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Abstract. For a sequential, two-period decision problem with uncertainty and under broad conditions
(non-finite sample set, endogenous risk, active learning and stochastic dynamics), a general sufficient condition
is provided to compare the optimal initial decisions with or without information arrival in the second period.
More generally the condition enables the comparison of optimal decisions related to different information
structures. It also ties together and clarifies many conditions for the ‘irreversibility effect’ that are scattered in
the environmental economics literature. A numerical illustration with an integrated assessment model of
climate-change economics is provided.
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1 Introduction

The study of sequential decisions problems with learning typically involves the comparison of
the optimal initial decisions with different information structures. For instance, should we aim
at more reductions of current greenhouse gases emissions if we assume some future improvement
of our knowledge about the climate? Economic analysis has identified effects that go in opposite
directions and make the conclusion elusive. This article proposes a simple and general relation
between the value of future information on risks and the initial degree of precaution taken in a
sequential decisions setting.

Seminal literature in environmental economics (Arrow and Fisher [2] and Henry [16, 17]) fo-
cused on the irreversible environmental consequences carried by the initial decision and showed
that the possiblity of learning should lead to less irreversible current decisions (‘irreversibility
effect’). Yet, the conditions under which this result holds are rather restrictive and further
contributions have insisted on the existence of an opposite economic irreversibility since envi-
ronmental precaution imply sunk costs that may constrain future consumption (Kolstad [22],
Pindyck [28], Fisher and Narain [10]). Finally, considering a specific payoff function, Gollier
et al. [13] identified conditions on the utility function for the possibility of learning to have a
‘precautionary effect’ with and alternatively without the irreversibility constraint.

Initially, the literature on the irreversibility effect related this effect to the value of informa-
tion through the concept of ‘quasi-option’ value, which was identified to the value of information
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‘conditional on the preservation decision’ (Hanemann [15]). However, this identification does
not hold in the more general case where the decision set is not binary and economic irre-
versibilities add on to the environmental ones so that the quasi-option value can be negative
(Hanemann [15], Ha-Duong [14]).

The driving idea for linking the effect of learning and the value of information is the ob-
servation that, once an initial decision is made, the value of information can be defined as a
function of that decision. Hints towards this can be found in Conrad [7], Hanemann [15] or
Ha-Duong [14], but the functional dependance is either non explicit or limited to a binary de-
cision set. More recently, Rouillon [29] defined for a specific model of climate-change the value
of information as a function of the greenhouse gases (ghg) concentration. In a special case,
he found that when this value of information (after the initial decision) is a monotone function
of the pollution stock, then the optimal emission levels with and without information can be
ordered.

We show that this result is very general and ties together different pieces of the literature on
uncertainty and irreversibility. It can also be applied properly to integrated assessment models
and thus connects two themes of the climate change literature, namely, the value of information
and the irreversibility effect. Currently, in the economics of climate change, several studies have
inquired the effect of learning (e.g. Kolstad [21], Ulph and Ulph [32], Fisher and Narain [10],
Keller et al.[19]) or have centered around the value of information (e.g. Manne and Richels [24],
Peck and Teisberg [27], Nordhaus [25], Ambrosi et al. [1]). But no exact and general link had
been drawn between both researchs.

This paper considers two two-period decision problems with uncertainty, which are identical
except for the information available at the second period (typically, one with and the other
without information). For any arbitrarily fixed initial decision, there are thus two subproblems
of expected utility maximization problems (still one with and one without information). They
lead to define the value of information after an initial commitment and this value is now a
function of the initial decision. We shall prove that, whenever this function is monotone, we
are able to identify the problem with the lowest optimal initial decision. The result does not
require any concavity assumptions. It is generalized to the value of exchanging one information
structure for an other. In the literature, the ranking of optimal decisions is often obtained
through conditions that depend upon at least one of those optimal solutions as in Epstein [8]
or Ulph and Ulph [32]. We show how the monotonicity of the value of information allows to
bypass those conditions.

Many of the specific models studied in the irreversibility literature from Arrow and Fisher [2]
to Gollier et al. [13] can be seen as particular instances of our model. Since it avoids standard,
restrictive assumptions on the utility and on the environment (like linear evolution or scalar
dimension), it is general enough to be applied to the study of numerical integrated assessment
models, like dice [26]. Formally, it is not restricted to environmental problems.

Section 2 proposes a general analytical framework of sequential decisions under uncertainty.
Section 3 gives our main result. It connects the comparison of the optimal initial decisions
(with learning and without learning) to the variations of the value of information, considered
as a function of the initial decision. Section 4 extends the result to decision problems with
endogenous risk, active learning and stochastic dynamics. In section 5, the main result is
shown to tie together several former results of the literature. Finally, section 6 uses Nordhaus’
dice model to provide a practical application and section 7 concludes.
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2 The standard model of decision with learning

2.1 The decision problem

We consider in this section a rather general model of optimal control under uncertainty, where
decisions u0 and u1 are taken at two periods of time, namely t = 0 and t = 1. In the first period,
the decision-maker chooses a policy u0 ∈ U0 ⊂ R that influences a state variable xt ∈ R

n, for
example a stock of pollution. The state variable evolves according to x1 = f(x0, u0). The
decision-maker then chooses a second policy u1 ∈ U1(x1) ⊂ R

m. The total payoff is:

l0(u0) + l1(u1, x1, γ), (1)

where lt is the discounted utility or benefit enjoyed in period t and γ is some unknown random
variable over a probability space (Ω,F , P). Before choosing u1, the observation of the signal Φ
(another random variable over the same sample space as γ), allows the decision-maker to revise
her prior probability distribution about γ.

The decision maker aims at maximizing the expected present benefit1

max
u0

l0(u0) + E

[

max
u1

E [l1(u1, x1, γ) |Φ]

]

(2)

with x1 = f(u0) and ut ∈ Ut(xt), t = 0, 1.

‘Irreversibility’ of the initial decision u0 may materialize through the dependance on x1 of
both utility, l1, and available second period decisions, U1(x1).

The information structure is defined2 by the signal Φ. At time t = 1, the decision u1 can
be seen as a function from Ω to U1(x1) and should be measurable with respect to the σ-algebra
induced by the signal function Φ.

For the problem with information structure Φ, define the ‘ expected optimal benefit in state
x1 = x ’ as the value function at t = 1:

VΦ(x)
def
= E

[

max
u1∈U1(x)

E [l1(u1, x, γ) | Φ ]

]

(3)

which allows to rewrite the decision problem (2) at t = 0 as:

max
u0∈U0

[ l0(u0) + VΦ(f(u0)) ] . (4)

‘ No information ’ at time t = 1 can be represented by a constant signal over Ω or, equiva-
lently, by the trivial σ-algebra {Ω, ∅}. In the following, we shall denote by ⊥ a non-informative
structure3.

2.2 Second-period value of the information structure

After any initial decision u0, the decision maker knows from the deterministic dynamics f

what subsequent state of the system, x1, will enter her new decision problem at time t = 1.

1In what follows, we shall always assume that, for the problems we consider, the sup is attained and we shall
use the notation max.

2The irreversibility literature (for instance in [11, 22]) relies on a description of information through partitions.
However partitions are less general in the non-finite case. More generally, information is a σ-algebra (the one
generated by the signal, σ(Φ) in the case hereabove).

3Bottom ⊥ of the lattice of subfields of F .
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If she thinks she will not learn about γ (corresponding to information structure ⊥), she may
be ready to pay to obtain information from a signal Φ. When buying Φ, she does not know
which information she will receive, but she will be able to move from the expected benefit
V⊥(x1) = maxu1∈U1(x) E [l1(u1, x, γ)] to the expected benefit VΦ(x1). Let us define therefore4

IΦ(x)
def
= VΦ(x) − V⊥(x) (5)

as the second-period value of the information structure Φ when the system is in state x in
t = 1. This value is clearly always non-negative. Note also that the second-period value of the
information is a function of the state of the system. In the following, we shall indifferently use
the expressions ‘ value of information ’ or ‘ value of the information structure ’. More generally,
when the state of the system in t = 1 is x1 = x, the value of having an information structure Ψ
rather than the information structure Φ is:

∆ΨΦ(x)
def
= IΨ(x) − IΦ(x) (6)

If Ψ is finer than Φ, meaning that the σ-algebra induced by Φ is included in the one induced by
Ψ or, equivalently, that Φ is a (measurable) function of Ψ, than Φ, this value is also positive.

3 Effect of learning and value of information

3.1 The value of information in the decision problem

From Eq. (4) applied to the non-informative structure ⊥, the decision problem (2) with a non-
informative information structure becomes:

max
u0∈U0

[l0(u0) + V⊥(f(u0))] (7)

From Eq. (4) and (7) and the definition of the second-period value of information in Eq. (5),
the decision problem (2) with information structure Φ writes:

max
u0∈U0

[l0(u0) + V⊥(f(u0)) + IΦ(f(u0))] (8)

Comparing programs (7) and (8), it appears that the decision maker who expects information
optimizes the same objective as the uninformed decision maker plus the value of the information,
which depends on her initial decision. Her optimal decision can achieve a trade-off: it can be
suboptimal from the point of view of the non-informed decision maker but compensate for this
by an increase of the value of information.

Note also that the second-period value of information, IΦ, depends on the initial decision
even though there is no active learning, i.e. what one expects to learn does not depend on u0.

More generally, replacing the information structure Φ by the the information structure Ψ
leads to a reformulation of the problem (4) as

max
u0∈U0

[l0(u0) + VΦ(f(u0)) + ∆ΨΦ(f(u0))] .

4With general utility functions (instead of benefit functions), the value of information is measured in utility
units. Equivalent or compensating variations in monetary values can also be defined [23].
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3.2 Comparison of initial and second-period values of information

Before comparing first period optimal decisions with and without future information, it is easier
to compare the second-period values of information resulting from these decisions.

Proposition 1

Denote by I0 the initial value of acquiring the information structure Φ before any decision u0

is made:

I0 def
= max

u0∈U0

[l0(u0) + V⊥(f(u0)) + IΦ(f(u0))] − max
u0∈U0

[l0(u0) + V⊥(f(u0))] . (9)

Let u?
0 be an optimal solution of (7), the problem without learning, and uΦ

0 be an optimal
solution of (8), the problem with learning. Then,

IΦ(f(u?
0)) ≤ I0 ≤ IΦ(f(uΦ

0 )) . (10)

The proof is in Appendix A.1. This comparison generalizes the relation between the initial
value of information and the option value given by Hanemann [15], who defines option value as
IΦ(f(uΦ

0 )) − IΦ(f(u?
0)) for a family of problems where IΦ(f(u?

0)) = 0.
The hereabove inequalities show that a decision maker who knows she will receive informa-

tion in the future chooses her first decision so as to increase the value of information, whereas
a decision maker who neglects the fact that she will receive information makes a decision that
reduces the value she would be ready to pay for information.

We next derive sufficient conditions for the comparison of initial optimal decisions, a problem
at the centre of the literature on irreversibility and uncertainty.

3.3 Comparison of optimal solutions

The goal of this section is to identify how the presence of learning will affect the first period
behavior.

From Proposition 1, we obtain immediately:

(∀u > u?
0, IΦ(f(u)) < IΦ(f(u?

0)) ) ⇒ uΦ
0 ≤ u?

0.

Hence, a practical sufficient condition for comparison of optimal solutions is the strict mono-

tonicity of u0 7→ IΦ(f(u0)).
More generally, our main result is the following proposition.

Proposition 2

Let Φ and Ψ be two information structures (not necessarily comparable in the sense that one
is finer than the other).

Let uΦ
0 be any optimal initial decision with information structure Φ,

uΦ
0 ∈ arg max

u0∈U0

[l0(u0) + VΦ(f(u0))] ,

and let uΨ
0 be any optimal initial decision with information structure Ψ,

uΨ
0 ∈ arg max

u0∈U0

[l0(u0) + VΨ(f(u0))] .
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If the value of substituting information structure Ψ for Φ, namely the mapping u0 7→ ∆ΨΦ(f(u0)),
is a strictly decreasing function, then the effect of learning is precautionary in the sense that

uΨ
0 ≤ uΦ

0 .

The result5 comes immediately from the generalization of Proposition 1 (Eq. (16), in Ap-
pendix A.1). It also holds under the weaker assumption that u0 7→ ∆ΨΦ(f(u0)) is strictly
decreasing when u0 < uΨ

0 (respectively strictly increasing when u0 > uΨ
0 .) A more general

proposition can be made for non-strictly decreasing (or increasing) functions.

Proposition 3

If the value of substituting Ψ for Φ, u0 7→ ∆ΨΦ(f(u0)), is a decreasing function, then compar-
isons are still possible as follows

sup arg max
u0∈U0

[l0(u0) + VΨ(f(u0))] ≤ sup arg max
u0∈U0

[l0(u0) + VΦ(f(u0))] .

The proof derives from Proposition 6 (see Appendix A.2).
As a consequence, if uΦ

0 is unique, it is sufficient that u0 7→ ∆ΨΦ(f(u0)) be decreasing to
conclude that uΨ

0 ≤ uΦ
0 .

4 Extension to active learning and stochastic evolution

Possible extensions of the standard case appear in the literature. This section shows that the
main result still apply in the general, extended case.

Stochastic dynamics. From period t = 0 on, the state of the system x̃t is a random variable.
Its evolution may depend on an other random variable wt: x̃t+1 = f(x̃t, ut, wt). The model in
Conrad [7] is an occurrence of stochastic dynamics in the irreversibility literature.

Endogenous risk. An example of endogenous risk can be found in Gjerde, Grepperud and
Kverndokk [12] where the date of a climate catastrophe is a random variable and its probability
distribution depends on the emission reductions. Endogenous risk arises when the random
variable γ depends on the previous decisions, u0 and u1. In stochastic control theory, γ is
treated as a state variable. Endogenous risk is thus viewed as a particular case of stochastic
dynamics.

Active learning. Active learning (or dependent learning) takes place when the initial decision
can modify the signal the decision maker will receive. It means that in addition to ω, Φ depends
on u0, or more generally on x̃1 (then the modification is also random). Rouillon [29] studies
a model of active learning in climate change economics and uses the variations of the value of
information to conclude about the irreversibility effect.

5Freixas and Laffont [11] give sufficient conditions for the monotonicity of ∆ΨΦ in a setting where the dynamics
is reduced to xt+1 = ut and where the state of the system does not enter the benefits lt but only the admissibility
set. However, they do not provide the interpretation of ∆ in terms of value of substituting information structures.
Kolstad [22] obtains necessary and sufficient conditions for a problem which is actually a sub-case of Freixas and
Laffont though this does not appear at first glance from his notations but has to be derived from his hypotheses.
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Comparison in the general model

Consider the problem :

max
u0,u1

E [l0(u0, x̃0) + l1(u1, x̃1)]

with x̃1 = f(x̃0, u0, w0) and ut ∈ Ut(yt), t = 0, 1

where wt is a random variable (r.v.) and yt a non-stochastic subcomponent of x̃t, so that the
decision maker knows the admissible set U(y1) when she makes her choice6 u1.

At time t = 1, when the state of the system is the r.v. x̃, the information structure
Φ delivers a signal that depends on x̃. We denote by Φx̃ the corresponding signal function
Φx̃ : ω 7→ s(ω, x̃(ω)). The decision-problem can be written as:

max
u0∈U0(y0)

E [l0(u0, x̃0) + VΦ(f(x̃0, u0, w0))] .

with VΦ(x̃)
def
= E

[

max
u1∈U1(y)

l1(u1, x̃) | Φx̃

]

.

As in previous section, the decision problem with information can be put under the form:

max
u0∈U0

E [l0(u0, x̃0) + V⊥(f(x̃0, u0, w0)) + IΦ(f(x̃0, u0, w0))]

and the comparison of initial decisions now relies on the expectation of IΦ or ∆ΨΦ as follows.

Proposition 4

If u0 7→ E [∆ΨΦ(f(x̃0, u0, w0))] is monotone, comparison of the optimal decisions for the general
problems with information structures Φ and Ψ will be possible. Precise conditions are the same
as in Proposition 2.

It is self-explanatory that E IΦ(f(x̃0, u0, w0)) is the expected value of information after de-
cision u0, and E ∆ΨΦ(f(x̃0, u0, w0)) the expected value of exchanging the information structure
Φ for Ψ. It is also possible to define the value of information conditional on a realization of w0

or of x̃1.
To end this section, let us point out that the introduction of the state xt is by no means

necessary. In all generality, a decision maker takes two successive decisions and solves

max
u0

max
u1�G(u0),u1∈U(u0)

E(L(u0, u1, ω)) (11)

where L is a utility function depending upon decisions u0 ∈ U0 ⊂ R, u1 ∈ U1 and as well upon
a random element ω in (Ω,F , P); and u1 � G(u0) means that u1 : Ω → U1 is G(u0)-measurable.
At the first period, the decision maker takes a deterministic decision u0 while, at the second
period, the information available is described by a subfield G(u0) of F . Given two decision
problems characterized by utility functions L+ and L−, by domains U+(u0), U−(u0) and by
information mappings u0 ↪→ G+(u0) and u0 ↪→ G−(u0), ranking of optimal initial decisions u+

0

6It is sufficient to assume that the decision maker gets full information at time t = 1 on a stochastic subcom-
ponent ỹ1; then this information, ỹ1 should be explicitly included for conditioning the problem, even in the case
where no additional information arrives.
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and u−
0 is possible whenever the function

u0 ↪→ E[ max
u1∈U+(u0)

E(L+(u0, u1, ω) | G+(u0)) − max
u1∈U−(u0)

E(L−(u0, u1, ω) | G−(u0))] (12)

is monotone. When L+ = L− and G+(u0), G−(u0) are fixed subfields, this quantity may be
interpreted as the variation of the value of information

5 Value of information as a key to the irreversibility literature

A goal of the literature on irreversibility and uncertainty consists in identifying hypotheses or
conditions under which it is possible to compare efficient decisions made with different infor-
mation structures. Two kinds of conditions can be examined. A first thread follows Epstein [8]
and concentrates on determining the direction of the effect of learning for all possible random
vectors γ over a finite sample set and for all comparable information structures. As Ulph
and Ulph [32] noted, this restricts the conclusion to limited classes of problems, for example
those later identified by Gollier et al. [13]. An other thread looks for specific problems where
some kind of comparison is possible though Epstein’s conditions do not apply, as in Ulph and
Ulph [32].

In the above literature, the ranking of optimal initial decisions is obtained through conditions
that depend upon at least one of the two solutions. We show here how such conditions may be
bypassed by making use of the monotonicity of the value of information.

5.1 Epstein’s Theorem and the value of information

Epstein’s Theorem [8] may be stated as follows.
Let (Ω, P) be a finite probability space. Let Ψ and Φ be two information structures, with

Ψ finer than Φ (in [8], these are random variables). Let uΨ
0 and uΦ

0 denote the correspond-
ing solutions (assuming unicity for simplicity) of maxu0

E[maxu1∈U(u0) E(L(u0, u1, ·) | Ψ)] and
maxu0

E[maxu1∈U(u0) E(L(u0, u1, ·) | Φ)].
For any distribution law ρ on Ω, let us define

J(u0, ρ)
def
= max

u1∈U(u0)
Eρ(L(u0, u1,·)) = max

u1∈U1(x)

∫

Ω
L(u0, u1, ω)ρ(dω) (13)

In [8], any distribution law ρ on Ω is identified with an element of the simplex with dimension
the number of elements of Ω.

Epstein’s theorem states that, if ∂J
∂u0

(uΨ
0 , ρ) exists and is concave (resp. convex) in ρ, then

uΨ
0 ≤ uΦ

0 (resp. ≥). If ∂J
∂u0

(uΨ
0 , ρ) is neither concave nor convex, the ranking is ambiguous.

We now replace the condition on ∂J
∂u0

(uΨ
0 , ρ), which requires to know uΨ

0 , with one which
does not. We also relax the discrete probability and differentiability assumptions.

Proposition 5

Assume that

1. for any u+
0 ≥ u−

0 , J(u+
0 , ρ) − J(u−

0 , ρ) is convex (concave) in ρ,

2. Ψ is finer than Φ.

Then the value of substituting Ψ for Φ, u0 7→ ∆ΨΦ(u0), is an increasing (a decreasing) function.
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Thus, initial decisions may be compared (see the remarks following Proposition 2). The proof
is in Appendix A.4.

5.2 ‘ All or nothing ’ decision set (linear dynamics and costs)

The seminal literature as well as more recent contributions often considers linear dynamics and
costs — which imply all or nothing decisions — or hinges directly on a binary decision set (see
for instance [2, 16, 14, 9] and [17, part 2]). With a binary decision set, the monotonicity of the
value of information becomes trivial. Moreover, the direction of variation is easily determined
under the hypothesis of total irreversibility, i.e. when one of the two possible initial decisions
affects the second period cost so that it does not depend any longer on the second period
decision. This is for example the case with the model of Arrow and Fisher [2].

5.3 Value of information in Ulph and Ulph, 1997

Ulph and Ulph [32] developed a simple model of global warming where Epstein’s conditions
cannot apply. They proposed a specific condition that implies the irreversiblity effect. We show
that their assumptions imply the monotonicity of the second-period value of information and
can be generalized to any information structure.

The model examined in [32] can be rewritten with our formalism as follows

max
u0

[

l0(u0) + E max
u1

{l1(u1) − E[γ | Φ]D(δx1 + u1)}

]

(14)

with xt+1 = δxt + ut and ut ∈ [0, At],

where u are greenhouse gases (ghg) emissions, x ghg concentrations, lt utilities, and D a
damage function. At is the unrestricted level of emissions7. Functions lt are assumed to be
strictly increasing and strictly concave, and D strictly increasing and strictly convex. The r.v.
γ is assumed to be non-negative.

The authors compare u?
0, the initial decision without information, and u??

0 , the initial decision
with perfect information structure (for instance Φ = γ). With our notations, their theorem 3
states that:

if (u?
0, u

?
1) is such that u?

1 = 0, then u??
0 ≤ u?

0.

Two features are essential to this result. On the one hand, the assumption that the optimal
policy, u?

1 = 0, is a corner solution in the second period. On the other hand, the shape of the
payoff, which is linear in the random variable.

In fact, in Ulph and Ulph’s model, the condition u?
1 = 0 implies that the second-period

value of any information structure Φ is a decreasing function for u0 ≥ u?
0 (the proof8 is given

in Appendix B). As a consequence, uΦ
0 ≤ u?

0 for any information structure Φ.

7Ulph and Ulph do not make this assuption which is implicit for the problem considered (greenhouse gases
emissions cannot be infinite) and makes the demonstration easier.

8The intuition for monotonicity is as follows. The condition u?

1 = 0 implies that when no information is
available, it is optimal to cut emissions to zero in t = 1 if the ghg concentration x1 is above a level x? = δx0 +u?

0.
Conversely, when information is obtained when x1 ≥ x?, it might open the opportunity to emit. The value of the
information is then equal to the benefit of additional emissions in t = 1 minus the expected additional damages.
From the envelope theorem, these expected additional damages are strictly increasing at the margin for a small
increase of concentration x1, whereas benefits do not directly depend on concentration x1. As a consequence,
the value of information diminishes and Proposition 2 applies.
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Ulph and Ulph however noted that the condition u?
1 = 0 seems unlikely to be verified.

They also checked with a numerical model that for different parameter values (discount rate,
probabilities, damage cost parameter), the opposite of the irreversibility effect was generally
obtained (u??

0 > u?
0). In terms of value of information, the question arises whether emitting

more today decreases or increases the value of future learning about the climate.

6 Near-term emission reductions and value of future informa-

tion on the climate

As Ulph and Ulph [32] noted, it is not possible to conclude in advance and “as a matter of
principle” about the direction of the effect of learning for the climate change issue. This would
require the condition identified by Epstein, which is not met even in the “simplest model of
global warming” that they set out.

Moreover, most of the theoretical models, including theirs’, can hardly be used to help and
interpret the results of integrated-assessment models (iam) of climate and economics such as
dice [25, 26]. For instance, theoretical models tend to represent environment by a scalar and
its dynamics by a linear function, whereas in dice 98, the environment is a five-component
vector and the dynamics for atmospheric temperature is non-linear.

By contrast, dice can fit into the framework proposed in section 4, provided the simplifica-
tion that the policy adopted before information occurs is summarized by a scalar.

6.1 Description and extension of the stochastic DICE model

The model is a stochastic optimal-growth model of the world economy. It is designed to maxi-
mize the discounted expected value of utility from consumption. The decisions v are the rate of
investment and the rate of emissions reduction in greenhouse gases, so that vτ ∈ [0, 1] × [0, 1].
The state variable zτ comprises the stock of capital; concentrations of carbon in three reservoirs
(atmosphere; biosphere and surface ocean; deep ocean); and oceanic and atmospheric global
mean temperature rises with respect to pre-industrial times. The temperature components of
z are stochastic. Uncertainty enters their dynamics through the climate sensitivity γ, which
remains unobserved until year 2040. This random variable is constant through time with values
2.5 ◦C, 3.5 ◦C and 4.5 ◦C corresponding to the atmospheric temperature rise for a permanent
doubling of the carbon concentration in the atmosphere. These values are within the range
reported by the IPPC [18, chapter IX]. In time step τ = 0, the true atmospheric temperature
rise is also uncertain. The model operates in time steps of 10 years. Perfect information on
climate sensitivity γ is obtained in 2040.

The stochastic version of the dice model [25, chap. 8] with learning in 2040 (time step
τ = 4) has the following structure:

max
v0,...,v3

E

{
∑

τ<4

Lτ (vτ , zτ ) + E

[

max
(vτ )τ≥4

T∑

τ=4

Lτ (vτ , zτ )

∣
∣
∣
∣
∣
γ

]}

(15)

with zτ+1 = G(zτ ,vτ , γ) ∈ R
6

Some of the detailed climate-economy equations in G depart from the original dice model.
The temperature increase equation is an updated calibration that provides a better descrip-
tion of warming over forthcoming decades. A threshold damage function replaces the original
quadratic one. Both climate module and damage function are taken from Ambrosi et al. [1].
The full description for the original dice model can be found in Nordhaus [25] or Nordhaus
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and Boyer [26].
In order to apply the formalism of section 4, we summarize the initial policy (v0, . . . ,v3)

with a function R : [0, 1] 7→ R
4×2
+ , constructed so that optimal decisions (v#

0 , . . . ,v
#
3 ) in the

original model can be approximated with R(v# abat. rate
3 ) under different scenarios. Details for

this parameterization are in Appendix C. The model in Eq. (15) is then solved with the
constraint (v0, . . . ,v3) = R(vabat. rate

3 ). The model is formulated in GAMS and solved with
MINOS. The code is available from the corresponding author upon request.

Finally, ’first period t = 0’ in section 4 shall refer to the time steps τ = 0, . . . , 3 and ’second
period t = 1’ shall refer to the time steps τ ≥ 4. The initial policy is summarized through

uinitial
def
= 1 − vabat. rate

3 , the rate of emissions allowance at time step τ = 3 and we will plot the
second-period value of information as a function of the initial policy choice u initial.

6.2 Results

Figure 1 plots the expected value of information as a function of the initial emission policy.
Available initial decisions range from no effort until 2039 (100% emissions allowance) to tar-
geting the maximum effort in 2039 (0% allowance). Three cases are presented corresponding
to three different probability distributions for γ: optimistic case, centered case and pessimistic
case (see Appendix C).

In all cases, the prospect of learning the true value of γ in 2040 is an opportunity to allow
initially more emissions (less reduction efforts) than in the never-learn situation (u??

initial >

u?
initial). Here, the effect of learning is not precautionary. This is usually found in the empirical

literature [25, 32, 1], but as far as we know, empirical models like this one remain out of bounds
for the existing analytical literature about irreversibility, learning and climate change. Therefore
it could offer no explanation for such results. However, in all three cases, the direction of the
effect of learning can be related to the monotonicity of the expected value of information. In
the dice model — with a modified threshold damage function — it turns out that allowing
more emissions now tends to increase the desirability of getting information in the future.

The ‘ effect of learning ’ (the difference between u?
initial and u??

initial) that we find increases
emissions allowance in 2030 from 71 to 76% with centered probabilities, from 66 to 69% with
pessimistic probabilities, 75 to 80% with optimistic ones. The corresponding decrease in the
abatement rate (from 28 to 24%; 34 to 31%; 25 to 20%), ranges from a factor 0.91 to 0.79. In
terms of abatement costs9 it yields a reduction which is roughly between 18% and 40%. Clearly,
learning has an effect on decision which is not negligible. This is in contrast with earlier results
by Nordhaus [25] or Ulph and Ulph.

In an analytical framework with a linear dynamics, Gollier et al. [13] showed that logarith-
mic utility implies that the structure of information has no effect on the initial decision. They
wondered whether this was the explanation for the little or nonexistent effect of learning found
in these earlier results. Our model departs from Nordhaus’ dice with some specifications of the
dynamics (temperature model and damage function). But the utility function is logarithmic as
it is in dice. Thus, our findings answer the question raised in [13] and show that the weak effect
of learning found by Nordhaus is also determined by his temperature dynamics and damage
function and not solely by the logarithmic utility function. This also emphasizes the difficulty
to apply results from the analytical literature for interpreting integrated assessment models.

9In dice 98, the abatement costs are proportional to the rate of abatement raised at the power 2.15.

11



 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u, rate of emission allowances by 2030

 Exp. value of info, pessimistic probabilities

u* u**

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u, rate of emission allowances by 2030

Exp. value of info, centered probabilities

u* u**

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

u, rate of emission allowances by 2030

Exp. value of info, optimistic probabilities

u* u**

Figure 1: Expected value of information in 2040 as a function of initial policy.
Initial policy is summarized by uinitial, the rate of emissions allowance in 2030–2039. In each case, expected value
of information increases with the emission allowance: the more we emit before 2040, the more we are willing to
pay for information on the climate in 2040. As a consequence, the optimal initial policy with future learning,
u??

initial, allows more emissions than the optimal initial policy without future learning, u?

initial (Proposition 2).
The expected value of information has been normalized with EI0, the expected value of information before any
decision is made. Note that this normalization is different in each case. It also shows that EI0 is upper bounded
by the expected value of information after decision u??

initial and lower bounded by the expected value of information
after decision u?

initial (Proposition 1).
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7 Conclusion

This article put forward the usefulness of the concept of value of information in the analysis
of sequential decision problems. The difference between value of future information before
and after an initial decision is taken was made explicit. The second-period value of information

should be viewed as a function of the initial decision and its monotonicity is sufficient for making
a conclusion about the direction of the effect of learning. Interestingly, many of the conditions
given in the literature concerning the irreversibility effect can be related to this monotonicity.
However, the present analysis shares a common limitation with the irreversibility literature: the
initial decision is assumed to be scalar. But extension is available in theory. As long as the
set of admissible initial decisions can be ordered even incompletely, supermodularity results as
in [30] lead to a similar conclusion. However, the difficulty is to find a meaningful order over
the decision set.

Consequently, in the case of the dice integrated assessment model10 we have parameterized
the decisions over 2000–2039 with the level of emission abatement by 2030. The value of the
information on the climate is defined as a function of this scalar. With different probability
distributions over the climate sensitivity, we find that the more we allow emissions over 2000-
2039, the more the value of information forthcoming in 2040 increases. In those cases, it sheds
light on why the effect of learning is not precautionary, a result often found in the climate
change literature11.

Appendix

A Proofs

A.1 Proof of Proposition 1

By definition, the initial value of information is

I0 def
=

JΦ
def
=

︷ ︸︸ ︷

max
u0∈U0

[l0(u0) + V⊥(f(u0)) + IΦ(f(u0))]

− max
u0∈U0

[l0(u0) + V⊥(f(u0))]

︸ ︷︷ ︸

J⊥
def
=

.

Since u?
0 is an optimal solution of the problem without information and since uΦ

0 is an optimal
solution of the problem with information, we have, on the one hand,

J⊥ = l0(u
?
0) + V⊥(f(u?

0)) ≥ l0(u
Φ
0 ) + V⊥(f(uΦ

0 ))
︸ ︷︷ ︸

IΦ−IΦ(f(uΦ
0 ))

so that IΦ − I⊥ ≤ IΦ(f(uΦ
0 )).

10With a modified threshold damage function and a modified climate module.
11The question remains whether certainty about the future evolution of the climate could be obtained as soon

as 2040. Kelly and Kolstad [20] suggest that certainty on the true value of the climate sensitivity with less than
5% rejection might be available only after 2090. For this reason, Keller et al. [19] explore a case where perfect
knowledge is gained in 2085 only. It has however the opposite limitation to assume that our knowledge does not
improve from 2000 to 2085.
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On the other hand,

IΦ = l0(u
Φ
0 ) + V⊥(f(uΦ

0 ) + IΦ(f(uΦ
0 )) ≥ l0(u

?
0) + V⊥(f(u?

0))
︸ ︷︷ ︸

J⊥

+IΦ(f(u?
0))

so that IΦ − I⊥ ≥ IΦ(f(u?
0)). Combining both inequalities, we obtain

IΦ(f(u?
0)) ≤ I0 = JΦ − J⊥ ≤ IΦ(f(uΦ

0 ))

which is Proposition 1.
Similarly we obtain easily:

∆ΨΦ(f(uΦ
0 )) ≤ JΨ − JΦ ≤ ∆ΨΦ(f(uΨ

0 )) (16)

where uΨ
0 (respectively uΦ

0 ) is any optimal initial decision for the problem with the information
structure Ψ (respectively Φ). Note that, without specific hypothesis on the relative informa-
tiveness of Φ and Ψ, ∆ can assume negative values and JΨ − JΦ can be negative.

A.2 General results on comparison of arg max

We recall here some results on comparisons between the arg max of two optimization problems.
They may be seen as particular instances of results from a general theory with supermodular
functions or functions with increasing differences, as developed in [31].

Proposition 6

Let D ⊂ R, let g : D → R and h : D → R. We denote

Dg
def
= arg max

u∈D
g(u) ⊂ D and Dg+h

def
= arg max

u∈D
(g + h)(u) ⊂ D ,

and we assume that Dg 6= ∅ and Dg+h 6= ∅.

1. If h is strictly increasing on ] −∞, supDg], then

supDg ≤ inf Dg+h .

2. If h is increasing on ] −∞, supDg], then

supDg ≤ supDg+h .

3. If h is strictly decreasing on [inf Dg,+∞[, then

supDg+h ≤ inf Dg .

4. If h is decreasing on [inf Dg,+∞[, then

inf Dg+h ≤ inf Dg .

Proof. We prove the first statement, the others being minor variations.
Let u]

g ∈ Dg. For any u ∈ D, we have g(u) ≤ g(u]
g). For any u ∈] −∞, u]

g[, we have h(u) < h(u]
g) if

h is strictly increasing. Thus

u ∈] −∞, u]
g[⇒ g(u) + h(u) < g(u]

g) + h(u]
g) .
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We conclude that Dg+h ⊂ [u]
g , +∞[, so that

Dg+h ⊂
⋂

u
]
g∈Dg

[u]
g , +∞[ = [supDg, +∞[ ,

which proves that supDg ≤ inf Dg+h. 2

A.3 Proof of Proposition 2

The proof of Proposition 2 is a straightforward consequence of Proposition 6 with u0 7→ l0(u0)+
VΦ(f(u0)) + ∆ΨΦ(f(u0)) as function g and u0 7→ −∆ΨΦ(f(u0)) as function h.

Freixas et Laffont [11] propose a similar proof for a case with simplified dynamics and criteria
(see section 3.3).

A.4 Proof of Proposition 5

Let P(Ω) be the set of all distributions on Ω, the set of the states of the world. By classical
arguments [5, p. 77] (as soon as Ω is a complete separable metric space for instance), there
exists a regular conditional probability of P given Φ, denoted by P

Φ : Ω × F → [0, 1] and
characterized by:

1. ∀ω ∈ Ω, P
Φ(ω,·) ∈ P(Ω);

2. ∀A ∈ F , ω ↪→ P
Φ(ω,·) is measurable with respect to Φ;

3. for all bounded random variable Z, E(Z | Φ)(ω) =
∫

Ω Z(ω′)PΦ(ω, dω′), for P-almost all ω.

The sensor12 associated to P and Φ is the random measure SΦ ∈ P(P(Ω)) image of the measure
P by the mapping

ω ∈ Ω ↪→ P
Φ(ω,·) ∈ P(Ω) . (17)

It is shown in Artstein and Wets [4] that, as soon as measurability and integrability assumptions
hold true,

E

(

max
u1∈U1(x)

E [L(u0, u1, ω) | Φ ]

)

=

∫

Ω
P(dω)

(

max
u1∈U1(x)

∫

Ω
L(u0, u1, ω

′)PΦ(ω, dω′)

)

=

∫

P(Ω)
dSΦ(ρ)

(

max
u1∈U1(x)

∫

Ω
L(u0, u1, ω

′)ρ(dω′)

)

=

∫

P(Ω)
dSΦ(ρ)J(u0, ρ) .

Thus, by (6) and (5), we have

∆ΨΦ(u0) = E

(

max
u1∈U1(x)

E [L(u0, u1, ω) | Ψ ]

)

− E

(

max
u1∈U1(x)

E [L(u0, u1, ω) | Φ ]

)

=

∫

P(Ω)
dSΨ(ρ)J(u0, ρ) −

∫

P(Ω)
dSΦ(ρ)J(u0, ρ) .

12A sensor is a probability law on the set P(Ω) of all distributions on the states of the world, i.e. an element
of P(P(Ω)), the Borel space of probability measures on P(Ω). Following [3], an information structure can be
defined by a sensor since it governs which posterior beliefs will be materialized at the time of decision.
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Still following [4] and [3], if Ψ is finer than Φ, then SΨ is more refined than SΦ in the sense
that for all φ : P(Ω) → R convex,

∫

P(Ω)
φ(ρ)dSΨ(ρ) ≥

∫

P(Ω)
φ(ρ)dSΦ(ρ) . (18)

Thus, under the assumptions, the value of substituting Ψ for Φ, u0 7→ ∆ΨΦ(u0), is an increasing
(a decreasing) function.

B Extension of Ulph and Ulph’s result, 1997

We express
dIΦ

dx1
=

dVΦ

dx1
−

dV⊥

dx1
for the problem (14).

The optimal feedback without information is given by

û1(x1)
def
= arg

V⊥(x1)
︷ ︸︸ ︷

max
u1≥0

[l1(u1) − Eγ D(u1 + δx1)] .

Unicity of the arg max results from the strict concavity of the mapping u1 7→ l1(u1)−Eγ D(u1+
δx1) since, by assumption, l1 is strictly concave, D is strictly convex, and γ ≥ 0.

Denoting x?
1

def
= δx0+u?

0, we have u?
1 = û1(x

?
1) by definition. From Euler’s characterization of

the maximum of a concave function, the assumption u?
1 = 0 implies that l′(0)−δEγD′(δx?

1) ≤ 0.
Now, since −D′ is decreasing (D is convex), we have for any x1 ≥ x?

1,

l′(0) − δEγD′(δx1) ≤ l′(0) − δEγD′(δx?
1) ≤ 0

Thus, by Euler’s condition, we get û1(x1) = 0. Replacing in V⊥(x1) and differentiating with
respect to x1, we obtain

dV⊥

dx1
(x1) = −E [γ] δD′(δx1).

We now turn to dVΦ

dx1
(x1). Let us define

uΦ
1 (x1)

def
= arg max

u1

l1(u1) − E[γ | Φ]D(u1 + δx1)

which is a random variable.
By the Danskin theorem (see [6]), we get

d

dx1
max

u1

l1(u1) − E[γ | Φ]D(u1 + δx1) = −E[γ | Φ]δD′(δx1 + uΦ
1 (x1)) .

By differentiating under the integral sign, it comes

dVΦ

dx1
(x1) = E

[
−E[γ | Φ]δD′(δx1 + uΦ

1 (x1))
]
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Finally,

dIΦ

dx1
(x1) = E

[
−E[γ | Φ]δD′(δx1 + uΦ

1 (x1))
]
+ E [γ] δD′(δx1)

= E
[
−E[γ | Φ]δD′(δx1 + uΦ

1 (x1))
]
+ E

[
E [γ | Φ]

]
δD′(δx1)

= E
[
E [γ | Φ](D′(δx1) − D′(δx1 + uΦ

1 (x1)))
]

which is non-positive since uΦ
1 (x1, s) ≥ 0 and D is convex. Therefore u0 7→ IΦ(δx0 + u0) is

decreasing for all u0 greater than u?
0: if initial ghg emissions are above their optimal level

without information, increasing these emissions diminishes the value of information.

C Details for the numerical model

A more comprehensive description of the model, parameterization and results is included in a
supplementary document available from the corresponding author.

C.1 Parameterization of the initial policy

An initial policy (vτ )τ=0,...,3 comprises emission abatement rates, (vabat.
τ )τ=0,...,3 and investment

rates (vinv.
τ )τ=0,...,3. We call uinitial the emission allowance rate in time step τ = 3 and define

the initial policy summarized by uinitial and by function R : [0, 1] 7→ R
4×2
+ : it is given by the

constraint (vτ )τ=0,...,3 = R(1 − uinitial) where vabat.
3 = 1 − uinitial.

The function R is constructed in order to approximate the optimal policies obtained by
dice under different scenarios on information and climate sensitivity. For instance, if v# abat.

3

is the optimal value for vabat.
3 in the DICE model with early information in 2000 and climate

sensitivity of 2.5 ◦C, we would like the values of the 8-tuple R(v# abat.
3 ) to be as close as possible

to the optimal values for (vabat.
τ , vinv.

τ )τ=0,...,3 in the same scenario.
Four scenarios have been used for the construction of R:

• H1, H2, H3 (certainty scenarios): the sensitivity of the climate, γ, is known from time
step τ = 0 and assumes respectively the values 2.5 ◦C, 3.5 ◦C and 4.5 ◦C .

• H4 (uncertainty with learning): the true value of γ is unkown in the near-term. Uncer-
tainty is resolved at time step τ = 4. Pessimistic probabilities (see section C.2 below) are
used. below).

Figure 2 displays as dots the optimal policy (v#
τ )τ=0,...,3 for each scenario H1–H4 (abatement

rate in the left panel, investment rate in the right panel). The initial policies defined by

R(v# abat.
3 ) are shown as lines for each optimal value of vabat.

3 obtained under scenarios H1 to
H4.

C.2 Probability distributions

.

Climate sensitivity
2.5 ◦C 3.5 ◦C 4.5 ◦C

optimistic 2/3 1/3 1/3
centered 1/3 2/3 1/3
pessimistic 1/3 1/3 2/3

17



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2000  2010  2020  2030

A
ba

te
m

en
t r

at
e

H1
H2
H3
H4

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 2000  2010  2020  2030

S
av

in
g 

ra
te

H1
H2
H3
H4

Figure 2: Parameterization of policy before 2040
The left panel shows the abatement rate component of the initial policy (time steps τ = 0, . . . , 3), and the right
panel the investment rate component. Optimal values of the policy under hypotheses H1–4 are shown as dots.
The lines trace the initial policy values defined by the parameterization R(v#abat. rate

3 ).
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