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Abstract

I propose a proof of a central limit theorem for stochastic algorithms with projections. A

detailed proof is given in the case of projection on a convex set. I also explain how this proof

can be adapted to Chen’s algorithm, in which the projection is done on an increasing sequence

of compact sets.
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1 Introduction

A lot of work has already been done around the rate of convergence of stochastic algorithms.
Typically one normalises the iterates after centring them about the limit. Convergence in distribu-
tion to a random normal variable can then be proved for unconstrained algorithms (see [Duflo, 1997]
for instance). Stronger results can be found in [Benveniste et al., 1987] and [Bouton, 1985] where
functional versions of the classical central limit theorem are proposed. Their approach is based
on proving some tightness criteria in Skorokhod space. The classical central limit theorem has
also been adapted to constrained algorithms in [Kushner and Yin, 2003] using ordinary differential
equation techniques. The case of constrained algorithms is somehow related to the problem of
multiple targets. The convergence rate of algorithms with multiple targets has been studied by
Pelletier in [Pelletier, 1998].

I present an alternative proof of the central limit theorem for constrained algorithms using
tightness criteria, recursive relations and martingale techniques. This paper aims at proving a
central limit theorem for Chen’s algorithm (see [Chen and Zhu, 1986] for a convergence of the
algorithm), which consists in a projection of the standard algorithm on an increasing sequence of
compact sets. This new algorithm requires weaker hypotheses than the standard Robbins Monro
algorithm to convergence and numerically behaves more smoothly. This kind of projected algorithm
still satisfies a central limit theorem. In this last case, the same arguments hold and the proof done
for the constrained algorithms can be adapted to Chen’s algorithm. The required modifications
are presented in the last part of this work.

These results are definitely extremely valuable to measure the quality of the convergence of
the algorithm. Finally, not only do these results give a convergence speed but they also help
determining the optimal step in the Robbins Monro procedure.

∗E-mail:lelong@cermics.enpc.fr
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2 Robbins Monro algorithms with projection on a constraint

set

2.1 Presentation

Let us consider a general problem consisting in finding the root of a continuous function
u : θ ∈ R

d 7−→ u(θ) ∈ R
d defined as an expectation on an underlying probability space (Ω,A, P).

u(θ) = E(U(θ, Z)), (1)

where Z is a random variable in R
m.

Let us suppose that we want to solve this problem under some constraints on θ, which means
that θ is bound to remain in a closed convex subset H of R

d.
We define for θ0 ∈ H the sequence (θn)n

θn+1 = Π (θn − γn+1U(θn, Zn+1)) , (2)

where Π stands for the Euclidean projection on H . (Zn)n≥0 is an independent and identically
distributed sequence of random variables following the law of Z and (γn)n≥0 a decreasing sequence
of positive real numbers.
We also introduce Fn = σ(θk , Zk; k ≤ n) the σ-field generated by the random vectors θk and Zk

for k ≤ n, which is in fact the σ-field generated by the random vectors Zk for k ≤ n since θ0 is
deterministic and U measurable. We can write u(θn) = E[U(θn, Zn+1)|Fn].

The following theorem gives a convergence result on the sequence (θn)n.

Theorem 1. We assume that

(H1.1) ∃ θ? ∈ H, u(θ?) = 0,
∀θ ∈ H, θ 6= θ?, 〈θ − θ?, u(θ)〉 > 0.

(H1.2) ∃K > 0, ∀n ≥ 0 E[‖U(θn, Zn+1)‖2 |Fn] ≤ K(1 + ‖θn − θ∗‖2
).

(H1.3)

∞
∑

n=0

γn = ∞,

∞
∑

n=0

γ2
n < ∞.

Then, the sequence (θn)n≥0 converges almost surely to θ∗, moreover if θ∗ ∈ H̊ there is a finite
number of projections.

Proof. The proof of the convergence is based on the use of Robbins and Siegmund’s lemma (see
[Robbins and Siegmund, 1971]).

‖θn+1 − θ∗‖2 ≤ ‖θn − θ∗ − γn+1U(θn, Zn+1)‖2
,

since Π is non expansive,

≤ ‖θn − θ∗‖2
+γ2

n+1 ‖U(θn, Zn+1)‖2 −2γn+1〈θn − θ∗, U(θn, Zn+1)〉,

Let us take the conditional expectation with respect to Fn in the previous inequality.

E

(

‖θn+1 − θ∗‖2 |Fn

)

≤ ‖θn − θ∗‖2
+γ2

n+1E

(

‖U(θn, Zn+1)‖2 |Fn

)

− 2γn+1〈θn − θ∗, u(θn)〉,

≤ ‖θn − θ∗‖2
(1 + Kγ2

n+1) + Kγ2
n+1 − 2γn+1〈θn − θ∗, u(θn)〉,

using (H1.2).

Thanks to hypothesis (H1.1) the above scalar product is positive and the series
∑

n γ2
n converges.

We can then apply Robbins-Siegmund’s lemma which claims that ‖θn+1 − θ∗‖2
and

∑

n γn+1〈θn −
θ∗, u(θn)〉 converge almost surely.

Suppose that ‖θn+1 − θ∗‖ does not converge to zero, then there exist two constants m and
M , 0 < m < M < ∞, such that for n large enough, m ≤ ‖θn+1 − θ∗‖ ≤ M. On the set {θ; m ≤
‖θ − θ∗‖ ≤ M}, the continuous function θ 7−→ 〈θ − θ∗, u(θ)〉 is bounded below by c, c > 0.
Consequently, the convergence of

∑

n γn+1〈θn−θ∗, u(θn)〉 would be equivalent to the one of
∑

n γn
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which is in contradiction with hypothesis (H1.3). Hence θn
a.s.−→ θ∗. This ends the proof of the

convergence statement in the theorem.
Let us assume that θ∗ ∈ H̊ , then there exists ε > 0 such that the closed ball B(θ∗, ε) ⊂ H .

Since θn
a.s.−→ θ∗,

∃ n0 such that ∀n ≥ n0, ‖θn − θ∗‖ ≤ ε

2
. (3)

If there were a non-finite number of projections, it would mean that for all n, there would exist
N > n such that θN would lie on the border of H and hence ‖θN − θ∗‖ would be equal to ε
which is in contradiction with assertion (3). Therefore, there is an almost surely finite number of
projections.

2.2 A central limit theorem for a constrained Robbins Monro algorithm

The behaviour of Robbins Monro algorithms is hung up to the choice of the step sequence
(γn)n≥0. The limit given by the central limit theorem is also affected by this choice. From now
on, we will only consider sequences of the form γn = γ

(n+1)α , where 1
2 < α ≤ 1. The value α = 1

gives a different limit and has to be treated separately.
In this section, we will assume hypotheses (H1.1), (H1.2) and (H1.3). So, the sequence (θn)n≥0,

defined by (2), converges a.s. to θ∗ thanks to theorem 1.
First, let us introduce a few notations used in the theorem and its proof. Equation (2) can be

rewritten
θn+1 = θn − γn+1u(θn) − γn+1δMn+1 + γn+1pn+1, (4)

where

δMn+1 = U(θn, Zn+1) − u(θn), (5)

γn+1pn+1 = Π(θn − γn+1U(θn, Zn+1)) − (θn − γn+1U(θn, Zn+1)). (6)

Remark 1. One should notice that ‖pn+1‖ ≤ ‖U(θn, Zn+1)‖ and that almost surely for n large
enough pn = 0 since there is a finite number of projections (see theorem 1) .

We define the sequence of the normalised iterates for all n ≥ 0,

∆n =
θn − θ∗√

γn
,

I will treat the case α = 1 and the case 1
2 < α < 1 separately, since they give two different

limits and do not require exactly the same hypotheses.

2.2.1 the case α = 1

I will give a detailed proof in this case as the case 1
2 < α < 1 can be handled much with the

same arguments.

Theorem 2. Under hypotheses (H1.1), (H1.2), (H1.3) and the following ones:

(H2.1) u is C1 in the neighbourhood of θ∗. Moreover there exists a symmetric positive definite
matrix A such that

u(θ) = A(θ − θ∗) + o(θ − θ∗).
(H2.2) θ∗ belongs to the interior of H.
(H2.3) γA − I

2 is definite positive.

(H2.4) There exists q > 0 and ρ > 0 such that supn E

(

‖δMn‖2+ρ
1‖θn−θ∗‖<q

)

< ∞.

(H2.5) There exists q > 0 and a symmetric definite positive matrix Σ such that the family

E
(

U(θi, Zi+1)U(θi, Zi+1)
′1‖θi−θ∗‖<q |Fi

)

P−→ Σ.
Then, the sequence (∆n)n≥0 converges in distribution to a random normal variable with mean 0
and covariance

V = γ

∫ ∞

0

exp

((

I

2
− γA

)

t

)

Σ exp

((

I

2
− γA

)

t

)

dt.
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Remark 2. Most of the time the Σ matrix introduced in (H2.5) will be E (U(θ∗, Z)U(θ∗, Z)′).

To simplify the notations, let us define the function tn : R −→ N

n+tn(u)
∑

i=n

γi ≤ u <

n+tn(u)+1
∑

i=n

γi, ∀u ∈ R. (7)

We now define the processes (∆n(·)) as the piecewise constant interpolations of (∆p)p≥n on intervals
of length (γp)p≥n:

∆n(t) = ∆n+tn(t) (8)

and Wn(.) by

Wn(t) =

n+tn(t)
∑

i=n

√
γiδMi ∀t > 0 and Wn(0) = 0. (9)

To prove theorem 2, we will first establish a recursive relation on the sequence (∆n)n. This
relation will lead to the tightness of the sequence on the one hand and to an integral relation on the
process (∆n(·)) on the other hand. Each term in the integral relation will be handled separately
and proved to converge to zero in probability except one which will give the limit.

First, we establish a recursive expression of ∆n+1.

∆n+1 =
θn+1 − θ∗√

γn+1
,

=
1√

γn+1
(θn − θ∗ − γn+1u(θn) − γn+1δMn+1 + γn+1pn+1) ,

=

√

γn

γn+1
∆n −√

γn+1(u(θn) + δMn+1 − pn+1). (10)

Using hypothesis (H2.1) we can introduce a function y such that u(θ) = A(θ−θ∗)+y(θ−θ∗)(θ−θ∗)
satisfying lim‖x‖→0 ‖y(x)‖ = 0. Then, the previous equation becomes

∆n+1 =

(
√

γn

γn+1
I −√

γn+1γnA −√
γn+1γn y(θn − θ∗)

)

∆n −√
γn+1δMn+1 +

√
γn+1pn+1. (11)

The following Taylor expansions hold

√

γn

γn+1
= 1 +

1

2(n + 1)
+ O

(

1

n2

)

, (12)

√
γnγn+1 = γn + O

(

1

n2

)

. (13)

We define Q = A − I
2γ which is symmetric definite positive (see (H2.3)).

This remark enables us to simplify equation (11) by introducing a new sequence (βn)n≥0 such
that for any n larger than some fixed n0, βn ≤ C, where C is a positive real constant. (11) can be
rewritten as

∆n+1 = ∆n − γnQ∆n − γny(θn − θ∗)∆n −√
γn+1δMn+1

+
√

γn+1pn+1 +
βn

n + 1
γn(B + y(θn − θ∗))∆n, (14)

where B is a deterministic matrix.
We will concentrate on the tightness of the sequence (∆n)n. To do so, let us go back to equation

(14) and let θ̃n denote the iterate obtained before projecting. ∆̃n is defined in the same way as ∆n

using θ̃n.

∆̃n+1 = ∆n − γnQ∆n − γny(θn − θ∗)∆n −√
γn+1δMn+1 +

βn

n2
(B + y(θn − θ∗))∆n, (15)
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Since θn converges almost surely to θ∗,

∀ε > 0, ∀η > 0, ∃N > 0 such that ∀n ≥ N P

(

sup
m>n

‖θm − θ∗‖ > η

)

< ε. (16)

Let λ > 0 be the smallest eigenvalue of Q. λ > 0 since Q is symmetric definite positive.
lim‖x‖→0 y(x) = 0, so for x < x0, ‖y(x)‖ < 3λ/4. One can choose x0 smaller than constant q
introduced in hypothesis (H2.5). Let ε > 0. Thanks to (16) there exists a rank N0 such that
P(supm>N0

‖θm − θ∗‖ > x0) < ε. Based on this remark we define a sequence of decreasing adapted
sets (An)n≥N0 by

An =

{

sup
n≥m>N0

‖θm − θ∗‖ < x0

}

. (17)

Let us remark that ∀n > N0 P(Ac
n) ≤ ε. On the set An, y(θn − θ∗) is bounded so we have

∥

∥

∥
∆̃n+1

∥

∥

∥

2

= ‖∆n‖2 −2γn∆n
′(Q + y(θn − θ∗))∆n + O

(

1

n2

)

‖∆n‖2 −2
√

γn+1δMn+1∆n + O(γn).

Since the projection is non-expansive, the norm of ∆n+1 is bound to be smaller than the one
of ∆̃n+1. Let us take the conditional expectation, in the previous equality, with respect to Fn,
denoted En.

En ‖∆n+1‖2 ≤ ‖∆n‖2 −2γn∆n
′(Q + y(θn − θ∗))∆n + O

(

1

n2

)

‖∆n‖2
+O(γn). (18)

On the set An Q+y(θn−θ∗) is a definite positive matrix with smallest eigenvalue greater than λ/4.

Therefore ∆n
′(Q + y(θn − θ∗))∆n > λ/2 ‖∆n‖2

. It is important to notice that Landau’s notations
are used in a deterministic context, therefore we can assume that for n > N0 O( 1

n2 ) ≤ λ/4γn.

E

(

‖∆n+1‖2 1An

)

− E

(

‖∆n‖2 1An

)

≤ −γn
λ

2
E

(

‖∆n‖2 1An

)

+ cγn,

E

(

‖∆n+1‖2 1An+1

)

− E

(

‖∆n‖2 1An

)

≤ −γn
λ

2
E

(

‖∆n‖2 1An

)

+ cγn, (19)

where c is a positive constant. Let I =
{

i > N0 : −λ
2 E

(

‖∆i‖2 1Ai

)

+ c > 0
}

, then

sup
i∈I

E

(

‖∆i‖2 1Ai

)

<
2c

λ
< ∞.

Otherwise for i /∈ I,

E

(

‖∆i+1‖2
1Ai+1

)

− E

(

‖∆i‖2
1Ai

)

≤ 0.

We will prove by recursion that ∀i ≥ N0 E

(

‖∆i‖2
1Ai

)

≤ 2c
λ +E

(

‖∆N0‖2
1AN0

)

. It is obviously

true for i = N0. Let us assume that the recursion assumption holds for rank i > N0. If i + 1 ∈ I,

then E

(

‖∆i+1‖2 1Ai+1

)

≤ 2c
λ . Otherwise i+1 /∈ I and hence E

(

‖∆i+1‖2 1Ai+1

)

≤ E

(

‖∆i‖2 1Ai

)

.

So using the hypothesis of recursion proves the result announced above. Therefore

sup
n

E

(

‖∆n‖2 1An

)

< ∞. (20)

In the end, this relation combined with (16) will lead to the tightness of the sequence (∆n)n. Let
M > 0.

P(‖∆n‖ > M) ≤ P(‖∆n‖(1An + 1Ac
n
) > M),

≤ P(‖∆n‖1An > M/2) + P(‖∆n‖1Ac
n
) > M/2),

≤ 4/M2
E
(

‖∆n‖12
An

)

+ P(Ac
n). (21)
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There exists a value of M depending on ε such that both terms on the right hand-side of (21) are
bounded above by ε. This proves the tightness of (∆n)n. From now on we will assume that n > N0

and large enough to ensure that βn < C.
If we go back to equation (14) and sum up this equality from n — chosen greater than N0

introduced above — to n + p we obtain

∆n+p = ∆n −
p−1
∑

k=0

γn+k( Q + y(θn+k − θ∗))∆n+k +
√

γn+kδMn+k+1

+

p−1
∑

k=0

√
γn+kpn+k+1 +

βn+k

n + k + 1
γn+k(B + y(θn+k − θ∗))∆n+k . (22)

Now we choose u > 0 such that tn(u) = p. Since θn(·) is piecewise constant on the subdivision
defined by the sequence (γn+p)p≥0, the discrete sums can be interpreted as integrals.

∆n(u) = ∆n(0) −
∫ u

0

(Q + y(θn(s) − θ∗)) ∆n(s)ds − Wn(u) + Rn(u) + Pn(u), (23)

where

Pn(u) =

tn(u)
∑

k=0

√
γn+kpn+k+1, (24)

Rn(u) =

tn(u)
∑

k=0

βn+k

n + k + 1
γn+k (B + y(θn+k − θ∗))∆n+k . (25)

Note that

‖Rn(u)‖ ≤ C

n

∫ u

0

(1 + ‖y(θn(s) − θ∗)‖) ‖∆n(s)‖ ds. (26)

We will show that limt ∆n(t) exists and is the random normal variable described in theorem 2.
For the sake of clearness the end of the proof will be done assuming that all processes and random
variables are real valued and not vector valued.
Let us go back to equation (23) and consider its equivalent differential form

d∆n(u) = − (Q + y(θn(s) − θ∗)) ∆n(s)ds − dWn(u) + dRn(u) + dPn(u). (27)

We can now integrate (27) to obtain a new expression for (∆n(·)).

∆n(t) = e−Qt∆n(0) −
∫ t

0

eQ(u−t)y(θn(u) − θ∗)∆n(u)du −
∫ t

0

eQ(u−t)dWn(u)

+

∫ t

0

eQ(u−t)dRn(u) +

∫ t

0

eQ(u−t)dPn(u). (28)

The last step of the proof consists in showing that, in the previous equation, every term tends
to zero in probability when letting t go to infinity except the integral with respect to Wn(·).
Let me remind that all the limits involved stand true for a fixed n > N0.

To treat the first term in (28), one should remember that the set {∆n(0); n ≥ 0} is tight. Since
Q is definite positive, e−Qt∆n(0) tends to zero in probability when t goes to infinity.

Concerning the second term, one should notice that the set {∆n(u); u < ∞} is tight. Since
θn(u) converges almost surely to θ∗ when u tends to infinity, y(θn(u) − θ∗) tends to zero almost
surely. These two conditions imply that y(θn(u) − θ∗)∆n(u) tends to zero in probability when u
goes to infinity (see proposition 3). Hence proposition 2 states the convergence of the sequence of

random variables (
∫ t

0
eQ(u−t)y(θn(u) − θ∗)∆n(u)du)t to zero in probability.

6
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The fourth term can be treated using the previous result. Since Rn(·) is a pure jump process
with a finite number of jumps on [0, t], the stochastic integral can be rewritten as a discrete sum
as follows

∫ t

0

eQ(u−t)dRn(u) =
∑

u≤t

eQ(u−t)∆Rn(u). (29)

One can refer to [Rogers and Williams, 2000] to find out more on pure jump processes and stochas-
tic integrals with respect to pure jump semi-martingales. Using (25), the previous equation can be
expanded as

∫ t

0

eQ(u−t)dRn(u) =
∑

u≤t

eQ(u−t)(1 + y(θn(u) − θ∗))∆n(u)
βn+tn(u)

(n + tn(u))
γn+tn(u).

This discrete sum behaves as the following integral

∫ t

0

eQ(u−t)(1 + y(θn(u) − θ∗))∆n(u)cn(u)du, (30)

where function cn(·) tends to 0 towards infinity since the sequence (βn)n≥0 is bounded. We can

reproduce what has been done while treating the second term in (28) to prove that
∫ t

0 eQ(u−t)(1 +
y(θn(u) − θ∗))∆n(u)cn(u)du is tight as a sequence indexed by t. Moreover, ((1 + y(θn(u) −
θ∗))∆n(u))u is tight and (cn(u))u converges almost surely to zero. Therefore, using proposition 3,
((1+y(θn(u)−θ∗))∆n(u)cn(u))u tends to zero in probability. Proposition 2 enables us to conclude
that the fourth term in (23) tends to zero in probability when t goes to infinity.

The term due to the projection in the algorithm can be rewritten

∫ t

0

eQ(u−t)dPn(u) =

tn(t)
∑

i=0

eQ(t−1
n (i)−t)√γi+n pi+n. (31)

This discrete sum behaves like
∫ t

0
eQ(u−t)√γn+tn(u) pn+tn(u)du. Since there is almost surely a fi-

nite number of projections. pn is almost surely zero for n large enough, hence
√

γn+tn(u) pn+tn(u)

converges to zero almost surely when u tends to infinity. Using proposition 1 proves that the sum
in (31) tends almost surely to zero when t goes to infinity.

Looking back at (28), one realises that all the terms tend to zero in probability except the
stochastic integral with respect to Wn(·) which converges to a random normal variable, as I am
now going to prove it.
First, it is noticeable that

∫ t

0

eQ(u−t)dWn(u) =

n+tn(t)
∑

i=n

eQ(t−1
n (i−n)−t)√γiδMi, (32)

=

tn(t)
∑

i=0

eQ(t−1
n (i)−t)√γi+nδMi+n. (33)

Let us fix n and define Np
l for all 0 ≤ l ≤ p and p > 0

Np
l =

l
∑

i=0

eQ(t−1
n (i)−t−1

n (p))√γi+nδMi+n. (34)

(Np
l )0≤l≤p is obviously a martingale with respect to (Fn+l)l and satisfies the following relation

Np
p =

∫ t−1
n (p)

0 eQ(u−t)dWn(u). Then we only need to prove that Np
p converges to a random normal

variable when p goes to infinity. To do so we will use a slightly modified version of the central limit
theorem for martingale arrays given in [Duflo, 1997] (theorem 2.1.9).
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Theorem 3 (Central Limit Theorem for martingale arrays). Suppose that

{(F (p)
l )0≤l≤p; p > 0} is a family of filtrations and {(N (p)

l )0≤l≤p; p > 0} a square integrable martin-
gale array with respect to the previous filtration. We also assume that:

(H3.1) there exists a symmetric definite positive matrix V such that 〈N〉(p)
p converges in

probability to V .
(H3.2) There exists ρ > 0 such that

p
∑

l=1

E

(

∥

∥

∥
N

(p)
l − N

(p)
l−1

∥

∥

∥

2+ρ ∣
∣

∣
F (p)

l−1

)

P−→ 0.

Then
N (p)

p
L−→ N (0, V ).

Let us compute the angle bracket of N .

〈N〉pp =

p
∑

i=0

e2Q(t−1
n (i)−t−1

n (p))γi+nE
(

δM2
i+n|Fn+i−1

)

. (35)

First I will prove that the conditional expectation above converges in probability to Σ. Thanks to

the continuity of u, u(θi)
P−−−→

i→∞
0.

E
(

δM2
i+1|Fi

)

= E
(

U(θi, Zi+1)
2|Fi

)

− u(θi)
2. (36)

Let us consider η > 0

P
(∣

∣E
(

U(θi, Zi+1)
2|Fi

)

− Σ
∣

∣ > η
)

≤ P
(∣

∣E
(

U(θi, Zi+1)
2|Fi

)

− Σ
∣

∣1‖θi−θ∗‖<x0
> η/2

)

+

P
(∣

∣E
(

U(θi, Zi+1)
2|Fi

)

− Σ
∣

∣1‖θi−θ∗‖>x0
> η/2

)

. (37)

The second expectation on the right hand side is smaller than P (‖θi − θ∗‖ > x0) which tends to
zero as i goes to infinity.

∣

∣E
(

U(θi, Zi+1)
2|Fi

)

− Σ
∣

∣1‖θi−θ∗‖<x0
is always smaller than

∣

∣E
(

U(θi, Zi+1)
2|Fi

)

1‖θi−θ∗‖<x0
− Σ

∣

∣. Hence the last term of (37) tends to zero using hypothesis
(H2.5). Thus, this brings to an end the proof that the sequence of conditional expectations involved
in (35) converges to zero Σ in probability. Moreover, it is easy to see that 〈N〉pp behaves as

∫ t−1
n (p)

0

e2Q(u−t−1
n (p))

E

(

δM2
tn(u)+n|Fn+tn(u)−1

)

du. (38)

We have just seen that the conditional expectations above converge in probability to Σ. By apply-

ing proposition 2, it is clear that
∫ t

0 e2Q(u−t)
E

(

δM2
tn(u)+n|Fn+tn(u)−1

)

du converges in probability

to Σ
2Q when t goes to infinity. Moreover t−1

n (p) tends to infinity when p goes to infinity, hence

〈N〉pp
P−−−→

p→∞

Σ
2Q .

Let ρ be the real number defined in theorem 2.

p
∑

l=1

E

(

∥

∥

∥
N

(p)
l − N

(p)
l−1

∥

∥

∥

2+ρ ∣
∣

∣
F (p)

l−1

)

=

p
∑

i=0

e(2+ρ)Q(t−1
n (i)−t−1

n (p))γ
1+ ρ

2

i+n E

(

δM2+ρ
i+n |Fn+i−1

)

. (39)

This sum behaves as

∫ t−1
n (p)

0

e(2+ρ)Q(u−t−1
n (p))γ

ρ
2

tn(u)+nE

(

δM2+ρ
tn(u)+n|Fn+tn(u)−1

)

du. (40)

γ
ρ
2

tn(u)+n converges to 0 when u goes to infinity and the sequence of conditional expectations con-

verges in probability, so γ
ρ
2

tn(u)+nE

(

δM2+ρ
tn(u)+n|Fn+tn(u)−1

)

tends to zero in probability when u

goes to infinity by applying proposition 3. Proposition 2 enables to achieve the proof of the con-
vergence of the expression defined by (40) to 0 when t goes to infinity. The hypotheses of theorem

8
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3 are then satisfied. This precisely ends the proof that the stochastic integral
∫ t

0 eQ(u−t)dWn(u)

converges in distribution to a random normal variable with mean 0 and variance Σ
2Q .

Now if we go back to equation (28) considering that all the sequences are vector valued, we
find out that for any fixed n

∆n(t)
L−−−→

t→∞
N (0, V ),

where V =
∫∞

0 eQuΣeQudu. Moreover, the definition of the sequence of processes (∆n(·)) implies
that since ∆n(t) converges when t goes to infinity, the sequence (∆n)n also converges towards the
same limit when n goes to infinity.

So, the sequence (∆n)n converges in distribution to a centred random normal variable with
covariance matrix

V =

∫ ∞

0

e−QsΣe−Qsds. (41)

If we rewrite it using matrix A, we come up with the following expression for V .

V =

∫ ∞

0

e(
I
2γ −A)sΣe(

I
2γ −A)sds = γ

∫ ∞

0

e(
I
2−γA)sΣe(

I
2−γA)sds. (42)

Hence the proof of theorem 2 is completed. I will explain how we can deduce a central limit
theorem when 1

2 < α < 1.

2.2.2 the case 1
2 < α < 1

We use the same notations as in the case α = 1. This time, the central limit theorem can be
written as follows

Theorem 4. Under hypotheses (H1.1), (H1.2), (H1.3), (H2.1), (H2.2), (H2.4) and (H2.5), the
sequence (∆n)n≥0 converges in distribution to a random normal variable with mean 0 and covari-
ance

V =

∫ ∞

0

exp (−At)Σ exp (−At)dt.

Proof. The proof is almost the same as in the previous case, the only differences appear due to
slightly modified expansions in equations (12) and (13) which become

√

γn

γn+1
= 1 + O

(

1

n

)

, (43)

√
γnγn+1 = γn + O

(

1

n1+α

)

. (44)

We define Q = A which is still symmetric definite positive as in the previous case. These new
developments modify the recursive relation on ∆n. Equation (14) becomes

∆n+1 = ∆n − γnQ∆n − γny(θn − θ∗)∆n −√
γn+1δMn+1

+
√

γn+1pn+1 +
βn

n + 1
(B + y(θn − θ∗))∆n.

The new iteration ∆̃n+1 obtained before any projection satisfies

∆̃n+1 = ∆n − γnQ∆n − γny(θn − θ∗)∆n −√
γn+1δMn+1

+
βn

n + 1
(B + y(θn − θ∗))∆n.

Taking the square leads to

∥

∥

∥
∆̃n+1

∥

∥

∥

2

= ‖∆n‖2 −2γn∆n
′(Q + y(θn − θ∗))∆n + O

(

1

n

)

‖∆n‖2 −2
√

γn+1δMn+1∆n + O(γn).

As in the previous case, this equation will enable us to prove the tightness of the sequence (∆n)n,
since for n large enough O

(

1
n

)

< λ/4γn.

9
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∆n(u) satisfies relation (28) with

Rn(u) =

tn(u)
∑

k=0

βn+k

n + k + 1
(1 + y(θn+k − θ∗))∆n+k, (45)

‖Rn(u)‖ ≤ C

n1−α

∫ u

0

(1 + y(θn(s) − θ∗))∆n(s)ds. (46)

The rest of the proof remains the same. ∆n converges in distribution to a centred random normal
variable with covariance matrix

V =

∫ ∞

0

e−QsΣe−Qsds,

as announced in theorem 4 since A = Q.

Remark 3. Practical experiments with this type of procedures quickly show that the smaller the
conditional variance of Yn is, the faster the algorithm converges. When possible, one should try to
rewrite u(θ) as an expectation of a random variable with less variance. Nonetheless, it is sometimes
almost impossible to reduce the variance significantly enough to ensure a satisfying convergence.
A more robust algorithm, that would not take too extreme values into account, would definitely
help. This is precisely what Chen offers in [Chen and Zhu, 1986].

3 Chen’s projection for Robbins Monro algorithms

The basic idea consists in considering an increasing sequence (Kq)q≥0 of compact sets such

that

∞
⋃

q=0

Kq = R
d and in defining a new sequence (θ̄n)n≥0 that remains in some Kq for a certain

q. This way of forcing the sequence to remain in some compact sets was first introduced in
[Chen and Zhu, 1986]. We can then define (θ̄n)n≥0

θ̄n+1 =

{

θ̄n − γn+1U(θ̄n, Zn+1) if θ̄n − γn+1U(θ̄n, Zn+1) ∈ Kσ(n),

θ̄n otherwise,
(47)

where σ(n) counts the number of projections up to step n. The following theorem, adapted from
[Delyon, 1996], guarantees the convergence of this sequence to θ∗. Before stating this theorem, it
might be more convenient to rewrite (47) as follows:

θ̄n+1 = θ̄n − γn+1u(θ̄n) − γn+1δMn+1 + γn+1pn+1 (48)

where

δMn+1 = U(θ̄n, Zn+1) − u(θ̄n), (49)

and pn+1 =

{

U(θ̄n, Zn+1) if θ̄n − γn+1U(θ̄n, Zn+1) /∈ Kσ(n),

0 otherwise.
(50)

3.1 A convergence result.

The following theorem states the convergence of the sequence (θ̄n)n.

Theorem 5. Under hypotheses (H1.1), (H1.3) and
(H5.1) for any q ∈ N, the series

∑

γnδMn1‖θ̄n−1‖<q converges,

(θ̄n)n≥0 converges a.s. to θ∗ and the projections occur a finite number of times, which means that,
for any large n, pn = 0.

10
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3.2 A central limit theorem for Chen’s algorithm

In this part, I present two central limit theorems which are the extensions to Chen’s algorithm
of the central limit theorems presented in the previous part. The notations are derived from the
previous part by replacing θn by θ̄n.

If we consider sequences (γn)n of the type γ
n+1 , the following theorem holds

Theorem 6. If we assume (H1.1), (H1.3), (H5.1), (H2.1), (H2.3), (H2.5) and

(H6.1) there exists q > 0 and ρ > 0 such that sup‖θ−θ∗‖<q E

(

‖U(θ∗, Z)‖2+ρ
)

< ∞.

(H6.2) There exists η > 0 such that d(θ∗, ∂Kn) > η ∀n ≥ 0.
Then, the sequence (∆n)n≥0 converges in distribution to a random normal variable with mean 0
and covariance

V = γ

∫ ∞

0

exp

((

I

2
− γA

)

t

)

Σ exp

((

I

2
− γA

)

t

)

dt.

If we use sequences γn = γ
(n+1)α with 1/2 < α < 1, the following theorem states the convergence

of (∆n)n.

Theorem 7. Under hypotheses (H1.1), (H1.3), (H2.1), (H2.4), (H2.5), (H6.1) and (H6.2), the
sequence (∆n)n≥0 converges in distribution to a random normal variable with mean 0 and covari-
ance

V =

∫ ∞

0

exp (−γAt)Σ exp (−γAt)dt.

Before tackling the proof, let us make a few remarks on the hypotheses.

Remark 4. Hypothesis (H2.4) implies hypothesis (H5.1). Thanks to the continuity of u, it is clear
that hypothesis (H6.1) implies (H2.4). Finally, hypothesis (H6.2) is the equivalent of hypothesis
(H2.2).

Proof. The only difference between the classical constrained algorithm and the one using Chen’s
projection is that, unlike what its name suggests, Chen’s projection is not non-expansive. Hence,

we do not have ‖∆n‖2 ≤
∥

∥

∥
∆̃n

∥

∥

∥

2

. However, we can write ‖∆n+1‖2 as

‖∆n+1‖2 = ‖∆n‖2 1pn+1 6=0 +
∥

∥

∥
∆̃n+1

∥

∥

∥

2

1pn+1=0,

‖∆n+1‖2 ≤
∥

∥

∥
∆̃n+1

∥

∥

∥

2

+ ‖∆n‖2
1θ̄n−γn+1U(θ̄n,Zn+1)/∈Kσ(n)

.

Taking the conditional expectation with respect to Fn gives

En ‖∆n+1‖2 ≤ En

∥

∥

∥
∆̃n+1

∥

∥

∥

2

+ ‖∆n‖2
En

(

1θ̄n−γn+1U(θ̄n,Zn+1)/∈Kσ(n)

)

,

En ‖∆n+1‖2
1An ≤ En

∥

∥

∥
∆̃n+1

∥

∥

∥

2

1An + ‖∆n‖2
1AnEn

(

1θ̄n−γn+1U(θ̄n,Zn+1)/∈Kσ(n)

)

,

E

(

‖∆n+1‖2 1An+1

)

≤ E

(

∥

∥

∥
∆̃n+1

∥

∥

∥

2

1An

)

+

E

(

‖∆n‖2
1AnEn

(

1θ̄n−γn+1U(θ̄n,Zn+1)/∈Kσ(n)
1An

))

. (51)

The conditional expectation can be rewritten

En

(

1θ̄n−γn+1U(θ̄n,Zn+1)/∈Kσ(n)
1An

)

≤ Pn

(

γn+1

∥

∥U(θ̄n, Zn+1)
∥

∥ ≥ d
(

θn, ∂Kσ(n)

))

1An ,

≤ γ2
n+1

d
(

θn, ∂Kσ(n)

)2 En

(

∥

∥U(θ̄n, Zn+1)
∥

∥

2
)

1An . (52)

Moreover, using the triangle inequality we have

d
(

θn, ∂Kσ(n)

)

≥ d
(

θ∗, ∂Kσ(n)

)

− ‖θn − θ∗‖ . (53)

11
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Using hypothesis (H6.2), d
(

θ∗, ∂Kσ(n)

)

< η and on An, ‖θn − θ∗‖ ≤ x0. Hence,

d
(

θn, ∂Kσ(n)

)

≥ η − x0. (54)

We can choose x0 smaller than η/2 for instance. Combining equation (54) and (52), we obtain

En

(

1θ̄n−γn+1U(θ̄n,Zn+1)/∈Kσ(n)
1An

)

≤ 4γ2
n+1

η2
En

(

∥

∥U(θ̄n, Zn+1)
∥

∥

2
)

1An . (55)

Moreover, since Zn+1 is independent of Fn

En

(

∥

∥U(θ̄n, Zn+1)
∥

∥

2
)

1An ≤ sup
θ

E

(

‖U(θ, Z)‖2
)

1‖θ−θ∗‖<x0
. (56)

The right-hand side of the inequality is deterministic so thanks to hypothesis (H6.1)

sup
ω

sup
n

En

(

∥

∥U(θ̄n, Zn+1)
∥

∥

2
)

1An < ∞. (57)

Hence, from equation (56) we can deduce that supω supn En

(

∥

∥U(θ̄n, Zn+1)
∥

∥

2
)

is bounded by a

constant times γ2
n. From equation (19) we can write, in the present case,

E

(

∥

∥

∥
∆̃n+1

∥

∥

∥

2

1An

)

− E

(

‖∆n‖2
1An

)

≤ −γn
λ

2
E

(

‖∆n‖2
1An

)

+ cγn. (58)

Combining equations (51) and (58), we get

E

(

‖∆n+1‖2
1An+1

)

≤
(

1 + c′γ2
n − γn

λ

2

)

E

(

‖∆n‖2
1An

)

+ cγn. (59)

If n is large enough, c′γ2
n ≤ γn

λ
4 . We finally get the desired inequality

E

(

‖∆n+1‖2
1An+1

)

≤
(

1 − γn
λ

4

)

E

(

‖∆n‖2
1An

)

+ cγn. (60)

The rest of the proof can be reproduced from the classical constrained algorithm.

4 Conclusion

For fast decreasing step sequences — typically γ
n — a central limit theorem holds provided

that γ is large enough. This means that to converge with a speed of roughly
√

n, the algorithm
requires a sufficient noise, which demands that γ is large enough. This type of sequence leads to
the fastest convergence speed.

For slower converging step sequences — γ
nα with 1/2 < α < 1 — the weight of the noise does

not interfere with the existence of a central limit theorem or not. However, the convergence speed
is of order nα/2. The faster the series

∑

n γn diverges, the smaller the rate of convergence for
Robbins Monro algorithms is.
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A A convergence result for integrals

Proposition 1. Let f be a piecewise continuous function defined on R
+ such that f(u) −→

u→∞
l,

where l is a real number.
Then

∫ t

0

eq(u−t)f(u)du −→
t→∞

l

q
∀t > 0.

Proof. Let us fix an ε > 0. There exists T1 > 0 such that ∀ u ≥ T1, |f(u) − l| ≤ ε. There also
exists T2 > T1 such that for all t ≥ T2 and all u ≤ T1, we have eq(T1−t) ≤ ε. Hence, for any t ≥ T2,

∫ t

0

eq(u−t)f(u)du =

∫ T1

0

eq(u−t)f(u)du +

∫ t

T1

eq(u−t)f(u)du. (61)

The first integral on the right side is bounded by sup
[0,T1]

|f | eq(T1−t)

q
, which is by assumption

bounded in turn by ε
q sup[0,∞[ |f |. The supremum of |f | exists since f is piecewise continuous and

has a limit in the neighbourhood of ∞. Let us now handle the second integral in (61).

∫ t

T1

eq(u−t) |f(u) − l| du ≤ ε

∫ t

T1

eq(u−t), (62)

≤ ε
1

q
. (63)

Moreover,
∫ t

T1
eq(u−t)l = l

q (1 − eT1−t). So
∣

∣

∣

∫ t

T1
eq(u−t)f(u) − l

q

∣

∣

∣
≤ ε 1

q (1 + l). This proves the result

announced in the above lemma.

B Integration and tightness

The following proposition is an extension of proposition 1.

Proposition 2. Let X(t)t≥0 be a piecewise constant càdlàg process. We assume that X(t) −−−→
t→∞

x ∈ R in probability. Let us define Yt =
∫ t

0
eu−tXudu. Then Y (t)

P−−−→
t→∞

x.

Proof. Since the convergences in probability and in distribution to a deterministic constant are
equivalent, we will prove the convergence in distribution. The first step is to prove that (Yt)t is
tight. Let M > 0,

P(|Yt| > M) ≤ P

(
∫ t

0

eu−t |Xu| du > M

)

,

≤ P

(

sup
u∈[0,t]

|Xu| > M

)

. (64)

Since X(t)t≥0 is a piecewise constant càdlàg process, the following inclusion holds

{

sup
u∈[0,t]

|Xu| ; t ≥ 0

}

⊂ {Xs; s ≥ 0} .

The last set is tight since X(·) converges in probability. Hence, the sequence of random variables
(Yt)t is tight.

The tightness of (Yt)t enables us to extract a converging subsequence (Ytk
)k. The limit is

denoted L.
The second step consists in proving that L = x almost surely. Relying on one more extraction,

the sequence (tk)k is strictly increasing and can be chosen such that |tk+1 − tk| ≥ 1 for every k.

13
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∫ tk

0 eu−tk (Xu − L)du converges in distribution to zero and hence in probability. The difference
between two consecutive terms of the sequence tends to zero in probability.

∫ tk

0

(1 − etk−tk+1)eu−tk(Xu − L)du +

∫ tk+1

tk

eu−tk+1(Xu − L)du
P−−−→

t→∞
0. (65)

The first integral tends to zero in probability, so does the second. Now using the mean formula,
the second integral can be written

∫ tk+1

tk

eu−tk+1(Xu − L)du =

∫ tk+1

tk

eu−tk+1(ck − L)du, (66)

where
inf

u∈[tk ,tk+1]
Xu ≤ ck ≤ sup

u∈[tk,tk+1]

Xu. (67)

Moreover, we had assumed that |tk+1 − tk| ≥ 1 for every k so the convergence in probability of

the integral implies that ck − L
P−−−→

t→∞
0. Since the process X is piecewise constant, its suprema

are attained. So the convergence in probability to x of Xt implies the ones of infu∈[tk,tk+1] Xu

and of supu∈[tk,tk+1] Xu. So relation (67) enables us to state that ck converges in probability to x.
Then, the convergence of ck −L to zero in probability achieves to prove that L = x almost surely.
Therefore, any converging subsequence of (Yt)t converges to zero in distribution. The set of all
closure values of {Yt; t ≥ 0} is the singleton {x}. Therefore, the whole sequence converges to x in
distribution and consequently in probability.

C Tightness and convergence in probability

Proposition 3. Let (Xn)n be a sequence of random variables in R
d converging in probability to zero

and (Yn)n a tight sequence of random variables in R
d. Then the sequence (〈Xn, Yn〉)n converges in

probability to zero.

Proof. For the sake of clearness, the proof will be done for real random variables and not vector
valued ones. The same arguments would hold anyway. Since (Yn)n is tight,

∀ε > 0 ∃Kε ⊂ R
d such that P(Yn /∈ Kε) ≤ ε.

Let η > 0 and ε > 0.

P(|XnYn| > η) = E
(

1|XnYn|1Yn∈Kε+|XnYn|1Yn /∈Kε>η

)

,

≤ E
(

1|XnYn|1Yn∈Kε >η/2

)

+ E
(

1|XnYn|1Yn /∈Kε>η/2

)

,

≤ P (|XnYn|1Yn∈Kε > η/2) + P (|XnYn|1Yn /∈Kε
> η/2) ,

≤ P (|Xn| δ(Kε) > η/2) + P (1Yn /∈Kε
> 0) ,

≤ P (|Xn| δ(Kε) > η/2) + P (Yn /∈ Kε) , (68)

Since Xn tends to zero in probability, for any n > Nε, the first probability in (68) is smaller than ε
and by definition the second expectation is also smaller than ε. This proves the result announced
in the proposition.
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