup
vt�Yt,t≥0

Eπ0[J(v(·))]

is classically formulated as an armed-bandit problem as discussed below.

Formulation as a one arm bandit problem

For i = 1, . . . , n, let us define N i
t (one plus the number of times xi has been observed) by

N i
t

def
= 1 +

t∑

s=1

1{Xt=xi} . (37)

Note that (N 1
t − 1) + · · ·+ (Nn

t − 1) ≤ t, but not necessarily equal to t. Let us also define a
distribution π̂λ

t on Sn−1 by

π̂γ
t (dp1 · · ·dpn)

def
=

π0(dp1 · · ·dpn)p
N1

t −1
1 · · ·p

Nn
t −1

n
∫

Sn−1
π0(dp1 · · ·dpn)p

N1
t −1

1 · · · p
Nn

t −1
n

. (38)

As for the globally informed driver, and for the same reasons, the state is here π̂λ
t , interpreted

as the posterior law of p knowing history Yt.
Now, observe that the state π̂λ

t varies only when the random road is selected: this char-
acterizes bandit problems where one job evolves only if selected.

14



Gittins indexes

The locally informed driver strategies are expressed by means of π̂λ
t and of the so called

Gittins indexes (see [7] and definition Eq. (1)) µS and µR given below. When µS ≥ µR(π̂λ
t ),

the locally informed driver selects the safe road at period t, and conversely.
The index µS of the safe road is the constant reward G̃(S, π̂λ

t ) = V (xS). Indeed, by Eq. (1)
with state space Z = P(Sn−1) and a constant reward, we have that the index µS is constant:

∀π ∈ P(Sn−1) , µS(π) = V (xS) . (39)

The index µR of the random road is the following supremum over stopping times τ > 0:

µR(π) = sup
τ>0

Eπ[
∑τ−1

t=0 ρtG̃(R, π̂γ
t )]

Eπ[
∑τ−1

t=0 ρt]
. (40)

Note that π̂γ
t , defined by Eq. (22) with π0 = π, appears in the above formula. Indeed, when

the random road is always selected, then M i
t = N i

t for i = 1, . . . , n and the state π̂λ
t coincides

with π̂γ
t .

By taking the specific stopping time τ = 1 in (40), we obtain the inequality

∀π ∈ P(Sn−1) , µR(π) ≥ G̃(R, π) = [π]1V (x1) + · · ·+ [π]nV (xn) . (41)

Optimal index strategies

Proposition 5

A optimal locally informed driver

1. Selects the safe road if and only if

µR(π̂λ
t ) ≤ V (xS) . (42)

2. Sticks to the safe road, once he has selected it (a locally informed driver never switches
from the safe road to the random road).

The second assertion is rather intuitive since once a driver switches to a safe road, he does
not update his information, so that there is no reason to shift back to the random road.

Proof.

1. This assertion is the major result on optimal strategies for bandit problems with independent
arms and geometric discounting (see [7, 8, 16, 1]). Optimal strategies may be formulated as
an “index strategy”: pick up the arm with the higher index depending on the current state.

2. If a locally informed driver takes the safe road, then π̂λ
t+1 = π̂λ

t since there is no learning,
hence no revision of the conditional law. Then, this driver sticks to the same choice since the
state of the random road does not change. Thus, once a locally informed driver selects the
safe road, he never switches back.
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Notice that the optimal decision at period t only depends upon π0 and upon the numbers
N1

t ,. . . , Nn
t since we may write by Eq. (38):

µR(π̂λ
t ) = µR(

π0(dp1 · · ·dpn)p
N1

t −1
1 · · · p

Nn
t −1

n
∫

Sn−1
π0(dp1 · · ·dpn)p

N1
t −1

1 · · · p
Nn

t −1
n

)
def
= µR(π0, N

+
t , N−

t ) . (43)

5 A comparison of information regimes

We shall now detail properties of optimal strategies of the locally informed driver. It is a
straightforward application of Proposition 5 that the optimal locally informed driver always
selects the safe road if and only if µR(π0) ≤ V (xS).

5.1 Locally versus globally informed driver

The road choice optimal behaviors of the locally and of the globally informed drivers are
different but related in a way specified by Proposition below.

Proposition 6

1. If an optimal locally informed driver always selects the safe road, he would also do so
if he were globally informed.

2. If an optimal globally informed driver selects the random road from the first period up
to a period t, he would do the same if he were locally informed and facing the same
realizations of random travel times on the random road.

Proof.

1. By Eq. (41) and by Eq. (29), if the locally informed driver selects the safe road at first period
(and therefore at all periods), then so does the globally informed driver.

2. As a consequence, if the globally informed driver selects the random road at first period,
then so does the locally informed driver. Then, their posteriors π̂

γ
t and π̂λ

t coincide since
they share the same prior and the same observations.

2

Note, however, that the optimal expected discounted rewards under probability Pp cannot
be ranked (while they may be ranked under probability Pπ0 as in Eq. (45) below).

5.2 Comparison of optimal expected discounted rewards

We can now compare the optimal expected discounted rewards for the four information
regimes envisaged.
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Under the probability law Pp which drives the realizations of random times on the random
road, we have the following inequalities for optimal expected discounted rewards:

Ep[J(vυ(·))] ≥ Ep[J(vφ(·))] ≥ max(Ep[J(vγ(·))], Ep[J(vλ(·))]) . (44)

The first inequality has been shown in Paragraph 4.2. For the second, observe that the
fully informed driver might use information Xt, but it would not lead to a higher maximum
since p is known. Thus vγ(·) is a strategy admissible for the fully informed driver, hence
the inequality Ep[J(vφ(·))] ≥ Ep[J(vγ(·))]. The inequality for vλ(·) follows the same line of
reasoning.

Note that there is no ranking for the last two information regimes. However, under the
probability Pπ0, we have that

Eπ0[J(vγ(·))] ≥ Eπ0 [J(vλ(·))] . (45)

5.3 Risk aversion and locally informed drivers

The following Proposition corresponds to the general result of Proposition 1 and we simply
sketch the proof.

Proposition 7

Consider two drivers with common belief π0 and one more risk averse than the other. Assume
that, at the beginning, the more risk averse driver selects the random road based on π0.
Then, so does the less risk averse driver and, as long as the more risk averse driver selects
the random road, so does also the less risk averse driver.

Moreover, the mean time spent selecting the random road decreases with the degree of
absolute risk aversion.

Proof. Assume that driver with utility function V M is more risk averse than driver with utility
function V L. There exists a concave strictly increasing function ϕ such that ϕ ◦ V L = V M . The
state space is here Z = P(Sn−1) and the rewards are given by Eq. (20):

ΨM,L
S = V M,L(xS) and ΨM,L

R (π) = [π]1V
M,L(x1) + · · · + [π]nV M,L(xn) , ∀π ∈ P(Sn−1) . (46)

We have ΨM
S = V M (xS) = ϕ(V L(xS)) = ϕ(ΨL

S). On the other hand, since ϕ is concave

ΨM
R (π) = [π]1ϕ(V L(x1)) + · · · + [π]nϕ(V L(xn)) ≤ ϕ([π]1V

L(x1) + · · · + [π]nV L(xn)) = ϕ(ΨL
R(π)) .

The end of the proof follows with Proposition 10 in Appendix. 2

These results are numerically illustrated in Section 6.

5.4 Risk aversion and certainty premium

In order to compare two optimal strategies corresponding to different information regimes,
we use the concept of certainty premium [13, 9, 5].
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Definition 8

To the driver with prior π0 and strategy v(·), we associate the certainty premium ∆π0,v(·)

implicitely defined by:

V (xS + ∆π0,v(·)) = (1 − ρ)Eπ0 [

+∞∑

t=0

ρtV (Φ(vt, Xt+1))] . (47)

This is the additional travel time that he is willing to incur on the safe road to reach the
level of discounted payoff that he gets with prior π0 and strategy v(·).

Risk aversion and certainty premium are related as follows.

Proposition 9

Consider two drivers with common prior π0 and strategy v(·). If the driver with utility func-
tion V M is more risk averse than the driver with utility function V L, then ∆L

π0,v(·) ≤ ∆M
π0,v(·).

Proof. Introduce the probability space N × Ω with probability Q
def
= (1 − ρ)

∑+∞
t=0 ρtδt ⊗ Pπ0 .

Denoting f(t, ω) = Φ(vt(ω), Xt+1(ω))], we have Eπ0 [
∑+∞

t=0 ρtV (Φ(vt, Xt+1))] = E � (V (f)). Thus,
we are now in the classical framework to apply well known results on risk aversion. There exists a
concave strictly increasing function ϕ such that ϕ ◦ V L = V M , so that

ϕ(V L(xS + ∆M
π0,v(·))) = V M (xS + ∆M

π0,v(·)) since ϕ ◦ V L = V M

= E � (V M (f)) by definition of ∆M
π0,v(·)

= E � (ϕ(V L(f)))

≤ ϕ(E � (V L(f))) by concavity of ϕ

= ϕ(V L(xS + ∆L
π0,v(·))) .

Since ϕ is strictly increasing and V is strictly decreasing, we conclude that ∆M
π0,v(·) ≥ ∆L

π0,v(·). 2

The premium of the globally informed driver is ∆γ such that

V (xS + ∆γ) = (1 − ρ) sup
vt�Xt,t≥0

Eπ0 [

+∞∑

t=0

ρtV (Φ(vt, Xt+1))] . (48)

The premium of the locally informed driver is ∆λ such that

V (xS + ∆γ) = (1 − ρ) sup
vt�Yt,t≥0

Eπ0 [
+∞∑

t=0

ρtV (Φ(vt, Xt+1))] . (49)

As a consequence of Eq. (45), together with the fact that V is decreasing, we have:

∆λ ≥ ∆γ . (50)

Optimal locally informed drivers are eager to get a safe choice than optimal globally informed
drivers. The difference ∆λ − ∆γ measures what the driver is willing to pay in order to have
access ex post to daily information on the travel times on both roads.
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Combining ranking on information regimes and ranking with risk aversion, we obtain the
following ranking of the premium:

∆M
λ ≥ sup(∆L

λ , ∆M
γ ) ≥ inf(∆L

λ , ∆M
γ ) ≥ ∆L

γ . (51)

More precisely, the most risk averse driver is willing to pay the most for certainty if he is
locally informed, and the least risk averse driver is willing to pay the least for certainty if he
is globally informed.

6 Numerical illustration

For this numerical illustration, we restrict to the case n = 2. The random road R has
a random travel time Xt+1 realized at the end of period t which takes value in {x−, x+}
(x− < x+). We suppose that x− occurs with probability p ∈]0, 1[, which is not known to the
driver. We assume that

x− < xS < x+ . (52)

6.1 Equivalence with the one-armed Bernoulli problem

A one-armed Bernoulli problem is one in which the arm returns a Bernoulli random variable
each time it is selected. The arm returns 1 with unknown probability p and 0 else. For any
π ∈ P([0, 1]), let µ(π) denote the Gittins index for a Bernoulli arm. We shall now show how
the Gittins index µR(π) of our random road may be easily expressed by means of µ.

Recall that the utility functions are defined up to a transformation V ↪→ aV + b (a > 0),
and let consider the following values

a =
1

V (x−) − V (x+)
and b = −

V (x+)

V (x−) − V (x+)
(53)

which are such that
aV (x+) + b = 0 and aV (x−) + b = 1 . (54)

By Eq. (40), we have that µ(π) = aµR(π) + b, so that the safe road is selected if and only if

µ(π) ≤
V (xS) − V (x+)

V (x−) − V (x+)
. (55)

As expected, the right hand side of the above equation is increasing with risk aversion.
Such equivalence is possible only because the random variable takes no more than two

values. Therefore, if n ≥ 2 the risk aversion parameter adds a new dimension in the bandit
problem.

6.2 Numerical computation of the Gittins index

This section is devoted to the numerical computation of the Gittins index µR for the random
road.
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By Eq. (41), and with obvious notations, we get that µR(π) ≥ [π]+V (x+) + [π]−V (x−).
When π is a beta law, we have [β(r, s)]+ = r/(r + s) and [β(r, s)]− = s/(r + s), so that:

µR(β(r, s)) ≥
r

r + s
V (x+) +

s

r + s
V (x−) . (56)

The Gittins index defined by Eq. (1) may also be computed by the following dynamic
programming scheme (see [2]). Let F+ and F− be the following “shift” operators on P([0, 1]):

F+(π)
def
=

pπ(dp)∫ 1

0
pπ(dp)

, F−(π)
def
=

(1 − p)π(dp)∫ 1

0
(1 − p)π(dp)

. (57)

The optimal utility VS(π, m), defined on P(S1) × R+, for the problem on the safe road
with retirement reward m satisfies

VR(π, m) = max{m, [π] V (xn) + (1 − [π])V (x1) + ρ([π]VR(F+(π), m)

+ (1 − [π])VR(F1(π), m))} . (58)

The index function µR is related to the optimal utility VS(π, m) by the relation (see [7, 2])

1

(1 − ρ)
µR(π) = min{m | VR(π, m) = m} = inf arg min

m
[VR(π, m) − m] . (59)

It appears that the value function VR(π, m) satisfies a recursion when π is a beta law. Indeed,
using the fact that F+(β(r, s)) = β(r+1, s), F1(β(r, s)) = β(r, s+1) and [β(r, s)] = r/(r+s),

we introduce vm(r, s)
def
= VR(β(r, s), m) and rewrite (58) as

vm(r, s) = max{m,
r

r + s
V (xn)+

s

r + s
V (x1)+ρ[

r

r + s
vm(r+1, s)+

r

r + s
vm(r, s+1)]} . (60)

Thus, the computation of vm(r, s) requires the values of vm(r + 1, s) and vm(r, s + 1). As a
consequence, one is led to compute vm(r′, s′) on the grid {(r + n, s + m), n ∈ N, m ∈ N}.

First, let us explain how vm(r, s) is evaluated on the grid Nk
def
= {0, 1, ..., k}2. Equa-

tion (60) is a fixed point equation which can be writen as vm = L(vm), where L is a strict
contraction (ρ < 1). The numerical scheme used is a value iteration algorithm: given v0

m we
compute vi

m = L(vi−1
m ). But we also have to localize the problem since it is not possible to

iterate L for a function defined on the whole N × N. Equation (60) shows that computing
vi

m on Nk can be done if we have already computed vi−1
m on Nk+1. Thus, in order to perform

N = 100 iterations of the value iteration algorithm, we start the algorithm with vm
def
= m

on N50+N and the fixed point is approximated by vN
m computed on N50. Note that the value

iteration algorithm in that case computes a finite horizon (N = 100) approximation of a
stopping time problem. The vm functions are computed for a discretized set of m values and
then µR is computed using equation Eq. (59).

Second, we may refine the grid on which the vm functions are evaluated by repeating the

same scheme on the grid (1/2, 1/2) + Nk
def
= {1/2, 3/2, ..., k + 1/2}2. The refinement may go

on.
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For numerical experiments we have used ρ = 1/1.08 and the following cara utility
function

Vθ(x) =
(1 − eθx)

θ
(61)

with x− = 10/60, xs = 20/60 and x+ = 22/60. The parameter θ is the Arrow-Pratt degree

of absolute risk aversion −V ′′
θ /V ′

θ .

6.3 Numerical results
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Figure 1: Trajectories of posterior laws when the relevant road is the random road

Figures 1 and 2 show some typical trajectories of π̂t (posterior laws) for a starting value
π̂0 = β(1, 1) in a two dimensional space where the horizontal axis correspond to the number
of bad states (high travel time) and the vertical axis correspond to the number of good
states.

The points below the (L) curve define an area (the gray zone) for which µS ≥ µR. Thus,
as long as the current point of a trajectory remains above the (L) curve, the optimal strategy
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Figure 2: Trajectories of posterior laws when the relevant road is the safe road
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Figure 3: Gittins rules for increasing values of θ (7, 27, 53)

23



0 10 20 30 40 50
0.0

42.9

85.7

128.6

171.4

214.3

257.1

300.0

Figure 4: Mean time spent on the random road (± one standart deviation) as function of θ
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is to stay on the random road R. When a trajectory hits the (L) curve (if it does), it is then
optimal to switch to the safe road S; from then on, the driver will optimally stay on the safe
road and his posterior law remains constant.

The points below the (G) curve (the union of the light gray and gray zones) describe

the area for which µS(β(r, s)) ≥ G̃(R, β(r, s)) (see Eq. (41)). This stopping rule is easy to
compute and provides a reasonably good approximation of the Gittins index rule, for the
parameter values considered here. Note that (G) and (L) are asymptotically parallel lines.

As the number of iteration tends to infinity, the trajectories of the posterior laws for the
globally informed driver asymptotically converge to the (A) curve (see Eq. (35)). In Figure 1,
the (A) curve is above the (L) curve. Thus the relevant road is the random one and each
trajectory of the locally informed driver which hits the (L) curve leads to a stationary choice
(S) which is not relevant. In Figure 2, the (A) curve is below the (L) curve. The relevant
road is the safe road and, in this case, the trajectories hit the (L) curve almost surely (and
therefore the asymptotic choice coincide a.s with the relevant choice).

Figure 3 shows that the safe region (gray zone) gets larger for increasing values of risk
aversion, θ, highlighting numerically Proposition 1. We represent in the same space as for
Figure 1 and 2 the (L) curve and the gray zone on the grid N10. For θ = 7 (top left sub-figure)
the relevant road is the random road and the mean time on the random road is infinite. For
the two other sub-figures, the relevant road is the safe road: for θ = 27 the mean time is
positive while, in the second case θ = 53, the mean time is null.

This discussion is further illustrated by Figure 4 where we present the mean time on
the random road (plus or minus one standard deviation) as a function of the risk aversion
parameter θ. The vertical asymptote is at θ? = 14.7. It corresponds to the individual
with risk aversion θ? which makes him indifferent between the safe and the random road
given the probability p. A driver with θ < θ? always sticks to the random road while the
driver with θ ∈]θ?, 40[ starts to use the random road but, sooner or later, ends up on the
safe road. Individuals with risk aversion larger than 40 never try the random road. Note
that this critical value, denoted θ, of risk aversion is such that θ = inf {θ |µR(1, 1) < µS}
where (1, 1) stands for the uniform law. Numerically, the mean time spent on the random
road is obtained by Monte Carlo simulations and, since each simulated trajectory is stopped
on the boundary of the domain on which the Gittins index is computed, the mean time is
underestimated.

7 Conclusion

We have studied the choice between a safe and a random alternative under four information
regimes: the most difficult one (locally informed users) is when users need to select an
alternative in order to get information about it. The scope of this paper was to study the
impact of individual risk aversion in such situations. In Section 6, we have shown how
the one-armed bandit with risk aversion may be reduced to one-armed bandit without risk
aversion if the random arm can be in two states only. With more than two states or more
than a random arm, risk aversion modifies the solution of the armed bandit problem in a
non-trivial manner. In particular, we show that a more risk averse user has more chance to
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select at any time the random alternative than a less risk averse user. We also show that a
more risk averse individual is willing to pay more in order to have access to a safe alternative.
However, we argue below that this does not mean that more risk averse users are all willing
to experiment more in the one-armed bandit problem.

The way individuals wish to reduce uncertainty as a function of their risk aversion is
not trivial. Casual intuition (and our initial intuition) suggests that more risk averse users
may be willing to invest more to reduce uncertainty. We have shown that more risk averse
individuals actively tend to invest more effort to reduce uncertainty, in a subtle manner
described below. In our numerical illustration, individuals who are almost risk neutral, or
have a risk aversion less that a threshold θ? select the random road and stick to it. They
reduce uncertainty over time, but this information is less and less relevant in the sense that
their initial and final choice coincide (relevant road); note that, over time, this initial choice
has a smaller and smaller probability to be overturned. Conversely, the individuals with a
high degree of risk aversion (θ > θ) do not wish to know the characteristic of the random road,
and select right away the safe choice (and therefore never learn anything). The individuals
who are more risk averse than θ?, but less risk averse than θ, initially select the random
road to get information, and after a certain number of iterations, which decreases with their
degree of risk aversion, shift to the safe (relevant) road (see Figure 4). What matters are the
individuals who would be indifferent between the safe and the random choice, if they knew
about p. Those users are the ones who need to learn the most before they can make their
final choice.

The situation could be better explained in an extended model, where it would be costly
to process the information (e.g. to hire a consulting firm to make predictions). The two
processes – acquisition and processing (Bayesian update) of information – are described
within a single process in the classical bandit problem. Yet, a user may acquire information
but he may not be willing to put effort to process it. We conjecture that the individuals who
are at the vicinity of θ are willing to invest the most in order to process the information they
acquire (although this is debatable in the sense that in this case, the safe and the random
roads lead to similar rewards).

Road choice and drivers information system has generated a very large literature in the
transportation field, and to a less extent in economics. Those studies resort to simulation
measuring the impacts of information on congestion and do not capture the preferences of
individuals with respect to risk. Here we presented a very different view since we analyze
the impact of information on rewards, including the benefits from reducing uncertainty (see
also [4] which considers decisions of fully informed drivers with cara or crra preferences).
We believe that our approach with learning will be useful to study the economic benefit of
information. However, these problems request that the bandit model should be extended to
situation where the benefit of one individual depends on the choice of others (this interaction
corresponds to congestion).

Finally, our model can be understood also in the context of discrete choice models.
However, learning and uncertainty have not been described in this literature. The bandit
approach suggests a discrete choice model with rational learning. We believe that this
approach could be used as a basis to develop structural dynamic discrete choice models, for
repetitive choices where leaning takes place (going to the restaurant, going to a shopping
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mall, selecting a mileage plus company, etc.). The theory and the econometric properties
of those models, which combine the modeler’s uncertainty (the error term in the utility
function) and the individual’s uncertainty (inherent to the classical bandit problem) are still
to be envisaged.

A Lemmas and proofs

A.1 Comparison of bandit problems

Consider one decision-maker (M) which faces a one-armed bandit problem. The safe arm S
returns, when selected, a deterministic fixed reward ΨM

S ∈ R. The random arm R has state
space Z and reward ΨM

R : Z → R. A transition kernel is given on Z and, when the random
arm R is selected at period t, its state moves from zt towards zt+1 according to this transition

kernel. Defining ΨM : {S, R} × Z → R by ΨM(S, z)
def
= ΨM

S and ΨM(R, z)
def
= ΨM

R (z), the
decision-maker (M) has to solve

sup
v(·)

E[
∞∑

t=0

ρtΨM(vt, zt)] (62)

where ρ ∈ [0, 1[ is the discount rate and the law of z0 is given (which determines, with the
transition kernel, the probability P corresponding to the mathematical expectation E). Here,
the strategy v(·) is such that vt may depend upon z0,. . . , zt assumed to be observed.

Now, consider another decision-maker (L) which faces the same one-armed bandit, except
for the rewards. With obvious notations, the rewards are ΨL

S ∈ R and ΨL
R : Z → R.

We compare the optimal strategies of these two decision-makers (M) and (L) (More and
Less). Our main result concerning the impact of risk aversion on optimal strategies in a
one-armed bandit problem is the following.

Proposition 10

Assume there exists a concave increasing function ϕ : R → R such that

ΨM
S ≥ ϕ(ΨL

S) and ΨM
R (z) ≤ ϕ(ΨL

R(z)) ∀z ∈ Z . (63)

Then, each time the agent with rewards (ΨM
R , ΨM

S ) selects the random arm, so does the agent
with rewards (ΨL

R, ΨL
S) when he is in the same state.

As a straightforward corollary, each time the agent with rewards (ΨL
R, ΨL

S) selects the safe
arm, so does the agent with rewards (ΨM

R , ΨM
S ) when he is in the same state. However, we

are unable to identify assumptions ensuring that each time the agent with rewards (ΨM
R , ΨM

S )
selects the safe arm, so does the agent with rewards (ΨL

R, ΨL
S) when he is in the same state.

Proof. By definition Eq. (1), we have




µ
M,L
S (z) = sup

τ>0

E[
∑τ−1

t=0 ρtΨM,L
S | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
= ΨM,L

S

µ
M,L
R (z) = sup

τ>0

E[
∑τ−1

t=0 ρtΨM,L
R (zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
.

(64)
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Let τ > 0 be a fixed stopping time. We introduce the random variable Y =
∑τ−1

t=0 ρt > 0 and a

new probability P̃ such that Ẽ(X) =
�
(XY |z0=z)

�
(Y |z0=z) . We have

E[
∑τ−1

t=0 ρtΨM
R (zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
≤

E[
∑τ−1

t=0 ρtϕ(ΨL
R(zt)) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
since ΨM

R ≤ ϕ ◦ ΨL
R

= Ẽ[

τ−1∑

t=0

ρt ϕ(ΨL
R(zt))∑τ−1

s=0 ρs
] by definition of Ẽ

≤ Ẽ[ϕ(

τ−1∑

t=0

ρt ΨL
R(zt)∑τ−1
s=0 ρs

)] since ϕ is concave

≤ ϕ(Ẽ[
τ−1∑

t=0

ρt ΨL
R(zt)∑τ−1
s=0 ρs

])

by Jensen inequality, since ϕ is concave

= ϕ(
E[

∑τ−1
t=0 ρtΨL

R(zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
) by definition of Ẽ.

Thus, µM
R (z) ≤ ϕ(µL

R(z)) since

µM
R (z) = sup

τ>0

E[
∑τ−1

t=0 ρtΨM
R (zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]

≤ sup
τ>0

ϕ(
E[

∑τ−1
t=0 ρtΨL

R(zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
)

≤ ϕ(sup
τ>0

E[
∑τ−1

t=0 ρtΨL
R(zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
) since ϕ is increasing

= ϕ(µL
R(z)) .

Now, we have by assumption µM
S (z) = ΨM

S ≥ ϕ(ΨL
S) = ϕ(µL

S(z), so that

µM
R (z) ≥ µM

S (z) ⇒ µM
R (z) ≥ ϕ(µL

S(z)) since µM
S (z) ≥ ϕ(µL

S(z))

⇒ ϕ(µL
R(z)) ≥ ϕ(µL

S(z)) since ϕ(µL
R(z)) ≥ µM

R (z)

⇒ µL
R(z) ≥ µL

S(z) since ϕ is increasing.

As a consequence, when the agent with rewards (ΨM
R ,ΨM

S ) selects the random arm, so does the

agent with rewards (ΨL
R,ΨL

S) when he is in the same state. This ends the proof. 2

A.2 Technical lemma

Lemma 11

Let (Zt)t∈
� be a family of subfields of the σ-field F = 2Ω. Let v(·) = (v0, v1, . . .) be a

sequence of decisions such that vt � Zt (meaning that vt is Zt-measurable). Then

Eπ0 [J(v(·))] = Eπ0 [
+∞∑

t=0

ρtG̃(vt, π̂t)] (65)
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where G̃ is given by Eq. (20) and π̂t ∈ P(Sn−1) is any probability law on Sn−1 such that

∀i = 1, . . . , n , [π̂t]i = Pπ0(Xt+1 = xi | Zt) . (66)

Proof. Let π̂t be such that Eq. (66) holds. We have then for v ∈ {R,S}:

Eπ0 [G(v,Xt+1) | Zt] = Pπ0(Xt+1 = x1 | Zt)G(v, x1) + · · · + Pπ0(Xt+1 = xn | Zt)G(v, xn)

= [π̂t]1G(v, x1) + · · · + [π̂t]nG(v, xn) by Eq. (66)

= E
�

πt[G̃(vt, π̂t)] by Eq. (20).

Thus,

Eπ0[J(v(·))] = Eπ0 [
+∞∑

t=0

ρtG(vt, Xt+1)] by Eq. (11)

=
+∞∑

t=0

ρtEπ0 [G(vt, Xt+1)]

=
+∞∑

t=0

ρtEπ0 [Eπ0 [G(vt, Xt+1) | Zt]]

=

+∞∑

t=0

ρtEπ0 [Eπ0 [G(v,Xt+1) | Zt]|v=vt
] since vt � Zt

=

+∞∑

t=0

ρtEπ0 [G̃(vt, π̂t)]

= Eπ0 [

+∞∑

t=0

ρtG̃(vt, π̂t)] .

2
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