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Abstract. Within the framework of Witsenhausen’s intrinsic model for discrete stochastic
control, we provide a unified framework to extend and study three binary relations between agents:
the so called precedence, subsystem and memory-communication relations. These are tools to analyze
nonsequential systems, those for which, in contrast to sequential ones, any a priori ordering of
control actions is impossible independently of the set of control laws. We give localized versions of
these relations are given; localizing the precedence relation provides an evocative characterization
of Witsenhausen’s causality property (C). Connections between these three binary relations are
exhibited. We show in particular that the subsystem relation is the reflexive and transitive closure
of the precedence relation. We give new characterizations of sequentiality, and introduce systems
closed under precedence, as well as partially nested systems. We prove that partially nested systems
without self information (causal ones in particular) are sequential. We end up with a summary table
providing a classification of information structures in terms of binary relations.
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1. Introduction. In two papers [10, 11], Witsenhausen introduced and devel-
oped the so called intrinsic model for discrete stochastic control. It provides a trans-
parent and elegant framework to deal with interactions between a finite number of
agents (decision makers), without presupposing any ordering of actions. Such a frame-
work is adapted to general stochastic control systems, also called information struc-
tures, when one deals with nonsequential systems, those for which, in contrast to
sequential ones, any a priori ordering of control actions is impossible independently
of the set of control laws. Witsenhausen’s model has been used by a limited number
of authors (see [5, 6, 1, 3] for some references) interested by nonclassical information
structures. We share such an interest since our study of dual free stochastic controls in
[2]. In this paper, we try to provide tools, based upon three binary relations between
agents, in order to analyze general information structures.

In Section 2, we recall Witsenhausen’s intrinsic model for discrete stochastic con-
trol and definition of causality. Examples are provided. In Section 3, we provide a
unified framework to define and study three binary relations between agents, scat-
tered in the litterature [5, 6, 11, 2]: the so called precedence, subsystem and memory-
communication relations. We provide an extension by localizing such relations to
any event. As an illustration, localizing the precedence relation provides an evoca-
tive characterization of Witsenhausen’s causality property (C). Connections between
these three binary relations are exhibited. By using binary relations tools, we show
in particular that the subsystem relation is the reflexive and transitive closure of the
precedence relation. In Section 4, we recall the typology of systems presented in [11]
and relate it to the three binary relations. By using binary relations tools, we are
able to give new characterizations of sequentiality. We introduce systems closed un-
der precedence, those for which the precedence relation is transitive, and give their
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properties. The most interesting one is the equivalence between self information and
sequentiality. We also introduce partially nested systems which are the extension of
quasiclassical systems to non necessarily sequential systems. As pointed out in [12],
strictly partially nested systems are adapted to a general dynamic programming for-
mulation, in the case they are sequential. We prove that partially nested systems are
closed under precedence. As a consequence, we show that partially nested systems
without self information (causal ones in particular) are sequential.

2. Witsenhausen intrinsic model for discrete stochastic control. We
present here the so called intrinsic model for discrete stochastic control introduced by
Witsenhausen in [10] (see also [11]).

2.1. The model. Let A be a finite set representing agents. Each agent α ∈ A

is supposed to take one decision uα ∈ Uα, where Uα is the control set for agent
α, equipped with σ-algebra Uα. This includes the (discrete time) dynamics case by
considering that an individual taking one decision at each period is in fact made up
of several different agents, one for each period. We put

UA
def
=

∏

β∈A

Uβ , (2.1)

the product set, equipped with the σ-algebra generated by rectangles:

UA
def
=

⊗

β∈A

Uβ . (2.2)

Let Ω be a measurable set, with σ-algebra F . This is the sample space of random
issues, but we do not equip it with a probability measure. We put

H
def
= UA × Ω and H

def
= UA ⊗F . (2.3)

The information field of agent α is a subfield Iα ⊂ UA⊗F . By this, the information of
agent α may depend upon other agents decisions and upon realizations of the sample
space Ω.

The collection consisting of A, (Ω,F), (Uα,Uα, Iα)α∈A is called an information
structure [10] or a (stochastic control) system [11].

For any subset B of A, we define the cylindric extension of
⊗

β∈B Uβ to UA by:

U(B)
def
=

⊗

β∈B

Uβ ⊗
⊗

β 6∈B

{∅, Uβ} ⊂ UA . (2.4)

Any element in U(B) is of the form K ×
∏

β 6∈B Uβ, where K ∈
⊗

β∈B Uβ . We have
that, for all B ⊂ A and C ⊂ A

U(B ∩ C) = U(B) ∩ U(C) and U(B ∪ C) = U(B) ∨ U(C) . (2.5)

For any B ⊂ A, let UB
def
=

∏

α∈B Uα and $B denote the projection from UA ×Ω
to UB × Ω:

∀(u, ω) ∈ UA × Ω , $B(u, ω)
def
= ((uα)α∈B , ω) ∈ UB × Ω . (2.6)

We have that U(B) ⊗ F = $−1
B (

⊗

β∈B Uβ) ⊗ F . Notice that $∅(u, ω) = ω, while
$A(u, ω) = (u, ω).
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2.2. The decision process. Quoting Witsenhausen in [10], “The decision pro-
cess is considered as a feedback loop and the game is characterized by its interaction
with the policies of the agents, without prejudging questions of chronological order.
”We denote

Λα
def
= {λα : UA × Ω → Uα | λ−1

α (Uα) ⊂ Iα} . (2.7)

Any λα ∈ Λα represents a possible policy of agent α, in the sense that it depends, in
a measurable way (with respect to Iα, i.e. taking information into account), upon all
agents decisions and upon the random issue. We put

ΛA
def
=

∏

α∈A

Λα . (2.8)

Open loop policies are constant ones, that is are elements of

Λ⊥
A

def
=

∏

α∈A

Λ⊥
α where Λ⊥

α

def
= {λα : UA×Ω → Uα | λ−1

α (Uα) ⊂ {∅, UA×Ω}} . (2.9)

For any λ = (λα)α∈A ∈ ΛA, the problem is to find, for any ω ∈ Ω, solutions
u ∈ UA (dependent upon ω) satisfying the closed-loop equations $α(u) = λα(u, ω),
where $α is defined in (2.6), that is:

uα = λα((uβ , β ∈ A), ω) , ∀α ∈ A . (2.10)

For an open loop policy λ ∈ Λ⊥
A, equation (2.10) has a unique solution uα = λα, by

identifying the function λα with its constant value. However, in general, all cases are
possible: no solution, multiple solutions, unique solution.

Witsenhausen says that solvability property (S) holds when, for any λ ∈ ΛA and
any ω ∈ Ω, there exists one and only one u ∈ UA satisfying (2.10).

Definition 2.1 ([11]). Absence of self information is the property that Iα ⊂
U(A\{α}) ⊗ F for all agent α ∈ A. Witsenhausen proves in [11] that solvability
property (S) implies absence of self information.

2.3. Causality. The subtle notion of causality is treated with care in [10] (see
also [11, 6]). A weaker notion of causal implementability property (CI) is defined and
studied by Andersland and Teneketzis in [1].

Let n =card(A). For k ∈ {1, . . . , n}, let Sk
A denote the set of injective mappings

from {1, . . . , k} to A. Thus SA
def
= Sn

A is the set of total orderings of A. We also put

S0
A = ∅. For 0 ≤ i ≤ j ≤ n, let T

j
i : S

j
A → Si

A denote the truncation map which

restricts any σ ∈ S
j
A to the domain {1, . . . , i}, or to ∅ if i = 0.

An information structure is said to possess causality property (C) (or a system is
said to be causal) if there exists (at least) one mapping ϕ from UA × Ω towards SA,
with the property that

∀k ∈ {1, . . . , n} , ∀s ∈ Sk
A , Is(k) ∩ (T n

k ◦ ϕ)−1(s) ⊂ U({s(1), . . . , s(k − 1)}) ⊗F .

(2.11)
Definition 2.2. A sequential system is one for which the causality condition

holds with a constant mapping ϕ, that is there exists ς ∈ SA such that

∀k ∈ {1, . . . , n} , Iς(k) ⊂ U({ς(1), . . . , ς(k − 1)}) ⊗F . (2.12)

Witsenhausen proves in [10] that causality property (C) implies (recursive) solvability
(S). Andersland and Teneketzis prove in [1] that causality property (C) implies causal
implementability property (CI), and that this latter implies (recursive) solvability (S).
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2.4. Examples. We present examples, either with finite decision and sample
sets (for which subfields are equivalently described by partitions as illustrated in
Figures 2.1–2.2–2.3), or continuous decision and sample sets. The notation σ() means
the σ-field generated either by subsets or by a mapping.

Single agent with two decisions, two random issues. Consider the case of
a single agent A = {a}, Ua = {a1, a2}, together with Ua = 2Ua , and with sample
space Ω = {ω−, ω+} and F = 2Ω. We have H = Ua × Ω = {a1, a2} × {ω−, ω+} and
H = Ua ⊗ F = 2Ua ⊗ 2Ω = 2H. The set of orderings SA is reduced to the mapping ς

such that ς(a) = 1.
• Ia = {∅, H}. The agent knows nothing. Possible policies coincide with open-

loop ones, so that the decision process is elementary. Notice that the system
is sequential, with ϕ : H → SA equal to ϕ ≡ ς , where ς(a) = 1.

• Ia = 2Ua⊗{∅, Ω} = σ({a1}×{ω−, ω+}, {a2}×{ω−, ω+}). The agent takes his
decision in function of his own decison: this is an example of self information,
which precludes solvability. Indeed, ΛA in (2.8) identifies with one of the
four mappings from Ua to Ua. Thus, equation (2.10) becomes ua = λa(ua).
Existence (and unicity) holds if and only if λa is the identity mapping. The
system is non sequential.

• Ia = {∅, Ua}⊗F = σ({a1, a2}×{ω−}, {a1, a2}×{ω+}): the agent knows only
the random issue. The system is sequential, with ϕ : H → SA equal to ϕ ≡ ς ,
where ς(a) = 1. Solvability holds and the decision process ua = λa(a, ω) is
recursive since λa(a, ω) = λa(ω) because λa is measurable with respect to
Ia = {∅, Ua} ⊗ F , hence does not depend upon the variable a: the random
issue is observed, and the decision depends upon it.

Two agents with two decisions, two random issues. Consider the case
A = {a, b}, Ua = {a1, a2}, Ub = {b1, b2}, together with Ua = 2Ua and Ub = 2Ub ,
with sample space Ω = {ω−, ω+} and F = 2Ω. We have H = Ua × Ub × Ω =
{a1, a2} × {b1, b2} × {ω−, ω+} and H = Ua ⊗ Ub ⊗F = 2H.

The set of orderings SA = {ab, ba} is reduced to two mappings: ab = ςab such that
ςab(a) = 1 and ςab(b) = 2; the reverse for ba = ςba. With the same type of notation,
we also have S1

A = {a, b}.
• Ia = {∅, H}, Ib = {∅, Ua} ⊗ {∅, Ub} ⊗ F . Agent a knows nothing, while

agent b knows the random issue. There are no interactions between agents,
just a dependence upon random issues: this is an example of static team (see
subsection 4.1).

• Ia = {∅, Ua} ⊗ {∅, Ub} ⊗ F , Ib = Ua ⊗ {∅, Ub} ⊗ F . This corresponds to
Figure 2.1.
The system is sequential with ϕ ≡ ab: agent a observes the random issue and
takes his decision in function; agent b observes both agent a’s decision and the
random issue and takes his decision in function. Notice that Ia ⊂ Ib, which
may be interpreted in different ways. One may say that agent a communicates
his own information to agent b. If agent a is an individual at time t = 0, while
agent b is the same individual at time t = 1, one may say that the information
is not forgotten with time (memory of past knowledge).

• Ia = {∅, Ua}⊗{∅, Ub}⊗F , Ib = Ua⊗{∅, Ub}⊗{∅, Ω}. The system is sequential
with ϕ ≡ ab. Here, Ia and Ib are not comparable: indeed, agent a observes
only the random issue, while agent b observes only agent a’s decision.

• Ia = {∅, Ua} ⊗ Ub ⊗ {∅, Ω}, Ib = Ua ⊗ {∅, Ub} ⊗ {∅, Ω}. This corresponds to
Figure 2.2. Agent a observes only agent b’s decision, while agent b observes
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(a1, b2, ω+)

Ω
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−

)

(a2, b2, ω
−

)
(a1, b2, ω

−
)
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−
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−
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−

)

Ua

Ub

Ub

Ua

Ia

Fig. 2.1. A sequential information structure described by partitions

only agent a’s decision: this corresponds to a deadlock situation [1] where the
decision process may have no solution or multiple solutions. The system is
not sequential.

• Ia = {∅, Ua} ⊗ {∅, Ub} ⊗ F , Ib = σ({a1} × {b1, b2} × {ω−}). The system is
sequential with ϕ ≡ ab. Ia and Ib are not comparable.

• Ia = σ({a1, a2}×{b1, b2}×{ω+}, {a1, a2}× {b1}×{ω−}), Ib = σ({a1, a2}×
{b1, b2} × {ω−}, {a1} × {b1, b2} × {ω+}). This corresponds to Figure 2.3.
Define ϕ|UA×Ub×{ω+} ≡ ab and ϕ|UA×Ub×{ω

−
} ≡ ba. We shall show that

causality holds. However, it may easily be seen that the system is not se-
quential.
For k = 1, recall that S1

A = {a, b}. For s = a ∈ S1
A, we have (T 2

1 ◦ ϕ)−1(a) =
ϕ−1(ab) = UA ×Ub ×{ω+} and Is(1) ∩ (T 2

1 ◦ϕ)−1(s) = Ia ∩ (T 2
1 ◦ϕ)−1(a) =

Ia ∩ UA × Ub × {ω+} = {∅, {a1, a2} × {b1, b2} × {ω+}} ⊂ U(∅) ⊗ F . When
s = b ∈ S1

A, we prove in the same way that Is(1)∩(T 2
1 ◦ϕ)−1(s) = {∅, {a1, a2}×

{b1, b2} × {ω−}} ⊂ U(∅) ⊗F .
For k = 2, recall that S2

A = SA = {ab, ba}. For s = ab ∈ S2
A, we have

(T 2
2 ◦ϕ)−1(ab) = ϕ−1(ab) = UA ×Ub ×{ω+} and Is(2) ∩ (T 2

2 ◦ϕ)−1(s) = Ib ∩
UA×Ub×{ω+} = {∅, {a1, a2}×{b1, b2}×{ω+}, {a1}×{b1, b2}×{ω+}, {a2}×
{b1, b2} × {ω+}} ⊂ U({a}) ⊗ F = U({s(1)}) ⊗ F . When s = ba ∈ S2

A, we
prove in the same way that Is(2) ∩ (T 2

2 ◦ ϕ)−1(s) ⊂ U({s(1)}) ⊗F .
Thus (2.11) is satisfied, and causality holds true.
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(a1, b1, ω
−

)

(a1, b2, ω
−

)

(a1, b2, ω+)

Ω

Ia

Ib

Fig. 2.2. An information structure with deadlock

State space observed and controlled systems. Witsenhausen’s model in-
cludes the case where information is given by signals : agent α learns about the
location of h ∈ H by a mapping Hα : H → Yα. Assuming that Hα is measur-
able from (H,H) to (Yα,Yα), the connection between both approaches is given by
Iα = H−1

α (Yα) = σ(Hα).
The traditional framework where controls and random issue affect a state which,

in turn, delivers information is also included in Witsenhausen’s model. We shall
illustrate it on an example drawn from [9].

Consider the following state equations
{

x1 = x0 + u1

x2 = x1 − u2

together with output equations
{

y0 = x0

y1 = x1 + v

with controls u1 ∈ U1 = R and u2 ∈ U2 = R, and random issue ω = (x0, v) ∈ Ω =
R × R. All sets are equipped with their Borelian σ-algebras: U1 = U2 = B(R) and
F = B(R2). Putting A = {1, 2}, H = U1 × U2 × Ω = R

4, with H = B(R4), u1, u2, x0

and v are seen either as “primitive variables” or as coordinate mappings with domain
H. The “variables” x1, x2, y0 and y1 are mappings with domain H.
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(a2, b2, ω+)
(a1, b2, ω+)

Ω

(a1, b1, ω
−
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(a2, b1, ω

−
)
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−
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Ia
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(a2, b1, ω
−
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−
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Ω

Ub

Ua

(a2, b2, ω+)

Ib

(a1, b1, ω+) (a2, b1, ω+)

(a1, b1, ω+)

(a1, b2, ω+)

(a1, b1, ω
−

)

(a2, b2, ω
−

)

Fig. 2.3. A nonsequential information structure

• I1 = σ(y0) = σ(x0) = {∅, U1} ⊗ {∅, U2} ⊗ B(R) ⊗ {∅, R}, I2 = σ(y0, y1) =
σ(x0, x0 + u1 + v) = σ(x0, u1 + v). This is the classical information pattern
(sequential and memory of past knowledge).

• I1 = σ(y0) = σ(x0) = {∅, U1}⊗{∅, U2}⊗B(R)⊗{∅, R}, I2 = σ(y1) = σ(x0 +
u1+v). This is an example of nonclassical information pattern (Witsenhausen
counterexample in stochastic optimal control).

3. Precedence, subsystem and memory-communication binary rela-
tions between agents. From now on, we shall make use of the terminology, no-
tations and properties of binary relations as recalled in the Appendix. In brief, 1A

is the equality or diagonal relation, R∞ is the transitive closure of a binary relation
R, while R∗ = 1A ∪ R∞ is the reflexive and transitive closure. The complementary
relation ¬R verifies α¬Rβ ⇐⇒ ¬ (αRβ).

3.1. The precedence binary relation between agents. A precedence binary
relation between agents was introduced by Ho and Chu in [5, 6] for the multi-agent
LQG problem. An extension of precedence1 to non necessarily LQG problems was
given in [2], but not within the framework of Witsenhausen’s intrinsic model.

We now proceed to define the precedence relation: it identifies the agents whose
decisions indeed affect the observations of a given agent.

1We took inspiration from the definition in [6], while that in [5] rather relates to the subsystem
relation to be seen in the sequel.
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Definition 3.1. Let [α] ⊂ A be the intersection of subsets B ⊂ A such that
Iα ⊂ U(B) ⊗ F . Since A belongs to this intersection and by (2.5), [α] exists and is
the smallest subset B ⊂ A such that Iα ⊂ U(B) ⊗F . We define a precedence binary
relation P on A by

β P α ⇐⇒ β ∈ [α] , (3.1)

and we say that β is a precedent of α. Any β in [α] affects the observations available
to agent α. In other words, if β is a precedent of α, then Iα indeed “depends upon
uβ”.

Examples. Consider the case A = {a, b}, Ua = {a1, a2}, Ub = {b1, b2}, Ω =
{ω−, ω+}.

• Ia = {∅, H}, Ib = {∅, Ua} ⊗ {∅, Ub} ⊗ F : [a] = [b] = ∅, P = ∅.
• Ia = {∅, Ua} ⊗ {∅, Ub} ⊗ F , Ib = Ua ⊗ {∅, Ub} ⊗ F (see Figure 2.1): [a] = ∅,

[b] = {a}, P = {(a, b)}.
• Ia = {∅, Ua} ⊗ {∅, Ub} ⊗ F , Ib = Ua ⊗ {∅, Ub} ⊗ {∅, Ω}: [a] = ∅, [b] = {a},

P = {(a, b)}.
• Ia = {∅, Ua} ⊗ Ub ⊗ {∅, Ω}, Ib = Ua ⊗ {∅, Ub} ⊗ {∅, Ω} (see Figure 2.2):

[a] = {b}, [b] = {a}, P = {(a, b), (b, a)}.
• Ia = {∅, Ua}⊗{∅, Ub}⊗F , Ib = σ({a1}×{b1, b2}×{ω−}): [a] = ∅, [b] = {a},

P = {(a, b)}.
• Ia = σ({a1, a2}×{b1, b2}×{ω+}, {a1, a2}× {b1}×{ω−}), Ib = σ({a1, a2}×
{b1, b2}×{ω−}, {a1}×{b1, b2}×{ω+}) (see Figure 2.3): [a] = {b}, [b] = {a},
P = {(a, b), (b, a)}.

For any B ⊂ A, we also introduce

[B]
def
=

⋃

β∈B

[β] , [B]0
def
= B and ∀n ∈ N , [B]n+1 def

= [[B]n] . (3.2)

When B is a singleton {α}, we denote [α]n for [{α}]n.
The precedence relation is generally not reflexive: α ∈ [α] means that agent α

decisions affect its own observation2. Witsenhausen’s Definition 2.1 of absence of self
information precludes such a possibility.

Absence of self information is a property which translates straightforwardly with
the precedence relation, as shown in the following Proposition which will be quite
useful in the sequel. Its proof is a simple rewriting of Definition 2.1.

Proposition 3.2. A system is without self information if and only if α 6∈ [α]
for all agent α ∈ A if and only if the complementary relation ¬P of the precedence
relation P is reflexive if and only if 1A ∩ P = ∅.

It is a straightforward consequence of Definition 3.1 that, for all α ∈ A, β ∈ A

and B ⊂ A, C ⊂ A, we have:

Iβ ⊂ Iα ⇒ [β] ⊂ [α] , (3.3)

[β] ⊂ B ⇐⇒ Iβ ⊂ U(B) ⊗F . (3.4)

[B] ⊂ C ⇐⇒ IB ⊂ U(C) ⊗F . (3.5)

2Recall that, in a temporal framework, an agent is a decision maker at a given time.
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3.2. The subsystem binary relation between agents. For any B ⊂ A, let
IB ⊂ H be the information of the subset B of agents :

IB
def
=

∨

β∈B

Iβ . (3.6)

Witsenhausen in [11] defines a subsystem as a subset B of A such that IB ⊂
U(B) ⊗ F . Using the precedence binary relation, this is equivalent to the following
definition.

Definition 3.3. A subset B of A is a subsystem if [B] ⊂ B. Thus, the
information received by agents in B depend upon actions of nature and actions of
members of B only.

As a consequence of (2.5), Witsenhausen notices in [11] that subsystems are closed
under the intersection and union operations, and thus they form the closed sets of a
topology τ on A. Connected components of (A, τ) are dynamically decoupled subsys-
tems; a static coupling remains through the common dependence upon the random
issue.

Definition 3.4 ([11]). The closure 〈B〉, for the topology τ , of a subset B ⊂ A

is the smallest subsystem containing B; it is called the subsystem generated by B.
The subsystem generated by agent α is the closure 〈α〉 of the singleton {α}. The
corresponding subsystem binary relation S between agents is as follows:

∀(α, β) ∈ A2 , βSα ⇐⇒ β ∈ 〈α〉 . (3.7)

In other words, βSα means that agent β belongs to the subsystem generated by
agent α or, equivalently, that the subsystem generated by agent α contains the one
generated by agent β (〈β〉 ⊂ 〈α〉).

It is a consequence of the definition of a subsystem that, for B ⊂ A:

B is a subsystem ⇐⇒ 〈B〉 = B ⇐⇒ [B] ⊂ B . (3.8)

Proposition 3.5 ([11]). The subsystem relation S is a pre-order (or a quasi
order), namely it is reflexive and transitive.

Proof. The subsystem relation S is reflexive since α ∈ 〈α〉 for any agent α ∈ A.
It is also transitive. Indeed, let agents α, β and δ be such that αSβ and βSδ, that
is α ∈ 〈β〉 and β ∈ 〈δ〉. From β ∈ 〈δ〉, we deduce that 〈β〉 ⊂ 〈δ〉 and thus α ∈ 〈δ〉,
that is αSδ.

The relation S is generally not anti-symmetric since 〈β〉 = 〈α〉 may occur with
α 6= β.

Examples. Consider the case A = {a, b}, Ua = {a1, a2}, Ub = {b1, b2}, Ω =
{ω−, ω+}.

• Ia = {∅, H}, Ib = {∅, Ua} ⊗ {∅, Ub} ⊗ F : 〈a〉 = {a}, 〈b〉 = {b}, S = 1A =
{(a, a), (b, b)}.

• Ia = {∅, Ua}⊗{∅, Ub}⊗F , Ib = Ua⊗{∅, Ub}⊗F (see Figure 2.1): 〈a〉 = {a},
〈b〉 = {a, b}, S = {(a, b), (a, a), (b, b)}.

• Ia = {∅, Ua}⊗{∅, Ub}⊗F , Ib = Ua⊗{∅, Ub}⊗{∅, Ω}: 〈a〉 = {a}, 〈b〉 = {a, b},
S = {(a, b), (a, a), (b, b)}.

• Ia = {∅, Ua} ⊗ Ub ⊗ {∅, Ω}, Ib = Ua ⊗ {∅, Ub} ⊗ {∅, Ω} (see Figure 2.2):
〈a〉 = {a, b}, 〈b〉 = {a, b}, S = {(a, b), (b, a), (a, a), (b, b)} = A2.

• Ia = {∅, Ua} ⊗ {∅, Ub} ⊗ F , Ib = σ({a1} × {b1, b2} × {ω−}): 〈a〉 = {a},
〈b〉 = {a, b}, S = {(a, b), (a, a), (b, b)}.
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• Ia = σ({a1, a2}×{b1, b2}×{ω+}, {a1, a2}× {b1}×{ω−}), Ib = σ({a1, a2}×
{b1, b2} × {ω−}, {a1} × {b1, b2} × {ω+}) (see Figure 2.3): 〈a〉 = {a, b}, 〈b〉 =
{a, b}, S = {(a, b), (b, a), (a, a), (b, b)} = A2.

3.3. The memory-communication binary relation between agents. The
following definition of memory-communication is inspired by [5] and by [2].

Definition 3.6. Let ‖α‖ be the union of subsets B ⊂ A such that IB ⊂ Iα.
Since {α} belongs to this union and by (3.6), ‖α‖ is the largest subset B ⊂ A such
that IB ⊂ Iα:

B ⊂ ‖α‖ ⇐⇒ IB ⊂ Iα . (3.9)

We define a memory-communication binary relation M on A by

∀(α, β) ∈ A2 , β M α ⇐⇒ β ∈ ‖α‖ ⇐⇒ Iβ ⊂ Iα . (3.10)

For any B ⊂ A, we also introduce

‖B‖
def
=

⋃

β∈B

‖β‖ . (3.11)

When β ∈ ‖α‖, the observations made by agent β are part of those available to
agent α. Note that α ∈ ‖α‖, so that M is a reflexive relation. M is clearly transitive.

Proposition 3.7 ([2]). The memory-communication binary relation M is a
pre-order (or a quasi order), namely it is reflexive and transitive.

Examples. Consider the case A = {a, b}, Ua = {a1, a2}, Ub = {b1, b2}, Ω =
{ω−, ω+}.

• Ia = {∅, H}, Ib = {∅, Ua} ⊗ {∅, Ub} ⊗ F : ‖a‖ = {a}, ‖b‖ = {a, b}, M =
{(a, b), (a, a), (b, b)}.

• Ia = {∅, Ua}⊗{∅, Ub}⊗F , Ib = Ua⊗{∅, Ub}⊗F (see Figure 2.1): ‖a‖ = {a},
‖b‖ = {a, b}, M = {(a, b), (a, a), (b, b)}.

• Ia = {∅, Ua}⊗{∅, Ub}⊗F , Ib = Ua⊗{∅, Ub}⊗{∅, Ω}: ‖a‖ = {a}, ‖b‖ = {b},
M = {(a, a), (b, b)}.

• Ia = {∅, Ua} ⊗ Ub ⊗ {∅, Ω}, Ib = Ua ⊗ {∅, Ub} ⊗ {∅, Ω} (see Figure 2.2):
‖a‖ = {a}, ‖b‖ = {b}, M = {(a, a), (b, b)}.

• Ia = {∅, Ua} ⊗ {∅, Ub} ⊗ F , Ib = σ({a1} × {b1, b2} × {ω−}): ‖a‖ = {a},
‖b‖ = {b}, M = {(a, a), (b, b)}.

• Ia = σ({a1, a2}×{b1, b2}×{ω+}, {a1, a2}× {b1}×{ω−}), Ib = σ({a1, a2}×
{b1, b2}×{ω−}, {a1}×{b1, b2}×{ω+}) (see Figure 2.3): ‖a‖ = {a}, ‖b‖ = {b},
M = {(a, a), (b, b)}.

3.4. Localization of systems and relations. Let any h ∈ H be called an issue
and any F ⊂ H an event3.

Suppose that an event F ⊂ H is given. We define a localized information struc-
ture at event F or a localized (stochastic control) system at event F as the collection
consisting of A, (Ω,F), (Uα,Uα, Iα)α∈A together with F . We also speak of an infor-
mation structure restricted to F or a (stochastic control) system restricted to F .

Definition 3.8. Let [α]F ⊂ A be the intersection of subsets B ⊂ A such that
Iα ∩ F ⊂ U(B) ⊗F : [α] is the smallest subset B ⊂ A such that Iα ∩ F ⊂ U(B) ⊗F .
We define a localized precedence binary relation PF at event F on A by

β PF α ⇐⇒ β ∈ [α]F , (3.12)

3We depart here from the tradition according to which an event is an element of H.
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and we say that β is a precedent of α on the event F . The precedence binary relation
P on A is PH.

Definition 3.9. A subset B of A is a subsystem on F if [B]F ⊂ B. The closure
〈B〉F of B is the smallest subsystem on F containing B. The subsystem generated
by agent α on F is the closure 〈α〉F of the singleton {α}. The corresponding localized
subsystem binary relation SF at event F between agents is as follows:

∀(α, β) ∈ A2 , βSF α ⇐⇒ β ∈ 〈α〉F . (3.13)

Definition 3.10 ([2]). Let ‖α‖F be the union of subsets B ⊂ A such that
IB ∩ F ⊂ Iα. ‖α‖F is the largest subset B ⊂ A such that IB ∩ F ⊂ Iα:

B ⊂ ‖α‖F ⇐⇒ IB ∩ F ⊂ Iα . (3.14)

We define a localized memory-communication binary relation MF at event F on A

by

∀(α, β) ∈ A2 , β MF α ⇐⇒ β ∈ ‖α‖F ⇐⇒ Iβ ∩ F ⊂ Iα . (3.15)

Notions of solvability, causality and self information may also be localized. All
the results concerning systems remain true for localized systems, except the property
that solvability on an event implies absence of self information on this event.

Consider the case A = {a, b}, Ua = {a1, a2}, Ub = {b1, b2}, Ω = {ω−, ω+}.
• Ia = σ({a1, a2}×{b1, b2}×{ω+}, {a1, a2}× {b1}×{ω−}), Ib = σ({a1, a2}×
{b1, b2} × {ω−}, {a1} × {b1, b2} × {ω+}) (see Figure 2.3).
Let F+ = {a1, a2} × {b1, b2} × {ω+} and F− = {a1, a2} × {b1, b2} × {ω−}.
We have [a]F+

= ∅, [b]F+
= {a}, PF+

= {(b, a)} and [a]F
−

= {b}, [b]F
−

= ∅,
PF

−

= {(a, b)}. We have ‖a‖F+
= {a}, ‖b‖F+

= {a, b}, MF+
= {(a, b), (a, a), (b, b)}

and ‖a‖F
−

= {a, b}, ‖b‖F
−

= {b}, MF
−

= {(b, a), (a, a), (b, b)}.
The following Proposition is a straightforward consequence of the hereabove Def-

initions.
Proposition 3.11. Let (Fi)i∈I be a finite or enumerable family of subsets of H

such that [B]Fi
⊂ C. Then both F− =

⋂

i∈I and F+ =
⋃

i∈I are such that [B]F
−

⊂ C

and [B]F+
⊂ C. The same holds true with 〈B〉.

Localizing the precedence relation provides an evocative characterization of Wit-
senhausen’s causality property (C), recalled in subsection 2.3, as follows.

A family (Ki)i∈I is said to cover H if Ki ⊂ H and
⋃

i∈I Ki = H. It is said to
disjointly cover H if, in addition, the Ki are two by two disjoints. By these definitions,
we allow for the Ki to be empty sets.

Proposition 3.12. An information structure possesses causality property (C) if
and only if there exists a family (Kς)ς∈SA

which disjointly covers H and such that

∀k ∈ {1, . . . , n} , ∀s ∈ Sk
A , [s(k)]Ks

⊂ {s(1), . . . , s(k − 1)} , (3.16)

where Ks
def
=

⋃

ς∈SA,T n
k

ς=s

Kς .

Proof. If causality property (C) holds with the mapping ϕ, we put Kς
def
= ϕ−1(ς).

Then (3.16) is a rewriting of (2.12).
Now, if there is a family (Kς)ς∈SA

which disjointly covers H, we can define ϕ :
H → SA by ϕ|Kς

≡ ς . Then (2.12) is a rewriting of (3.16).
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3.5. Relationships between P and S. Here are relationships between the
precedence relation P and the subsystem relation S.

Proposition 3.13.
1. For any α ∈ A and β ∈ A, we have:

β ∈ 〈α〉 ⇒ [β] ⊂ 〈α〉 . (3.17)

2. For any α ∈ A, we have:

〈α〉 =
⋃

n∈N

[α]n . (3.18)

Proof.
1. By definition of 〈α〉, we have I〈α〉 =

∨

β∈〈α〉 Iβ ⊂ U(〈α〉) ⊗ F . Thus β ∈

〈α〉 ⇒ Iβ ⊂ U(〈α〉) ⊗F , that is [β] ⊂ 〈α〉 by (3.4).
2. First, we prove by induction that [α]n ⊂ 〈α〉 for n ∈ N. By definition (3.2),

this holds true for n = 0 since α ∈ 〈α〉. Assuming [α]n ⊂ 〈α〉, we deduce
that [α]n+1 = [[α]n] ⊂ [〈α〉] by (3.2). Now, since 〈α〉 is a subsystem, we have
[〈α〉] ⊂ 〈α〉 by (3.8). Thus [α]n+1 ⊂ 〈α〉 and the induction is proven.
Second, from [α]n ⊂ 〈α〉, we deduce that

⋃

n∈N
[α]n ⊂ 〈α〉. On the other hand,

⋃

n∈N
[α]n is a subsystem by (3.8) since [

⋃

n∈N
[α]n]=

⋃

n∈N
[α]n+1 ⊂

⋃

n∈N
[α]n

(notice that the enumerable union
⋃

n∈N
[α]n is in fact finite since A is finite).

To sum up,
⋃

n∈N
[α]n is a subsystem containing α and contained in 〈α〉: it is

thus equal to this latter.

Proposition 3.13 provides the following links between the subsystem and the prece-
dence binary relations.

Theorem 3.14. The relation S is the reflexive and transitive closure P∗ of the
precedence relation P. We thus have the following inclusions and equalities:

P ⊂ P∞ ⊂ S = P∗ = P∞ ∪ 1A . (3.19)

Proof. By (3.18), we have that P ⊂ S, since β ∈ [α] ⇒ β ∈ 〈α〉. By Propo-
sition 3.5, S is reflexive and transitive. Thus, P ⊂ S ⇒ P∗ ⊂ S∗ = S. Now, by
definition (A.9) of P∞, the identity (3.18) means that P∞ ∪ 1A = S. We conclude
with the equality (A.11), which is here P∗ = P∞ ∪ 1A.

3.6. Relationships between P and M. Here are relationships between the
precedence relation P and the memory-communication relation M.

Proposition 3.15 ([2]). For any agents α ∈ A and β ∈ A, we have

β ∈ ‖α‖ ⇒ [β] ⊂ [α] . (3.20)

For any B ⊂ A, we have:

[‖B‖] ⊂ [B] . (3.21)

Proof. Let agents α and β be such that β ∈ ‖α‖. Thus, Iβ ⊂ Iα by (3.10) and
we conclude that [β] ⊂ [α] by (3.3), i.e. [‖α‖] ⊂ [α]. We deduce that, for any B ⊂ A,
we have:

[‖B‖] =
⋃

β∈‖B‖

[β] =
⋃

α∈B

⋃

β∈‖α‖

[β] ⊂
⋃

α∈B

[α] = [B] .
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4. A classification of systems.

4.1. A typology of systems. The following definitions are extended from [11].

A static team is a subset B of A such that [B] = ∅. Equivalently, by Theorem 3.14,
the precedence relation P is empty or the subsystem relation S is reduced to the
equality relation 1A.

It follows from Definition 2.2 that a system is sequential if and only if there exists
an ordering (α0, . . . , αn−1) of A such that

∀k = 0, . . . , n − 1 , [αk] ⊂ {α0, . . . , αk−1}4 . (4.1)

Equivalently, there exists an ordering (α0, . . . , αn−1) of A such that αiPαj ⇒ i < j

(i.e. strictly compatible with P).

A system is classical if it is sequential and, in addition, αk ∈ ‖αk+1‖ for k =
0, . . . , n − 2. Equivalently, by using the transitivity of M (Proposition 3.7), there
exists an ordering (α0, . . . , αn−1) of A such that

∀k = 0, . . . , n − 1 , [αk] ⊂ {α0, . . . , αk−1} ⊂ {α0, . . . , αk−1, αk} ⊂ ‖αk‖ . (4.2)

Thus, any agent knows what all “previous” agents know. Notice that [αk] ⊂ [αk+1].
Indeed, (4.2) together with the property that [‖αk‖] ⊂ [αk] (see Proposition 3.15)
imply that [[αk]] ⊂ [α0] ∪ . . . ∪ [αk−1] ⊂ [‖αk‖] ⊂ [αk], hence [αk−1] ⊂ [αk ].

A system is strictly classical if it is classical with U({αk}) ⊗ F ⊂ Iαk+1
. In

other words, agent αk+1 knows also the actions of the “previous” agent αk, for k =
0, . . . , n − 2.

A system is quasiclassical if it is sequential and that S ⊂ M.

A system is strictly quasiclassical if it is sequential and that βSα, β 6= α implies
(Iβ

∨
(U({β}) ⊗F)) ⊂ Iα. In other words, agent α knows what know and do all the

other agents which form the subsystem that he generates.

4.2. Characterizations of sequential systems. The equivalence of the two
first assertions in the following Theorem is due to Witsenhausen in [11]. The others are
new. They will prove useful in the sequel for characterizing partially nested systems
without self information.

Theorem 4.1. The following assertions are equivalent:
1. the system is sequential;
2. the system is without self information and the subsystem relation S is an

order;
3. the precedence relation P is acyclic (that is, ∀α ∈ A, ∀n ≥ 1, α 6∈ [α]n);
4. the relation ¬(P∞) is reflexive ( i.e. 1A ∩ P∞ = ∅);
5. the graph of precedence G(P) is a forest.

4For k = 0, this means that [α0] = ∅.

13



Proof. The proof is a straightforward transcription of Proposition A.1 in the
Appendix with R = P.

For this, recall that a system is sequential if and only if there exists an ordering
of A strictly compatible with P.

Also, a system is without self information and S is an order if and only if ¬P is
reflexive and S = P∗ is an order.

4.3. Definition and properties of systems closed under precedence. The
following definition covers a class of systems with original properties.

Definition 4.2. A system is closed under precedence if the precedence binary
relation P is transitive. Equivalently, for any B ⊂ A, [B] is a subsystem, by (3.8).

Here is a Proposition which will prove important for partially nested systems.

Proposition 4.3. A system closed under precedence is sequential if and only if
it is without self information.

A system closed under precedence and without self information is sequential.

Proof. On the one hand, by Theorem 4.1, a system is sequential if and only if the
relation ¬(P∞) is reflexive.

On the other hand, by Proposition 3.2, a system is without self information if
and only if the relation ¬P is reflexive.

We conclude with the fact that P∞ = P for a system closed under precedence.

4.4. Definition and properties of partially nested systems. We here gen-
eralize the quasiclassical systems to non necessarily sequential systems. The termi-
nology is taken from [5, 6]. A partially nested system is one in which any agent has
the information available to those agents which are its precedents.

Proposition 4.4. The following conditions are equivalent.

1. S ⊂ M, that is

∀α ∈ A , 〈α〉 ⊂ ‖α‖ . (4.3)

2. P ⊂ M, that is

∀α ∈ A , [α] ⊂ ‖α‖ . (4.4)

3. P∞ ⊂ M, that is

∀α ∈ A , ∀n ≥ 1 , [α]n ⊂ ‖α‖ . (4.5)

Proof. S ⊂ M implies P ⊂ M, since P ⊂ S by Theorem 3.14. On the other
hand, P ⊂ M implies P∞ ⊂ M since M is transitive, by Proposition 3.7. At last,
P∞ ⊂ M implies S ⊂ M since S is the reflexive closure of P∞ by Theorem 3.14 and
since M is reflexive by Proposition 3.7.

Definition 4.5. A system which satisfies any of the three equivalent assertions
of Proposition 4.4 is said to be a partially nested system.

The following Proposition, proved in [2], provides a curious property of the prece-
dence binary relation. As a consequence, the assertions of Proposition 4.4 hold true
for a partially nested system.

Proposition 4.6 ([2]). A partially nested system is closed under precedence.

Proof. The proof is from [2].
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Binary relations between agents
subsystem precedence memory

S P M

Properties pre-order S = P∞ ∪ 1A pre-order

no self information ⇐⇒ ¬P reflexive
static team ⇐⇒ S = 1A or P = ∅
sequential ⇐⇒ order or ¬P∞ reflexive
sequential ⇐⇒ order or acyclic
classical ⇒ acyclic and M ⊃ P

quasiclassical ⇐⇒ acyclic and M ⊃ P

closed under precedence ⇐⇒ P = P∞

partially nested ⇐⇒ M ⊃ P

partially nested ⇒ P = P∞

Table 4.1
Binary relations characterization of a typology of systems

For a partially nested system, we have P ⊂ M by Proposition 4.4. Let (α, β, δ) ∈
A3 be such that αPβ and βPδ. We have

βPδ ⇒ βMδ byP ⊂ M

⇒β ∈ ‖δ‖ by definition (3.10)

⇒[β] ⊂ [δ] by (3.20).

On the other hand, since αPβ, we have α ∈ [β] by equation (3.1). Combining α ∈ [β]
and [β] ⊂ [δ], we obtain α ∈ [δ], that is αPδ by definition of P. Thus, P is transitive.

The following Theorem is a direct corollary of Propositions 4.3 and 4.6.
Theorem 4.7. A partially nested system without self information is sequential.

As a consequence, a causal partially nested system is sequential.

4.5. A summary table of results. In the following table, for a given system,
you find in the corresponding line either equivalent characterizations or implications.
For instance, a system is quasiclassical if and only if P is acyclic and M ⊃ P.

5. Conclusion. We have provided a unified framework to define and study three
binary relations between agents scattered in the litterature. The terminology and
properties of binary relations has allowed us to obtain new results and the typology
of systems is expressed in a compact form (see Table 4.1).

Define a strictly partially nested system as a partially nested one with the addi-
tional property that βSα, β 6= α implies U({β}) ⊗ F ⊂ Iα. In other words, agent
α knows what know and do all the other agents which form the subsystem that he
generates. Witsenhausen shows in [12] that, under appropriate assumptions on con-
trol and/or random sets, strictly partially nested systems exhibit policy independence
of conditional expectations. He suggests in the conclusion of [12] a mechanism of
stochastic dynamic programming to solve team problems. This mechanism supposes
sequentiality. With our results, we show that strictly partially nested systems without
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self information are sequential, allowing thus for an extension of stochastic dynamic
programming.

Appendix A. Recalls on binary relations.
We follow here [7, 8].
A binary relation on A is a subset R of A2 = A × A. As is traditional, we shall

from now on denote

∀(α, β) ∈ A2 , αRβ ⇐⇒ (α, β) ∈ R . (A.1)

When αRβ, we say that β is related to α. Well known binary relations are the empty
relation ∅, the universal relation A2, and the equality or diagonal relation

∀(α, β) ∈ A2 , α1Aβ ⇐⇒ α = β or equivalently 1A
def
= {(α, α) | α ∈ A} .

(A.2)
For each α ∈ A, we define a subset αR of A by

αR
def
= {β ∈ A | αRβ} . (A.3)

We thus have

∀(α, β) ∈ A2 , αRβ ⇐⇒ β ∈ αR . (A.4)

If B is a subset of A, we define

BR
def
=

⋃

β∈B

βR . (A.5)

The set BA of all binary relations on A is equipped with the inclusion ⊂:

R− ⊂ R+ ⇐⇒
(
∀(α, β) ∈ A2 , αR−β ⇒ αR+β

)
⇐⇒ (∀α ∈ A , αR− ⊂ αR+) .

(A.6)
The converse R−1 of a binary relation is

∀(α, β) ∈ A2 , αR−1β ⇐⇒ βRα . (A.7)

We have R− ⊂ R+ ⇒ R−1
− ⊂ R−1

+ .
The directed graph G(R) built from R is (A, R), where elements of A are called

vertices and those of R edges. Thus notions attached to graphs are easily transfered
to relations.

A chain in a binary relation R is a sequence (α0, . . . , αn) for some n ≥ 1 such
that αiRαi+1 for i = 0, . . . , n − 1; this chain is said to be from α1 to αn, and its
length is n. We also say that α1 and αn are joined by a chain of length n. A chain
in a relation is the equivalent of a path in a graph. A chain is simple if the αi are all
distinct.

The chain (α1, . . . , αn) is a cycle if αnRα1. A cycle is trivial if n = 1, otherwise
it is nontrivial. A binary relation R is said to be acyclic if there is no cycle in R.
This corresponds to acyclicity of the directed graph G(R) built from R.

The composition R ◦ R′ of two binary relations is defined by

∀(α, β) ∈ A2 , α(R ◦ R′)β ⇐⇒ ∃δ ∈ A , αRδ and δR′β . (A.8)
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By simplicity, we shall abbreviate R ◦ R′ def
= RR′. In the composition R2 def

= RR,
β is related to α is there is a chain of length 2 from α to β. We define as well

Rn def
= R · · ·R

︸ ︷︷ ︸

n times

, etc. and

R∞ def
=

⋃

n≥1

Rn (A.9)

where two elements are related if and only if they may be joined by a chain of any
length:

∀(α, β) ∈ A2 , αR∞β ⇐⇒ there exists a chain in R from α to β . (A.10)

A binary relation R is said to be reflexive if 1A ⊂ R, symmetric if R−1 ⊂ R,
anti-symmetric if R ∩ R−1 ⊂ 1A, transitive if R2 ⊂ R.

The transitive closure of a binary relation is the smallest transitive binary relation
which contains R: it coincides with R∞.

The reflexive and transitive closure R∗ of a binary relation R is the smallest
reflexive and transitive binary relation which contains R. We have

R∗ = 1A ∪ R∞ . (A.11)

An equivalence relation is a reflexive, symmetric and transitive binary relation.
A pre-order or quasi order is a reflexive and transitive binary relation. An order is a
reflexive, anti-symmetric and transitive binary relation.

The complementary relation ¬R of a binary relation R is ¬R
def
= A2\R, that is

α¬Rβ ⇐⇒ ¬ (αRβ) ⇐⇒ (α, β) 6∈ R . (A.12)

An ordering (α0, . . . , αn−1) of A is a bijection from {0, . . . , n− 1} to A. Such an
ordering is said to be strictly compatible (resp. compatible) with a binary relation R if
αiRαj ⇒ i < j (resp. i ≤ j). Notice that a strictly compatible ordering corresponds
to a topological sort of the directed graph G(R) built from R.

Proposition A.1. The following assertions are equivalent for a binary relation
R.

1. There exists an ordering of A strictly compatible with R.
2. ¬R is reflexive ( i.e. 1A ∩ R = ∅) and R∗ is an order.
3. R is acyclic.
4. ¬(R∞) is reflexive ( i.e. 1A ∩ R∞ = ∅).
5. the graph G(R) is a forest.

Proof.
(1) ⇒ (2) Let an ordering (α0, . . . , αn−1) of A supposed to be strictly compatible

with R. Let O be the binary relation on A defined by αiOαj ⇐⇒ i ≤ j.
Clearly, O is an order relation such that R ⊂ O\1A.
Thus, on the one hand, R ⊂ O\1A ⇒ 1A ⊂ ¬R, so that ¬R is reflexive, i.e.
1A ∩ R = ∅. On the other hand, R ⊂ O ⇒ R∗ ⊂ O since O is reflexive and
transitive. We deduce that R∗ ∩ (R∗)−1 ⊂ O ∩ O−1, where O ∩ O−1 ⊂ 1A

since O is antisymmetric. Thus, R∗∩ (R∗)−1 ⊂ 1A and R∗ is antisymmetric.
(2) ⇒ (3) Assume that R is not acyclic, and let (α0, . . . , αk) denote a cycle. Notice

that for any i ∈ {0, . . . , k} and j ∈ {0, . . . , k}, we have αiR
∞αj , and thus

αiR
∗αj because R∞ ⊂ R∗. Since R∗ is an order, this implies αi = αj . Thus

the cycle may be reduced to a single element α0 which satisfies α0Rα0: this
contradicts the assumption that ¬R is reflexive. Thus, R is acyclic.
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(3) ⇒ (1) We know from graph theory that, when the directed graph G(R) is acyclic,
it is possible to perform a topological sort [4, p.485], in other words a strictly
compatible ordering.

(3) ⇐⇒ (4) R is not acyclic if and only if there exists an α ∈ A and a chain from
α to α, if and only if there exists an α ∈ A such that αR∞α, if and only if
¬(R∞) is not reflexive, if and only if 1A ∩ R∞ = ∅.

(3) ⇐⇒ (5) This is the definition of a forest.
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