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Abstract. In their 1990 paper Optimal reproductive efforts and the timing of reproduction of annual plants in
randomly varying environments, Amir and Cohen considered stochastic environments consisting of i.i.d. sequences
in an optimal allocation discrete-time model. We suppose here that the sequence of environmental factors is more
generally described by a Markov chain. Moreover, we discuss the connection between the time interval of the discrete-
time dynamic model and the ability of the plant to rebuild completely its vegetative body (from reserves). We
formulate a stochastic optimization problem covering the so-called linear and logarithmic fitness (corresponding
to variation within and between years), which yields optimal strategies. For "linear maximizers", we analyse how
optimal strategies depend upon the environmental variability type: constant, random stationary, random i.i.d., random
monotonous. We provide general patterns in terms of targets and thresholds. We also provide a partial result on the
comparison between ‘"linear maximizers" and "log maximizers". Numerical simulations are provided, allowing to give
a hint at the effect of different mathematical assumptions.
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1. Introduction

The theoretical body on evolution of energy allocation between growth and reproduction is substantial in the
ecological and biological litterature, with recurrent themes and questions. One of them is the determinate
growth life-history pattern: mammals and many other organisms stop growth when they become mature and
start to reproduce. But other animals and plants, such as fishes, snakes, clams, etc. experience indeterminate
growth: their life-history shows mixed growth and reproduction. The role of the environment in allocation
strategies and the question of phenotypic plasticity, that allows individuals to adapt their phenotype to their
actual environment, are also largely debated [HM99].

Concerning plant growth, different papers identify optimal strategies as those which maximize a certain
measure of fitness. In [Pug87], optimal strategies of perennial plants in a deterministic environment are those
which maximize the Malthusian population rate of increase. Optimal strategies of plants in stochastic en-
vironments are studied in [AC90,IK97,Iwa00]. In stochastic environments, two different measures of fitness
are available for annual plants. When variability is between individuals within the year, optimal plants are
“linear fitness maximizers”; when variability is between years for the same individual, optimal plants are “log
fitness maximizers”. Although maximizing the expected value of the logarithm of the annual reproductive
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yield seems more appropriate in stochastic environments, it is unfortunately a mathematical challenge com-
pared to maximizing the expected value. Amir and Cohen attacked this problem in [AC90] in the case of i.i.d.
stochastic environmental factor sequences. We try and extend their work for general stochastic sequences,
with the goal of studying the impacts of environmental variability on optimal strategies. Doing this, we shall
contest some of their assertions as to stationarity of optimal strategies.

In section 2, we present the basic model by Amir and Cohen in [AC90], together with its extension to
general Markovian environments. We discuss the biological content of the time unit (time interval of the
discrete-time dynamic model), in connection to the ability of the plant to rebuild completely its vegetative
body (from reserves). We also try to justify the two different measures of fitness presented hereabove. Optimal
strategies are defined as those maximizing fitness: we cover both linear and logarithmic fitnesses under a
common mathematical treatment. In section 3, we study how optimal strategies for "linear maximizers"
depend upon environmental variability. We show that they are characterized by means of what we call
targets and thresholds. This allows us to study the influence of different types of environmental variability:
constant, random stationary, random i.i.d., random monotonous. A rich variety of patterns emerges from
the property that targets and thresholds are generally functions of time and of the environmental factor. In
section 5, we provide a partial result on the comparison between "linear maximizers" and "log maximizers".
We do not insist on such a comparison which is a difficult task in all generality (some elements of discussion
may be found in [AC90]). In the conclusion 6, we sum up our main results, discuss the limitations of our
assumptions, and provide some numerical simulations to illustrate different options. The Appendix collects
all proofs.

2. A discrete-time model of annual plant growth in general stochastic environments

We present here an extension of the basic model of [AC90] to the case where the sequence of environment
factors in the year is not necessarily i.i.d.

2.1. A dynamic and stochastic growth model

The model is a discrete time one with time variable ¢t € {0,...,7}. A time unit may typically be either a day
(t €{0,...,364}), a month (¢t € {0,...,11}), or a season (¢ € {0, 1,2, 3}), where, in the whole paper, season
is to be understood in the usual sense of winter, spring, summer, autumn.

We choose a discrete time model for different reasons. First, the original model of [AC90] is in discrete
time (where, surprisingly, the time unit is not formally defined!). Second, when the effect of the environment
may be summed up in a global factor over, for instance, a month (mean temperature, enlightment, etc.), a
monthly discrete time unit is appropriate. Third, when time unit is the day, a continuous time model might
be an alternative; however, our position is that the introduction of an adapted mathematical apparatus of
continuous time stochastic processes and stochastic control would introduce technicalities that one may avoid
with discrete time stochastic control. Here is the model.

1. At the beginning of each time interval [t, ¢ + 1],

(a) the plant is characterized by its vegetative biomass k; € [0, +oo[ and by the cumulated reproductive
biomass S; € [0, +00[;

(b) an environmental factor w; € W affects the total biomass f(k:, w:) which will be allocated between
vegetative and reproductive biomass during [¢t, ¢+ 1] (depends on roots, leaves, environmental factors,
etc.); for instance, when time unit is a day, w may be the mean temperature, humidity, enlightment,
etc. belonging to W = R™; when time unit is a season, w may take discrete values corresponding to
a global characterization of the season (for instance, W = {winter, spring, summer, autumn}); the
same holds for a month; in all generality, W is a Borel space, equipped with o-algebra W.

2. At the end of each time interval [¢,¢ + 1],

(a) the plant allocates biomass u; — bounded above by f(k:,w;) and below by a fraction a (0 < a < 1)
of its vegetative biomass — as vegetative biomass and f(k:, w;) — u; as reproductive biomass in the
interval [t,t + 1[; the constraint ak; < u; < f(k¢, w;) will be commented in the following subsection;

(b) the cumulated reproductive biomass is S;11 = Sg + ZZ:O [f(ks,ws) — ug] = St + [f (ke, we) — ug);

! Some references to “daily state of the environment” suggest that the time unit might be the day.
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(c) the plant biomass is
— either k; 11 = u; with probability 8; (survival), where 3 is a deterministic number in [0, 1];
— or k;rq = 0 with probability 1 — 3; (death);

(d) the environment is characterized by w;y; randomly drawn according to law 7 (dwitq | we); 7 is a
stochastic kernel on W, that is for all w € W, m;(dw’ | w) is a probability on (W, W); for instance, when
time unit is a day, the daily environmental factor w; is statistically related to w;; when time unit is
a season, (wy, w1, wsa, ws) is the deterministic sequence (winter, spring, summer, autumn), which may
be generated from a degenerate stochastic kernel on W = {winter, spring, summer, autumn}; when
time unit is a month, (wy,...,w;;) may follow a deterministic sequence (sinusoidal) with random
perturbations.

This goes on till the last time interval [r, 7 4+ 1[ where the plant ultimately dies: k41 = 0 with probability
1 (that is 8, = 0). Thus, 7 + 1 is the mazimal life span: when time unit is a day, 7 = 365 is the number of
days in one year; when time unit is a month, 7 = 12, and when time unit is a season, 7 = 4. The cumulated
reproductive biomass at terminal time 7 + 1 is S; 41, released in the form of independent offspring.

2.2. Biological comments

In the above model, the environmental factor w, is realized and known at the beginning of the time interval
[t,t + 1[. By “known”, we simply mean that the decision at the end of the time interval [¢,¢ + 1] may depend
upon wy, just as it may depend upon the vegetative biomass k;. This does not mean that the plant has a
clairvoyance ability, but simply that allocation between vegetative and reproductive biomass is made at the
end of the time interval, depending on observed environmental conditions.

As to the constraint ak; < u; < f(ki, w), where 0 < o < 1, we shall discuss three cases.

a = 0. The constraint 0 < u; captures the assumption that the plant can rebuild completely its vegetative
body (from reserves) during every time interval. Such a hypothesis requires a large time interval, as for
a month or for a three-months season but not for one day. Let us insist upon the fact that

— uy = 0 is a possible decision, meaning that the plant can “decide” to die, transforming all vegetative
biomass into reproductive one;
— uy < ky is a possible decision, meaning that the plant can reduce its present size.

a = 1. The constraint k; < u; is adapted to organisms which cannot, for structural reasons, reduce their
body in a short time interval. In that case F'(k,w) = f(k,w) — k is nonnegative® and represents biomass
produced in the time interval [t,¢ + 1].

0 < a < 1. This accounts for an intermediate situation, where the plant body decrease is possible but limited
to a fraction of its body.

To end up, notice that the plant biomass is driven by the stochastic environmental factor w; € W, through
the control u; € [aky, f(kt, w;)], while the environmental factor w; is affected neither by k;, nor by S;. Hence,
an important implicit assumption is the absence of density-dependence effects.

2.8. Mathematical assumptions

Random environments Environmental randomness has two independent sources in the above model.

One is a sequence of independent Bernoulli random variables taking value 0 for death and 1 for survival:
do,- - ., d, are independent and such that P(d; = 1) = 3; = 1 — P(d; = 0)3. Such a sequence is characterized
by (deterministic) parameters 3y € [0,1],..., 3.—1 € [0,1], 3, = 0.

The second source of randomness is a sequence of environmental factors wy,. .., w,, taking values in a
Borel space W with o-algebra W, which affect the growth function f(k,w). The family of stochastic kernels
(7)t=o0,...,r—1 on the Borel space W, together with an inital law for wy, generate a Markov chain (w;)i=o,...

2 Tf, for some wy, F(ki, w;) < 0, the constraint k; < u; < f(k¢,w:) cannot be satisfied, some additional assumptions
must be made, as to decide that the organism must die. We shall make an ad hoc assumption to avoid such a situation.

3 An equivalent formulation, as in [AC90], requires a random integer T having values in {0,1,...,7} corresponding
to death date. The link between both approaches is given by the formula P(T'=¢ |T > ¢t) =1 — 8, = P(d: = 1).
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of environmental factors. For technical reasons, we assume that the kernels satisfy the Feller property: for
all continuous function V : Ry x W — R, the function (k,w) — [V(k,w")m(dw’ | w) takes finite values
and is continuous.

In what follows, a general random environment is a sequence (03¢, 7;)i=o,....r—1 of deterministic numbers
in [0,1] and of stochastic kernels as above®. By general random environment, we also mean the stochastic
process (d¢, wt)i=o,... r-

We shall particularly be concerned with random stationary environments. This is a special case where
all 3; are equal to a fixed 8 € [0, 1] (except 8, = 0) and all m; are equal to a fixed 7. The Markov chain
(w¢)i=o,...,r of environmental factors is then stationary.

Gross growth function Concerning the (gross) growth function f : Ry x W — R, we make the following
assumptions:

— f is continuous;

— for all w e W, f(0,w) =0 and f(k,w) > 0 for k > 0;

— for all w € W, k € Ry — f(k,w) is increasing (and we denote by k € R, — f~1(k,w) its inverse®);
— forall w e W, k € Ry — f(k,w) is strictly concave.

All these assumptions are classical in an economic framework where the trade-off is, for instance, between
consumption and investment [BM72].
For simplicity reasons (see footnote 2), we add the following assumption:

— for all w € W, f(k,w) > ak for k > 0; when o = 0, this assumption is a consequence of our second
assumption hereabove; when a > 0, this is an ad hoc assumption to avoid problems with empty constraints
sets.

As an illustration, the growth function
flk,w)=wk” with weRy, keRy, 0<y<l1 (1)

satisfies the above assumptions for & = 0. For 0 < a < 1, one would rather take f(k,w) =k + wk".

2.4. Two measures of fitness

We try here to make explicit the assumptions leading to two different measures of fitness (see [Coh66,LC69,
Cas01]). By a strategy, we mean here a Markovian strategy, that is a feedback u: = (¢, k+, S¢, w:) depending
both upon the time interval and upon the state at this date (vegetative biomass, cumulated offspring,
environment).

Variability between individuals within year We consider N annual plants following the same strategy in
one year. Each plant i is submitted to death occurences (d%);—o .. . and environmental factors (wi);—o . ..
We assume that the sequence (di,w;)i—o,.. ry--, (A, w])i—o . - is i.i.d. Thus, plants only differ by the
realizations of the environment. The total annual reproductive yield by the N plants is S, + -+ SN ;.
If we assume that N is large, then S! ; +---+ SN, ~ NE(S,11), by the law of large numbers.

This is why E(S;+1), expected value of the annual reproductive yield, is the appropriate measure of fitness
when variability is between individuals within the same year and the populations are sufficiently large.

Variability between years for the same individual Here, we follow a single plant from year to year during N
years (and not N plants during one year).

At the beginning at year 1, the plant has vegetative biomass ko; at the end, it yields S2 1 offspring, de-
pending on death occurences (d} );—o....» and environmental factors (w} ):—o,... » (recall that index ¢ measures
time intervals within a year). We write S1 , = &((d}, w} )i=o,....r)-

1
We assume that this offspring gives n; = LS,TCO“J plants (|s] is the largest integer < s) of vegetative
biomass kg. Thus, all “sons” become new plants at the beginning of year 2, and the process starts with null

4 We do not insist on the initial law for wo which plays little role in the sequel.
® With the convention that f~'(+oco,w) = 400, for all w € W.
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offspring. Since there are no density-dependence effects in our model, we have S2_ | = ny x®((df, w?)i—o,...,r ),
2
and thus no = LS;U“J ~ nlé((df’wi)o”:" """ o)
Pursuing this process, we see that the total reproductive yield at the end of year N is ny---nyko =
2((dwi)e=o.....r) - o((dy wi)i=o,...,
ko k[}
the sequence (d}, w})i—o. .7y, (AN, w]N)i—o, ., isii.d., the time-averaged growth rate is then

T)ko. The long-run annual yield of seeds is limy_, 4 oo[n1 - ~~nNk0]1/N. If

log([ny - - - nvko]V/N) ~ %[log%)fo“") + - +log %{::oﬁ + log ko]

I e e L
by the law of large numbers. This is why E(log S;+1), expected value of the logarithm of the annual repro-
ductive yield, is the appropriate measure of fitness when variability is between years.
Notice that the assumption that the sequence (d},w;})i=o.. ry---, (A, w])i—o. - is i.i.d. implies that
for all t, d},..., dYN areii.d. This precludes dependence between years, such as would be the effect of global
warming for instance.

2.5. Fitness maximization in a stochastic environment

We shall now formulate an optimization problem which covers both cases of fitness. Let U : Dom(U) — R
be a concave increasing function, which will be either U(y) = y (Dom(U) = [0,4o0[) or U(y) = logy
(Dom(U) =0, +00[). Maximizing linear or logarithmic fitness amounts to solving the optimization problem

supE (U(S-11))
(kt, St,w;) controlled Markov chain with transition defined above (3)
under constraint ak; < up < f(ke, we) .

Classically, stochastic dynamic programming ([Ber00]) gives optimal strategies which are feedback strategies:
they depend both upon the time interval and upon the state at this date (vegetative biomass, cumulated
offspring, environment), that is u; = (¢, k¢, S¢, we). It is clear that optimal strategies are defined in terms
of regions in the state space: at each date, there is one domain in which full allocation to growth is optimal
(us = f(ke,we)), and the complement domain where some reproduction occurs (u; < f(kt,w;)). For "linear
maximizers", these domains do not depend upon the cumulated offspring, as is shown in [AC90].

However, we depart from Amir and Cohen’s mathematical characterizations of these domains. By a
rigorous application of stochastic dynamic programming, we shall provide characterizations which lead us
to question some of Amir and Cohen’s assertions as to stationarity. Indeed, we shall show that, even for
stationary environments, the domain in which full allocation to growth is optimal is generally different from
time interval to time interval. This reflects the influence of the final horizon 7 + 1. However, we shall prove
that there exist stationary strategies under specific assumptions.

The following Proposition describes the optimal strategy by means of three regions: one where the upper
bound on wu; is binding, corresponding to full allocation to growth (u; = f(k:,w:)); one where the lower
bound on u; is binding and where w; sticks to ak; due to impossibility of total rebuilding (this region is
meaningless when « = 0); one where none of these bounds is binding and where vegetative biomass reaches
a target n;}(kt, S, wy, t), while remaining biomass is allocated to reproduction.

Proposition 1. There exist mappings m;} and k;; such that an optimal strategy for the stochastic optimiza-
tion problem (8) is the following:

flkyw) if  flk,w) < Kk, S w,t)
VE=0,...,7—1, u*(k,S,w,t) =1 ki(k,S,w,t) if ok <rgk,Sw,t) < f(kw) (4)
ak if ak < I{[J;(k, S, w, t)

and u*(k, S, w, ) = 0.
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Notice that uf(k, S, w,7) = 0 means that the plant ultimately dies to convert all its vegetative biomass into
reproductive one. Indeed, the fitness is an increasing function of the cumulated offspring so that there is no
gain in fitness by keeping vegetative biomass after the last time interval. Notice also that the full growth
region {(k, S,w) | u*(k,w,t) = f(k,w)} = {(k,S,w) | f(k,w) < r{;(k,S,w,t)} is generally nonstationary.

3. Impact of environmental variability on optimal strategies for "linear maximizers"

We take
U(y) =y, Dom(U)=[0,+o0]. (5)

This case is simpler to analyze than the "log maximizers" one (U = log).

3.1. Optimal strategies for "linear mazximizers" plants

In (stochastic) inventory control, (o, X) policies are those for which there exists a stock threshold o under
which stocks have to be refilled up to the target X' (see [Put94]). Here, optimal strategies are in the same
vein but with moving thresholds and targets.

Proposition 2. There exist mappings k™ and k= such that the optimal strategy for "linear mazimizers" is
the following:

uf(k,w,7) =0
flk,w) if k <k (wt)

VkE€Ry, YwEW, Vt=0,...,7—1, ui(kw,t) =1L kH(w,t) if k>kr (wt) and ak <kt (w,t)

ak if ok > kT (w,t).

(6)

The target x*(w,t) and the threshold k= (w,t) are related by the following relationship

def

Vt=0,....,7—1, s (w,t) = 1T (w,t),w). (N

Thus, the full growth region {(k, S, w) | u*(k,w,t) = f(k,w)} = {(k,S,w) | 0 < k < k™ (w,t)} does not
depend upon S.

The relationship between thresholds and targets is not straightforward, in the sense that no general
inequality exists between kT (w, t) and k~ (w, t'), whatever w, w’ in W, even when w = w’. As an example, take
for growth function f(k,w) = wvk asin (1). Consider a random i.i.d. environment characterized by 3 € [0, 1],
W = {w™,wt} C]0, +o0[ where w™ < w™, and probability law p on W given by p({w~}) = p €]0,1].

Let m < J wp(dw) = pw™ + (1 — p)w*. By (11) and (15), we have

KR

+(w

1) = argrvrllg())([*u +8 [ wyaup(dw)] = argmax[ u+ Bmy/u] = (67") (8)

Ry

By (7), we deduce

vy =is (2) . ©)
Thus, fiJr(w,'r—l)//e’(w,'r—l):[ w12 We have s+ (wh, 7—1)/k~ (wt,7—1) = [ﬁm] (2/8)? > 4 since
wr>m=pw~+(1—-pwrand 0 < 3 < 1. Ontheotherhand, kY(w™,7—1)/c (w _,T—l)—[Qﬁw ?<1

if and only if 2” < 1 if and only if wt > ﬁ(% —plw.
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3.2. Stationary targets and thresholds in constant environments

In a constant environment, the sequence (wi)i—o,. r of environmental factors is both deterministic and
constant: wy = w, Vt = 0,...,7. All B; are also equal to a fixed 5 € [0,1] (except 3, = 0). In this case,
one may show that targets and thresholds are stationary (JAC90], or consequence of Proposition 6). Their
expressions are® (recall also convention in footnote 5):

KT = argr&ax[—u + Bf(u, )] € [0,400] and x~ = f kT, ). (10)

Moreover, in the constant case, the threshold x~ is always lower than the target x*. Indeed, if s = +oo, then
K~ = 400 too (recall footnote 5). Else, by (10), kst = argmaxo<y[—u+0f(u, w)] and thus —xT+3f (v, w) >
—0+ Bf(0,w) = 0. Hence, we have f(x™,w) > Bf(kT,w) > kT, that is k* > k= = f~1(k+, W) since f is
increasing in its first argument.

3.8. Properties of targets in random i.i.d. environments

A random i.i.d. environment is a stationary one in which the fixed stochastic kernel is of the form 7(dw’ |
w) = p(dw') where p is a probability law on W. In this case, the sequence (wy)i=o,...» of environmental
factors is i.i.d., with common distribution p. This is the case studied by Amir and Cohen. As them, we
find that the target does not depend upon w (JAC90], or consequence of formula (39)): k1 (w,t) = k().
However, the thresholds x~ (w,t) = f~!(k*(¢),w) depend upon the environmental factor w by (7).

3.4. Undeterminate growth strategies appear to be generally optimal in random environments

Summing up the above results, optimal strategies of Proposition 2 are characterized by targets (and corre-
sponding thresholds):

— in general stochastic environments, targets and thresholds are functions of time ¢ and, above all, of the
environmental factor w;

— in a random i.i.d. environment, the targets only depend upon time ¢ and not upon the environmental
factor w; however, the thresholds depend upon both ¢ and w;

— in a constant environment, targets and thresholds are fixed scalars, independent of time t.

We claim that, even if the optimal strategy (6) has a “bang-bang look”, the presence of the environmental
factor w may induce “undeterminate” growth trajectories. We have the feeling that the dependence of both
the value function and the optimal strategy upon the environmental factor w have not been treated with
enough care by Amir and Cohen. As a consequence, our conclusion differs from their when they claim in
[AC90, p.30] that “any growth strategy is of the "bang-bang” type” and that “the optimal strategy is to keep
growing as long as the vegetative body is smaller than %(r) [r = 1 — 3] and to switch to reproduction once
K(r) is reached”.

We illustrate this on a numerical simulation” with growth function f(k,w) = wvk as in (1) and a = 0,
8 = 0.8, T = 12 (corresponding to rebuilding ability within a month). The environmental factor follows an
i.i.d. sequence, taking two values 0.15 and 0.65 with equal probability 1/2. Figure 1 shows two realizations
of the environmental factor sequence, giving rise to two optimal control trajectories in Figure 2 and to two
optimal vegetative biomass trajectories in Figure 3.

t = 0. Consider a plant starting from size ko (ko = 0.05 maintained during the first time interval [0, 1] in
Figure 3). If the environmental factor wy is such that ky < x~ (wp, 0), the “plant’s first decision” is to grow
without reproducing: k1 = ug = f(ko, wo). This corresponds to the first time interval [0, 1] in Figure 2.

t = 1. Now, the environmental factor takes the value w;.

5 With the convention that arg max () = +oc.
" The numerical simulations are done with the scientific software scILAB with dedicated programs for stochastic
dynamic programming.
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Fig. 1. Two realizations of the environmental factor sequence
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Fig. 2. Proportion of total biomass allocated to vegetative biomass

— If k; > £~ (w1, 1), the second decision is to grow up to target ko = w3 = k*(wy, 1). Since f(k1,w1) >
f(5™ (w1,1),w1) = T (w1, 1) by definition of £~ (w1, 1) and, since k — f(k,w;) is increasing, the plant
produces f(k1,w1) —us = f(k1,w1) — kT (wy,1) > 0 offspring. This corresponds to the trajectory 1
in Figure 2 on the second time interval [1,2].

— Else, the second decision is growing without reproducing: ks = f(k1,w1). This corresponds to the
trajectory 2 in Figure 2 with 100 % allocation of total biomass to vegetative biomass on the second
time interval [1,2[.

t = 2. Now, the environmental factor takes the value w-, and the discussion is as above.

Since the thresholds ™ (wy, t) are always varying, due both to time ¢ and to the stochastic environmental
factor wy, phases of pure growth without reproduction may alternate with phases of mixed growth and
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Vegetative biomass trajectories
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Fig. 3. Two optimal trajectories

reproduction (see Figure 2). Contrarily to the constant environment case, following an optimal strategy no
longer leads to determinate growth even when maximizing E(S;+1). Even in a random i.i.d. environment, the
optimal trajectory is a priori not “determinate” since the thresholds x~(w,t) = f~1(kT(¢), w) still depend
upon the environmental factor w (see subsection 4.3 for conditions for optimality of determinate growth in
random i.i.d. environments).

One may notice on Figure 1 and Figure 2 that full growth occurs when the environmental factor is low.
This will be explained in Proposition 9 in relation to the fact that £ and w are cooperative factors in the

growth function f(k,w) = wvk (i.e. % > 0).
4. Optimal strategies for "linear maximizers" plants without limitation for rebuilding their
vegetative body

In the sequel, we assume that o = 0 (see discussion in subsection 2.1).

4.1. Random stationary environments give non increasing thresholds and targets when time goes on

Let us assume that the environment is random stationary, and characterized by § € [0, 1] and stochastic
kernel 7. Let us introduce®

n}'(w) def argmaxo<y[—u + 3 [ f(u, w')mw(dw' | w)] = £+ (w,7 — 1) € [0, +o0]
(11)
_ def _ _
Hf (’LU) = K (waT - 1) = f 1([1?(’([)),’([}) .
The following result shows that, as time goes on, the thresholds for reproduction are lower and lower, as
well as the targets reached.
Proposition 3. When the environment is random stationary, both thresholds and targets are nonincreasing
with time: YVt =0,....,71—2, YweW,
kY (w,t) > kT (w,t+1) > n;(w) =rT(w,7—1)
and (12)
T (w,t) > k7 (w,t+1) > Ky (w) =k~ (0,7 —1).

8 By unicity of the arg max resulting from strict concavity of u < f(u,w’), and recalling conventions in footnotes 5
and 6.
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Notice that this result does not mean that a trajectory is nonincreasing, since x*(w,t) > k¥ (w,t + 1) does
not imply that k™ (we, t) > kT (wig1,t + 1).

We shall now give an example where this decrease is strict, which contradicts the stationary characteri-
zation (5) in [AC90, p.22].

Proposition 4. Let the growth function be f(k,w) = wv'k as in (1). Let the environment be random i.i.d.
characterized by 3 € [0,1], W = {w™,w™} C]0, +oo| where w~ < w™, and probability law p on W given by

p{w™}) =p €0, 1.
If wt > {15(% — p)w™, the last targets are decreasing: ™ (7 — 1) < k¥ (1 —2).

4.2. Random stationary environments giving stationary thresholds and targets

Here, we exhibit a condition under which thresholds and targets are stationary in a random stationary
environment.

Proposition 5. Assume that the environment is random stationary and that
Vw e W, w({w | st') < fltw),w)} | w) =1, (13)
Then both thresholds and targets are stationary:
Vt=0,...,7—1, YweW, xT(wt)= /{}'(w) and K (w,t) = K7 (w). (14)

Along any optimal trajectory the plant reproduces at all times after having reached maturity. However, there
is no fized size at maturity.

Condition (13) means that, starting from target size n}“(w) in environmental state w, the total biomass
to allocate under environmental state w’ reachable from w is greater than target n;{(w’ )-

4.8. Random i.i.d. environments giving stationary thresholds and targets and determinate growth pattern

Consider a random i.i.d. environment characterized by 3 € [0, 1] and probability law p on W. Let us define®
w2 arg %q<ax[—u +0 / fu,w")p(dw")] . (15)
Proposition 6. Assume that the environment is random i.i.d. and that
p({w [ kF < f(T,w)}) = 1. (16)
Then the targets are constant and the thresholds are stationary:
Vt=0,...,7—1, YweW, kT (wt)=r" and & (w,t)=f (T, w). (17)

All reachable thresholds are lower than the target: p({w | k= (w,t) < kT}) = 1. Along any optimal trajectory
the plant reproduces at all times after having reached maturity, and keeps a fized size (k) at maturity.

The condition (16) means that the maximum total biomass f(x™,w) for a plant of size T is no less than
kT, whatever the environmental factor value. In this case, the optimal pattern is determinate growth, as in
constant environments (see subsection 3.2).

This may be seen in Figures 4-5-6 (numerical discretization of vegetative biomass leads to an approximate
fixed size at maturity). For the simulations, we have taken the same model as the one used for Figures 2
and 3, except for the values of environmental factor, here 0.15 and 0.35 with equal probability 1/2. Such
values satisfy (16).

9 By unicity of the arg max resulting from strict concavity of u < f(u,w’) and recalling convention in footnote 6.
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Fig. 5. Proportion of total biomass allocated to vegetative biomass: approzimate determinate growth pattern

4.4. Stochastically monotonous environments

We assume here that W is an ordered set.

We say that the stochastic kernel 7 is stochastically nondecreasing (resp. nonincreasing) if the function
w €W — [p(w)r(dw | w) is nondecreasing (resp. nonincreasing) for any nondecreasing ¢ : W — R such
that the integral is well defined.

Following [AC90], we say that state and environmental factor are cooperative if the function f has non-
decreasing differences, that is if for all w; > wo the function k € Ry < f(k,w1) — f(k, w2) is nondecreasing
or, equivalently, if for all k; > ko the function w € W — f(k1,w) — f(k2,w) is nondecreasing. In the case
where small plants are more sensitive to environmental factors than bigger ones, state and environmental
factor are rival in the sense that the function f has nonincreasing differences.
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Vegetative biomass trgjectories
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Fig. 6. Two optimal trajectories: approximate determinate growth pattern

Notice that, when state and environmental factor are cooperative (resp. rival), then w — f(k,w) is
nondecreasing (resp. nonincreasing) for all k. Indeed, in the cooperative case, f has nondecreasing differences
while, on the other hand f(0,w) = 0. This gives

w1 Z w2 = Vk Z Oa f(k7w1) - f(kan) Z f(07w1) - f(07w2) =0.
The rival case is treated in the same way. We have thus proved the following Proposition.

Proposition 7. When state and environmental factor are cooperative (resp. rival), then w — f(k,w) is
nondecreasing (resp. nonincreasing) for all k € R,

The following results show the influence of the monotonicity of the stochastic kernel 7w._; on the last
targets and thresholds.

Proposition 8.

1. Assume that state and environmental factor are rival.
(a) If 7,1 is stochastically nondecreasing, then the target k™ (w, T — 1) is a nonincreasing function of w.
(b) If .1 is stochastically nonincreasing, then both the target k*(w,—1) and the threshold k= (w,7—1)
are nondecreasing functions of w.
2. Assume that state and environmental factor are cooperative.
(a) If 7,1 is stochastically nondecreasing, then the target k*(w, T — 1) is a nondecreasing function of w.
(b) If 7,1 1is stochastically nonincreasing, then both the target k* (w, 7 —1) and the threshold k= (w,7—1)
are nonincreasing functions of w.

When state and environmental factor are cooperative, we shall use the terminology environmental resource
instead of environmental factor. Thus, for an annual plant in a context where resource are statistically
nonincreasing at the penultimate time interval, the plant is more encline to ultimately reproduce when
resource are high than when they are low. “High” and “low” may be swapped in the hereabove assertion in

case of rival factors. Such a claim cannot be asserted for all previous time intervals and decisions!?.

An easy consequence of Proposition 7 is the following result.

10 Technically, we are not able to prove that supermodularity [Top98] is preserved for the value function at all time
intervals in the Proof of Proposition 8.
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Proposition 9. In a random i.i.d. environment, the threshold v~ (w,t) is nonincreasing (resp. nondecreas-
ing) with w when state and environmental factor are cooperative (resp. rival).

This results from the formula (7) which is here k= (w,t) = f~1 (kT (¢),w) since T (w,t) = k*(t) does not
depend upon w in a random i.i.d. environment.

An interesting consequence is the following. Consider a plant in an “unpredictable” environment (random
iid.). At the beginning of time interval [¢,¢ + 1], assume that the environmental resource is high and that
it is optimal to adopt full growth (no offspring). Then, the same holds for all lower environmental resource.
In a sense, a plant with a given size is more likely to adopt full growth (no offspring) when environmental
resource is low than when it is high. In other words, a plant with a given size is more likely to reproduce
when environmental resource is high than when it is low. The opposite holds in case of rival factors.

5. Comparison of "linear maximizers" and "log maximizers"

Under the assumption that state and environmental factor are either cooperative or rival, we prove here
that, at the last time interval 7 — 1, the domain in which full allocation to growth is optimal for the "log
maximizer" is included in the corresponding domain for the "linear maximizer".

In the case of random i.i.d. environments, Amir and Cohen claim such an assertion under a tricky
assumption of negative covariance between certain functions of the state process. They also claim that this
holds for all time intervals and not only the last one. However, we have doubts on their claim since their
characterization of "log maximizer" optimal strategies leads to stationary ones, and we have shown that this
does not hold true in general.

Proposition 10. Assume that o = 0, that W is an interval of R, that f is smooth on Ry x W, that U is

smooth, that m,_1(dw’ | w) has compact support for all w € W, and that state and environmental factor are
2 2

either cooperative (i.e. % >0) or rival (i.e. % < 0). Then, with the notations of Proposition 1 and of

Proposition 2, we have:

VE>0, VS>>0, YweW, rT(w,1-1)>«kfk, S w1—1). (18)

The inequality for the thresholds goes the same way, so that when the "log maximizer" reproduces at the
last time interval, so does the "linear maximizer" with the same size.

6. Conclusion

We have studied the impacts of environmental variability on optimal strategies of annual plants, and shown
that the presence of the yearly horizon induces nonstationary strategies in general.

Some patterns emerge for a plant i) maximizing the expected value of the annual reproductive yield and
ii) able to rebuild completely its vegetative body during a time interval (where environmental conditions are
more or less stable). In a constant environment, the plant grows without reproducing as long as its size is
less than a fixed threshold; then, in one time interval, it reaches a higher target size and reproduces; it keeps
the same size and reproduces till the last time interval where it dies. This pattern is typical of determinate
growth. In a stochastic environment, targets and thresholds vary with the environmental factor, and targets
may be lower than thresholds for some values of the environmental factor. This induces “up and down”
trajectories, where a plant may reduce size, and where phases of pure growth without reproduction may
alternate with phases of mixed growth and reproduction. When the stochastic environment is stationary,
the thresholds for reproduction are lower and lower as time goes on, as well as the targets reached. In some
specific cases, stationarity may be optimal, but this is not a general feature. Determinate growth may be
optimal in random i.i.d. environments satisfying particular conditions.

For the impact of monotonicity and for the case of "log maximizers", we are only able to provide results for
the optimal strategy at the last time interval. We were not able to propagate the property of supermodularity
by backward induction. This problem still has to be attacked.

Thus, most of the mathematical analysis developed in this paper is made possible by the following
assumptions: absence of density-dependence effects in the model, linear fitness criterion, no lower bound else
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than zero constraining the control. In biological terms, this amounts to study plants in large population, with
little competition, with variability within year, and with “rebuilding ability”. Abandoning these assumptions
lead to serious mathematical difficulties. We illustrate in Figures 7-8-9-10 what may happen when we prevent
the plant from rebuilding completely its vegetative body during every time interval. Three cases are presented
(a =0, @ = 0.9, a = 1) with numerical simulations of optimal state, control and fitness trajectories'!. We
observe that, when the plant can rebuild, vegetative biomass is more variable and fitness is greater.

Environmental factor

38

34

30 4

26

22

18 4

14 4

10 4
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Fig. 7. Common environmental factor trajectory
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A. Appendix
A.1. A few useful results
The proofs of the two following lemmas are technical and will be omitted.

Lemma 1. Let ¢ : [0,4+00[— R be continuous and concave. Let us define (recall convention in footnote 6)

+ < inf 1
u inf arg max o(u) € [0,+]. (19)

Thus, u™ is the infimum of the set of mazimizers of ¢ on [0,+0c]. Then

1. ¢ is increasing on [0,u™"| and nonincreasing on [u™, +o00[;
2. for all y € [0, +00],

inf arg Jmax #(u) = min(y,u™) . (20)
<u<y

11 Growth function is flk,w) = wVk with 3 = 0.9, T = 12. The environmental factor does not follow an i.i.d.
sequence, but follows more or less a sinusoid.
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3. for all 0 <y <y < +o0,
inf arg max ¢(u) = max(y’, min(y,u™)). (21)
0<u<y
If ¢ is strictly concave, we can suppress the inf in the arg max.
Lemma 2. Let z €]0,+o0[ and ¢ : [0, z[— R be concave and continuous. Let us define
def . . . .
ut = inf arg max o(u) €10,2] (with the convention that inf() = z). (22)
0<u<z

Then

1. ¢ is increasing on [0,u™| and nonincreasing on [u™, z|;
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Fig. 10. Optimal fitness trajectories in three cases

2. for all y € [0, z[, (20) holds true;
3. for all 0 <y <y < +o00, (21) holds true.

If ¢ is strictly concave, we can suppress the inf in the arg max.

Lemma 3. Let D C R, let g : D — R and h : D — R. Assume that the following arg max exist and are
UNLQUE:

-

# dé # déf
Ug = argmax g(u) and u; = arg max h(u).

If h — g is nondecreasing on D, then ug < uﬂh

Proof. Let ug € Dy. For any u €] — oo,uﬂg [ND, we have, on the one hand, g(u) < g(ug) by definition of
ug and, on the other hand, (h — g)(u) < (h — g)(ug) since h — g is nondecreasing. Thus, summing both
inequalities, we obtain that u €] — oo, uf[ND = h(u) < h(uf). We conclude that u}, € [uf, +oo].

A.2. Properties of the stochastic dynamic programming operator (general case)

Let 8 € [0,1]. Let m be a stochastic kernel on a Borel set W with c-algebra W. For technical reasons,
we assume that 7 satisfies the Feller property: for all continuous function V : Ry x W — R, the function
(k,w) — [V(k,w')m(dw | w) takes finite values and is continuous. Let f : Ry x W — R satisfy the
assumptions in paragraph 2.3. Let U : Dom(U) — R be a increasing continuous concave function.

Proposition 11. Let W : Ry x Dom(U) x W — R be continuous. Define PuW : Ry x Dom(U) x W — R by

PyW(k, S, w) & 5 )[(1fﬁ)U(S+f(k,w)*U)+6 / W (u, S + f(k,w) — u,w)r(dw' | w)]. (23)

1. The function PyW takes finite values and is continuous.
2. If S — W (k,S,w) is nondecreasing, then S — PyW (k,S,w) is nondecreasing.
3. If S — W(k,S,w) is nondecreasing and if (k,S) — W(k,S,w) is concave, then (k,S) — PyW(k,S,w)

is concave.
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Proof. 1. The expression between brackets in (23) is continuous in (u, k, S, w) (by the Feller property of ),
and so is the growth function f. By a consequence of results on marginals functions (see [Aub82, Th. 3,
p. 70]), the function PyW takes finite values and is continuous.

2. Easy proof.

3. Since f(k,w) is concave in k, so is the function (k, S,u) — S + f(k,w) — u. Since W (k, S, w) is concave
in (k,S) and W(k, S,w) is nondecreasing in S, direct calculation shows that the function (k,S,u) —
W (u, S+ f(k,w)—u,w') is also concave for all w'. Obviously, so is also (k, S,u) — [ W (u, S+ f(k,w)—
u,w’)w(dw’ | w). In the same vein, the function (k, S,u) — U(S + f(k,w) — u) is concave. Now, the set
{(k,u),ak <u < f(k,w)} is convex as the intersection of two convex sets. Thus, by a well known result
on the maximum on one variable in a convex set of a jointly concave function ([Roc70]), the function
(k,S) = SUPr<u< f(iw) (1= BYU (S + f(kyw) —u) + B [ W(u, S+ f(k,w) —u,w’)r(dw’ | w)] is concave.

A.3. Properties of the stochastic dynamic programming operator (linear fitness case)

LetV:R+XWHR+

1. be continuous and satisfy V' (0, w) = 0;
2. be such that, for all w € W, the function & € Ry — V(k,w) is strictly concave.

Let Q;V : Ry x W — R, be defined by

Q)™ sy (w5 [ Viwanan [0) (24)

ak<u<f(kw)

We also define the following argmax (recall convention in footnote 6), unique by strict concavity of k €
Ry — f(k,w) and k € Ry — V(k,w), together with pre-image by f (recall convention in footnote 5):

/ﬁ}"(w) def argr&ai([—u + ﬁ/f(u, w'm(dw' | w)] € Ry U {+o0}

K (w) def argré%ai([—u +5 / V(u,w")r(dw' | w)] € Ry U {+o00} (25)

ky (w) < F7 (ks (w), w)

Proposition 12. The function QfV : Ry x W — R

1. is continuous and satisfies Q sV (0,w) =0, for all w € W;
2. is such that, for all w € W, the function k € Ry — Q;V(k,w) — f(k,w) is concave;
3. is such that, for all w € W, the function k € Ry — Q;V (k,w) is strictly concave.

Proof. 1. Continuity of QfV is a consequence of results on marginals functions (see [Aub82, Th. 3, p. 70]).
Since f(0,w) = V(0,w) = 0, we have

QsV(0,w) = sup (f(O,w) fu+6/V(u,w’)7r(dw’ | w)) zﬂ/V(O,w’)w(dw’ |w)=0.

ax0<u< f(0,w)

2. By (24), we may write

QsV(k,w) = f(k,w)+ sup <u + B/V(u,w’)ﬂ(dw’ | w)> . (26)
ak<u<f(k,w)

Since, for all w € W, the function k € Ry — V(k,w) is concave, then so is also the function u € Ry —
—u+ 6 [ V(u,w')w(dw' | w). Now, the set {(k,u) € Ry x Ry|ak <u < f(k,w)} is convex for all w € W.
Thus, the function k € Ry <= Supyp<< p(iw) (—u+ 8 [ V(u, w')w(dw’ | w)) is concave, as the maximum
on one variable in a convex set of a jointly concave function ([Roc70]).

3. The function k € Ry — Q¢V(k,w) is the sum of the strictly concave function k — f(k,w) and of the
concave function k € Ry — Q;V(k,w) — f(k,w): it is thus strictly concave.
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A.4. Properties of the stochastic dynamic programming operator (linear fitness case) when o =0
We assume that o = 0 in this whole subsection.
Proposition 13. For all w € W, the function k € Ry — QfV (k,w) — f(k,w) is nondecreasing.

Proof. By (26), QfV (k,w) — f(k,w) = SUPqp<u< f(kw) (—u+ B [ V(u,w)w(dw' | w)) is nondecreasing in k
since the function k € Ry — f(k,w) is increasing.

Lemma 4. For oll w € W, define:
Vue Ry, %(Wfﬂ@vww>fmwwmmwm. (27)

Then 1, is nondecreasing. Moreover, 1., is constant on [/if( w), +oo[ if

Vw e W, ki(w) < /{}r(w) and 7w({w' | n}r(w) <ry(w)}|w)=0. (28)

Proof. Since u € [0, +o0[— Q¢V (u,w’) — f(u,w’) is nonincreasing, for all w’ € W, by Proposition 12, the
function 1, is nondecreasing on [0, +o0].

Assume that (28) holds true. Since k € [0, +-o0[ f(k,w’) is increasing, we deduce from xy;(w’) <k} (w')
and (11) that ry (w') < K} (w'). Now, let w € W be fixed. As a consequence, we have

Yu > ﬁ}'(w), 0< /l[o,n;(w/)[(u)”(dw/ | w)
< /l[o,n;(w')[(u)”(dw/ | w) since  ky(w') < Ky (W)
< /l[o,n;(w')[(“}r (w))m(dw' | w) since l[O,n;(w’)[ is a nonincreasing function

= / m(dw' | w) =0 by assumption.
{w! |5} (w)<r7 ()}

This may also be written as Vu > m;{(w) , 1[0,;-:;(11;')[(“) =0 w(dw |w)—a.s., or also as

Y > f@'}'(w), 1[H;(w/)7+m[(u) =1 n(dw' |w)— a.s. (29)

Yz kf (), vule) = [[Q5V () - flu,w)r(d’ | v)
_ /1]R;(w,),+oo[(u)[QfV(u,w') — fu,w)r(dw’ | w) by (29)
_ /w(dw’ )L, +w[(u)/[—ﬁ¢(w’)+ﬁ/V(H$(w’),w//)ﬂ_(dw//|w/)]

by (24) and by definition (25) of HV( "
= /w(dw' | w)/ —K (w +ﬁ/ (ki (W), w”)m(dw” | w")] by (29)

and thus ¢,,(u) does not depend upon u > 7 (w).
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Proposition 14. The following arg max (recall convention in footnote 6) is unique

fizgfv(’u}) def argrglgai([fquﬂ/QfV(u,w’)w(dw’ | w)] € [0, 400] (30)

and we have, for all w € W,
R (w) < Kby (w). (31)

Proof. Unicity of the arg max results from by strict concavity of u — Q;V (u,w’). To compare the argmax
in (25) and in (30), we shall make use of Lemma 3. Let w be fixed and let us introduce

D=0 oel, glu) = —ut [ fluw)rde’ [w), hlw) = —u+5 [ QViuw)rdu’ | w).
The difference h(u) — g(u) = 8 [[QsV (u,w') — f(u,w)|w(dw’ | w) = i)y, (u) is a nondecreasing function of
u by Lemma 4. Thus inequality (31) holds by Lemma 3 since

n'f"(w) = argmax g(u) < ngfv(w) = arg max h(u) .

Lemma 5. Assume that (13) holds true. Then Yw € W , “5fv(w) =k} (w).

Proof. To the difference of the previous proof, we swap the definitions of g and h:
D=10,400[, h(u)=-u+ ﬁ/f(u,w')ﬂ(dw' |w), gu)=-u+ B/QfV(u,w')ﬂ(dw' | w).

The difference h(u)—g(u) = — Gy, (u) is constant on [/{}r (w), +oo[ by Lemma 4. Since f@;{ (w) = arg maxyep h(u),
we may apply Lemma 3 to get fizgfv(’u}) = argmaxyep g(u) < n}r(w) = argmax,ep h(u). Since, by Propo-
sition 14, we know that « | (w) < &4 (w), we get the desired result 1 (w) = K 1 (w).

A.5. Proof of Proposition 1

Proof. Tt is well known that optimal strategies of (3) may be deduced from the following backward stochastic
dynamic programming equation ([Ber00]):

W(k,S,w, 7+ 1) =U(S)

W(k,S,w,t) = sup ((1=8) JW(0,5+ f(k,w) —u,w',t + 1)m(dw | w) (32)
akguﬁf(kvw)

+6 W (u, S+ f(k,w) —u,w',t + 1)m(dw' | w) ).

This reflects the dynamics described in paragraph 2.1, in particular the fact that the plant allocates first
S + f(k,w) — u to reproduction, then is submitted to a death risk with probability 1 — j;.

Since f(0,w) = 0, it may readily be proved that ¥t = 0,...,7+ 1, W(0,S,w,t) = U(S), so that the
above equations give

W(k,S,w, 7+ 1) =U(S)
Wk, Sw,t)= sup ( (1—=B)US+ flk,w)—u)+ (33)
ak<u<f(k,w)
6t fW(U, S + f(k,W) - u,w’,t + l)ﬂ-t(dw/ | ’LU) ) .

The function (k,S) — W(k,S,w,7 + 1) = U(S) is concave (recall that U is concave) and the function S —
W (k,S,w,7+ 1) = U(S) is nondecreasing (recall that U is nondecreasing). By Proposition 11, it may thus
readily be proved by backward induction that (k,S) — W (k, S, w,t) is concave and that S — W (k, S, w,t)
is nondecreasing, for t € {0,...,7 + 1}.
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Thus, for any t € {0,...,7}, w € W and z > 0, the following function ¢ is also concave:
pru€el0,z[— (1—-p6)U(z—u)+ ﬁt/W(u, z—u,w t+ 1)m(dw' | w). (34)

We define %{;(z,w,t) as the infimum of the set of maximizers (Lemma 2 applied to ¢):

R (z,w,t) def inf arg max (1=p0)U(z —u) + Bt / W(u, z —u,w’, t + 1w (dw' | w). (35)

Since an optimal strategy u(k, S,w,t) is any element of the above arg max where z is replaced by f(k, w),
Lemma 1 enables us to conclude on (4), once we have introduced (recall conventions in footnotes 5 and 6)

ki (b, S w,t) LRSS + f(k,w),w,t) and k(K S,w,t) S (kg (k, S w, t), w) . (36)
Since U is increasing, we have in particular
ki (z,w,7) df it arg max (1—=8)U(z —u) + 5r / Uz —u)m - (dw' | w) =0
so that uf(k, S,w, ) = 0.

A.6. Proof of Proposition 2

Proof. We may easily see by backward induction on (33) that

Wk, 8, w,t) = S+ V(k,w,t) (37)
where V(k,w, 7+ 1) = 0 by (32), and
Vt=0,...,7, V(kwt)= sup (f(k,w) —u+ﬂt/V(u,w’,t+ 1) (dw' | w)) . (38)
ak<u<f(k,w)
Since V(k,w, 7+ 1) = 0, we have
V(k,w,7) = sup (f(k,w) —u) = f(k,w) — ak
ak<u<f(k,w)

8k - kow) —u) = ok .
ut(k,w, T) argakgrlnga})ik’w)(f( ,W) —u) =«

By Proposition 12, we know that the function & € [0, +oo[— V(k,w,t) is strictly concave for t = 0,...,7
and for all w € W. Then the function u € [0, +oo[— [V (u,w’,t + 1)m(dw’ | w) is also strictly concave for
t=0,...,7. Thus, by unicity (by strict concavity of u — V' (u,w’,t + 1)) of the argmax (recall convention
in footnote 6), let

kT (w,t) et arg %1<ax[—u + 54 / V(u,w',t + 1w (dw' | w)] € [0, +o0]. (39)
Then, by the definition of %;(z,w,t) in (35) when U(S) = S, we have

R (z,w,t) = arg 01;13%(2[(1 —Be)(z —u)+ Be((z —u) + /V(u,w’,t + D) (dw’ | w))]

= arg Orélggz[—u + B¢ / V(u,w',t + 1)m(dw’ | w)] = min(z, k" (w,t)) by Lemma 1.  (40)
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Thus,
k< rky(S,w,t) < f(k,w) <k{;(S,w,t) by equation (36)
= f(k,w) <FH(S+ f(k,w),w,t) by equation (36)
< f(k,w) <min(S + f(k,w),k" (w,t)) by equation (40)
= flk,w) < kT (w,t)
since a<b <= a <min(S+a,b) (recall that S >0)
— k<K (w,t) if wedefine x (w,t) by (7).

Now, we have obtained thus an optimal strategy. It is in fact the optimal strategy since arg maxqp<y<.[—u+
Be [ V(u,w',t+ 1)m(dw' | w)] is reduced to a single element, by strict concavity.

A.7. Proof of Proposition 3
Proof. Fort =0,...,7, we have V(k,w,t —1) = (Q;V(.,t))(k, w) with the notation (24), so that k™ (w,t) >
#F(w) by (31). By (39), we have that

kT (w,t) = arg I(?glgaii[—u + ﬁ/V(u, w',t+ Dr(dw’ | w)] (41)

and, by Lemma 3, ¥ (w,t — 1) > k1 (w, t) holds true if the following statement (H;) holds true:
(Hy) k—V(kw,t)—V(k,w,t+1) isnondecreasing. (42)

We shall prove by backward induction that (Hy),..., (H,—1) hold true.

(H,_1) is true. Indeed, on the one hand, V(k,w,7) = f(k,w) and thus x™(w,7 — 1) = f( w) by (11).
On the other hand, we have V(k,w, 7 —1) = (QsV (., 7))(k,w) = (Q f)(k, w) with the notation (24). Then,
by Proposition 12, we know that k — V(k,w,7 — 1) = V(k,w,7) = (Qsf — f)(k,w) is nondecreasing.

Assume now that (H;) holds true. By (39) and (38), we have

B[V (f(k,w),w, t)m(dw'|w) if k<r (w,t—1)
V(kaw,t—1)=
fk,w) = kT (w,t = 1)+ B [V(kT(w,t — 1), 0, t)r(dw'|w) if k>r"(w,t—1).

Then, since x* (w,t — 1) > k*(w,t) as a consequence of (H;), we have

B[V (f(k,w),w, t)—V(f(kw),w t+1)r(dw|w) if ke[0,x (w,t)]

V(k,w,t—1)=V(k,w,t) = ¢ B [V(f(k,w),w, t)r(dw |w) — f(k,w) — p(w,t) if ke r (w,t),x (w,t —1)]

plw,t —1) — p(w, t) if kel (w,t—1),400]

where pu(w,t) % —k*(w,t) + B[V (kT (w,t+1),w t)7(dw'|w). Now

1. [V(f(k,w),w t) — V(f(k,w),w t+ 1)] is nondecreasing in k, so that V(k,w,t — 1) — V(k, w,t) is non-
decreasing in k € [0, k™ (w, t)];

2. —u+pB [V (u,w', t)r(dw'|w) is nondecreasing in u € [0, k™ (w,t—1)], so that 8 [ V(f(k,w),w’, t)7(dw|w)—
f(k,w) is nondecreasing in k € [0, s~ (w,t — 1)];

3. V(k,w,t—1) = V(k,w,t) = p(w,t) — p(w,t + 1) is constant in k € [k~ (w,t — 1), 4+00].

In consequence, V (k,w,t—1)—V (k,w,t) is continuous in k and nondecreasing on three consecutive intervals:
it is thus nondecreasing and (H;_1) holds true.
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A.8. Proof of Proposition 5

Proof. The proof is by backward induction. We have x*(w,7 — 1) = n;{(w) and £~ (w,7 — 1) = £ (w) by
(11).

Assume now that k*(w,t+1) = n}r(w) With the notation (24), we have V(k,w,t) = (Q;V (., t+1))(k, w).
Then 1 (w,t) = /f}r(w) is a straightforward consequence of Lemma 5, and equality £~ (w,t) = r (w) follows
from (7). By applying the optimal strategy (6), once reproduction starts we have (almost surely), due to
condition (13):

kt+1 = Iﬁ}+(wt,t) = K}_(wt) Z n;(le) = K,i(’LUt+1,t + 1) .
Thus, (almost surely) whatever the realizations (wo, ..., w;), the plant reproduces at all times after having
reached maturity since ki1 > £~ (wet1,t+1). However, there is no fixed size at maturity since k1 = m;{ (wy)
is generally random.

A.9. Proof of Proposition 6

Proof. This is a straightforward application of Proposition 5 since (16) is the translation of (13) when
environment is random i.i.d.

As in Proposition 5, the plant reproduces at all times after having reached maturity. But here, there is
a fixed size at maturity since k; 1 = xk* is deterministic.

By condition (16), we have that, p-almost surely in w, f(x™,w) > kT = f(k™(w,t),w). Thus, kT >
Kk~ (w, t) since f is increasing in its first argument.

A.10. Proof of Proposition 8
We simply prove Proposition 8 in the cooperative case, the rival case being similar.

Proof. Assume that the stochastic kernel 7,_; is stochastically nondecreasing.

Since state and environmental factor are cooperative, f has nondecreasing differences: for all k1 > ko the
function w € W — f(ky,w) — f(k2,w) is nondecreasing Thus, the function w — [ f(ki,w')w(dw’ | w) —
J f(k2,w)mr—1(dw’ | w) is nondecreasing since the stochastic kernel m,_; is stochastically nondecreasing.
In other words, (u,w) — [ f(u,w’)7r_1(dw’ | w) has nondecreasing differences.

Let wy; > wo. Let us adopt notations of Lemma 3 with

D=10,+[, g(u)=-u+pBr_1 /f(u,w')ﬂ'T_l(dw’ | wa), hiu)= —u—i—ﬂT_l/f(u,w’)ﬂT_l(dw' | wr) .

Since (u,w) — [ f(u,w’)mr_1(dw’ | w) has nondecreasing differences,

(= 9)(w) = Bl [ £l a(dw’ [w0) ~ [ ) a(du | wo)
is nondecreasing. Thus, by
KT (w, 7 —1) = argrglg)f[—u + Bro1 /f(u,w')er_l(dw’ | w)] € [0, 4+00] .

and Lemma, 3, the target ™ (w, 7 — 1) is a nondecreasing function of w since

kT (wy, 7 — 1) = argmax g(u) < kT (we, 7 — 1) = argmax h(u) .
0<u 0<u

If the stochastic kernel 7,_; is stochastically nonincreasing, then we prove in the same way that the
target x7(w, 7 — 1) is a nonincreasing function of w. But, in this case, we can also prove that the threshold
Kk~ (w,T — 1) is a nonincreasing function of w.

By (7), we have kT (w,7 — 1) = f(k™ (w,7 — 1),w) for all w. Letting wy > ws, we have f(k™(wy, T —
1),w1) = kT (w1, 7—1) < 6T (we, 7—1) = f(k~ (w2, 7—1),ws) since the target x*(w, 7 —1) is a nonincreasing
function of w. By Proposition 7, we deduce that

f(e™(we, 7 —1),w1) > f(k™ (we, 7 — 1),ws) > f(k™ (w1,7 —1),wq).

This gives k~ (wo,7 — 1) > £~ (w1, 7 — 1) since k — f(k,w) is increasing. Thus, we have proved that both
the target ¥ (w,7 — 1) and the threshold s~ (w, T — 1) are nonincreasing functions of w.
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A.11. Proof of Proposition 4

Proof. Let m &ef Jwp(dw) = pw™ + (1 — p)w*. By (8) and (9), we have

2 1 2
n"f" =rkT(r-1)= <6Tm> and K;(w) =k (w,7—1)= [E <57m) I?. (43)
By Proposition 3 and (39), we know that
(7~ 2) = argmax{—u + AEVeoi (ww”) + (1 - )V (wwh)] = 6f =7 (r—1). (49

2
If T (7 — 2) = +o0, the proof ends since k™ (7 — 2) = +00 > n;{ = (ﬁTm) . We thus assume from now on

that k1 (7 —2) < +oo. By (38), we have V,(k,w) = f(k,w) = wvk and

Vi Ja Bm(wvVk)1/? if wvk < n}r
Vi_1(k,w) = su wVk —u+ fmyu) = 2
1) OSuSE\/E( ) wVk + (ﬁTm) it wVk >k

The following function

def Vi —_ Vi1 +

is decreasing since k — V,_;(k,w) is strictly concave by Proposition 12. By definition of ¥ (7 —2) in (44),
we have that —1 + Bo(kT (7 — 2)) = 0. We compute

V., 1Bmw/2k=3/4 i k< k™ (w,T—1)

or (v =

Lwk=1/? if k>x"(w,7—1).
From the computations made right after equation (9), recall that x*(w,7 — 1)/k~ (w,7 — 1) = [5—7“7’1]2 We

deduce that kt(r — 1) > £~ (w™,7 — 1) and that k¥ (w™,7 — 1) < k™ (w™,7 — 1) since the assumption

1 (2 — . 2w~
wt > Tp(ﬁ — p)w™ is equivalent to 0 < S < 1. In consequence

—1+Bp(k}) = -1+ ﬁ[p%ﬂm(w’)w(ﬂ?)’g/“ +(1- p)%wﬂnw*lﬂ]

= 1 B ) BTy )

20 2 Bm
P2w )9 wt
- 14852 1-p) 2
+ﬁ2(5m) +(1=p)—
(1 —plw™ + pw™ B 2wy, w
=1 [l v
+ - +rl5 (50 ol
B G 2w~ 1/2 2w~ .
= p2[( 57”) ﬁm] by definition of m
20—
> (0 since O<L<1
Bm

= —1+4Be(s" (1 - 2)).

Recalling that ¢ is decreasing, we conclude that m;{ =rT(r—1) <kt (1 —2).
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A.12. Proof of Proposition 10

Proof. With the notations of the proof of Proposition 1, we just have to prove that E;}(z, w, T — 1) given
by (35) is less or equal than £} (w) given by (11).

Let w € W and z > 0 be fixed. %;(z,w,7 — 1) achieves the maximum of the concave function u —
(1=Br—1)U(z—u)+ Br—1 [U(z —u+ f(u,w))mr—1(dw’ | w) on [0, z]. If ;(2,w, 7 — 1) = 0, the proof ends.
Else, ¢y (K{;(z,w,7 — 1)) > 0 by the Euler condition, where

601002 (1= B0 =4 oo [ (14 G DUt S ).

The differentiation under the integral is made possible by smoothness of all functions and by the assumption
that 7,_1(dw’ | w) has compact support for all w € W. We have

ou() = 10— BV =)+ 8111+ S (U = o+ f e (| )
- / ((Bra 9T ) = U7 =t ) + (0= ) (U =+ flw) = U = )2 (| )
<0

< /[(5771%(% w) = DU (z —u+ flu,w))mr—1(dw' | w)

since f(u,w’) > 0 and U’ is nonincreasing. Thus, ¢y ( nf ) < [a( "Nrr_1(dw' | w) where

1. on the one hand, a(w’) = (5771%(/1; (w),w")—1) is nondecreasing when 5 f > 0 (and is nondecreasing

when akaf <0);

2. on the other hand, b(w') = def Uz — (w) + f(n}r(w) w’)) > 0 is nonincreasing when 6k8f > 0 since
then w' — f(k,w’) is nondecreasing by Proposition 7 and U’ is nonincreasing; it is nondecreasing when
2 <
Okow —

We shall prove that [ a(w)b(w')m,—1(dw' | w) < 0. If a(w’) < 0 for all w’, this is clear since b(w’) > 0.
Else, by continuity of a (recall that f is smooth), there exists w € W such that a(w) = 0. We have
a(w")(b(w") —bw)) = (a(w’) — a(w))(b(w') — b(w)) < 0, since, either the function a is nondecreasing and the
function b is nonincreasing or the opposite. Thus,

[ atw iy’ | 0) < 6@ [ oty s(an’ | w).
By the Euler condition for x*(w) (arg max of a concave function on [0, +oc[), we have
[ atw st |w) = [ S} (w)w') = D@’ [ w) 0.
Thus, we have
ou @) < [ (b’ | w) < bw) [ afw)n, (' |w) <0.

On the other hand, we have ¢y (R (z,w, ™ — 1)) > 0. As a consequence, ¢y (K (z,w, T — 1)) > du (] (w)).
Now, ¢y is nonincreasing as the derivative of a concave function. This implies that & (z, w,7—1) < H;{(w) =
kY (w,—1).
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