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Méthodes non-dissipatives de type Galerkine discontinu

avec pas de temps local : application des schémas

symplectiques

Résumé : Les méthodes de type Galerkine discontinu sont maintenant largement utilisées
pour la résolution numérique de problèmes de propagation d’ondes. Capables de s’appuyer
sur des maillages non-structurés, éventuellement localement raffinés, elles peuvent traiter les
géométries les plus générales, tout en restant complètement explicites, facilement parallélis-
ables et adaptables pour obtenir un ordre élevé. Des versions non-dissipatives, conservant
une énergie discrète existent. Cependant, la limite de stabilité de ces méthodes explicites
est directment liée aux plus petits éléments du maillage et l’introduction d’un pas de temps
local permettrait de diminuer considérablement le temps de calcul. De tels algorithmes avec
pas de temps local existent en fait déjà dans la famille des schémas symplectiques et leur
application à des problèmes de propagation d’ondes avec méthodes de Galerkine Discontinu
est considérée ici.

Mots-clés : ondes, acoustique, équations de Maxwell, méthodes de type Galerkine dis-
continu, schémas symplectiques, conservation de l’énergie, précision du second-ordre
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1 Introduction

The accurate modeling of systems involving electromagnetic waves, in particular through the
resolution of the time-domain Maxwell equations on space grids, remains of strategic inter-
est for many emerging technologies (optical waveguides, furtivity, weapon technologies, etc).
Although the explicit, energy-conserving Finite Difference Time-Domain (FDTD) method
proposed by Yee [1] is still prominent, it lacks two important features to be easily applicable
in industrial contexts. First, the use of structured or block-structured grids is a huge con-
straint when a complex geometry is to be analyzed. Second, the accuracy or the efficiency
of FDTD methods are limited when fully curvilinear coordinates are used.

Many different types of methods have been proposed in order to handle complex geome-
tries and heterogeneous configurations by dealing with unstructured tetrahedral meshes.
One can mention Finite Element Time-Domain (FETD) methods, which have been accel-
erated using accurate mass lumping [2, 3], mimetic methods [4], or Finite Volume Time-
Domain (FVTD) methods [5, 6, 7], which all fail in being at the same time efficient, easily
extendible to high orders of accuracy, stable, and energy-conserving. The global conserva-
tion of the electromagnetic energy, which is one particular aspect of Yee’s original method,
has been seeked for in the development of other types of discretizations and is also achieved
for FETD methods or for FVTD methods based on totally centered numerical fluxes [7],
coupled with a centered implicit time-scheme or an explicit leap-frog time-scheme.

The Discontinuous Galerkin methods enjoy an impressive favor nowadays and are now
used in many and various applications [8], taking advantage of their ability to achieve a
high order of accuracy by simply choosing suitable basis functions (spectral elements [9],
Lagrange high-order polynomials on tetrahedra [10, 11, 12]) or to handle complicated geome-
tries and meshes (including locally-refined [13] and non-conformal grids [14]). The existing
software are mostly based on upwind fluxes and multi-step low-storage Runge-Kutta time-
schemes, which lead to robust and stable, but slightly dissipative Discontinuous Galerkin
Time-Domain (DGTD) methods. However, centered fluxes coupled with an explicit leap-
frog time-scheme lead to a convergent, stable, and energy-conserving DGTD method [15].
This property, which is important for long-term computations, cannot be exactly obtained
with DGTD methods based on upwind fluxes [6, 16, 9], although upwind fluxes lead to more
robust codes, particularly for frequency-domain computations [12].

At the same time, the most popular methods for computational electromagnetics, includ-
ing FDTD, FVTD or DGTD methods, cannot deal very easily with configurations involving
small devices or details in the geometry. The use of FDTD methods for these configurations
would require fine cartesian grids, quickly becoming unmanageable for small details in three-
dimensional problems. Numerical methods based on finite element meshes (FVTD, FETD,
DGTD) would be able to handle locally refined unstructured grids, but the time-integration
would remain a concern: implicit time-schemes are expensive, while explicit time-schemes
have a stability constraint on the time-step directly related to the smallest elements in the
mesh.

In this paper, we propose an original strategy to overcome these difficulties. The idea is
to introduce locally implicit time-integration or explicit local time-stepping. The latter has
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4 Serge Piperno

already been proposed for dissipative schemes but seems very difficult for non-dissipative
approaches. Indeed, the algorithm proposed is directly inspired from the theory of sym-
plectic integrators developed for the numerical time integration of dynamical Hamiltonian
systems. Such methods have been successfully used in the fields of astronomy and molec-
ular dynamics where numerical accuracy and energy conservation are very important over
large time integration periods [17]. Using traditional methods, very small time steps are
sometimes needed to maintain roughly constant energy throughout a long simulation. On
the contrary, the preservation of the symplectic structure is known to lead to improved con-
servation of energy in long-term simulations. As the Maxwell’s equations can be written as
an infinite-dimensional Hamiltonian system of PDEs, people are now considering the use of
symplectic schemes for the time discretization in time-domain simulations [18, 19, 20].

We consider in this paper the application of some particular symplectic schemes to the
finite-dimensional system obtained after space-discretization using a Discontinuous Galerkin
method based on totally centered fluxes, with a particular attention to configurations where
different scales in the grid are present. In Section 2, we recall the basic features of Dis-
continuous Galerkin space-discretizations of first-order Maxwell’s equations in the time do-
main, based on totally centered numerical fluxes. In Section 3, we recall some basic re-
sults concerning symplectic schemes for Hamiltonian systems, with a particular emphasis
on partially-implicit schemes and multi-scale time-schemes. In Section 4, we present two
symplectic approaches in the particular context of DGTD methods for Maxwell’s equations.
The second-order accurate algorithms are presented in full details, and elementary stability
properties are proved (energy conservation, boundedness of solutions). Numerical results in
two space dimensions are presented in Section 5 and conclusions and further research and
development directions are summarized in Section 6.

2 Discontinuous Galerkin method for Maxwell’s system

We consider the Maxwell’s equations in three space dimensions for heterogeneous anisotropic
linear media with no source. The electric permittivity tensor ¯̄ε(x) and the magnetic perme-
ability tensor ¯̄µ(x) are varying in space and both symmetric positive definite (with uniform
strictly positive lower and upper bounds). The electric field ~E and the magnetic field ~H
verify

¯̄ε∂t
~E = ~curl ~H, ¯̄µ∂t

~H = − ~curl ~E, (1)

where the symbol ∂t denotes a time derivative. These equations are set and solved on
a bounded polyhedral domain Ω of R3. For the sake of simplicity, a metallic boundary
condition is set everywhere on the domain boundary ∂Ω, i.e. ~n × ~E = ~0 (where ~n) is the
unitary outwards normal). We assume we dispose of a partition of a polyhedral domain
Ωh (approximating the regular or Lipschitz-continuous domain of interest Ω) into a finite
number of polyhedra (each one having a finite number of faces). For each polyhedral element
Ti, Vi denotes its volume, and ¯̄εi and ¯̄µi are respectively the local electric permittivity and
magnetic permeability tensors of the medium, which could be varying inside the element

INRIA
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Ti. We call face between two finite elements their intersection, whenever it is a polyhedral
surface. We denote by Fh the union of faces and by F int

h = Fh/∂Ωh the union of internal
faces (common to two finite elements). For each internal face aik = Ti

⋂

Tk, we denote by
Sik the measure of aik and by ~nik the unitary normal, oriented from Ti towards Tk. The
same definitions are extended to metallic boundary faces (in the intersection of the domain
boundary ∂Ωh with a finite element), the index k corresponding to a fictitious element
outside the domain. Finally, we denote by Vi the set of indices of the neighboring elements
of the Ti (having a face in common). We also define the perimeter Pi of Ti by Pi =

∑

k∈Vi
Sik.

We recall the following geometrical property for all elements:
∑

k∈Vi
Sik~nik = 0.

Following the Discontinuous Galerkin approach, the electric and magnetic fields inside
each finite element are seeked for as linear combinations (~Ei, ~Hi) of linearly independent
basis vector fields ~ϕij , 1 ≤ j ≤ di, where di denotes the local number of scalar degrees
of freedom inside Ti. We denote by Pi = Span(~ϕij , 1 ≤ j ≤ di). The approximate
fields (~Eh, ~Hh), defined by (∀i, ~Eh|Ti

= ~Ei, ~Hh|Ti
= ~Hi) are allowed to be completely

discontinuous across element boundaries. Because of this complete discontinuity, a global
variational formulation cannot be obtained. However, dot-multiplying (1) by any given
vector field ~ϕ ∈ Pi, integrating over each single element Ti and integrating by parts, yields















∫

Ti

~ϕ · ¯̄εi∂t
~E = −

∫

∂Ti

~ϕ · (~H× ~n) +

∫

Ti

~curl ~ϕ · ~H,
∫

Ti

~ϕ · ¯̄µi∂t
~H =

∫

∂Ti

~ϕ · (~E× ~n) −
∫

Ti

~curl ~ϕ · ~E.
(2)

In equations (2), we now replace the exact fields ~E and ~H by the approximate fields ~Eh

and ~Hh in order to evaluate volume integrals. For integrals over ∂Ti, some additional
approximations have to be done since the approximate fields are discontinuous through
element faces. We choose to use completely centered fluxes, i.e. ∀i, ∀k ∈ Vi, ~E|aik

'
(~Ei + ~Ek)/2, ~H|aik

' (~Hi + ~Hk)/2. The metallic boundary condition on a boundary face
aik (k in the element index of the fictitious neighboring element) is dealt with weakly, in the
sense that traces of fictitious fields ~Ek and ~Hk are used for the computation of numerical
fluxes for the boundary element Ti. In the present case, where all boundaries are metallic,
we simply take ~Ek|aik

= −~Ei|aik
and ~Hk |aik

= ~Hi|aik
. Replacing surface integrals using

centered fluxes in (2) and re-integrating by parts yields



















∫

Ti

~ϕ · ¯̄εi∂t
~E =

1

2

∫

Ti

( ~curl ~ϕ · ~H + ~curl ~H · ~ϕ) − 1

2

∑

k∈Vi

∫

aik

~ϕ · (~Hk × ~nik),

∫

Ti

~ϕ · ¯̄εi∂t
~H = −1

2

∫

Ti

( ~curl ~ϕ · ~E + ~curl ~E · ~ϕ) +
1

2

∑

k∈Vi

∫

aik

~ϕ · (~Ek × ~nik).
(3)

We can rewrite this formulation in terms of scalar unknowns. Inside each element, the fields
are recomposed according to ~Ei =

∑

1≤j≤di
Eij ~ϕij , ~Hi =

∑

1≤j≤di
Hij ~ϕij . Let us denote

by Ei and Hi respectively the columns (Eil)1≤l≤di
and (Hil)1≤l≤di

. The equations (3) can

RR n° 5643
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be rewritten as:














M ε
i ∂tEi = KiHi −

∑

k∈Vi

SikHk,

Mµ
i ∂tHi = −KiEi +

∑

k∈Vi

SikEk,
(4)

where the mass matrices M ε
i , Mµ

i , and the rigidity matrices Ki are symmetric matrices of
size di (the mass matrices being positive definite), given by

(M ε
i )jl =

∫

Ti

t~ϕij ¯̄εi~ϕil, 1 ≤ j, l ≤ di,

(Mµ
i )jl =

∫

Ti

t~ϕij ¯̄µi ~ϕil, 1 ≤ j, l ≤ di,

(Ki)jl =
1

2

∫

Ti

(

t~ϕij
~curl~ϕil + t~ϕil

~curl~ϕij

)

,

(5)

and for any interface aik, the di × dk rectangular matrix Sik is given by

1 ≤ j ≤ di, 1 ≤ l ≤ dk, (Sik)jl =
1

2

∫

aik

~ϕij · (~ϕkl × ~nik). (6)

Finally, if all electric (resp. magnetic) unknowns are regrouped inside column vectors E

(resp. H) of size d =
∑

i di, then the space discretized system (4) can be rewritten as

{

Mε∂tE = KH − AH − BH,
Mµ∂tH = −KE + AE − BE,

(7)

where we have the following definitions and properties:

• Mε, Mµ and K are d × d block diagonal matrices with diagonal blocks equal to M ε
i ,

Mµ
i , and Ki respectively. Therefore Mε and Mµ are symmetric positive definite, and

K is symmetric; one can recall that the matrices M ε
i and Mµ

i being block diagonal,
time integration with an explicit time-scheme leads to an almost completely explicit
algorithm;

• A also is a d × d block sparse matrix, whose non-zero blocks are equal to Sik when
k ∈ Vi is not fictitious (aik then is an internal face of the grid). Since ~nki = −~nik,
it can be checked from (6) that (Sik)jl = (Ski)lj , and then Ski = tSik; then A is
symmetric;

• B is a d × d block diagonal matrix, whose non-zero diagonal blocks are equal to Sik

when aik is an metallic boundary face of the grid. In that case, (Sik)jl = − (Sik)lj ,

and Sik = −tSik; then B is skew-symmetric (tB = −B).

One finally obtains that the Maxwell’s equations, discretized using discontinuous Galerkin
finite-elements with centered fluxes and arbitrary local accuracy and basis functions can be
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written, in function of the symmetric matrix S = K − A − B, in the general form:
{

Mε∂tE = SH,
Mµ∂tH = −t

SE,
(Mε, Mµ symmetric positive definite). (8)

The general form of the system of ordinary differential equations obtained preserves an
energy. Indeed, for any solution of (8), the quantity E ≡ 1

2

(

t
EMεE + t

HMµH
)

is exactly
conserved.

3 Symplectic schemes for Hamiltonian systems

Symplectic integrators include a variety of different time-discretization schemes designed
to preserve the global symplectic structure of the phase space for a Hamiltonian system.
These integrators are well established for finite-dimensional Hamiltonian systems (see [21]
for several references), but their extension to infinite-dimensional PDEs has not been very
extensive. The most part of applications of symplectic schemes have been devoted to N-
body mechanical systems. However, the number of applications of symplectic schemes in
the context of computational electromagnetics is currently growing [19, 20]. Indeed, the
Maxwell’s equations can be written as an infinite-dimensional Hamiltonian system of PDEs.
In order to fully exploit the properties of symplectic schemes, the most commonly used
technique to design ’symplectic’ numerical methods consists in

1. discretizing the Maxwell’s equations with the numerical method at hand,

2. considering the finite-dimensional system of ODEs obtained has an input for symplectic
methods (another approach uses a symplectic time-integrator of the continuous system
[21]).

However, in very few cases only, the discretization of Maxwell’s equations actually leads
to a Hamiltonian system of ODEs. This is the case for some discretizations like Finite
Differences [19] or Finite Elements [20], and time accuracies up to fourth order have been
obtained in both cases using symplectic schemes. This is also the case for Discontinuous
Galerkin discretizations based on totally centered fluxes, as was proved in the previous
section.

In N-body mechanical systems for instance, fixed stepsize numerical integration leads to
difficulties when particles are very close: the global solution is not far from a singularity (of
the Newtonian potential in N-body mechanical systems) and accuracy should be achieved
by reducing the time step. A solution to get rid of these small time-steps is provided by the
implicit midpoint rule, which can also be used with an adaptive time-steps if it is required.
However, in some nonlinear cases, it can be much more expensive than explicit methods, like
the leapfrog-Verlet method. In the computational electromagnetics community, the leapfrog
time-scheme is widely used and would take the following form for the time-integration of (8):
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Mε En+1 − En

∆t
= SHn+ 1

2 ,

Mµ Hn+ 3
2 − Hn+ 1

2

∆t
= −tSEn+1.

(9)

Remark. A well-known result concerning the leapfrog scheme is that the following
quadratic form En of numerical unknowns En and Hn+ 1

2 is exactly conserved:

En = t
EnMεEn +

t
Hn+ 1

2 MµHn- 1
2 .

The quadratic form En (it is actually a quadratic form of En and Hn+ 1
2 after having developed

Hn- 1
2 in function of En and Hn+ 1

2 !) is positive definite if ∆t is small enough (for example

∆t
∥

∥

∥

√
Mµ

−1
S
√

Mε
−1
∥

∥

∥
< 2).

The Verlet method used for N-body systems is exactly equivalent, but would be written
in a more obviously reversible way, as:































Mµ Hn+ 1
2 − Hn

∆t/2
= −t

SEn,

Mε En+1 − En

∆t
= SHn+ 1

2 ,

Mµ Hn+1 − Hn+ 1
2

∆t/2
= −t

SEn+1.

(10)

The leapfrog writing leads to an equivalent, cheaper two-step algorithm. The Verlet writing
allows for the computations of fields at the same time stations. Moreover, it seems the
reversible writing leads to many quite easy enhancements in the scheme. For example, an
adaptive Verlet method allows for a stable, energy-conserving, leapfrog-type integration with
a varying time-step [22]. Higher-order accurate extensions are available as generalizations of
the Verlet method [23] and some of these extensions have already been applied to Maxwell’s
equations [19, 20]. Fast, multi-scale, regularized integrators are available for Kepler motion
or atomic dynamics [24]. Last but not least, two very promising possibilities can be imagined
in the context of the present paper, where the local refinement of the unstructured grid could
motivate the use of local time-stepping for the resolution of the system of ODEs (8):

• while the energy-preserving coupling of the leapfrog method and on the implicit
midpoint-rule remains a non-obvious question, the coupling of the Verlet method with
the midpoint rule is quite easy, and will be presented in the next section; it would
allow, for example, the time-integration of Maxwell’s equations with a locally implicit
time-scheme;

• the totally explicit integration of symplectic systems with different time-steps (i.e.
local time-stepping) is already available [25]. It is globally second-order accurate and
symplectic, thus leading to the conservation of some approximate energy. This kind of
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algorithm (totally explicit, globally second-order accurate, energy preserving, stable)
has been seeked for for many years. A simplified version will be presented in the next
section too. A very elegant solution with Lagrange multipliers has been proposed [26]
and enhanced [27], which leads however to the solution of a fixed linear system at
each iteration. Another totally explicit solution was built, which seems to be only
consistent in average and then first-order accurate [28].

4 Symplectic schemes designed for locally refined meshes

In this section, we present two particular symplectic algorithms designed for the particular
case where a DGTD method is used for the time-domain solution of Maxwell’s equations on
unstructured meshes where some geometrical details or flaws in the mesh generator lead to
locally refined grids. In that case, the classical explicit leap-frog time discretization, which
is very efficient and simple, has stability constraints which reduces the possible time-step
to an upper bound directly proportional to the smallest edge of the mesh, which can be
unmanageable. Two solution algorithms are proposed herein. In the first one, the idea is
to use a midpoint rule in a limited number of elements where the stability constraint is too
severe. In the second one, the algorithm proposed is fully explicit and local time-stepping is
introduced. In both cases, the algorithms obtained are stable and non-dissipative, i.e. some
discrete electromagnetic energy is exactly conserved.

4.1 A locally-implicit symplectic scheme

We first consider a case where the set of elements has been partitioned into two classes:
one made of particularly small elements and the other one gathering all other elements.
We assume this partition has been done once and for all, before the beginning of the time-
domain simulation and is based for example on geometrical and physical criteria. At this
stage, there is no need of a particular assumption on the connectivity of the set of "small"
or "large" elements. The "small" elements will be handled using an implicit midpoint rule,
while all other elements will be time-advanced using a Verlet method.

Using notations inspired from domain decomposition algorithms, we denote with an "e"
(resp. "i") subscript unknowns and matrices related to the explicit (resp. implicit) sub-
domain. Unknowns are reordered such that explicit elements and unknowns are numbered
first, i.e.

E =

(

Ee

Ei

)

, H =

(

He

Hi

)

, (11)

and the block-diagonal matrices Mε, Mµ, K and B are decomposed as

Mε =

(

Mε
e Od

Od Mε
i

)

, Mµ =

(

Mµ
e Od

Od M
µ
i

)

, K =

(

Ke Od

Od Ki

)

, B =

(

Be Od

Od Bi

)

, (12)
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where Mε
e/i and M

µ
e/i are symmetric positive definite, Ke/i are symmetric, and Be are skew-

symmetric. The non-block diagonal matrix A, corresponding to interfaces fluxes is decom-
posed into

A =

(

Aee Aei

Aie Aii

)

, (13)

where Aee and Aii are symmetric and Aei = tAie. Finally, defining the two symmetric
matrices Se = Ke − Aee + Be and Si = Ki − Aii + Bi, the system of ordinary differential
equations (8) can be rewritten as

{

Mε
e∂tEe = SeHe − AeiHi,

Mµ
e ∂tHe = −t

SeEe + AeiEi,

{

Mε
i∂tEi = SiHi − AieHe,

M
µ
i ∂tHi = −t

SiEi + AieEe.

(14)

We propose the following implicit-explicit algorithm: starting from unknowns at time tn =
n∆t, we perform the three following sub-steps:

1. we time-advance of ∆t/2 the explicit domain with a pseudo-forward-Euler scheme;

2. we time-advance of ∆t the implicit domain with the implicit midpoint rule;

3. we time-advance of ∆t/2 the explicit domain again with the reversed pseudo-forward-
Euler scheme.

The whole algorithm reads:


















Mµ
e

H
n+ 1

2
e − Hn

e

∆t/2
= −t

SeE
n
e + AeiE

n
i ,

Mε
e

E
n+ 1

2
e − En

e

∆t/2
= SeH

n+ 1
2

e − AeiH
n
i ,











Mε
i

En+1
i − En

i

∆t
= Si

Hn
i + Hn+1

i

2
− AieH

n+ 1
2

e ,

M
µ
i

Hn+1
i − Hn

i

∆t
= −t

Si
En

i + En+1
i

2
+ AieE

n+ 1
2

e ,



















Mε
e

En+1
e − E

n+ 1
2

e

∆t/2
= SeH

n+ 1
2

e − AeiH
n+1
i .

Mµ
e

Hn+1
e − H

n+ 1
2

e

∆t/2
= −t

SeE
n+1
e + AeiE

n+1
i ,

(15)

Remark. This algorithm is obviously reversible. It can be sequentially read as made of five
operations, the central one corresponding to the implicit midpoint-rule for the "implicit"
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subdomain. One can verify that, if the two subdomains are disconnected (i.e. Aei = Od), this
algorithm reduces to the juxtaposition of the Verlet-method for the "explicit" subdomain
and the midpoint-rule for the "implicit" subdomain.

Stability. The stability of the algorithm (15) can be shown using an energy approach. We
have the following result:

Lemma 4.1 The following quadratic form En of numerical unknowns En
e , En

i , Hn
e , and Hn

i

is exactly conserved (i.e. En+1 = En) through a time step of Algorithm (15):

En = En
e + En

i + En
c with











En
e = t

En
e Mε

eEn
e +

t

H
n+ 1

2
e Mµ

e H
n- 1

2
e ,

En
i = t

En
i Mε

iE
n
i + t

Hn
i M

µ
i Hn

i ,

En
c = −∆t2

4
tHn

i
tAei (Mε

e)
−1

AeiH
n
i .

(16)

Proof. Simple calculations yield that the variation of the "explicit" energy En
e through the

time step is given by:

En+1
e = En

e + 2∆t

(

t

H
n+ 1

2
e Aei

En
i + En+1

i

2
−

t
En

e + En+1
e

2
Aei

Hn
i + Hn+1

i

2

)

.

Similarly, the variation of the "implicit" energy En
i through the time step is given by:

En+1
i = En

i + 2∆t

(

t
Hn

i + Hn+1
e

2
AieE

n+ 1
2

e −
t
En

i + En+1
i

2
AieH

n+ 1
2

e

)

.

Recalling that Aei = tAie, one gets

En+1
e + En+1

i = En
e + En

i − ∆t
t(

En
e − 2E

n+ 1
2

e + En+1
e

)

Aei
Hn

i + Hn+1
i

2
.

Subtracting the second equation of (15) to the fifth one, one gets

Mε
e

En+1
e − 2E

n+ 1
2

e + En
e

∆t/2
= Aei

(

Hn
i − Hn+1

i

)

.

Reporting this result in the equation above leads to

En+1
e + En+1

i = En
e + En

i +
∆t2

4

t(
Hn+1

i − Hn
i

)

t
Aei (Mε

e)
−1

Aei

(

Hn
i + Hn+1

i

)

.

The matrix tAei (Mε
e)

−1
Aei being symmetric, one finally gets

En+1
e + En+1

i = En
e + En

i +
∆t2

4

(

t
Hn+1

i
tAei (Mε

e)
−1

AeiH
n+1
i − t

Hn
i

tAei (Mε
e)

−1
AeiH

n
i

)

= En
e + En

i + En
c − En+1

c ,
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which concludes the proof.�

Remark. One can easily show that the explicit-implicit coupled algorithm (15) is stable for
∆t small enough (for ∆t small enough, the total energy En

e is a positive definite quadratic
form of unknowns). A more closer investigation is required to determine if a sufficient
condition on ∆t for having a stable coupled scheme is that the explicit Verlet scheme alone
is stable.

Remark. It is interesting to notice that En
e and En

c can be recombined into a more compact
expression:

En
e + En

c =
t(

En
e +

∆t

2
(Mε

e)
−1

AeiH
n
i

)

Mε
e

(

En
e − ∆t

2
(Mε

e)
−1

AeiH
n
i

)

+
t

H
n+ 1

2
e Mµ

e H
n- 1

2
e .

4.2 A multi-scale fully-explicit symplectic scheme

The fully explicit algorithm proposed in this section is directly inspired from the one in-
troduced by Hardy et al. [25]. In this paper, the authors propose a second-order accurate
symplectic integration scheme for N-body problems with multiple time stepping, i.e. the
atoms or bodies are time-advanced simultaneously with different time steps. In their papers,
the authors consider the general case where successive classes of bodies have corresponding
time steps being multiple of the next one, the choice of powers of 2 being probably the most
efficient in general. We present here a less general version, with time steps given as ∆t/2k

where ∆t is the global time step of the algorithm. To make things clear, we assume that:

1. the set of elements has been partitioned into N classes;

2. this partition has been done once and for all, before the beginning of the time-domain
simulation and is based for example on geometrical or physical criteria;

3. the global time step of the algorithm is ∆t; for 1 ≤ k ≤ N , elements of the class k will
be time-advanced using the Verlet method with the local time step ∆t/2N−k; thus the
larger elements should lie in class N and the smallest in class 1.

4.2.1 Recursive definition of the algorithm.

Let us denote by RN (τ) the algorithm for advancing in time N classes over the time interval
τ > 0. We define RN (τ) in a recursive way. We decide that the algorithm R1(τ) with only
one class is exactly the Verlet method (10) with ∆t = τ . For any N ≥ 1, if RN (τ) is well
defined, we define RN+1(τ) by:

1. start with all unknowns at time tn = n∆t;

2. advance all elements with class k ≤ N with RN (∆t/2); if required, use values at time
tn for unknowns in elements of class N + 1;

INRIA
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3. advance all elements with class k = N + 1 with the Verlet method (i.e. R1(∆t)); if
required, use values at time tn + ∆t/2 for unknowns in elements of class k ≤ N ;

4. advance all elements with class k ≤ N with RN (∆t/2); if required, use values at time
tn+1 for unknowns in elements of class N + 1;

5. all unknowns at time tn+1 = tn + ∆t have been computed.

Remark. The reader can check that this algorithm does not required any additional storage
and remains completely explicit. It is reversible, symplectic, second-order accurate and
conserves an energy [25]. We again refer to [25] where the authors have also proposed
accelerations for the computation of forces or fluxes in nonlinear N-body mechanical systems.

4.2.2 The algorithm R2(∆t).

Let us consider the case where N = 2 (we recall the case N = 1 is exactly the Verlet
method (10)). As in the previous section, the subscripts k ∈ {1, 2} denote the class of
the elements and replace the subscripts e and i. Elements are reordered and matrices are
substructured as in the explicit-implicit coupling case. The algorithm R2(∆t) is described
in Figure 1. It can be thoroughly developed as follows:

∆t

∆t
2

∆t
2

∆t
2

∆t
2

∆t
4

∆t
4

∆t
4

∆t
4

tn

tn+11 2 21

1

3

4

5

6

7

8

9

2

H E H E

Figure 1: Algorithm R2(∆t): the nine sub-steps are detailed from 1 to 9.
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Step 1. M
µ
1

H
n+ 1

4

1 − Hn
1

∆t/4
= −t

S1En
1 + A12En

2 ,

Step 2. Mε
1

E
n+ 1

2

1 − En
1

∆t/2
= S1H

n+ 1
4

1 − A12Hn
2 ,

Step 3. M
µ
1

H
n+ 1

2

1 − H
n+ 1

4

1

∆t/4
= −t

S1E
n+ 1

2

1 + A12En
2 ,

Step 4. M
µ
2

H
n+ 1

2

2 − Hn
2

∆t/2
= −t

S2En
2 + A21E

n+ 1
2

1 ,

Step 5. Mε
2

En+1
2 − En

2

∆t
= S2H

n+ 1
2

2 − A21H
n+ 1

2

1 ,

Step 6. M
µ
2

Hn+1
2 − H

n+ 1
2

2

∆t/2
= −t

S2En+1
2 + A21E

n+ 1
2

1 ,

Step 7. M
µ
1

H
n+ 3

4

1 − H
n+ 1

2

1

∆t/4
= −t

S1E
n+ 1

2

1 + A12En+1
2 ,

Step 8. Mε
1

En+1
1 − E

n+ 1
2

1

∆t/2
= S1H

n+ 3
4

1 − A12Hn+1
2 ,

Step 9. M
µ
1

Hn+1
1 − H

n+ 3
4

1

∆t/4
= −t

S1En+1
1 + A12En+1

2 .

(17)

Energy conservation and stability. The stability of the algorithm (17) can be shown
using the theory of symplectic schemes. Hence, it does not yield in general an explicit
expression of the energy which is conserved. Such an expression can be obtained using a not
so classical energy approach. However, the computations are tedious and the generalizations
to more complex versions RN (∆t) with N > 2 seems a difficult task. We begin with the
following lemma on a sub-scaled reversible scheme built on implicit midpoint rules:

Lemma 4.2 Consider the following midpoint-rule-based sub-scaled scheme:


























MXXn+ 1
2 = MXXn + ∆t

2

(

AX
Xn+Xn+ 1

2

2 + BY n

)

,

MY Y n+1 = MY Y n + ∆t
(

AY
Y n+Y n+1

2 − tBXn+ 1
2

)

,

MXXn+1 = MXXn+ 1
2 + ∆t

2

(

AX
Xn+ 1

2 +Xn+1

2 + BY n+1

)

,

where X and Y denote vectors in Rd (the sizes could be different) and MX , MY , AX , AY ,
and B are d × d square matrices with the additional assumptions that MX and MY are
symmetric positive definite matrices, and tAX = −AX , tAY = −AY . Then,

(i) the following symmetric quadratic form is exactly conserved:

En =
t(

Xn

Y n

)

(

MX − ∆t2

16
tAXM−1

X AX
∆t2

8 AXM−1
X B

∆t2

8
tBM−1

X
tAX MY − ∆t2

4
tBM−1

X B

)

(

Xn

Y n

)

.
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(ii) for ∆t small enough, this quadratic form is positive definite, therefore the scheme is
stable (solutions (Xn, Y n)n∈N are bounded).

(iii) a sufficient stability condition on ∆t is that

ρmax

(

tAXM−1
X AX −2AXM−1

X B
−2tBM−1

X
tAX 4tBM−1

X B

)

∆t2 < 16 min (ρmin(MX), ρmin(MY )) ,

where ρmin(M) (resp. ρmax(M)) denotes the smallest (resp. largest) eigenvalue of a
real symmetric matrix M .

Proof. Let us introduce the following simplifying notations: X̄ ≡ (Xn + Xn+1)/2, Ȳ ≡
(Y n + Y n+1)/2, δX ≡ Xn+1 − Xn, Ȳ ≡ (Y n + Y n+1)/2. Simple calculations based on the
equations describing the scheme yield:

MXδX = ∆tAXX̄ + ∆tBȲ − ∆t2

16
AXM−1

X AXδX − ∆t2

8
AXM−1

X BδY,

MY δY = ∆tAY Ȳ − ∆ttBX̄ +
∆t2

8
tBM−1

X AXδX +
∆t2

4
tBM−1

X BδY.

This can be rewritten into
(

MX − ∆t2

16
tAXM−1

X AX
∆t2

8 AXM−1
X B

∆t2

8
tBM−1

X
tAX MY − ∆t2

4
tBM−1

X B

)

(

δX
δY

)

= ∆t

(

AX B
−tB AY

)(

X̄
Ȳ

)

.

The matrix in the left hand side being symmetric and the one in the right and side being
skew-symmetric, the proof of (i) follows simply. For ∆t small, the energy matrix is close to
the block-diagonal matrix (MX , MY ) which is positive definite, then for ∆t small enough,
the proposed quadratic form is also positive definite. More precisely, the condition given in
(iii) is a sufficient condition for that. Then the energy provides a norm, and for this norm
the solutions (Xn, Y n)n∈N are bounded, which ends the proof.�

We now propose some manipulations of the nine different steps in algorithm R2 given
in (17). They are summed up in the next lemma.

Lemma 4.3 The three groups of three steps of algorithm R2 given in (17) can be rewritten
in the following form:

Steps 1.2.3. ⇐⇒ M
[ ∆t

2
]

1 F
n+ 1

2

1 = M
[∆t

2
]

1 Fn
1 +

∆t

2
P1

Fn
1 + F

n+ 1
2

1

2
+

∆t

2
Q1F

n
2 ,

Steps 4.5.6. ⇐⇒ M
[∆t]
2 Fn+1

2 = M
[∆t]
2 Fn

2 + ∆t P2
Fn

2 + Fn+1
2

2
+ ∆t Q2F

n+ 1
2

1 ,

Steps 7.8.9. ⇐⇒ M
[ ∆t

2
]

1 Fn+1
1 = M

[∆t

2
]

1 F
n+ 1

2

1 +
∆t

2
P1

F
n+ 1

2

1 + Fn+1
1

2
+

∆t

2
Q1Fn+1

2 ,
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where we have used the following notations: ∀ θ ∈ {1, 2}, ∀τ ,

Pθ =

(

0 Sθ

−tSθ 0

)

, Fn
θ =

(

En
θ

Hn
θ

)

, M
[τ ]
θ =

(

Mε
θ − τ2

4 Sθ (Mµ
θ )

−1 tSθ 0
0 M

µ
θ

)

,

Q1 =

(

0 −A12

A12 0

)

, Q2 =

(

0 −A21

A21 0

)

.

Proof. The proof is pure calculation. For the sake of simplicity, we give here the main
stages corresponding to Steps 4.5.6.. Starting from the expressions in (17) for Steps 4.5.6.,

the idea is to get rid of H
n+ 1

2

2 by adding and subtracting the two equations corresponding
to Step 4. and Step 6.. We have:

M
µ
2

(

Hn+1
2 − Hn

2

)

= −∆t tS2
En

2 + En+1
2

2
+ ∆t A21E

n+ 1
2

1 , (18)

H
n+ 1

2

2 =
Hn

2 + Hn+1
2

2
+

∆t

4
(Mµ

2 )
−1 (t

S2En+1
2 + En

2

)

,

and, using this result inside the equation corresponding to Step 5., we get

Mε
2

En+1
2 − En

2

∆t
= S2

Hn
2 + Hn+1

2

2
+

∆t

4
S2 (Mµ

2 )
−1 (t

S2En+1
2 + En

2

)

− A21H
n+ 1

2

1 . (19)

Finally, grouping (18) and (19) leads to the result of the lemma for Steps 4.5.6..�

Remark. We just proved that the algorithm R2 given in (17) can be seen as a particular oc-
currence of the the midpoint-rule-based sub-scaled scheme of Lemma 4.2, with the following
values:

{

Xn = Fn
1 ,

Y n = Fn
2 ,

{

AX = P1,
AY = P2,

{

MX = M
[∆t

2
]

1 ,

MY = M
[∆t]
2 ,

B = Q1,

and we have verified that MX , MY are symmetric positive definite matrices (for ∆t small
enough), AX and AY are skew-symmetric and Q2 = −t

Q1. This leads to the following energy
conservation and stability theorem:

Theorem 4.4 The algorithm R2 given in (17) conserves an energy and is stable (the solu-
tions computed for given initial values are bounded) if ∆t is small enough.

Proof. The proof is explained in the preceding remark. For ∆t small enough, more pre-

cisely, if M
[ ∆t

2
]

1 and M
[∆t]
2 are positive definite, and if the condition on ∆t given in Lemma 4.2

is satisfied for the above values for the matrices, then the algorithm conserves an energy
which is a positive definite quadratic norm of the unknowns. The set of conditions on ∆t
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writes


























Mε
1 −

∆t2

16
S1 (Mµ

1 )
−1 tS1 is positive definite

Mε
2 −

∆t2

4
S2 (Mµ

2 )
−1 t

S2 is positive definite

ρmax

(

tAXM−1
X AX −2AXM−1

X B
−2tBM−1

X
tAX 4tBM−1

X B

)

∆t2 < 16 min (ρmin(MX), ρmin(MY )) ,

which is verified for ∆t small enough.�

4.2.3 The algorithms R3(∆t) and R4(∆t).

We consider the case where N = 3 (resp. N = 4). Again, the subscripts k ∈ {1, 2, 3} (resp.
k ∈ {1, 2, 3, 4}) denote the class of the elements, elements are reordered and matrices are
substructured as previously. The algorithm R3(∆t) and R4(∆t) are described in Figure 2
and Figure 3 respectively.

∆t

∆t
2

∆t
2

∆t
2

∆t
2

∆t
4

∆t
4

∆t
4

∆t
4

∆t
4

∆t
4

∆t
4

∆t
4

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8

∆t/8
tn

tn+13H E H EH E1 1 22 3

1
2

3
5

4

6
7

8
9

10

11

12

13

15
16

17

18
19

20
21

14

Figure 2: Algorithm R3(∆t): the twenty-one sub-steps are detailed from 1 to 21.

5 Numerical results

The locally implicit algorithm of Section 4.1 has not been implemented yet. This section is
devoted to numerical results obtained with the local time-stepping algorithm of Section 4.2.

We consider here the homogeneous Maxwell equations in two space dimensions and in
the TE case. The unknown fields are Ex, Ey , and Hz and satisfy the following equations
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∆t

∆t
2

∆t
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∆t
2

∆t
2
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4
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25
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Figure 3: Algorithm R4(∆t): the forty-five sub-steps are detailed from 1 to 45.

and reflecting boundary condition:






∂tEx = ∂yHz ,
∂tEY = −∂xHz,
∂tHz = ∂yEx − ∂xEy,

with Exny − Eynx = 0 on Γ.

These equations are equivalent to the acoustics equations in homogeneous medium, where
the unknowns are the pressure perturbation p and the velocity perturbation (horizontal
u and vertical v components), p ↔ Hz,u ↔ Ey ,v ↔ −Ex, and the perfectly reflecting
condition of electromagnetic waves corresponds to a perfect slip boundary condition for
acoustics ~u · ~m = 0.

5.1 Test-case with a typical unstructured mesh

We have imagined a first toy problem where the propagation of waves in an homogeneous
medium is confined in a completely reflecting cavity. In order to have different scales in the
geometry, the cavity has be designed the following way:

• the cavity is an ellipse (2m × 1.6m);

• inside the cavity, a small geometrical detail is located on the right focus (the detail is
the word "waves"); the characteristic size for the whole detail is nearly 0.1m, with
small elements like the thickness of the letters smaller than 0.01m; the boundary of
the detail is also perfectly reflecting;

• the initial condition is a p/Hz pulse (for the acoustic equations) located at the other
focus, such that the solution should refocus exactly on the other focus and scatter on
the detail.
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We have generated an unstructured mesh using a commercial mesh generator (with no
indication on the sizes of elements, except for the domain boundaries which were meshed
according to the local geometrical characteristic length). The mesh obtained contains 3883
vertices and 7258 elements. Successive zooms of the mesh are shown on Figures 4 and 5.
One can see that the size of the elements in the mesh obtained is varying quite smoothly.
One can also notice that the mesh generator has produced triangular elements with bad
aspect ratio, which will lead locally to small admissible time steps.

We report here the computed results of two simulations up to time T = 8s with the P4-
DGTD method introduced in Section 2 (the fields are described with polynomials of degree
at most 4 inside elements). For both computations, some local admissible time step ∆ti is
computed inside each element Ti. It is directly proportional to the smallest height of the
element. Then,

• in a "reference" computation, we have used the algorithm R1(∆t) with ∆t ≡ mini(∆ti);

• in a "multi-scale" computation we have used the algorithm R7(∆t) where we have
taken ∆t ≡ maxi(∆ti)/1.999: the number of 7 classes was reached simply because, in
this particular mesh, 26 mini(∆ti) < maxi(∆ti) < 27 mini(∆ti). For each element, the
class ci of the element was set such that 2ci−7 < ∆ti/∆t < 2ci−6 (thus the element
with the largest ∆ti – i.e. 2∆t > ∆ti > ∆t – is of class ci = 7). The reader must
realize that the time step actually used in the smallest elements (with ci = 1) is ∆t/64.

Results for the p/Hz field obtained with both simulations are shown at integer times in
Figures 6 and 7. Zooms on the waves-detail (p/Hz field) obtained with both simulations
are shown in Figure 8. Contours of u/Ey and v/ − Ex components are shown near the
waves-detail on Figure 9. Singularities near corners are partially obtained. Finally, we
must compare the CPU times obtained for both computations. The CPU times (obtained
on a linux PC with 3.4Ghz Pentium IV processor) are given on Table 1. We have added a
third column with the CPU time which should have been obtained with a classical leap-frog
implementation (9) instead of (10), i.e. only two-thirds of the CPU time of algorithm R1.
For this particular case, the computational time is reduced by a factor 3.68. This reduction

Algorithm R7(3.54ms) R1(6.06µs) leap-frog (9, 6.06µs)
CPU time 2412 11820 7880

Gain (vs. leap-frog) 3.68 0.67 1

Table 1: Comparison of CPU times and gain between algorithms R7, R1, and a classical
leap-frog implementation (9).

is strongly related to the distribution of element sizes over the mesh. In the present case, the
automatically generated mesh has a smoothly varying element-size, and the gain obtained
is quite typical (it is reasonable to think that this gain is not far from a lower bound). The
aim of the second computation is to show cases where the gain might be much larger.
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Figure 4: Unstructured triangular mesh for the "waves" toy problem (zooms 1 and 2).
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Figure 5: Unstructured triangular mesh for the "waves" toy problem (zooms 3 and 4).
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T=1s

T=2s

T=3s

T=4s

Figure 6: waves-cavity: algorithm R7(3.54ms) (left) vs. algorithm R1(6.06µs) (right).
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T=5s

T=6s

T=7s

T=8s

Figure 7: waves-cavity: algorithm R7(3.54ms) (left) vs. algorithm R1(6.06µs) (right).
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T=4s

T=5s

T=6s

Figure 8: waves-cavity (zoom): algo. R7(3.54ms) (left) vs. algo. R1(6.06µs) (right).
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Figure 9: waves-cavity (zoom): u/Ey (left) and v/ − Ex (right) near the waves-detail,
obtained with algorithm R7(3.54ms).

5.2 Test-case with a strongly refined unstructured mesh

We consider a second test-case where the mesh has been designed to be strongly refined in a
limited area. We have considered the same elliptic domain as previously, but the reflecting
inclusion is now a square of size 0.2mm centered at the right focus of the ellipse (the mesh
is conforming and refined inside a square of size 0.01m also centered at the focus). The
mesh obtained contains 1017 vertices and 1958 elements. The mesh partitioning leads to
ten classes of elements, i.e. the smallest elements are time-advanced 512 times more often
than the largest elements. A zoom of the mesh near the square is shown on Figure 10.
Contours of the fields obtained with the algorithm R10(2.6ms) are shown on Figure 11.

Since the mesh is quite coarse, we have used in this section the P5-DGTD (the fields are
described with polynomials of degree at most 5 inside elements). The CPU times obtained
with the different time schemes considered are given on Table 2.

Algorithm R10(2.6ms) R1(6.16µs) leap-frog (9, 6.16µs)
CPU time 527 29040 19360

Gain (vs. leap-frog) 36.7 0.67 1

Table 2: Comparison of CPU times and gain between algorithms R10, R1, and a classical
leap-frog implementation (9).

For this particular case, the computational time is reduced by a factor near 37! This
reduction is due to the fact that 45% of elements are time-advanced only every global
time-step, 43% twice more often, and only 10% four times often or more. This gain is
not surprising, since the existence of small elements is not a concern for the multi-scale
algorithm while it leads to a proportionally smaller time step for the classical algorithm, i.e.
a conversely growing computational time.
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Figure 10: Unstructured triangular mesh for the square inclusion problem.

6 Conclusion

In this paper, we have presented two symplectic algorithms which are able to perform a
reversible, energy-conserving, second-order accurate, stable, and adaptive time-integration of
the Maxwell’s equations after discretization on unstructured meshes using the Discontinuous
Galerkin method. The main conclusion is that, if totally centered numerical fluxes are to
be used, in order to have no numerical dissipation at all, local time-stepping can overcome
the stability limit set by the leapfrog time-scheme.

This kind of algorithm can be particularly valuable if the mesh is distorted or locally
refined, i.e. the mesh is refined in a very limited area, fro example around a geometrical
detail. Two ways have been proposed in this paper. The first one relies on an simple
implicit/explicit coupled algorithm. It has not been implemented but is the most promising
for configurations where the unstructured mesh at hand has very small elements and is
difficult to restore. Another totally explicit algorithm, with no additional storage, has been
proposed, and leads to very efficient implementations, at least in two space dimensions.

Further works will deal with the implementation of the locally implicit scheme, and with
implementations in three space dimensions, the latter being quite straightforward because
the algorithms can be seen has time-step reorganizations only. The main difficult task will
certainly consist in obtaining an efficient parallel implementation of these local time-stepping
algorithm. In particular, mesh partitioning and message passing have to be optimized.
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Figure 11: Square inclusion: p/Hz (top), u/Ey (middle), and v/ − Ex (bottom) near the
inclusion, obtained with algorithm R10(2.6ms) at t = 4s.
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