
An Interacting Particle System Approach for

Molecular Dynamics

Mathias Rousset
Laboratoire de Statistique et Probabilités, Université Paul Sabatier
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Abstract

We present here some applications of an Interacting Particle Sys-
tem (IPS) methodology to the field of Molecular Dynamics. This IPS
method allows several simulations of a same out of equilibrium process
to keep closer to equilibrium at each time, thanks to a selection mech-
anism based on the relative virtual work induced on the system. It is
therefore an improvement of usual simulated annealing type processes
used to compute canonical distributions of the system and free energy
differences.
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Phase-space integrals are widely used in Statistical Physics to relate the
macroscopic properties of a system to the elementary phenomena at the mi-
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croscopic scale [13]. In constant temperature (NVT) molecular simulations,
these integrals often take the form

µ(A) = 〈A〉 =

∫

T ∗M

A(q, p) dµ(q, p). (1)

where M denotes the position space (also called the configuration space),
and T ∗M denotes its cotangent space. A generic element of the position
space M will be denoted by q = (q1, · · · , qN ) and a generic element of the
momentum space by p = (p1, · · · , pN ). We will consider here that M ∼ R

3N

or T
3N (a torus of dimension 3N , which arises when using periodic boundary

conditions), and that T ∗M ∼ R
3N × R

3N or T
3N × R

3N , though in general
more complicated situations should be considered, when performing Blue
Moon sampling [5, 6] for example.

The measure µ is the canonical probability measure

dµ(q, p) = Z−1 exp(−βH(q, p)) dq dp, (2)

where β = 1/kBT (T denotes the temperature and kB the Boltzmann con-
stant) and where H denotes the Hamiltonian of the molecular system:

H(q, p) =
1

2
pT M−1p + V (q). (3)

In the above expression, V is the potential experienced by the N particles,
and M = Diag(m1, · · · ,mN ) where mi is the mass of the i-th particle. The
constant Z in (2) is the normalization constant defined as

Z =

∫

T ∗M

exp(−βH(q, p)) dq dp.

Some quantities can not be expressed through relations such as (1). One
important example is the free energy of a system, defined as

F = −β−1 ln Z. (4)

We refer to [4] for a review of different sampling methods in molecular
dynamics for the computation of phase space integrals of type (1). How-
ever, it is often the case in practice that a straightforward sampling of µ
is difficult. Indeed, high dimensional systems exhibit many local minima
in which the system remains trapped, especially when the temperature is
low. In those cases, alternative approaches have to be used, such as those
building on the simulated annealing [18] paradigm. An interesting review
of such Monte Carlo methods can be found in [15]. The idea of simulated
annealing is to start a simulation at a high temperature, so that the system
can evolve freely without remaining stuck in a metastable state, and then to
decrease gradually the temperature. Of course, this method can be gener-
alized by interpolating between an initial simple sampling problem, and the
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target sampling problem. This allows to attain deeper local minima, but
is not efficient as such to sample the whole target measure. Improvements
have therefore been proposed to this end. For example, parallel tempering is
a well-known method in molecular dynamics (see [15] for references) which
consists in simulating several replicas of a same system at different tem-
peratures, and exchanging replicas simulated at neighboring temperatures,
according to some Metropolis-Hastings rule. Therefore, energetic barriers at
the lower temperature can be crossed thanks to the crossings done at higher
temperatures. The method requires however some tuning in the distribution
of the temperatures, which is usually achieved by running preliminary simu-
lations. Another method is simulated tempering [20], where the temperature
itself is treated as a dynamical variable. It is to some extent a ’sequential’
version of the previous method, particularly interesting when the systems to
simulate are large. However, this methods asks for an a priori function con-
trolling the distribution of the temperature, which is also estimated through
some preliminary runs [15]. A last method is multicanonical Monte Carlo [2]
which relies on the importance sampling paradigm. As all importance sam-
pling procedures however, a tuning of the importance function is crucial,
and unless a better idea, an iterative procedure of preliminary runs has also
to be done first in order to obtain a reasonable importance function.

We present here a complementary approach to the above simulated an-
nealing type strategies, which needs no tuning of parameters. It consists
in running M simulations of the system (called ’replicas’ or ’walkers’) in
parallel, resorting typically to a Markovian dynamic, and considering ex-
changes between the replicas, according to a certain probability depending
on the work done on each system. These heuristic explanations are precised
in section 2. The set of all replicas (or walkers) is called an ’Interacting
Particle System’ (IPS) [9], and the methodology is widely used in the fields
of Quantum Monte Carlo [1, 24] or Bayesian Statistics, where it is referred
to as Sequentiel Monte Carlo [10, 8].

The article is organized as follows. We first precise classical simulated
annealing type methods in section 1. We then describe the associated IPS
method in section 2, as well as its numerical implementation. Possible ap-
plications and some numerical results are then presented in section 3.
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1 Simulated annealing type methods

Consider a family of Hamiltonian functions Hλ : T ∗M → R indexed by a
parameter λ ∈ [0, 1]. The corresponding Hamiltonian dynamics are











dq

dt
=

∂Hλ

∂p
dp

dt
=−∂Hλ

∂q

(5)

Typically, we can consider Hλ(q, p) = (1 − λ)H0(q, p) + λH1(q, p). The
family (Hλ)λ∈[0,1] indexes a path between the original state described by a
Hamiltonian H0 and the final state charaterized by a Hamiltonian H1. A
canonical probability measure µλ can be associated to each Hamiltonian Hλ :

dµλ(q, p) =
1

Zλ
e−βHλ(q,p) dq dp, (6)

where the normalizing constant Zλ is

Zλ =

∫

M

e−βHλ(q,p) dq dp.

Our aim is the following. We wish to sample according to dµ1, which
may be a difficult task, whereas sampling according to dµ0 is assumed to
be easy. A natural idea is to use a sampling of the measure dµ0 to obtain a
sampling of dµ1. This philosophy is reminiscent of the simulated annealing
method [18]. For this method, the simulation is started in conditions such
that the dynamic is ergodic, with a sufficiently fast numerical convergence.
A sample of the initial measure dµ0 can then be computed. For each point
of the previous sample, the corresponding configuration of the system is
brought slowly to the end state along a path (λ(t))t∈[0,T ] for a (large) time
T > 0. Therefore, the final sample of configurations is distributed according
to dµ1.

Such a transition can refer to a change of temperature of the system
from β to β′, in which case

H0(q, p) = H(q, p), H1(q, p) =
β′

β
H(q, p).

It can also represent a modification of the potential, sometimes called ’al-
chemical transition’ in the physics and chemistry litterature. The folding
of a protein can be studied this way for example, by setting initially all
the long-range interactions to zero, whereas the final state corresponds to a
Hamiltonian were all interactions are set on. In this case,

Hλ(q, p) =
1

2
pT M−1p + Vλ(q).
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The usual way to achieve simulated annealing is to perform a time in-
homogeneous irreducible Markovian dynamic

t 7→ X
λ(t)
t , X

λ(0)
0 ∼ µ0, (7)

for t ∈ [0, T ], and a smooth schedule t 7→ λ(t) verifying λ(1) = 0 and
λ(T ) = 1, and such that dµλ is for all λ ∈ [0, 1] an invariant measure under
the time homogeneous dynamic s 7→ Xλ

s .
The variable x can represent the whole degrees of freedom (q, p) of the

system, or only the configuration part q. Depending on the context, the in-
variant measure µ will therefore be the canonical measure (2), or its marginal
with respect to the momenta, which reads

dµ̃λ(q) =
1

Z̃λ

e−βVλ(q) dq, (8)

with

Z̃λ =

∫

M

e−βVλ(q) dq.

When we do not wish to precise further the dynamics, we simply call dµλ(x)
the invariant measure, and x the configuration of the system. The actual
invariant measure should be clear from the context.

For all t ∈ [0, T ], the dynamic (7) will be usefully characterized by its
infinitesimal generator Lλ(t), defined on a domain of continuous bounded
test functions by:

Lλ(t)(f)(x) = lim
h→0

1

h

(

E(f(X
λ(t+h)
t+h )|Xλ(t)

t = x) − f(x)
)

The invariance of µλ(t) under the instantaneous dynamic can be expressed
through the balance condition:

∀f, µλ(t)(Lλ(t)(f)) = 0. (9)

The dynamics we have in mind are (for a f ixed λ ∈ [0, 1]):

• The hypo-elliptic Langevin dynamic on T ∗M










dqλ
t =

∂Hλ

∂p
(qλ

t , pλ
t ) dt

dpλ
t = −∂Hλ

∂q
(qλ

t , pλ
t ) dt − ξM−1pλ

t dt + σ dWt

(10)

where Wt denotes a standard 3N -dimensional Brownian motion. The
paradigm of Langevin dynamics is to introduce in the Newton equa-
tions of motion (5) some fictitious brownian forces modelling fluc-
tuations, balanced by viscous damping forces modelling dissipation.
The parameters σ, ξ > 0 represent the magnitude of the fluctuations
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and of the dissipation respectively, and are linked by the fluctuation-
dissipation relation:

σ = (2ξ/β)1/2. (11)

Therefore, there remains one adjustable parameter in the model. The
infinitesimal generator is given by:

Lλf =
∂Hλ

∂p
· ∇qf − ∂Hλ

∂q
· ∇pf − ξM−1p · ∇pf +

ξ

β
∆pf.

• The elliptic overdamped Langevin dynamic1 in the configuration space M:

dqλ
t = −∇Vλ(qλ

t ) dt + σ dWt, (12)

where the magnitude of the random forcing is given here by

σ =

√

2

β
.

The corresponding infinitesimal generator is given by:

Lλf =
1

β
∆qf −∇Vλ(q) · ∇qf.

Let us remark that the overdamped Langevin dynamic (12) is obtained
from the Langevin dynamic (10) by letting the mass matrix M go to
zero and by setting ξ = 1, which amounts here to rescaling the time.

It is well known that, for a f ixed λ ∈ [0, 1], these dynamics are ergodic under
mild assumptions on the potential V [4].

When the schedule is sufficiently slow, the dynamic is said quasi-static,

and the law of the process X
λ(t)
t is assumed to stay close to its local steady

state throughout the transformation. Unfortunately, this is out of reach
at low temperature where local minima of H define metastable states from
which the typical escape time is very long. Since a good transition path must
then be very slow and long, the associated computational cost becomes pro-
hibitive (more precisely, large deviation results [12] ensure that the typical
escape time from metastable states grows exponentially fast with β, and
quasi-static transformations should then be exponentially slow with β).

It is therefore interesting to consider approaches building on the sim-
ulated annealing formalism, but able to deal with much faster transition
schemes. The IPS method is such an approach.

1This dynamic is actually known as the ’Langevin dynamic’ in the probability and

statistics fields. We adopt here the physical names of these stochastic processes, which

are more natural when dealing with molecular dynamics.
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2 The Interacting Particle System method

Our strategy is inspired by the Sequential Monte Carlo philosophy [8, 11].
The idea is to rewrite the Boltzmann probability path t 7→ dµλ(t)(x) as
the evolution law of a non-linear jump-diffusion process, and to deduce an
associated interacting particle system approximation.

We present in section 2.1 the arguments motivating a selection function
based on the virtual work done on the system. The non-linear jump-diffusion
process is then described in section 2.2. The IPS approximation is dealt with
in section 2.3, as well as convergence results of the discretized measure to
the target measure. We end up with some considerations regarding the
numerical implementation of the IPS method in section 2.4.

2.1 A virtual work based selection

Let us differentiate the non-normalized Boltzmann path t 7→ Πλ(t)(dx) =

e−βHλ(t)(x) dx with respect to t:

∂tΠλ(t)(f) = −Πλ(t)

(

β
∂Hλ(t)

∂λ
λ′(t)f

)

.

Using the balance condition (9),

∂tΠλ(t)(f) = Πλ(t)

(

Lλ(t)(f) − β
∂Hλ(t)

∂λ
λ′(t)f

)

. (13)

This leads to the following Feynamn-Kac representation [17] of the canonical
distribution (which satisfies the same evolution equation):

Πλ(t)(f)

Πλ(0)(1)
= E

(

f(X
λ(t)
t )e−β

R t
0

∂Hλ(s)
∂λ

(X
λ(s)
s )λ′(s) ds

)

. (14)

This result is essentially the same as the one of [16] and can be expressed
through the same thermodynamical relations. Indeed, denoting by

Wt =

∫ t

0

∂Hλ(s)

∂λ
(Xλ(s)

s )λ′(s) ds (15)

the out of equilibrium virtual work induced on the system on the time sched-
ule [0, t], and taking f = 1, it follows

E(e−βWt) = e−β(F (λ(t))−F (0)). (16)

Jensen’s inequality then gives

E(Wt) ≥ F (λ(t)) − F (0). (17)
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This inequality is an equality if and only if the transformation is quasi-static
on [0, t]; in this case the random variable Wt is actually constant and equal
to ∆F . When the evolution is reversible, this means that equilibrium is
maintained at all times.

This highlights the possible use of the virtual work Wt as a quantification
of closeness to a quasi-static transformation. We will use this quantity to
perform a selection between replicas of the same system evolving according
to (7).

2.2 The non-linear jump-diffusion process.

The key idea is to differentiate the normalized Boltzmann (or Feynman-Kac)
path t 7→ µλ(t) and to rewrite it in a non-linear Markovian evolution form.
The differentiation of the normalized Boltzmann gives

∂tµλ(t)(f) = µλ(t)

(

Lλ(t)(f) + β

(

Fλ(t) −
∂Hλ(t)

∂λ

)

λ′(t)f

)

, (18)

where Fλ = µλ

(

∂Hλ
∂λ

)

. This equation can be rewritten as

∂tµλ(t)(f) = µλ(t)

(

Lλ(t)(f) + Jt(f)
)

, (19)

where the jump generator Jt is defined as

Jt(f)(x) =

∫

M

(f(y) − f(x))(α−
t (x) + α+

t (y))µλ(t)(dy),

with transition intensities

α−
t (x) = βλ′(t)

(

Fλ(t) −
∂Hλ(t)

∂λ

)−

(x),

α+
t (y) = βλ′(t)

(

Fλ(t) −
∂Hλ(t)

∂λ

)+

(y).

The equivalence of (18) and (19) can be checked by a straightforward inte-
gration.

The dynamic (19) gives rise to a jump-diffusion process t 7→ Yt which
evolves according to the following stochastic rules (some facts about pure
Markov jump processes are recalled in the Appendix):

Process 1. Generate Y0 from dµ0(x). Generate idependent clocks (τ b
n, τd

n)n≥1

from an exponential law of mean 1 (the upperscripts b and d refer to ’birth’
and ’death’ respectively), and initialize the jump times T b/d as T d

0 = 0, T b
0 =

0.
For 0 ≤ t ≤ T ,
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• Between each jump time, t 7→ Yt evolves according to the dynamic (7);

• At random times T d
n+1 defined by

∫ T d
n+1

T d
n

α−
s (Ys)ds = τd

n+1,

the process jumps to a configuration y, chosen according to the proba-
bility measure dµλ(T d

n+1)(y);

• At random times T b
n+1 defined by

∫ T b
n+1

T b
n

µλ(s)(α
+
s )ds = τ b

n+1,

the process jumps to a configuration y, chosen according to the proba-

bility measure
α+

T b
n+1

(y)

µλ(T b
n+1)(α

+
T b

n+1
)
dµλ(T b

n+1)(y).

Then, for all t ≥ 0, the law of Yt is by construction µλ(t).

2.3 The Interacting Particle System approximation

We now present a particle interpretation of the process (19) enabling a
numerical computation through the use of empirical distributions. Consider
M Markovian systems described by variables Xk

t (0 ≤ k ≤ M). Each system
is called a ’walker’ or ’particle’ in the probability and statistics fields. We
use here the name ’replica’, which is more apppropriate to the Molecular
Dynamics context.

The global evolution of the M replicas can be characterized by the fact
that every single replica is subjected to the dynamic (19) of generator Lλ(t)+
Jt in a mean-field interpretation. To this purpose, we approximate the
virtual force by

FM
λ(t) =

1

M

M
∑

k=1

∂Hλ(t)

∂λ
(Xk

t )

and the Boltzmann distribution by

dµM
λ(t)(x) =

1

M

M
∑

k=1

δXk
t
(dx),

which are their empirical versions.
The replicas evolve according to the following stochastic rules (see [24, 25]

for further details):
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Process 2. Consider an initial distribution (X1
0 , . . . ,XM

0 ) generated from

dµ0(x). Generate idependent times τk,b
1 , τk,d

1 from an exponential law of
mean 1 (the upperscripts b and d refer to ’birth’ and ’death’ respectively),

and initialize the jump times T b/d as T k,d
0 = 0, T k,b

0 = 0.
For 0 ≤ t ≤ T ,

• Between each jump time, evolve independently the replicas Xk
t accord-

ing to the dynamic (7);

• At random times T k,d
n+1 defined by

β

∫ T k,d
n+1

T k,d
n

(

FM
λ(s) −

∂Hλ(s)

∂λ
(Xk

s )

)−

λ′(s) ds = τk,d
n+1,

an index l ∈ {1, . . . ,M} is picked at random, and the configuration of
the k-th replica is replaced by the configuration of the l-th replica. A
time τk,d

n+2 is generated from an exponential law of mean 1;

• At random times T k,b
n+1 defined by

β

∫ T k,b
n+1

T k,b
n

(

FM
λ(s) −

∂Hλ(s)

∂λ
(Xk

s )

)+

λ′(s) ds = τk,b
n+1,

an index l ∈ {1, . . . ,M} is picked at random, and the configuration of
the l-th replica is replaced by the configuration of the k-th replica. A
time τk,b

n+2 is generated from an exponential law of mean 1.

The selection mechanism therefore favors replicas which are sampling
values of the virtual work Wt lower than the empirical average. The system
of replicas is ’self-organizing’ to keep closer to a quasi-static transformation.

Remark 1. Process (2) is different and much more symmetric in its pre-
sentation than Process (1). This is due to the fact that, for Process (1), we

take for the treatment of the ’birth’ part (the positive part of Fλ(s) −
∂Hλ(s)

∂λ ),
the point of view of the jumping replica which is attracted by another one;
whereas in Process (2), we take the point of view of the latter attracting
replica which induces a branching.

In [9, 24], several convergence results and statistical properties of the
replicas distribution are proven. They are summarized in the following

Proposition 2.1. Assume that (t, x) 7→ ∂Hλ(t)

∂λ (x) is a continuous bounded
function on [0, T ]×T ∗M (or [0, T ]×M in the case of overdamped Langevin
dynamics), and that the dynamic (7) is Fellerian and irreducible. Then
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• For any t ∈ [0, T ],

µM
λ(t)(f) exp

(

−β

∫ t

0
FM

λ(s)λ
′(s) ds

)

is an unbiased estimator of (14);

• For all test function f and any t ∈ [0, T ], µM
λ(t)(f) is an asymptotically

normal estimator of µλ(t)(f), with bias and variance of order M−1.

The proof follows from Lemma 3.20, Proposition 3.25 and Theorem 3.28
of [9] (see also [24, 25] for further details).

2.4 Numerical implementation

In the previous section, we discretized the measure by considering an em-
pirical approximation. For a numerical implementation to be tractable, it
remains to discretize time.

Notice already that the IPS method induces no extra computation of the
forces, and is therefore unexpensive to implement. However, although the
IPS can be parallelized, the processors have to exchange informations at the
end of each time step, which can slow down the simulation.

2.4.1 Discretization of the dynamics

There are several ways to discretize the dynamics (10) or (12). The most
common schemes used in molecular dynamics are the Euler-Maruyama dis-
cretization for (12), and the BBK scheme [3] for (10). We refer to [4] for
alternative approaches in the field of molecular dynamics. In the sequel, we
will denote by xi,k a numerical approximation of a realization of Xk

i∆t.

Euler discretization of the overdamped Langevin dynamics. The
Euler-Maruyama numerical scheme associated to (12) reads, when taking
integration time steps ∆t,

qn+1 = qn − ∆t∇Vλ(qn) +

√

2∆t

β
Rn, (20)

where (Rn)n∈N is a sequence of independent and identically distributed
(i.i.d.) 3N -dimensional standard Gaussian random vectors. The numeri-
cal convergence of this scheme can be ensured in some circonstances [4].
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Discretization of the Langevin dynamics. When considering an in-
tegration time step ∆t, the BBK discretization of (10) reads component-
wise (recall that the underscripts j refer here to the components of a given
xk ≡ x = (q, p)),







































p
n+1/2
j = pn

j +
∆t

2

(

−∇qjV (qn) − ξ
pn

j

mj
+

σj√
∆t

Rn
j

)

qn+1
j = qn

j + ∆t
p

n+1/2
j

mj

pn+1
j =

1

1 + ξ∆t
2mj

(

p
n+1/2
j − ∆t

2
∇qjV (qn+1) + σj

√
∆t

2
Rn+1

j

)

(21)

where the random forcing terms Rn
j (j ∈ {1, . . . ,N} is the label of the

particles, n is the iteration index) are standard i.i.d. Gaussian random
variables. The fluctuation/dissipation relation (11) must be corrected so
that the kinetic temperature is correct in the simulations [4]. To this end,
we set

σ2
j =

2ξ

β

(

1 +
ξ∆t

2mj

)

. (22)

Notice that the relation (11) is recovered in the limit ∆t → 0.

2.4.2 Numerical algorithm

We consider for example the following discretization of the force exerted on
the k-th replica on the time interval [i∆t, (i + 1)∆t]:

∂Hk,∆t
λi+1/2

∂λ
=

1

2

(

∂Hλ(i∆t)

∂λ
(xi,k) +

∂Hλ((i+1)∆t)

∂λ
(xi+1,k)

)

.

The mean force is then approximated by

FM,∆t
λi+1/2

=
1

M

M
∑

k=1

∂Hk,∆t
λi+1/2

∂λ
.

The following algorithm shows how the process (2.1) can be implemented in
practice.

Algorithm 1. Consider an initial distribution (x1
0, . . . , x

M
0 ) generated from

dµ0(x). Generate idependent times τk,b, τk,d from an exponential law of
mean 1. Consider two additional variables Σk,b,Σk,d per replica, initialized
at 0.

For 0 ≤ i ≤ T
∆t ,

• Evolve independently the replicas xi,k according to the schemes (20)
or (21), using λ = λ((i + 1/2)∆t), and obtain xi+1,k;
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• Update the variables Σk,b and Σk,d as

Σk,b = Σk,b + β



FM,∆t
λi+1/2

−
∂Hk,∆t

λi+1/2

∂λ





−

λ′((i + 1/2)∆t)∆t,

and

Σk,d = Σk,d + β



FM,∆t
λi+1/2

−
∂Hk,∆t

λi+1/2

∂λ





+

λ′((i + 1/2)∆t)∆t.

• If Σk,d ≥ τk,d
n , select an index l ∈ {1, . . . ,M} at random, and replace

the configuration of the k-th replica by the configuration of the l-th
replica. Generate a new time τk,d from an exponential law of mean 1,
and set Σk,d = 0;

• If Σk,b ≥ τk,d
n , select an index l ∈ {1, . . . ,M} at random, and replace

the configuration of the l-th replica by the configuration of the k-th
replica. Generate a new time τk,b from an exponential law of mean 1,
and set Σk,b = 0;

• Set i = i + 1.

3 Applications of the Interacting Particle System

method

We present in this section two application of the IPS method in the field
of molecular dynamics. The first one is the most obvious. Since the IPS
method improves usual simulated annealing through an additional selec-
tion process, even quite short transitions between two states are enough
to obtain a good approximation of the final density. This is illustrated in
section 3.1, where we present numerical results for the cooling process of a
pentane molecule. However, as already explained in the introduction, some
quantities can not be computed with the only knowledge of the canonical
probability measure. Such an example is the free energy of a system. An
interesting approach to compute free-energy differences is the Jarzynski non
equilibrium estimation [16], which relies on the formula (16). However, it
may happen that this procedure is not efficient as such, especially when the
target distribution is really far away from the initial distribution, with many
local minima appearing during the transition. IPS can be useful in those
situations. A toy simulation supports this idea in section 3.2.
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3.1 Computation of canonical distributions

We use the so-called united-atom model [23] to simulate linear alkanes. The
conformation of the molecule is completely characterized by the positions
of the Carbon atoms in this model. The presence of the Hydrogen atom is
implicitely taken into account in the definition of the interaction potential
the Carbon atoms are subjected to. The Carbon atoms of the linear alkane
molecule are indexed from 1 to N . For pentane, N = 5. In this case, there
are two dihedral angles (φ1, φ2), which determine the conformations of the
molecule.

In the model presented here, the interatomic potential involves two-,
three-, and four-body interactions: two Carbon atoms connected by a co-
valent bond interact via a harmonic potential; two Carbon atoms that are
separated by three more covalent bonds or more interact via a Lennard-
Jones potential; the three-body interaction is taken into account through a
harmonic potential for the bending angle; finally, the four-body interaction
is related to a potential for the dihedral angles. We refer to [4] for further
precisions on simulation parameters. The normalization is such that β = 1
corresponds to a temperature of 300 K.

We consider here a cooling process from β = 1 to β = 2, in the case
when the Lennard-Jones interactions involve only extremal atoms in the
chain, so that ǫCH3-CH3 = 0.29 and ǫCH3-CH2 = 0 in the reduced units of [4].
Figure 1 presents some reference empirical distributions for the dihedral
angles generated with an importance sampling technique.

Figure 1: Empirical probability distribution of the dihedral angles (φ1, φ2)
of the pentane molecule, for ǫCH3-CH3 = 0.29 and ǫCH3-CH2 = 0, generated
with Importance sampling, for β = 1 (Left) and β = 2 (Right), with sample
size M = 109.

The simulations are done as follows. We first generate an initial distri-
bution of configurations from the canonical measure at inverse temperature
β = 1. This can be done by several techniques, as explained in [4]. Since
the aim here is to compare the out of equilibrium cooling processes, we
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choose a classical rejection method so that no initial bias is introduced.
Let us however emphasize that, contrarily to the case β = 2, almost all
reasonable sampling schemes are convenient. We then first perform a bare
simulated annealing from β = 1 to β = 2, using the Langevin dynamics (10)
with ξ/m = 1. We then compare the resulting empirical distribution for
the dihedral angles with the one arising from an IPS simulation. Figure 2
presents the results for M = 10, 000, ∆t = 0.01 and T = 1, with a linear
scheme λ(t) = t/T .

Figure 2: Empirical probability distribution of the dihedral angles (φ1, φ2)
at β = 2 of the pentane molecule generated from a sample at β = 1, using
simulated annealing (Left), and IPS (Right), with sample size M = 10, 000.
The reference distribution is drawn in Figure 1 (Right).

As can be seen in Figure 2, the distribution generated with IPS is much
closer to the reference distribution than the distribution generated with
simulated annealing. This simple application shows the interest of IPS for
computing distributions at low temperature starting from distributions at
a higher temperature, even if the driving scheme is quite fast. This is in-
deed almost always the case in practice when there are several important
metastable states.

3.2 Computation of free energy

Estimation of free energy differences. The free energy of a system
cannot be computed with a single sample of µλ. Only free energy differences
can be computed easily. Since the free energy of certain states is known (This
is the case for perfect gases, or for solids at low temperature [22]), the free
energy of any state can in principle be obtained by an integration between a
state whose free energy is known, and the state of interest. Usual methods
to this end are Umbrella sampling [27, 26], Thermodynamic integration [19],
or Jarzynski’s non equilibrium dynamics [16].

In the work of Jarzynski [16], M independent realizations (X1
t , ...,XM

t )
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of a bare out of equilibrium dynamic (7) are used to compute free energy
differences through (16), with the estimator

∆F̂J = − 1

β
ln

(

1

M

M
∑

k=1

e−βW k
1

)

.

Since this point is unclear in [16], we want to lay the emphasis on the possible
use of an alternative yet similar estimator relying on a thermodynamical
integration:

∆F̂ ′
J =

∫ T

0
FMind

λ(t) λ′(t) dt,

where

FMind

λ(t) = µMind

λ(t)

(

∂Hλ(t)

∂λ

)

with µMind

λ(t) (dx) =

∑M
k=1 δXk

t
(dx) e−βW i

t

∑M
k=1 e−βW i

t

.

However, both estimators ∆F̂J and ∆F̂ ′
J suffer from the fact that only a

few values of W i
t are really important. Indeed, because of the exponential

weighting, only the lower tail of the work distribution is taken into account.
The quality of the estimation then relies on those rare values, which may be
a problem in practice (see e.g. [21]).

In the case of interacting replicas, we use similarly

∆F̂IPS =

∫ T

0
FM

λ(t)λ
′(t) dt,

which shares by Proposition 2.1 the same statistical properties as ∆F̂J :

The estimator e−β∆F̂IPS is an unbiased estimator of e−β∆F , and ∆F̂IPS is
asymptotically normal with bias and variance of order M−1. Let us however
emphasize that the sample is not degenerate for IPS since all points have
the same weights.

Toy example. Consider the following family of Hamiltonians (Hλ)λ∈[0,1]:

Hλ(x) =
x2

2
+ λQ1(x) +

λ2

2
Q2(x) +

λ3

6
Q3(x) +

λ4

24
Q4(x) (23)

with

Q1(x) =
−1

8x2 + 1
, Q2(x) =

−4

8(x − 1)2 + 1
,

Q3(x) =
−18

32(x − 3/2)2 + 1
, Q4(x) =

−84

64(x − 7/4)2 + 1
.

Figure 3 presents some of those Hamiltonians. This toy one-dimensional
model is reminiscent of the typical difficulties encountered when µ0 is very
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Figure 3: Plot of some Hamiltonian functions, as defined by (23).

different from µ1. Notice indeed that several transitional metastable states
(denoted A and B in Figure 3) occur in the canonical distribution when
going from λ = 0 to λ = 1. The probability of presence in the basins of
attraction of the main stable states of H1 (C and D in Figure 3) is only
effective when λ is close to 1.

Simulations were performed at β = 13 with the overdamped Langevin
dynamic (12), and the above Hamiltonian family (23). The number of repli-
cas was M = 1000, the time step ∆t = 0.003, and λ is considered to be
linear: λ(t) = t/T . Figure 4 presents the distribution of replicas during
a slow out of equilibrium plain dynamic: T = 30. Figure 5 presents the
distribution of replicas during a faster dynamic with interaction: T = 15.

When performing a plain out of equilibrium dynamic (even ’slow’) from
λ = 0 to λ = 1, almost all replicas are trapped by the energy barrier
of these transitional metastable states (see Figure 4). In the end, a very
small (almost null) proportion of replicas have performed interesting paths
associated with low values of virtual work W . When using (14) to compute
thermodynamical quantities, these replicas bear almost all the weight of the
degenerate sample, in view of the exponential weighting. The quality of the
result therefore depends crucially on these rare values.
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Figure 4: Empirical densities obtained using independant replicas.

Method Bias Variance

Plain +0.25 0.19

Interacting +0.15 0.10

Table 1: Error in free energy estimation.

On the contrary, in the interacting version, the replicas can perform
jumps in the configuration space thanks to the selection mechanism, and go
from one metastable basin to another. In our example, as new transition
states appear, only few clever replicas are necessary to attract the others in
good areas (see Figure 5). In the end, all replicas have the same weight, and
the sample is not degenerate.

We have also made a numerical estimation of error in free energy estima-
tion, with 40 realizations of the above simulation. The results are presented
in Table 1, and show an important reduction of standard deviation and bias
up to a factor 2 when using the IPS method.
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Appendix : Pure jump processes

Consider a Markov process Xt of infinitesimal generator

J(f)(x) =

∫

(f(y) − f(x))α(x)dµ(y),

where α is a bounded positive function and µ a probability measure. Denote
by (Tn)n≥1 the jump times (with T0 = 0), and (τn)n≥1 independant clocks
of exponential law of mean 1. Then the system evolves according to the
following stochastic rules:

• the jump times are defined by

α(XTn)(Tn+1 − Tn) = τn;

• at jump times, the process jumps to a configuration chosen according
to the probability measure dµ(y).
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