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We analyze a nonconforming finite element method to approximate advection–diffusion–reaction equa-
tions. The method is stabilized by penalizing the jumps of the solution and those of its advective deriva-
tive across mesh interfaces. The a priori error analysis leads to (quasi-)optimal estimates in the mesh-size
(sub–optimal of order 1

2 in the L2–norm optimal and optimal in the broken graph norm for quasi–uniform
meshes) keeping the Péclet number fixed. Then, we investigate a residual a posteriori error estimator for
the method. The estimator is semi-robust in the sense that it yields lower and upper bounds of the error
which differ by a factor equal at most to the square root of the Péclet number. Finally, to illustrate the
theory we present numerical results including adaptively generated meshes.

Keywords: nonconforming finite elements – face penalty – advection–diffusion – a posteriori error esti-
mator – adaptive meshes

1. Introduction

Advection–diffusion equations in the dominant advection regime are encountered in many applica-
tions, including pollutant transport and the Navier–Stokes equations. It is well-known that the standard
Galerkin approximation to these equations leads to oscillations when layers are not properly resolved.
To stabilize this phenomenon, several well–established techniques have been proposed and analyzed in
a conforming setting (e.g., streamline–diffusion [8, 21], subgrid viscosity [17, 18], and residual free
bubbles [7]) as well as in a discontinuous setting (e.g., the Discontinuous Galerkin method analyzed in
[22]).

An interesting compromise between conforming and discontinuous Galerkin methods consists of
using nonconforming finite elements. In this paper, we are interested in low-order nonconforming finite
elements such as the Crouzeix–Raviart finite element. This finite element presents various interesting
features. First, the degrees of freedom are localized at the mesh faces, thereby leading to efficient com-
munication and parallelization. Second, Crouzeix–Raviart finite elements have close links with finite
volume box schemes; see, e.g., [4, 12] for Darcy’s equations and [16] for advection–diffusion equations.
This property is useful to reconstruct locally the diffusive flux in problems where conservativity proper-
ties are important, e.g., pollutant transport. Finally, keeping the mesh fixed, the Crouzeix–Raviart finite
element space has approximately two times less degrees of freedom than the first-order Discontinuous
Galerkin finite element space.

The topic of approximating advection–diffusionequations by Crouzeix–Raviart finite elements is not
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new; see [20, 25] where the streamline–diffusion paradigm is extended to the nonconforming setting.
The difficulties with streamline–diffusion, in both conforming and nonconforming settings, is that the
method involves a parameter depending on the diffusion coefficient and that the extension to time-
dependent problems is not straightforward. This can be unpractical in nonlinear problems, e.g., the
Navier–Stokes equations where the regions with dominant convection may not be known a priori. In
this paper we consider a different technique to stabilize the nonconforming finite element approximation,
namely that of penalizing the jumps of the solution and those of its advective derivative across mesh
interfaces. Drawing on earlier ideas by Douglas and Dupont [14], the analysis of face penalty finite
element methods has been recently extended to advection–diffusion equations with dominant advection
[9, 10] and to the Stokes equations [11]; see also [26] for an application to incompressible flow problems.
The advantage of using the face penalty technique rather than streamline–diffusion is that the former
involves a single user-dependent parameter which is independent of the diffusion coefficient. Moreover,
the face penalty technique is readily extendable to time-dependent problems.

The a posteriori error analysis of nonconforming finite element approximations to advection–diffusion
equations is a much less explored topic. Even in a conforming setting, the analysis is harder than it seems
at first sight. The main issue at stake is to derive a so-called robust error estimator for which the upper
and lower bounds for the error differ by a factor that is independent of the P éclet number. The first main
progress in this direction was achieved by Verfürth [30] in a conforming setting, the proposed error
estimator yielding a factor between lower and upper error bounds which scales as the square root of the
P éclet number. Such error estimators are henceforth called semi-robust. Further results in this direction
include [2, 3]. Recently, robust error estimators, still in a conforming setting, have been proposed by
Verfürth [31] and by Sangalli [28]. To this purpose, the norm with which the error is measured has to be
modified; in particular, it includes the advective derivative of the error. In [31], the advective derivative
is measured in a dual (non-local) norm. In [28], the advective derivative is measured in a non-standard
interpolated norm of order 1

2 introduced in [27] and that can be evaluated by solving a generalized eigen-
value problem on a fine mesh. The purpose of the present work is to propose and analyze a semi-robust
error estimator for nonconforming finite element approximations to advection–diffusion equations. To
our knowledge, it is the first semi-robust error estimator in this setting. The present analysis can be
viewed as a first step towards establishing robust error estimators in the nonconforming setting.

This paper is organized as follows. Section 2 presents the model problem and the nonconforming
finite element approximation with face penalty. Section 3 deals with the a priori error analysis and
Section 4 with the residual a posteriori error analysis. Section 5 contains numerical results and Section 6
draws some conclusions.

2. The setting

2.1 The model problem

Let Ω be a polygonal domain of R
d with Lipschitz boundary ∂Ω and outward normal n. Let ε > 0,

β ∈ [C 0, 1
2 (Ω)]d , and ν ∈ L∞(Ω) be respectively the diffusion coefficient, the velocity field, and the

reaction coefficient. Set ∂Ωin = {x ∈ ∂Ω : β ·n < 0} and ∂Ωout = {x ∈ ∂Ω : β ·n > 0} . Let f ∈ L2(Ω)
and g ∈ L2(∂Ωin) be the data. We are interested in the following advection–diffusion–reaction problem
with mixed Robin–Neumann boundary conditions:











−ε∆u+β ·∇u+νu = f in Ω ,

−ε∇u·n+β ·nu = g on ∂Ωin ,

∇u·n = 0 on ∂Ωout .

(2.1)
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Without loss of generality, we assume that (2.1) is non-dimensionalized so that ‖β‖[L∞(Ω)]d and the
length scale of Ω are of order unity; hence, the parameter ε is the reciprocal of the P éclet number.

Under the assumption that there is σ0 > 0 such that σ = ν − 1
2 ∇·β > σ0 in Ω and that ∇·β ∈ L∞(Ω),

it is straightforward to verify using the Lax–Milgram Lemma that the following weak formulation of
(2.1) is well posed:

{

Seek u ∈ H1(Ω) such that

a(u,v) =
∫

Ω f v−
∫

∂ Ωin
gv ∀v ∈ H1(Ω) ,

(2.2)

where

a(u,v) =

∫

Ω
ε∇u·∇v+

∫

Ω
(ν −∇·β )uv−

∫

Ω
u(β ·∇v)+

∫

∂ Ωout

(β ·n)uv . (2.3)

2.2 The discrete setting

Let (Th)h be a shape–regular family of simplicial affine meshes of Ω . For an element T ∈ Th, let ∂T
denote its boundary, hT its diameter and set h = maxT∈Th hT . Let Fh, F i

h, and F ∂
h denote respectively

the set of faces, internal, and external faces in Th. Let F in
h and F out

h be the set of faces belonging
respectively to ∂Ωin and to ∂Ωout such that F ∂

h = F in
h ∪F out

h . For a face F ∈ Fh, let hF denote its
diameter and TF the set of elements in Th containing F . For an element T ∈ Th, let FT denote the set
of faces belonging to T . Let Sh be the set of mesh vertices. For a vertex s ∈ Sh, let Ts denote the set
of elements in Th containing s.

For an integer k > 1, let Hk(Th) = {v ∈ L2(Ω); ∀T ∈ Th, v|T ∈ Hk(T )}. We introduce the discrete
gradient operator ∇h : H1(Th) → [L2(Ω)]d such that for all v ∈ H1(Th) and for all T ∈ Th ,(∇hv)|T =
∇(v|T ). Let F ∈F i

h; then, there are T1(F) and T2(F)∈Th such that F = T1(F)∩T2(F). Conventionally,
choose nF to be the unit normal vector to F pointing from T1(F) towards T2(F). For v ∈ H1(Th), define
its jump across F as

[[v]]F = v|T1(F)− v|T2(F) a.e. on F . (2.4)

For F ∈F ∂
h , define nF to be the unit normal to F pointing towards the exterior of Ω and for v∈ H1(Th),

set [[v]]F = v|T (F) where T (F) is the mesh element of which F is a face. A similar notation is used for
the jumps of vector-valued functions, the jump being taken componentwise.

For a subset R ⊂ Ω , (·, ·)0,R denotes the L2(Ω)–scalar product, ‖·‖0,R the associated norm, ‖·‖k,R

the Hk(R)–norm for k > 1, and v∞,R the L∞(R)–norm or [L∞(R)]d–norm of the function v.
Consider the Crouzeix-Raviart finite element space P1

nc(Th) defined as [13]

P1
nc(Th) = {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ P1(T ); ∀F ∈ F

i
h,
∫

F [[vh]]F = 0} ,

where P1(T ) denotes the vector space of polynomials on T with degree less than or equal to 1. For
further purposes, we restate some well–known results. There exists a constant c such that for all h, for
all vh ∈ P1

nc(Th), for all T ∈ Th, and for all F ⊂ ∂T ,

‖vh‖1,T 6 ch−1
T ‖vh‖0,T , (2.5)

‖vh‖0,F 6 ch
− 1

2
F ‖vh‖0,T , (2.6)

‖[[vh]]F‖0,F 6 chF‖[[∇hvh]]F‖0,F . (2.7)
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Let P1
c (Th) = P1

nc(Th)∩H1(Ω) be the usual first-order conforming finite element space. Let IOs :
P1

nc(Th) → P1
c (Th) be the so-called Oswald interpolation operator [15, 19] defined such that

∀vh ∈ P1
nc(Th) , ∀s ∈ Sh , IOsvh(s) =

1
](Ts)

∑
T∈Ts

vh|T (s) , (2.8)

where ](Ts) denotes the cardinal number of Ts. This operator is endowed with the following approx-
imation property [1, 9, 23]: There exists a constant c, independent of h, such that for all vh ∈ P1

nc(Th)
and for all T ∈ Th,

‖vh −IOsvh‖0,T +hT‖∇(vh −IOsvh)‖0,T 6 c ∑
F∈FOs

T

h
1
2
F‖[[vh]]F‖0,F , (2.9)

where F Os
T denotes all the interior faces in the mesh containing a vertex of T . Using (2.7) and (2.9)

yields

‖vh −IOsvh‖0,T +hT‖∇(vh −IOsvh)‖0,T 6 c ∑
F∈FOs

T

h
3
2
F‖[[∇hvh]]F‖0,F . (2.10)

2.3 The discrete bilinear forms

Set V = H2(Th)∩H1(Ω) and V (h) = V + P1
nc(Th). Introduce the bilinear form ah defined on V (h)×

V (h) by

ah(v,w) =

∫

Ω
ε∇hv·∇hw+

∫

Ω
(ν −∇·β )vw−

∫

Ω
v(β ·∇hw)

+ ∑
F∈F i

h

∫

F
β ·nF [[vw]]F +

∫

∂ Ωout

(β ·n)vw , (2.11)

and equip V (h) with the norm

‖v‖εβ σ ,Ω = ‖ε
1
2 ∇hv‖0,Ω +‖σ

1
2 v‖0,Ω +‖|β ·n|

1
2 v‖0,∂ Ω . (2.12)

The bilinear form ah is not ‖·‖εβ σ ,Ω -coercive on V (h) owing to the presence of the jump terms in (2.11).
To control these terms, consider the bilinear form jh defined on V (h)×V(h) by

jh(v,w) = ∑
F∈F i

h

∫

F
(β ·nF)[[v]]F w↓ , (2.13)

where w↓ is the so-called downwind value of w defined as w↓ = w|T2(F) if β ·nF > 0 and w↓ = w|T1(F)

otherwise.

LEMMA 2.1 There exists a constant c > 0 such that for all v ∈V (h),

ah(v,v)+ jh(v,v) > c



‖v‖2
εβ σ ,Ω + ∑

F∈F i
h

‖|β ·nF |
1
2 [[v]]F‖

2
0,F



 . (2.14)
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Proof. Straightforward verification using integration by parts. �

Working with the bilinear form ah + jh alone is not sufficient to control the advective derivative of
the discrete solution. To this purpose, we introduce the bilinear form sh on V (h)×V(h) such that

sh(v,w) = ∑
F∈F i

h

∫

F
γ h2

F
β∞,F

[[β ·∇hv]]F [[β ·∇hw]]F , (2.15)

where γ > 0 is independent of ε (the contribution of a face F ∈ F i
h is conventionally set to zero if

β∞,F = 0). This leads to the following discrete problem:

{

Seek uh ∈ P1
nc(Th) such that for all vh ∈ P1

nc(Th),

ah(uh,vh)+ jh(uh,vh)+ sh(uh,vh) = ( f ,vh)0,Ω − (g,vh)0,∂ Ωin
.

(2.16)

Lemma 2.1 implies that the bilinear form (ah + jh + sh) is ‖·‖εβ σ ,Ω –coercive; hence, (2.16) is well–
posed owing to the Lax–Milgram Lemma.

REMARK 2.1 A term similar to the bilinear form jh is also added in [20] to control the jumps across
mesh interfaces. As in the discrete problem (2.16) where the bilinear form jh is introduced in addition
to the bilinear form sh, this term is introduced in addition to the streamline diffusion term stabilizing the
nonconforming finite element approximation. To avoid this additional term, it is possible to work with
the Q1

rot finite element on rectangular meshes [29] or to consider a nonconforming finite element space
satisfying the patch-test of order three [24]; however, the dimension of this space is twice as larger as
the dimension of the Crouzeix–Raviart finite element space. Alternatively, one can penalize the jumps
of all the gradient components instead of just those of the advective components and take jh = 0; we
refer to [9] for more details.

3. A priori error analysis

In this section we present the convergence analysis for the discrete problem (2.16). The main result is
Theorem 3.1. Henceforth, c denotes a generic positive constant, independent of h and ε , whose value
can change at each occurrence. Since the advection–diffusion problem has been non-dimensionalized
so that the field β is of order unity, the dependency on β can be hidden in the constants c in the error
estimates. The same is done for the function ν since we are not interested in the asymptotic of strong
reaction regimes. Finally, without loss of generality, we assume that h 6 1 and ε 6 1.

The error analysis is performed in the spirit of the Second Strang Lemma by considering two norms
on V (h), namely,

‖w‖A,Ω = ‖w‖εβ σ ,Ω +



 ∑
F∈F i

h

‖|β ·nF |
1
2 [[w]]F‖

2
0,F





1
2

+ sh(w,w)
1
2 , (3.1)

‖w‖h, 1
2

= ‖w‖A,Ω +

(

∑
T∈Th

h−1
T ‖w‖2

0,T +‖w‖2
0,∂ T

) 1
2

. (3.2)

Let u be the unique solution to (2.2) and let uh be the unique solution to (2.16).

LEMMA 3.1 (STABILITY) The bilinear form (ah + jh + sh) is ‖·‖A,Ω –coercive.
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Proof. Direct consequence of Lemma 2.1. �

LEMMA 3.2 (CONTINUITY) Let Πh be the L2-orthogonal projection onto P1
c (Th). Then, there is a

constant c such that for all w ∈V and for all wh ∈ P1
nc(Th),

ah(Πhw−w,wh) 6 c‖Πhw−w‖h, 1
2
‖wh‖A,Ω . (3.3)

Proof. Let w ∈V and set v = Πhw−w. Let wh ∈ P1
nc(Th) and let us estimate each term in ah(v,wh).

(1) It is clear that
∫

Ω
ε∇hv·∇hwh +

∫

Ω
(ν −∇·β )vwh 6 c‖v‖εβ σ ,Ω‖wh‖εβ σ ,Ω 6 c‖v‖h, 1

2
‖wh‖A,Ω .

(2) Let us write
∫

Ω vβ ·∇hwh =
∫

Ω v(β −β 1
h )·∇hwh +

∫

Ω vβ 1
h ·∇hwh where β 1

h is the L2–orthogonal pro-

jection of β onto [P1
c (Th)]

d . Since β ∈ [C 0, 1
2 (Ω)]d and owing to the inverse inequality (2.5),

∫

Ω
v(β −β 1

h )·∇hwh 6 c ∑
T∈Th

h
− 1

2
T ‖v‖0,T‖wh‖0,T 6 c‖v‖h, 1

2
‖wh‖A,Ω .

Furthermore, by construction (v,IOs(β 1
h ·∇hwh))0,Ω = 0; hence, using (2.5), (2.6), (2.10), the regularity

of β , and the shape–regularity of the mesh family yields
∫

Ω
vβ 1

h ·∇hwh =

∫

Ω
v(β 1

h ·∇hwh −IOs(β 1
h ·∇hwh))

6 c ∑
T∈Th

‖v‖0,T



 ∑
F∈FOs

T

h
1
2
F‖[[β

1
h ·∇hwh]]F‖0,F





6 c ∑
T∈Th

‖v‖0,T



 ∑
F∈FOs

T

h
1
2
F‖[[β ·∇hwh]]F‖0,F





+ c ∑
T∈Th

‖v‖0,T



 ∑
F∈FOs

T

h
1
2
F‖[[(β

1
h −β )·∇hwh]]F‖0,F





6 c‖v‖h, 1
2
sh(wh,wh)

1
2 + c‖v‖h, 1

2
‖wh‖0,Ω 6 c‖v‖h, 1

2
‖wh‖A,Ω .

(3) Since v ∈ H1(Ω), β ·nF [[vwh]]F = β ·nFv[[wh]]F . Hence,

∑
F∈F i

h

∫

F
β ·nF [[vwh]]F 6 c

(

∑
T∈Th

‖v‖2
0,∂ T

) 1
2


 ∑
F∈F i

h

‖|β ·nF |
1
2 [[wh]]F‖

2
0,F





1
2

6 c‖v‖h, 1
2
‖wh‖A,Ω .

Similarly,

∑
F∈F out

h

∫

F
(β ·n)vwh 6 c‖v‖h, 1

2
‖wh‖A,Ω .

Collecting the above inequalities yields (3.3). �
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LEMMA 3.3 (ERROR ESTIMATION) Assume that u ∈ H2(Ω). Set

Rh(u) = sup
wh∈P1

nc(Th)

ah(u,wh)− ( f ,wh)0,Ω +(g,wh)0,∂ Ωin

‖wh‖A,Ω
. (3.4)

Then, there exists a constant c > 0 such that

c‖u−uh‖A,Ω 6 ‖u−Πhu‖h, 1
2
+Rh(u) . (3.5)

Proof. Since ‖u−Πhu‖A,Ω 6 ‖u−Πhu‖h, 1
2
, the triangle inequality yields

‖u−uh‖A,Ω 6 ‖u−Πhu‖h, 1
2
+‖Πhu−uh‖A,Ω .

Set wh = Πhu−uh and observe that wh ∈V (h). Then, the ‖·‖A,Ω -coercivity of (ah + jh + sh) on V (h)×
V (h) yields

c‖Πhu−uh‖
2
A,Ω 6 ah(Πhu−uh,wh)+ jh(Πhu−uh,wh)+ sh(Πhu−uh,wh) .

Moreover, using the fact that sh(u,wh) = jh(Πhu,wh) = 0 since u ∈ H2(Ω) and Πhu ∈ H1(Ω) leads to

ah(Πhu−uh,wh)+ jh(Πhu−uh,wh)+ sh(Πhu−uh,wh)

= ah(Πhu−u,wh)+ sh(Πhu−u,wh)+ah(u,wh)− ( f ,wh)0,Ω +(g,wh)0,∂ Ωin
.

Owing to Lemma 3.2,
ah(Πhu−u,wh) 6 c‖Πhu−u‖h, 1

2
‖wh‖A,Ω .

Furthermore,

sh(Πhu−u,wh) 6 sh(Πhu−u,Πhu−u)
1
2 sh(wh,wh)

1
2 6 ‖Πhu−u‖h, 1

2
‖wh‖A,Ω .

The conclusion is straightforward. �

LEMMA 3.4 (CONSISTENCY) Assume that u ∈ H2(Ω). Then, there exists a constant c such that

|Rh(u)| 6 cε
1
2 h‖u‖2,Ω . (3.6)

Proof. Let wh ∈ P1
nc(Th). Observe that

ah(u,wh)− ( f ,wh)0,Ω +(g,wh)0,∂ Ωin
= ∑

F∈F i
h

∫

F
ε∇u·nF [[wh]]F .

Since P1
nc(Th) satisfies the patch–test of order zero,

ah(u,wh)− ( f ,wh)Ω +(g,wh)0,∂ Ωin
= ∑

F∈F i
h

∫

F
ε(∇u−Π 0

F(∇u))·nF [[wh]]F ,

where Π 0
F : [L2(F)]d → [P0(F)]d denotes the L2-orthogonal projection on [P0(F)]d . Using the standard

Crouzeix–Raviart face interpolation inequality [13] leads to

|ah(u,wh)− ( f ,wh)Ω +(g,wh)∂ Ωin
| 6 cεh‖u‖2,Ω‖∇hwh‖0,Ω .

whence (3.6) is readily inferred. �
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THEOREM 3.1 (CONVERGENCE) Assume that u ∈ H2(Ω). Then, there exists a constant c such that

‖u−uh‖A,Ω 6 ch(ε
1
2 +h

1
2 )‖u‖2,Ω . (3.7)

Proof. Observe that Πh satisfies the following approximation property (see, e.g., [6] for local approxi-
mation properties of Πh): There exists a constant c such that for all v ∈ H2(Ω),

‖v−Πhv‖h, 1
2

6 ch(ε
1
2 +h

1
2 )‖v‖2,Ω , (3.8)

and use Lemmas 3.3 and 3.4. �

REMARK 3.1 The a priori error estimate (3.7) shows that when keeping the P éclet number ε fixed, the
convergence order in the mesh-size for the error ‖u−uh‖A,Ω is 1 in the diffusion-dominated regime and
3
2 in the advection-dominated regime. This estimate is similar to those derived for stabilized schemes in
the conforming setting; see, e.g., [7, 8, 11, 17].

REMARK 3.2 The above analysis shares some common features with that presented in [9]. The main
differences is that we consider mixed Robin–Neumann boundary conditions instead of Dirichlet bound-
ary conditions, that the advective field is in [C0, 1

2 (Ω)]d instead of being piecewise affine, and that the
stabilization is achieved by using the bilinear form ( jh + sh) instead of penalizing the jumps of all the
gradient components across interfaces.

4. A posteriori error analysis

In this section we present the residual a posteriori error analysis for the discrete problem (2.16). The
main results are Theorem 4.1 which yields a global upper bound for the error and Theorem 4.2 which
yields a local lower bound for the error.

Let fh,βh and νh be the L2–orthogonal projection of f ,β and ν onto the space of piecewise constant
functions on Th respectively, and let gh be the L2–orthogonal projection of g onto the space of piecewise
constant functions on Fh. Let u be the unique solution to (2.2) and let uh be the unique solution to (2.16).
As in the previous section, we assume without loss of generality that h 6 1 and ε 6 1. Furthermore,
define

αS = min(ε−
1
2 hS,1) , (4.1)

where S belongs to Th or to Fh, and observe that

h
1
2
S 6 max(ε

1
2 ,αS) , (4.2)

hS 6 αS . (4.3)

Indeed, (4.2) trivially holds if hS 6 ε whereas if ε 6 hS, then h
1
2
S 6 αS. Furthermore, (4.3) directly results

from the fact that h 6 1 and ε 6 1.

THEOREM 4.1 (GLOBAL UPPER BOUND) There is a constant c > 0 such that

c‖u−uh‖εβ σ ,Ω 6



 ∑
T∈Th

[ηT (uh)
2 +δT (uh)

2]+ ∑
F∈F i

h

ηF(uh)
2





1
2

, (4.4)
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where we have introduced for all T ∈ Th the local data error indicators

δT (uh) = αT (‖ f − fh‖0,T +‖(β −βh)·∇uh‖0,T +‖(ν −νh)uh‖0,T )

+ ∑
F∈F

(2)
T

ε−
1
4 α

1
2

F ‖g−gh +(β −βh)·nuh‖0,F , (4.5)

as well as the local residual error indicators

ηT (uh) = αT‖ fh −βh·∇uh −νhuh‖0,T + ∑
F∈F

(1)
T

ε−
1
4 α

1
2

F ‖ε [[∇huh]]F‖0,F

+ ∑
F∈F

(2)
T

ε−
1
4 α

1
2

F ‖gh + ε∇uh·n−βh·nFuh‖0,F , (4.6)

ηF(uh) = h
1
2
F max(αF ,ε

1
2 )‖[[∇huh]]F‖0,F , (4.7)

where F
(1)
T = FT ∩{F i

h ∪F out
h } and F

(2)
T = FT ∩F in

h .

Proof. Let vh = IOsuh ∈ P1
c (Th) and set w = u− vh ∈ H1(Ω). Then,

c‖u− vh‖
2
εβ σ ,Ω 6 ah(u−uh,w)+ah(uh − vh,w) .

Furthermore, for all wh ∈ P1
c (Th) the following equality holds

ah(u−uh,w) = ah(u−uh,w−wh)+ jh(uh,wh)+ sh(uh,wh) .

Hence,

c‖u− vh‖
2
εβ σ ,Ω 6 ah(u−uh,w−wh)+ jh(uh,wh)+ sh(uh,wh)+ah(uh − vh,w) .

Let us estimate the four terms in the right-hand side of the above equation. Set wh = Chw ∈ P1
c (Th)

where Ch denotes the Cl ément interpolant of w.
(1) Estimate of ah(u−uh,w−wh). Using the techniques presented in [30] yields

ah(u−uh,w−wh) 6 c

(

∑
T∈Th

[ηT (uh)
2 +δT (uh)

2]

) 1
2

‖w‖εβ σ ,Ω .

(2) Estimate of jh(uh,wh). Let F ∈ F i
h.

(2.a) Assume αF = 1. Owing to (2.6) and (2.7),
∫

F
β ·nF [[uh]]F w↓

h 6 ch
1
2
F‖[[∇huh]]F‖0,F‖wh‖0,TF = ch

1
2
F αF‖[[∇huh]]F‖0,F‖wh‖0,TF .

(2.b) Assume αF = ε−
1
2 hF . Since

∫

F [[uh]]F = 0, it follows that
∫

F
β ·nF [[uh]]Fw↓

h =

∫

F
(β −Π 0

Fβ )·nF [[uh]]F w↓
h +

∫

F
Π 0

F β ·nF [[uh]]F(w↓
h −Π 0

Fw↓
h) ,
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where Π 0
F is defined in the proof of Lemma 3.4. Since β ∈ [C0, 1

2 (Ω)]d , using (2.6), (2.7), and (4.2)
yields

∫

F
(β −Π 0

Fβ )·nF [[uh]]F w↓
h 6 ch

1
2
F‖[[uh]]F‖0,F‖w↓

h‖0,F

6 chF‖[[∇huh]]F‖0,F‖wh‖0,TF

6 ch
1
2
F max(ε

1
2 ,αF )‖[[∇huh]]F‖0,F‖wh‖0,TF .

Moreover,
∫

F
Π 0

F β ·nF [[uh]]F(w↓
h −Π 0

Fw↓
h) 6 c‖[[uh]]F‖0,F‖w↓

h −Π 0
Fw↓

h‖0,F

6 cε−
1
2 h

3
2
F‖[[∇huh]]F‖0,F‖ε

1
2 ∇wh‖0,TF .

Collecting the above estimates yields

jh(uh,wh) 6 c



 ∑
F∈F i

h

ηF(uh)
2





1
2

(‖ε
1
2 ∇wh‖0,Ω +‖wh‖0,Ω ) .

Finally, owing to the L2- and H1-stability of the Cl ément interpolation operator [5], it is inferred that

jh(uh,wh) 6 c



 ∑
F∈F i

h

ηF(uh)
2





1
2

‖w‖εβ σ ,Ω .

(3) Estimate of sh(uh,wh). Let F ∈ F i
h.

(3.a) Assume αF = 1. Owing to (2.5) and (2.6),

∫

F

h2
F

β∞,F
[[β ·∇huh]]F [[β ·∇wh]]F 6 ch

1
2
F‖[[∇huh]]F‖0,F‖wh‖0,TF .

(3.b) Assume αF = ε−
1
2 hF . Then,

∫

F

h2
F

β∞,F
[[β ·∇huh]]F [[β ·∇wh]]F 6 ch2

F‖[[∇huh]]F‖0,Fh
− 1

2
F ‖∇wh‖0,TF

6 cε−
1
2 h

3
2
F‖[[∇huh]]F‖0,F‖ε

1
2 ∇wh‖0,TF .

Collecting the above estimates and using the L2- and H1-stability of the Cl ément interpolation operator
yields

sh(uh,wh) 6 c



 ∑
F∈F i

h

ηF(uh)
2





1
2

‖w‖εβ σ ,Ω .
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(4) Estimate of ah(uh − vh,w).
(4.a) Estimate of the diffusive term. Let T ∈ Th. Use (2.10) to infer

∫

T
ε∇h(uh − vh)·∇w 6 c



 ∑
F∈FOs

T

ε
1
2 h

1
2
F‖[[∇huh]]F‖0,F



‖ε
1
2 ∇w‖0,T .

(4.b) Estimate of the reactive term. Let T ∈ Th. Use (2.10), and (4.3) to infer

∫

T
ν(uh − vh)w 6 c



 ∑
F∈FOs

T

h
3
2
F‖[[∇huh]]F‖0,F



‖w‖0,T

6 c



 ∑
F∈FOs

T

h
1
2
F αF‖[[∇huh]]F‖0,F



‖w‖0,T .

(4.c) Estimate of the advective and face terms. Observe that these terms can be written in the form
∑T∈Th

ΞT with

ΞT =
∫

T
β ·∇h(uh − vh)w−

∫

∂ T∩∂ Ωin

(β ·nT )(uh − vh)w (4.8)

= −

∫

T
(uh − vh)β ·∇w−

∫

T
(∇·β )(uh − vh)w+

∫

∂ T ∗
(β ·nT )(uh − vh)w , (4.9)

where nT denotes the outward normal to T and ∂T ∗ = ∂T \ (∂T ∩∂Ωin). If αT = 1, consider (4.8) and
use (2.10) to infer

∫

T
β ·∇h(uh − vh)w 6 c



 ∑
F∈FOs

T

h
1
2
F‖[[∇huh]]F‖0,F



‖w‖0,T

6 c



 ∑
F∈FOs

T

h
1
2
F αF‖[[∇huh]]F‖0,F



‖w‖0,T ,

owing to the shape–regularity of the mesh family. Moreover, if T has a face on ∂Ωin, say FT , using (2.6)
and (2.10) leads to

∫

∂ T∩∂ Ωin

(β ·nT )(uh − vh)w 6 c



 ∑
F∈FOs

T

hF‖[[∇huh]]F‖0,F



‖|β ·n|
1
2 w‖0,FT .

Hence,

|ΞT | 6 c



 ∑
F∈FOs

T

h
1
2
F αF‖[[∇huh]]F‖0,F



(‖w‖0,T +‖|β ·n|
1
2 w‖0,FT ) .

If αT = ε−
1
2 hT , consider (4.9). Owing to (2.10),

∫

T
(uh − vh)β ·∇w 6 c



 ∑
F∈FOs

T

ε−
1
2 h

3
2
F‖[[∇huh]]F‖0,F



‖ε
1
2 ∇w‖0,T .
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Furthermore, the term
∫

T (∇·β )(uh − vh)w is estimated as in step (4.b). Let F ⊂ ∂T ∗. Assume first that
F ∈ F i

h. Observe that

∫

F
β ·nF [[uh − vh]]Fw =

∫

F
(β −Π 0

Fβ )·nF [[uh]]F w+

∫

F
Π 0

h β ·nF [[uh]]F(w−Π 0
Fw) ,

since vh ∈ P1
c (Th). Proceeding as above yields

∫

F
β ·nF [[uh − vh]]F w 6 ch

3
2
F‖[[∇huh]]F‖0,F‖w‖0,F + cε−

1
2 h

3
2
F‖[[∇huh]]F‖0,F‖ε

1
2 ∇w‖0,TF

6 cε−
1
2 h

3
2
F‖[[∇huh]]F‖0,F(‖ε

1
2 ∇w‖0,TF +‖w‖0,TF ) ,

where we have used the trace inequality ‖w‖0,F 6 c‖w‖
1
2
0,TF

‖w‖
1
2
1,TF

valid for all w ∈ H1(Ω). Further-
more, if F ⊂ ∂Ωout, using (2.6), (2.10), and (4.2) yields

∫

F
β ·n(uh − vh)w 6 c‖uh− vh‖0,F‖|β ·n|

1
2 w‖0,F

6 c





 ∑
F ′∈FOs

T (F)

hF′‖[[∇huh]]F ′‖0,F′






‖|β ·n|

1
2 w‖0,F

6 c





 ∑
F ′∈FOs

T (F)

h
1
2
F′ max(ε

1
2 ,αF ′)‖[[∇huh]]F′‖0,F′






‖|β ·n|

1
2 w‖0,F .

Collecting the above inequalities yields

ah(uh − vh,w) 6 c



 ∑
F∈F i

h

ηF(uh)
2





1
2

‖w‖εβ σ ,Ω .

(5) Owing to steps (1)–(4) above, it is inferred that

c‖u− vh‖εβ σ ,Ω 6



 ∑
T∈Th

[ηT (uh)
2 +δT (uh)

2]+ ∑
F∈F i

h

ηF(uh)
2





1
2

.

Using (2.10), (4.3), and the shape–regularity of the mesh family yields

‖ε
1
2 ∇h(uh − vh)‖0,Ω +‖uh− vh‖0,Ω 6 c



 ∑
F∈F i

h

(εhF +h3
F)‖[[∇huh]]F‖

2
0,F





1
2

6 c



 ∑
F∈F i

h

(εhF +hFα2
F)‖[[∇huh]]F‖

2
0,F





1
2

.
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Moreover, for all F ∈ F ∂
h , owing to (2.6), (2.10), and (4.2),

‖|β ·n|
1
2 (uh − vh)‖0,F 6 c ∑

F ′∈FOs
T (F)

hF‖[[∇huh]]F ′‖0,F′

6 c ∑
F ′∈FOs

T (F)

h
1
2
F ′ max(ε

1
2 ,αF ′)‖[[∇huh]]F′‖0,F′ .

Collecting the above estimates yields

‖uh− vh‖εβ σ ,Ω 6 c



 ∑
F∈F i

h

ηF(uh)
2





1
2

.

Use the triangle inequality to conclude. �

Let T ∈ Th and let ∆T denote the union of elements of Th sharing at least a vertex with T . For all
w ∈V (h), localize ‖w‖εβ σ ,Ω as follows:

‖w‖εβ σ ,∆T
= ‖ε

1
2 ∇hv‖0,∆T +‖σ

1
2 w‖0,∆T +



 ∑
F∈F∆T

∩F ∂
h

‖|β ·n|
1
2 w‖2

0,F





1
2

,

where F∆T denotes the set of faces of the elements in ∆T .

THEOREM 4.2 (LOCAL LOWER BOUND) There is a constant c such that for all T ∈ Th,

ηT (uh) 6 c
(

(1+ ε−
1
2 αT )‖u−uh‖εβ σ ,∆T

+δ∆T (uh)
)

, (4.10)

where δ∆T (uh) = ∑T ′∈∆T
δT ′(uh) , and for all F ∈ F i

h,

ηF(uh) 6 cε−
1
2 αF (‖u−uh‖εβ σ ,TF

+ inf
zh∈[P1

c (Th)]d
‖ε

1
2 (∇u− zh)‖0,TF ) . (4.11)

Proof. The upper bound (4.10) is obtained by using the techniques presented in [30]. To prove (4.11),
let zh ∈ [P1

c (Th)]
d and let F ∈ F i

h. Observe that [[∇huh]]F = [[∇huh− zh]]F . Then, using (2.6) and the
triangle inequality yields

‖[[∇huh]]F‖0,F 6 ch
− 1

2
F ‖∇huh − zh‖0,TF 6 ch

− 1
2

F (‖∇u−∇huh‖0,TF +‖∇u− zh‖0,TF ) .

The conclusion is straightforward. �

REMARK 4.1 Keeping ε fixed, δ∆T (uh) and infzh∈[P1
c (Th)]d‖ε 1

2 (∇u− zh)‖0,TF converge at least with the
same order as ‖u−uh‖εβ σ ,∆T

and ‖u−uh‖εβ σ ,TF
, respectively.

5. Numerical results

In this section two test cases are presented to illustrate the above theoretical results. In both cases,
Ω = (0,1)× (0,1) and we consider a shape–regular family of unstructured triangulations of Ω with
mesh-size hi = h0×2−i with h0 = 0.1 and i ∈ {0, · · · ,4}. The diffusion coefficient ε takes the values
{10−2,10−4,10−6}, the reaction coefficient ν is set to 1, and the parameter γ in (2.15) is set to 0.005.
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5.1 Test case 1

Let β = (1,0)T and choose the data f and g such that the exact solution of (2.1) is

u(x,y) = 1
2

(

1− tanh( 0.5−x
aw

)
)

, (5.1)

with internal layer width aw = 0.05.
Table 5.1 presents the convergence results for the error ‖u− uh‖A,Ω ; Nfa denotes the number of

degrees of freedom (i.e., the number of mesh faces) and ω denotes the convergence order with respect
to the mesh–size. In the advection–dominated regime (ε = 10−4 and ε = 10−6), the error decreases as
h

3
2 . In the intermediate regime (ε = 10−2), the convergence order changes from 3

2 to 1 as the mesh is
refined. These results are in agreement with the estimate derived in Theorem 3.1.

Mesh ε = 10−2 ε = 10−4 ε = 10−6

i Nfa ‖u−uh‖A,Ω ω ‖u−uh‖A,Ω ω ‖u−uh‖A,Ω ω
0 374 1.04 - 1.01 - 9.9910−1 -
1 1441 4.0510−1 1.40 3.7610−1 1.46 3.7110−1 1.47
2 5621 1.5310−1 1.43 1.2910−1 1.57 1.2610−1 1.59
3 22330 6.0210−2 1.35 4.5210−2 1.52 4.4010−2 1.52
4 88961 2.4510−2 1.30 1.6110−2 1.49 1.5510−2 1.51

Table 1. Numerical errors and convergence orders for the different values of ε

Let η1(uh), η2(uh), and δ (uh) be the global error estimators defined as

η1(uh) =

(

∑
T∈Th

ηT (uh)
2

) 1
2

, η2(uh) =



 ∑
F∈F i

h

ηF(uh)
2





1
2

, δ (uh) =

(

∑
T∈Th

δT (uh)
2

) 1
2

, (5.2)

where the local error indicators ηT (uh), ηF(uh), and δT (uh) are defined in (4.6), (4.7), and (4.5), respec-
tively. The asymptotic behavior of the global error estimators with respect to the number of degrees of
freedom is presented in Figure 1. The error u−uh measured in the norm ‖·‖εβ σ ,Ω is also presented in
Figure 1. For the three values of the diffusion coefficient, the error estimator η1(uh) has approximately
the same convergence order as the error. In the diffusion–dominated regime, the error estimators η2(uh)
and δ (uh) exhibit a super-convergent behavior. In the advection–dominated regime, the convergence
order of ‖u−uh‖εβ σ ,Ω and η1(uh), is close to 3

2 while the convergence order of δ (uh) and η2(uh) is
close to 1. The efficiency index evaluated as

I =
η1(uh)+η2(uh)+δ (uh)

‖u−uh‖εβ σ ,Ω
, (5.3)

is in the range 9.7 to 33.7 for ε = 10−2, 81.1 to 347.4 for ε = 10−4, and 95.8 to 1571.4 for ε = 10−6.
The increase of the efficiency index is roughly proportional to ε− 1

2 , in agreement with the theoretical
results of Section 4.
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FIG. 1. Exact error and global error estimators against degrees of freedom. Left: ε = 10−2; center: ε = 10−4; right: ε = 10−6

5.2 Test case 2

The goal of this section is to present a test case for which the mesh is adaptively refined based on the a
posteriori error analysis. Let Γ1 denote the lower horizontal edge of Ω and let Γ2 denote its left vertical
edge. Set β = (2,1)T , f = 0, and g such that g = 1 on Γ1 and g = 0 on Γ2. Owing to the discontinuity
of the Robin boundary condition, the solution exhibits an inner layer located along the line {x = 2y}.
Similar results are obtained if the data g ensures a sharp but continuous transition from 0 to 1 at the
origin. Figure 2 presents the contour lines of the computed solution for the different values of ε .

FIG. 2. Contour lines of the solution for test case 2. Left: ε = 10−2; center: ε = 10−4; right: ε = 10−6

To refine the mesh adaptively using the local error indicator ηT (uh) (evaluated by setting αT =

ε−
1
2 hT ), the following algorithm is considered:

(i) Construct an initial mesh T 0
h . Set i := 0.

(ii) Compute the approximate solution ui
h on T i

h and compute the local error indicators ηTi(u
i
h) for all

Ti ∈ T i
h .

(iii) If the global error is sufficiently small, stop; otherwise, compute the quantities

ĥTi = l(ηTi(u
i
h))hTi ,
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where l(ηTi (u
i
h)) = 1

2 if ηTi(u
i
h) 6 Si and l(ηTi(u

i
h)) = 1 otherwise. The threshold Si is evaluated

as Si = 1
2nti

∑Ti∈T i
h

ηTi(u
i
h) where nti denotes the number of triangles in the mesh T i

h .

(iv) Using the quantities ĥTi to construct a new mesh T
i+1

h . Go to step (ii).

Figure 3 presents the adaptively refined meshes after five iterations of the above algorithm. For the
three values of the diffusion coefficient, the mesh is refined at the origin. In the diffusion–dominated
regime the mesh is refined around the inner layer and at the outflow layer. In the advection–dominated
regime the meshes are refined along the inner layer. The refined zone becomes smaller as the diffusion
coefficient ε takes smaller values, indicating that the local error indicator ηT (uh) alone can detect the
inner layer.

FIG. 3. Adaptive meshes after five iterations. Left: ε = 10−2 and Nfa = 18157; center: ε = 10−4 and Nfa = 7145; right: ε = 10−6

and Nfa = 6934

Figure 4 presents the asymptotic behavior of the three global error estimators as a function of the
number of degrees of freedom in the adaptively refined meshes. The local error indicator ηS(uh), where

S denotes either a triangle T or a face F, is evaluated by setting αS = ε−
1
2 hS. In the diffusion–dominated

regime the convergence order of η1(uh) and η2(uh) is greater than 1, and η2(uh) converges faster than
η1(uh). In the advection–dominated regime η1(uh) and η2(uh) exhibit the same convergence order
except on the coarser meshes where η1(uh) super-converges.
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FIG. 4. Global error estimators against degrees of freedom. Left: ε = 10−2; center: ε = 10−4; right: ε = 10−6
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6. Conclusions

In this paper we have presented an a priori and an a posteriori error analysis for a nonconforming finite
element method to approximate advection–diffusion equations. The method is stabilized by penalizing
the jumps of the solution and those of its advective derivative across mesh interfaces. The a priori error
analysis leads to (quasi-)optimal error estimates in the mesh-size in the sense that keeping the P éclet
number fixed the estimates are sub–optimal of order 1

2 in the L2–norm and optimal in the broken graph
norm for quasi–uniform meshes. These estimates are similar to those obtained with other methods.
A drawback of the present scheme is the presence of face–oriented bilinear forms leading to a stencil
larger than that resulting from the use of the Crouzeix–Raviart finite element. When solving nonlinear
problems, e.g., the Navier–Stokes equations, these terms can be treated in the framework of a nonlinear
iterative solver thus avoiding the widening of the stencil; see, e.g., [26]. Finally, the a posteriori error
analysis of the present scheme leads to semi-robust error indicators, meaning that the factor between the
lower and upper bounds scales as the square root of the P éclet number. The present analysis provides
the first semi-robust a posteriori error estimator in a nonconforming setting and can be viewed as a first
step towards establishing robust a posteriori error estimators in this setting.
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