A priori and a posteriori analysis of nonconforming finite elements with face penalty for advection-diffusion equations

L. EL ALAOUI*,**, A. ERN** ${ }^{* *}$ and E. BURMAN ${ }^{* * *}$
* Department of Mathematics, Imperial College, London, SW7 2AZ, UK
(l.elalaoui@imperial.ac.uk)
** CERMICS, Ecole nationale des ponts et chaussées, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France (ern@cermics.enpc.fr)
*** Institut d’Analyse et de Calcul Scientifique (CMCS/IACS) Ecole Polytechnique Fédérale de Lausanne, Switzerland (erik.burman@epfl.ch)

Abstract

We analyze a nonconforming finite element method to approximate advection-diffusion-reaction equations. The method is stabilized by penalizing the jumps of the solution and those of its advective derivative across mesh interfaces. The a priori error analysis leads to (quasi-)optimal estimates in the mesh-size (sub-optimal of order $\frac{1}{2}$ in the L^{2}-norm optimal and optimal in the broken graph norm for quasi-uniform meshes) keeping the Péclet number fixed. Then, we investigate a residual a posteriori error estimator for the method. The estimator is semi-robust in the sense that it yields lower and upper bounds of the error which differ by a factor equal at most to the square root of the Péclet number. Finally, to illustrate the theory we present numerical results including adaptively generated meshes.

Keywords: nonconforming finite elements - face penalty - advection-diffusion - a posteriori error estimator - adaptive meshes

1. Introduction

Advection-diffusion equations in the dominant advection regime are encountered in many applications, including pollutant transport and the Navier-Stokes equations. It is well-known that the standard Galerkin approximation to these equations leads to oscillations when layers are not properly resolved. To stabilize this phenomenon, several well-established techniques have been proposed and analyzed in a conforming setting (e.g., streamline-diffusion [8, 21], subgrid viscosity [17, 18], and residual free bubbles [7]) as well as in a discontinuous setting (e.g., the Discontinuous Galerkin method analyzed in [22]).

An interesting compromise between conforming and discontinuous Galerkin methods consists of using nonconforming fi nite elements. In this paper, we are interested in low-order nonconforming fi nite elements such as the Crouzeix-Raviart fi nite element. This fi nite element presents various interesting features. First, the degrees of freedom are localized at the mesh faces, thereby leading to effi cient communication and parallelization. Second, Crouzeix-Raviart fi nite elements have close links with fi nite volume box schemes; see, e.g., [4, 12] for Darcy's equations and [16] for advection-diffusion equations. This property is useful to reconstruct locally the diffusive flux in problems where conservativity properties are important, e.g., pollutant transport. Finally, keeping the mesh fi xed, the Crouzeix-Raviart fi nite element space has approximately two times less degrees of freedom than the first-order Discontinuous Galerkin fi nite element space.

The topic of approximating advection-diffusion equations by Crouzeix-Raviart fi nite elements is not
new; see $[20,25]$ where the streamline-diffusion paradigm is extended to the nonconforming setting. The diffi culties with streamline-diffusion, in both conforming and nonconforming settings, is that the method involves a parameter depending on the diffusion coefficient and that the extension to timedependent problems is not straightforward. This can be unpractical in nonlinear problems, e.g., the Navier-Stokes equations where the regions with dominant convection may not be known a priori. In this paper we consider a different technique to stabilize the nonconforming fi nite element approximation, namely that of penalizing the jumps of the solution and those of its advective derivative across mesh interfaces. Drawing on earlier ideas by Douglas and Dupont [14], the analysis of face penalty fi nite element methods has been recently extended to advection-diffusion equations with dominant advection $[9,10]$ and to the Stokes equations [11]; see also [26] for an application to incompressible flow problems. The advantage of using the face penalty technique rather than streamline-diffusion is that the former involves a single user-dependent parameter which is independent of the diffusion coeffi cient. Moreover, the face penalty technique is readily extendable to time-dependent problems.

The a posteriori error analysis of nonconforming fi nite element approximations to advection-diffusion equations is a much less explored topic. Even in a conforming setting, the analysis is harder than it seems at first sight. The main issue at stake is to derive a so-called robust error estimator for which the upper and lower bounds for the error differ by a factor that is independent of the P^{\prime} 'eclet number. The first main progress in this direction was achieved by Verfürth [30] in a conforming setting, the proposed error estimator yielding a factor between lower and upper error bounds which scales as the square root of the P^{\prime} eclet number. Such error estimators are henceforth called semi-robust. Further results in this direction include [2,3]. Recently, robust error estimators, still in a conforming setting, have been proposed by Verfürth [31] and by Sangalli [28]. To this purpose, the norm with which the error is measured has to be modifi ed; in particular, it includes the advective derivative of the error. In [31], the advective derivative is measured in a dual (non-local) norm. In [28], the advective derivative is measured in a non-standard interpolated norm of order $\frac{1}{2}$ introduced in [27] and that can be evaluated by solving a generalized eigenvalue problem on a fi ne mesh. The purpose of the present work is to propose and analyze a semi-robust error estimator for nonconforming fi nite element approximations to advection-diffusion equations. To our knowledge, it is the first semi-robust error estimator in this setting. The present analysis can be viewed as a first step towards establishing robust error estimators in the nonconforming setting.

This paper is organized as follows. Section 2 presents the model problem and the nonconforming fi nite element approximation with face penalty. Section 3 deals with the a priori error analysis and Section 4 with the residual a posteriori error analysis. Section 5 contains numerical results and Section 6 draws some conclusions.

2. The setting

2.1 The model problem

Let Ω be a polygonal domain of \mathbb{R}^{d} with Lipschitz boundary $\partial \Omega$ and outward normal n. Let $\varepsilon>0$, $\beta \in\left[\mathscr{C}^{0, \frac{1}{2}}(\Omega)\right]^{d}$, and $v \in L^{\infty}(\Omega)$ be respectively the diffusion coeffi cient, the velocity fi eld, and the reaction coeffi cient. Set $\partial \Omega_{\mathrm{n}}=\{x \in \partial \Omega: \beta \cdot n<0\}$ and $\partial \Omega_{\text {out }}=\{x \in \partial \Omega: \beta \cdot n \geqslant 0\}$. Let $f \in L^{2}(\Omega)$ and $g \in L^{2}\left(\partial \Omega_{\text {in }}\right)$ be the data. We are interested in the following advection-diffusion-reaction problem with mixed Robin-Neumann boundary conditions:

$$
\left\{\begin{align*}
-\varepsilon \Delta u+\beta \cdot \nabla u+v u=f & \text { in } \Omega, \tag{2.1}\\
-\varepsilon \nabla u \cdot n+\beta \cdot n u=g & \text { on } \partial \Omega_{\mathrm{in}}, \\
\nabla u \cdot n=0 & \text { on } \partial \Omega_{\mathrm{out}} .
\end{align*}\right.
$$

Without loss of generality, we assume that (2.1) is non-dimensionalized so that $\|\beta\|_{\left[L^{\infty}(\Omega)\right]^{d}}$ and the length scale of Ω are of order unity; hence, the parameter ε is the reciprocal of the P^{\prime} eclet number.

Under the assumption that there is $\sigma_{0}>0$ such that $\sigma=v-\frac{1}{2} \nabla \cdot \beta \geqslant \sigma_{0}$ in Ω and that $\nabla \cdot \beta \in L^{\infty}(\Omega)$, it is straightforward to verify using the Lax-Milgram Lemma that the following weak formulation of (2.1) is well posed:

$$
\left\{\begin{array}{l}
\text { Seek } u \in H^{1}(\Omega) \text { such that } \tag{2.2}\\
a(u, v)=\int_{\Omega} f v-\int_{\partial \Omega_{\mathrm{in}}} g v \quad \forall v \in H^{1}(\Omega),
\end{array}\right.
$$

where

$$
\begin{equation*}
a(u, v)=\int_{\Omega} \varepsilon \nabla u \cdot \nabla v+\int_{\Omega}(v-\nabla \cdot \beta) u v-\int_{\Omega} u(\beta \cdot \nabla v)+\int_{\partial \Omega_{\mathrm{out}}}(\beta \cdot n) u v . \tag{2.3}
\end{equation*}
$$

2.2 The discrete setting

Let $\left(\mathscr{T}_{h}\right)_{h}$ be a shape-regular family of simplicial affin ne meshes of Ω. For an element $T \in \mathscr{T}$, let ∂T denote its boundary, h_{T} its diameter and set $h=\max _{T \in \mathscr{F}_{h}} h_{T}$. Let $\mathscr{F}_{h}, \mathscr{F}_{h}^{i}$, and $\mathscr{F}_{h}^{\partial}$ denote respectively the set of faces, internal, and external faces in \mathscr{T}_{h}. Let $\mathscr{F}_{h}^{\text {in }}$ and $\mathscr{F}_{h}^{\text {out }}$ be the set of faces belonging respectively to $\partial \Omega_{\text {in }}$ and to $\partial \Omega_{\text {out }}$ such that $\mathscr{F}_{h}^{\partial}=\mathscr{F}_{h}^{\text {in }} \cup \mathscr{F}_{h}^{\text {out }}$. For a face $F \in \mathscr{F}_{h}$, let h_{F} denote its diameter and \mathscr{T}_{F} the set of elements in \mathscr{T}_{h} containing F. For an element $T \in \mathscr{T}_{h}$, let \mathscr{F}_{T} denote the set of faces belonging to T. Let \mathscr{S}_{h} be the set of mesh vertices. For a vertex $s \in \mathscr{S}_{h}$, let \mathscr{T}_{s} denote the set of elements in \mathscr{T}_{h} containing s.

For an integer $k \geqslant 1$, let $H^{k}\left(\mathscr{T}_{h}\right)=\left\{v \in L^{2}(\Omega) ; \forall T \in \mathscr{T}_{h},\left.v\right|_{T} \in H^{k}(T)\right\}$. We introduce the discrete gradient operator $\nabla_{h}: H^{1}\left(\mathscr{T}_{h}\right) \rightarrow\left[L^{2}(\Omega)\right]^{d}$ such that for all $v \in H^{1}\left(\mathscr{T}_{h}\right)$ and for all $T \in \mathscr{T}_{h},\left.\left(\nabla_{h} v\right)\right|_{T}=$ $\nabla\left(\left.v\right|_{T}\right)$. Let $F \in \mathscr{F}_{h}^{i}$; then, there are $T_{1}(F)$ and $T_{2}(F) \in \mathscr{T}_{h}$ such that $F=T_{1}(F) \cap T_{2}(F)$. Conventionally, choose n_{F} to be the unit normal vector to F pointing from $T_{1}(F)$ towards $T_{2}(F)$. For $v \in H^{1}(\mathscr{T})$, defi ne its jump across F as

$$
\begin{equation*}
[\tau v]_{F}=\left.v\right|_{T_{1}(F)}-\left.v\right|_{T_{2}(F)} \quad \text { a.e. on } F . \tag{2.4}
\end{equation*}
$$

For $F \in \mathscr{F}_{h}^{\partial}$, defi ne n_{F} to be the unit normal to F pointing towards the exterior of Ω and for $v \in H^{1}\left(\mathscr{T}_{h}\right)$, set $[v]_{F}=\left.v\right|_{T(F)}$ where $T(F)$ is the mesh element of which F is a face. A similar notation is used for the jumps of vector-valued functions, the jump being taken componentwise.

For a subset $R \subset \Omega,(\cdot, \cdot)_{0, R}$ denotes the $L^{2}(\Omega)$-scalar product, $\|\cdot\|_{0, R}$ the associated norm, $\|\cdot\|_{k, R}$ the $H^{k}(R)$-norm for $k \geqslant 1$, and $v_{\infty, R}$ the $L^{\infty}(R)$-norm or $\left[L^{\infty}(R)\right]^{d}$-norm of the function v.

Consider the Crouzeix-Raviart fi nite element space $P_{\text {nc }}^{l}\left(\mathscr{T}_{h}\right)$ defi ned as [13]

$$
P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right)=\left\{v_{h} \in L^{2}(\Omega) ; \forall T \in \mathscr{T}_{h},\left.v_{h}\right|_{T} \in P^{1}(T) ; \forall F \in \mathscr{F}_{h}^{i}, \int_{F}\left[v_{h}\right]_{F}=0\right\},
$$

where $P^{1}(T)$ denotes the vector space of polynomials on T with degree less than or equal to 1 . For further purposes, we restate some well-known results. There exists a constant c such that for all h, for all $v_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right)$, for all $T \in \mathscr{T}_{h}$, and for all $F \subset \partial T$,

$$
\begin{gather*}
\left\|v_{h}\right\|_{1, T} \leqslant c h_{T}^{-1}\left\|v_{h}\right\|_{0, T}, \tag{2.5}\\
\left\|v_{h}\right\|_{0, F} \leqslant c h_{F}^{-\frac{1}{2}}\left\|v_{h}\right\|_{0, T}, \tag{2.6}\\
\left\|\left[v_{h}\right]_{F}\right\|_{0, F} \leqslant c h_{F}\left\|\left[\nabla_{h} v_{h}\right]_{F}\right\|_{0, F} . \tag{2.7}
\end{gather*}
$$

Let $P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)=P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right) \cap H^{1}(\Omega)$ be the usual first-order conforming fi nite element space. Let \mathscr{B}_{s} : $P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right) \rightarrow P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)$ be the so-called Oswald interpolation operator [15, 19] defi ned such that

$$
\begin{equation*}
\forall v_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right), \forall s \in \mathscr{S}_{h}, \quad \mathscr{I}_{\mathrm{Os}} v_{h}(s)=\left.\frac{1}{\sharp\left(\mathscr{T}_{s}\right)} \sum_{T \in \mathscr{T}_{s}} v_{h}\right|_{T}(s), \tag{2.8}
\end{equation*}
$$

where $\sharp\left(\mathscr{T}_{s}\right)$ denotes the cardinal number of \mathscr{T}_{s}. This operator is endowed with the following approximation property [1, 9, 23]: There exists a constant c, independent of h, such that for all $v_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right)$ and for all $T \in \mathscr{T}_{h}$,

$$
\begin{equation*}
\left\|v_{h}-\mathscr{I}_{\mathrm{Os}} v_{h}\right\|_{0, T}+h_{T}\left\|\nabla\left(v_{h}-\mathscr{I}_{\mathrm{Os}} v_{h}\right)\right\|_{0, T} \leqslant c \sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} h_{F}^{\frac{1}{2}}\left\|\left[v_{h}\right]_{F}\right\|_{0, F}, \tag{2.9}
\end{equation*}
$$

where $\mathscr{F}_{T}^{\text {Os }}$ denotes all the interior faces in the mesh containing a vertex of T. Using (2.7) and (2.9) yields

$$
\begin{equation*}
\left\|v_{h}-\mathscr{I}_{\mathrm{Os}} v_{h}\right\|_{0, T}+h_{T}\left\|\nabla\left(v_{h}-\mathscr{I}_{\mathrm{Os}} v_{h}\right)\right\|_{0, T} \leqslant c \sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} h_{F}^{\frac{3}{2}}\left\|\left[\nabla_{h} v_{h}\right]_{F}\right\|_{0, F} . \tag{2.10}
\end{equation*}
$$

2.3 The discrete bilinear forms

Set $V=H^{2}\left(\mathscr{T}_{h}\right) \cap H^{1}(\Omega)$ and $V(h)=V+P_{\text {nc }}^{1}\left(\mathscr{T}_{h}\right)$. Introduce the bilinear form a_{h} defi ned on $V(h) \times$ $V(h)$ by

$$
\begin{align*}
a_{h}(v, w)= & \int_{\Omega} \varepsilon \nabla_{h} v \cdot \nabla_{h} w+\int_{\Omega}(v-\nabla \cdot \beta) v w-\int_{\Omega} v\left(\beta \cdot \nabla_{h} w\right) \\
& \left.+\sum_{F \in \mathscr{F}_{h}^{i}} \int_{F} \beta \cdot n_{F} \llbracket v w\right]_{F}+\int_{\partial \Omega_{\mathrm{out}}}(\beta \cdot n) v w \tag{2.11}
\end{align*}
$$

and equip $V(h)$ with the norm

$$
\begin{equation*}
\|v\|_{\varepsilon \beta \sigma, \Omega}=\left\|\varepsilon^{\frac{1}{2}} \nabla_{h} v\right\|_{0, \Omega}+\left\|\sigma^{\frac{1}{2}} v\right\|_{0, \Omega}+\left\||\beta \cdot n|^{\frac{1}{2}} v\right\|_{0, \partial \Omega} \tag{2.12}
\end{equation*}
$$

The bilinear form a_{h} is not $\|\cdot\|_{\varepsilon \beta \sigma, \Omega}$-coercive on $V(h)$ owing to the presence of the jump terms in (2.11). To control these terms, consider the bilinear form j_{h} defi ned on $V(h) \times V(h)$ by

$$
\begin{equation*}
j_{h}(v, w)=\sum_{F \in \mathscr{F}_{h}^{j}} \int_{F}\left(\beta \cdot n_{F}\right)[v]_{F} w^{\downarrow} \tag{2.13}
\end{equation*}
$$

where w^{\downarrow} is the so-called downwind value of w defi ned as $w^{\downarrow}=\left.w\right|_{T_{2}(F)}$ if $\beta \cdot n_{F} \geqslant 0$ and $w^{\downarrow}=\left.w\right|_{T_{1}(F)}$ otherwise.

Lemma 2.1 There exists a constant $c>0$ such that for all $v \in V(h)$,

$$
\begin{equation*}
a_{h}(v, v)+j_{h}(v, v) \geqslant c\left(\|v\|_{\varepsilon \beta \sigma, \Omega}^{2}+\sum_{F \in \mathscr{F}_{h}^{i}}\left\|\left|\beta \cdot n_{F}\right|^{\frac{1}{2}}[\| v]_{F}\right\|_{0, F}^{2}\right) \tag{2.14}
\end{equation*}
$$

Proof. Straightforward verifi cation using integration by parts.
Working with the bilinear form $a_{h}+j_{h}$ alone is not suffi cient to control the advective derivative of the discrete solution. To this purpose, we introduce the bilinear form s_{h} on $V(h) \times V(h)$ such that

$$
\begin{equation*}
\left.s_{h}(v, w)=\sum_{F \in \mathscr{F} \mathscr{F}_{h}^{i}} \int_{F} \gamma \frac{h_{F}^{2}}{\beta_{\infty, F}} \llbracket \beta \cdot \nabla_{h} v\right]_{F}\left[\llbracket \beta \cdot \nabla_{h} w\right]_{F}, \tag{2.15}
\end{equation*}
$$

where $\gamma>0$ is independent of ε (the contribution of a face $F \in \mathscr{F}_{h}^{i}$ is conventionally set to zero if $\beta_{\infty, F}=0$). This leads to the following discrete problem:

$$
\left\{\begin{array}{l}
\text { Seek } u_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right) \text { such that for all } v_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right), \tag{2.16}\\
a_{h}\left(u_{h}, v_{h}\right)+j_{h}\left(u_{h}, v_{h}\right)+s_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right)_{0, \Omega}-\left(g, v_{h}\right)_{0, \partial \Omega_{\mathrm{in}}}
\end{array}\right.
$$

Lemma 2.1 implies that the bilinear form $\left(a_{h}+j_{h}+s_{h}\right)$ is $\|\cdot\|_{\varepsilon \beta \sigma, \Omega}$-coercive; hence, (2.16) is wellposed owing to the Lax-Milgram Lemma.

REMARK 2.1 A term similar to the bilinear form j_{h} is also added in [20] to control the jumps across mesh interfaces. As in the discrete problem (2.16) where the bilinear form j_{h} is introduced in addition to the bilinear form s_{h}, this term is introduced in addition to the streamline diffusion term stabilizing the nonconforming fi nite element approximation. To avoid this additional term, it is possible to work with the Q_{rot}^{1} fi nite element on rectangular meshes [29] or to consider a nonconforming fi nite element space satisfying the patch-test of order three [24]; however, the dimension of this space is twice as larger as the dimension of the Crouzeix-Raviart fi nite element space. Alternatively, one can penalize the jumps of all the gradient components instead of just those of the advective components and take $j_{h}=0$; we refer to [9] for more details.

3. A priori error analysis

In this section we present the convergence analysis for the discrete problem (2.16). The main result is Theorem 3.1. Henceforth, c denotes a generic positive constant, independent of h and ε, whose value can change at each occurrence. Since the advection-diffusion problem has been non-dimensionalized so that the fi eld β is of order unity, the dependency on β can be hidden in the constants c in the error estimates. The same is done for the function v since we are not interested in the asymptotic of strong reaction regimes. Finally, without loss of generality, we assume that $h \leqslant 1$ and $\varepsilon \leqslant 1$.

The error analysis is performed in the spirit of the Second Strang Lemma by considering two norms on $V(h)$, namely,

$$
\begin{align*}
& \|w\|_{A, \Omega}=\|w\|_{\varepsilon \beta \sigma, \Omega}+\left(\sum_{F \in \mathscr{F} H_{h}}\left\|\left|\beta \cdot n_{F}\right|^{\frac{1}{2}}[w]_{F}\right\|_{0, F}^{2}\right)^{\frac{1}{2}}+s_{h}(w, w)^{\frac{1}{2}}, \tag{3.1}\\
& \|w\|_{h, \frac{1}{2}}=\|w\|_{A, \Omega}+\left(\sum_{T \in \mathscr{\mathscr { F }}} h_{T}^{-1}\|w\|_{0, T}^{2}+\|w\|_{0, \partial T}^{2}\right)^{\frac{1}{2}} . \tag{3.2}
\end{align*}
$$

Let u be the unique solution to (2.2) and let u_{h} be the unique solution to (2.16).
Lemma 3.1 (Stability) The bilinear form $\left(a_{h}+j_{h}+s_{h}\right)$ is $\|\cdot\|_{A, \Omega}$-coercive.

Proof. Direct consequence of Lemma 2.1.
Lemma 3.2 (Continuity) Let Π_{h} be the L^{2}-orthogonal projection onto $P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)$. Then, there is a constant c such that for all $w \in V$ and for all $w_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right)$,

$$
\begin{equation*}
a_{h}\left(\Pi_{h} w-w, w_{h}\right) \leqslant c\left\|\Pi_{h} w-w\right\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega} \tag{3.3}
\end{equation*}
$$

Proof. Let $w \in V$ and set $v=\Pi_{h} w-w$. Let $w_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right)$ and let us estimate each term in $a_{h}\left(v, w_{h}\right)$. (1) It is clear that

$$
\int_{\Omega} \varepsilon \nabla_{h} v \cdot \nabla_{h} w_{h}+\int_{\Omega}(v-\nabla \cdot \beta) v w_{h} \leqslant c\|v\|_{\varepsilon \beta \sigma, \Omega}\left\|w_{h}\right\|_{\varepsilon \beta \sigma, \Omega} \leqslant c\|v\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega}
$$

(2) Let us write $\int_{\Omega} v \beta \cdot \nabla_{h} w_{h}=\int_{\Omega} v\left(\beta-\beta_{h}^{1}\right) \cdot \nabla_{h} w_{h}+\int_{\Omega} \nu \beta_{h}^{1} \cdot \nabla_{h} w_{h}$ where β_{h}^{1} is the L^{2}-orthogonal projection of β onto $\left[P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)\right]^{d}$. Since $\beta \in\left[\mathscr{C}^{0, \frac{1}{2}}(\Omega)\right]^{d}$ and owing to the inverse inequality (2.5),

$$
\int_{\Omega} v\left(\beta-\beta_{h}^{1}\right) \cdot \nabla_{h} w_{h} \leqslant c \sum_{T \in \mathscr{T}_{h}} h_{T}^{-\frac{1}{2}}\|v\|_{0, T}\left\|w_{h}\right\|_{0, T} \leqslant c\|v\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega}
$$

Furthermore, by construction $\left(v, \mathscr{I}_{\mathrm{Os}}\left(\beta_{h}^{1} \cdot \nabla_{h} w_{h}\right)\right)_{0, \Omega}=0$; hence, using (2.5), (2.6), (2.10), the regularity of β, and the shape-regularity of the mesh family yields

$$
\begin{aligned}
\int_{\Omega} v \beta_{h}^{1} \cdot \nabla_{h} w_{h}= & \int_{\Omega} v\left(\beta_{h}^{1} \cdot \nabla_{h} w_{h}-\mathscr{I}_{\mathrm{Os}}\left(\beta_{h}^{1} \cdot \nabla_{h} w_{h}\right)\right) \\
\leqslant & c \sum_{T \in \mathscr{T}_{h}}\|v\|_{0, T}\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} h_{F}^{\frac{1}{2}} \|\left[\left[\beta_{h}^{1} \cdot \nabla_{h} w_{h}\right]_{F} \|_{0, F}\right)\right. \\
\leqslant & c \sum_{T \in \mathscr{F}_{h}}\|v\|_{0, T}\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} h_{F}^{\frac{1}{2}} \|\left[\left[\beta \cdot \nabla_{h} w_{h}\right]_{F} \|_{0, F}\right)\right. \\
& +c \sum_{T \in \mathscr{T}_{h}}\|v\|_{0, T}\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} h_{F}^{\frac{1}{2}}\left\|\left[\left(\beta_{h}^{1}-\beta\right) \cdot \nabla_{h} w_{h}\right]_{F}\right\|_{0, F}\right) \\
\leqslant & c\|v\|_{h, \frac{1}{2}} s_{h}\left(w_{h}, w_{h}\right)^{\frac{1}{2}}+c\|v\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{0, \Omega} \leqslant c\|v\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega}
\end{aligned}
$$

(3) Since $v \in H^{1}(\Omega), \beta \cdot n_{F}\left[\left[v w_{h}\right]\right]_{F}=\beta \cdot n_{F} v\left[\left[w_{h}\right]\right]_{F}$. Hence,

$$
\sum_{F \in \mathscr{F}_{h}^{i}} \int_{F} \beta \cdot n_{F}\left[v w_{h}\right]_{F} \leqslant c\left(\sum_{T \in \mathscr{T}_{h}}\|v\|_{0, \partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{F \in \mathscr{F}_{h}^{i}}\left\|\left|\beta \cdot n_{F}\right|^{\frac{1}{2}}\left[w_{h}\right]_{F}\right\|_{0, F}^{2}\right)^{\frac{1}{2}} \leqslant c\|v\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega} .
$$

Similarly,

$$
\sum_{F \in \mathscr{F} h} \int_{h}^{\text {out }} \int_{F}(\beta \cdot n) v w_{h} \leqslant c\|v\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega} .
$$

Collecting the above inequalities yields (3.3).

Lemma 3.3 (Error estimation) Assume that $u \in H^{2}(\Omega)$. Set

$$
\begin{equation*}
R_{h}(u)=\sup _{w_{h} \in P_{\mathrm{nc}}^{\mathrm{L}}\left(\mathscr{F}_{h}\right)} \frac{a_{h}\left(u, w_{h}\right)-\left(f, w_{h}\right)_{0, \Omega}+\left(g, w_{h}\right)_{0, \partial \Omega_{\mathrm{in}}}}{\left\|w_{h}\right\|_{A, \Omega}} . \tag{3.4}
\end{equation*}
$$

Then, there exists a constant $c>0$ such that

$$
\begin{equation*}
c\left\|u-u_{h}\right\|_{A, \Omega} \leqslant\left\|u-\Pi_{h} u\right\|_{h, \frac{1}{2}}+R_{h}(u) . \tag{3.5}
\end{equation*}
$$

Proof. Since $\left\|u-\Pi_{h} u\right\|_{A, \Omega} \leqslant\left\|u-\Pi_{h} u\right\|_{h, \frac{1}{2}}$, the triangle inequality yields

$$
\left\|u-u_{h}\right\|_{A, \Omega} \leqslant\left\|u-\Pi_{h} u\right\|_{h, \frac{1}{2}}+\left\|\Pi_{h} u-u_{h}\right\|_{A, \Omega} .
$$

Set $w_{h}=\Pi_{h} u-u_{h}$ and observe that $w_{h} \in V(h)$. Then, the $\|\cdot\|_{A, \Omega}$-coercivity of $\left(a_{h}+j_{h}+s_{h}\right)$ on $V(h) \times$ $V(h)$ yields

$$
c\left\|\Pi_{h} u-u_{h}\right\|_{A, \Omega}^{2} \leqslant a_{h}\left(\Pi_{h} u-u_{h}, w_{h}\right)+j_{h}\left(\Pi_{h} u-u_{h}, w_{h}\right)+s_{h}\left(\Pi_{h} u-u_{h}, w_{h}\right) .
$$

Moreover, using the fact that $s_{h}\left(u, w_{h}\right)=j_{h}\left(\Pi_{h} u, w_{h}\right)=0$ since $u \in H^{2}(\Omega)$ and $\Pi_{h} u \in H^{1}(\Omega)$ leads to

$$
\begin{aligned}
& a_{h}\left(\Pi_{h} u-u_{h}, w_{h}\right)+j_{h}\left(\Pi_{h} u-u_{h}, w_{h}\right)+s_{h}\left(\Pi_{h} u-u_{h}, w_{h}\right) \\
& =a_{h}\left(\Pi_{h} u-u, w_{h}\right)+s_{h}\left(\Pi_{h} u-u, w_{h}\right)+a_{h}\left(u, w_{h}\right)-\left(f, w_{h}\right)_{0, \Omega}+\left(g, w_{h}\right)_{0, \partial \Omega_{\mathrm{in}}} .
\end{aligned}
$$

Owing to Lemma 3.2,

$$
a_{h}\left(\Pi_{h} u-u, w_{h}\right) \leqslant c\left\|\Pi_{h} u-u\right\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega}
$$

Furthermore,

$$
s_{h}\left(\Pi_{h} u-u, w_{h}\right) \leqslant s_{h}\left(\Pi_{h} u-u, \Pi_{h} u-u\right)^{\frac{1}{2}} s_{h}\left(w_{h}, w_{h}\right)^{\frac{1}{2}} \leqslant\left\|\Pi_{h} u-u\right\|_{h, \frac{1}{2}}\left\|w_{h}\right\|_{A, \Omega}
$$

The conclusion is straightforward.
Lemma 3.4 (Consistency) Assume that $u \in H^{2}(\Omega)$. Then, there exists a constant c such that

$$
\begin{equation*}
\left|R_{h}(u)\right| \leqslant c \varepsilon^{\frac{1}{2}} h\|u\|_{2, \Omega} . \tag{3.6}
\end{equation*}
$$

Proof. Let $w_{h} \in P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right)$. Observe that

$$
a_{h}\left(u, w_{h}\right)-\left(f, w_{h}\right)_{0, \Omega}+\left(g, w_{h}\right)_{0, \partial \Omega_{\mathrm{in}}}=\sum_{F \in \mathscr{F} h} \int_{F} \varepsilon \nabla u \cdot n_{F}\left[\left[w_{h}\right]_{F} .\right.
$$

Since $P_{\mathrm{nc}}^{1}\left(\mathscr{T}_{h}\right)$ satisfi es the patch-test of order zero,

$$
a_{h}\left(u, w_{h}\right)-\left(f, w_{h}\right)_{\Omega}+\left(g, w_{h}\right)_{0, \partial \Omega_{\text {in }}}=\sum_{F \in \mathscr{F}_{h}^{j}} \int_{F} \varepsilon\left(\nabla u-\Pi_{F}^{0}(\nabla u)\right) \cdot n_{F}\left[\left[w_{h}\right]_{F},\right.
$$

where $\Pi_{F}^{0}:\left[L^{2}(F)\right]^{d} \rightarrow\left[P^{0}(F)\right]^{d}$ denotes the L^{2}-orthogonal projection on $\left[P^{0}(F)\right]^{d}$. Using the standard Crouzeix-Raviart face interpolation inequality [13] leads to

$$
\left|a_{h}\left(u, w_{h}\right)-\left(f, w_{h}\right)_{\Omega}+\left(g, w_{h}\right)_{\partial \Omega_{\mathrm{in}}}\right| \leqslant c \varepsilon h\|u\|_{2, \Omega}\left\|\nabla_{h} w_{h}\right\|_{0, \Omega} .
$$

whence (3.6) is readily inferred.

Theorem 3.1 (Convergence) Assume that $u \in H^{2}(\Omega)$. Then, there exists a constant c such that

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{A, \Omega} \leqslant \operatorname{ch}\left(\varepsilon^{\frac{1}{2}}+h^{\frac{1}{2}}\right)\|u\|_{2, \Omega} . \tag{3.7}
\end{equation*}
$$

Proof. Observe that Π_{h} satisfi es the following approximation property (see, e.g., [6] for local approximation properties of Π_{h}): There exists a constant c such that for all $v \in H^{2}(\Omega)$,

$$
\begin{equation*}
\left\|v-\Pi_{h} v\right\|_{h, \frac{1}{2}} \leqslant \operatorname{ch}\left(\varepsilon^{\frac{1}{2}}+h^{\frac{1}{2}}\right)\|v\|_{2, \Omega} \tag{3.8}
\end{equation*}
$$

and use Lemmas 3.3 and 3.4.
REMARK 3.1 The a priori error estimate (3.7) shows that when keeping the P^{\prime} eclet number ε fi xed, the convergence order in the mesh-size for the error $\left\|u-u_{h}\right\|_{A, \Omega}$ is 1 in the diffusion-dominated regime and $\frac{3}{2}$ in the advection-dominated regime. This estimate is similar to those derived for stabilized schemes in the conforming setting; see, e.g., [7, 8, 11, 17].
REMARK 3.2 The above analysis shares some common features with that presented in [9]. The main differences is that we consider mixed Robin-Neumann boundary conditions instead of Dirichlet boundary conditions, that the advective fi eld is in $\left[\mathscr{C}^{\circ, \frac{1}{2}}(\Omega)\right]^{d}$ instead of being piecewise affi ne, and that the stabilization is achieved by using the bilinear form $\left(j_{h}+s_{h}\right)$ instead of penalizing the jumps of all the gradient components across interfaces.

4. A posteriori error analysis

In this section we present the residual a posteriori error analysis for the discrete problem (2.16). The main results are Theorem 4.1 which yields a global upper bound for the error and Theorem 4.2 which yields a local lower bound for the error.

Let f_{h}, β_{h} and v_{h} be the L^{2}-orthogonal projection of f, β and v onto the space of piecewise constant functions on \mathscr{T}_{h} respectively, and let g_{h} be the L^{2}-orthogonal projection of g onto the space of piecewise constant functions on \mathscr{F}_{h}. Let u be the unique solution to (2.2) and let u_{h} be the unique solution to (2.16). As in the previous section, we assume without loss of generality that $h \leqslant 1$ and $\varepsilon \leqslant 1$. Furthermore, defi ne

$$
\begin{equation*}
\alpha_{S}=\min \left(\varepsilon^{-\frac{1}{2}} h_{S}, 1\right) \tag{4.1}
\end{equation*}
$$

where S belongs to \mathscr{T}_{h} or to \mathscr{F}_{h}, and observe that

$$
\begin{align*}
h_{S}^{\frac{1}{2}} & \leqslant \max \left(\varepsilon^{\frac{1}{2}}, \alpha_{S}\right) \tag{4.2}\\
h_{S} & \leqslant \alpha_{S} \tag{4.3}
\end{align*}
$$

Indeed, (4.2) trivially holds if $h_{S} \leqslant \varepsilon$ whereas if $\varepsilon \leqslant h_{S}$, then $h_{S}^{\frac{1}{2}} \leqslant \alpha_{S}$. Furthermore, (4.3) directly results from the fact that $h \leqslant 1$ and $\varepsilon \leqslant 1$.
Theorem 4.1 (Global upper bound) There is a constant $c>0$ such that

$$
\begin{equation*}
c\left\|u-u_{h}\right\|_{\varepsilon \beta \sigma, \Omega} \leqslant\left(\sum_{T \in \mathscr{T}_{h}}\left[\eta_{T}\left(u_{h}\right)^{2}+\delta_{T}\left(u_{h}\right)^{2}\right]+\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}} \tag{4.4}
\end{equation*}
$$

where we have introduced for all $T \in \mathscr{T}_{h}$ the local data error indicators

$$
\begin{align*}
\delta_{T}\left(u_{h}\right)= & \alpha_{T}\left(\left\|f-f_{h}\right\|_{0, T}+\left\|\left(\beta-\beta_{h}\right) \cdot \nabla u_{h}\right\|_{0, T}+\left\|\left(v-v_{h}\right) u_{h}\right\|_{0, T}\right) \\
& +\sum_{F \in \mathscr{F}_{T}^{(2)}} \varepsilon^{-\frac{1}{4}} \alpha_{F}^{\frac{1}{2}}\left\|g-g_{h}+\left(\beta-\beta_{h}\right) \cdot n u_{h}\right\|_{0, F}, \tag{4.5}
\end{align*}
$$

as well as the local residual error indicators

$$
\begin{align*}
\eta_{T}\left(u_{h}\right)= & \alpha_{T}\left\|f_{h}-\beta_{h} \cdot \nabla u_{h}-v_{h} u_{h}\right\|_{0, T}+\sum_{F \in \mathscr{F}_{T}^{(1)}} \varepsilon^{-\frac{1}{4}} \alpha_{F}^{\frac{1}{2}} \| \varepsilon\left[\left[\nabla_{h} u_{h}\right]_{F} \|_{0, F}\right. \\
& +\sum_{F \in \mathscr{F}_{T}^{(2)}} \varepsilon^{-\frac{1}{4}} \alpha_{F}^{\frac{1}{2}}\left\|g_{h}+\varepsilon \nabla u_{h} \cdot n-\beta_{h} \cdot n_{F} u_{h}\right\|_{0, F} \tag{4.6}\\
\eta_{F}\left(u_{h}\right)= & \left.h_{F}^{\frac{1}{2}} \max \left(\alpha_{F}, \varepsilon^{\frac{1}{2}}\right) \|\left[\nabla_{h} u_{h}\right]\right]_{F} \|_{0, F}, \tag{4.7}
\end{align*}
$$

where $\mathscr{F}_{T}^{(1)}=\mathscr{F}_{T} \cap\left\{\mathscr{F}_{h}^{i} \cup \mathscr{F}_{h}^{\text {out }}\right\}$ and $\mathscr{F}_{T}^{(2)}=\mathscr{F}_{T} \cap \mathscr{F}_{h}^{\text {in }}$.
Proof. Let $v_{h}=\mathscr{I}_{\mathrm{Os}} u_{h} \in P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)$ and set $w=u-v_{h} \in H^{1}(\Omega)$. Then,

$$
c\left\|u-v_{h}\right\|_{\varepsilon \beta \sigma, \Omega}^{2} \leqslant a_{h}\left(u-u_{h}, w\right)+a_{h}\left(u_{h}-v_{h}, w\right) .
$$

Furthermore, for all $w_{h} \in P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)$ the following equality holds

$$
a_{h}\left(u-u_{h}, w\right)=a_{h}\left(u-u_{h}, w-w_{h}\right)+j_{h}\left(u_{h}, w_{h}\right)+s_{h}\left(u_{h}, w_{h}\right) .
$$

Hence,

$$
c\left\|u-v_{h}\right\|_{\varepsilon \beta \sigma, \Omega}^{2} \leqslant a_{h}\left(u-u_{h}, w-w_{h}\right)+j_{h}\left(u_{h}, w_{h}\right)+s_{h}\left(u_{h}, w_{h}\right)+a_{h}\left(u_{h}-v_{h}, w\right)
$$

Let us estimate the four terms in the right-hand side of the above equation. Set $w_{h}=\mathscr{C}_{h} w \in P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)$ where \mathscr{C}_{h} denotes the Cl^{\prime} ement interpolant of w.
(1) Estimate of $a_{h}\left(u-u_{h}, w-w_{h}\right)$. Using the techniques presented in [30] yields

$$
a_{h}\left(u-u_{h}, w-w_{h}\right) \leqslant c\left(\sum_{T \in \mathscr{\mathscr { T }}}\left[\eta_{T}\left(u_{h}\right)^{2}+\delta_{T}\left(u_{h}\right)^{2}\right]\right)^{\frac{1}{2}}\|w\|_{\varepsilon \beta \sigma, \Omega}
$$

(2) Estimate of $j_{h}\left(u_{h}, w_{h}\right)$. Let $F \in \mathscr{F}_{h}^{i}$.
(2.a) Assume $\alpha_{F}=1$. Owing to (2.6) and (2.7),

$$
\int_{F} \beta \cdot n_{F}\left[\left[u_{h}\right]_{F} w_{h}^{\downarrow} \leqslant c h_{F}^{\frac{1}{2}}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\left\|w_{h}\right\|_{0, \mathscr{T}_{F}}=c h_{F}^{\frac{1}{2}} \alpha_{F} \|\left[\left[\nabla_{h} u_{h}\right]_{F}\left\|_{0, F}\right\| w_{h} \|_{0, \mathscr{T}_{F}} .\right.\right.
$$

(2.b) Assume $\alpha_{F}=\varepsilon^{-\frac{1}{2}} h_{F}$. Since $\int_{F}\left[\left[u_{h}\right]\right]_{F}=0$, it follows that

$$
\int_{F} \beta \cdot n_{F}\left[\left[u_{h}\right]_{F} w_{h}^{\downarrow}=\int_{F}\left(\beta-\Pi_{F}^{0} \beta\right) \cdot n_{F}\left[\left[u_{h}\right]_{F} w_{h}^{\downarrow}+\int_{F} \Pi_{F}^{0} \beta \cdot n_{F}\left[\left[u_{h}\right]_{F}\left(w_{h}^{\downarrow}-\Pi_{F}^{0} w_{h}^{\downarrow}\right),\right.\right.\right.
$$

where Π_{F}^{0} is defi ned in the proof of Lemma 3.4. Since $\beta \in\left[\mathscr{C}^{0}, \frac{1}{2}(\Omega)\right]^{d}$, using (2.6), (2.7), and (4.2) yields

$$
\begin{aligned}
\left.\int_{F}\left(\beta-\Pi_{F}^{0} \beta\right) \cdot n_{F} \llbracket u_{h}\right]_{F} w_{h}^{\downarrow} & \leqslant c h_{F}^{\frac{1}{2}}\left\|\left[u_{h}\right]_{F}\right\|_{0, F}\left\|w_{h}^{\downarrow}\right\|_{0, F} \\
& \leqslant \operatorname{ch}_{F}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\left\|w_{h}\right\|_{0, \mathscr{S}_{F}} \\
& \leqslant c h_{F}^{\frac{1}{2}} \max \left(\varepsilon^{\frac{1}{2}}, \alpha_{F}\right)\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\left\|w_{h}\right\|_{0, \mathscr{T}_{F}} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\int_{F} \Pi_{F}^{0} \beta \cdot n_{F}\left[\left[u_{h}\right]_{F}\left(w_{h}^{\downarrow}-\Pi_{F}^{0} w_{h}^{\downarrow}\right)\right. & \leqslant c \|\left[\left[u_{h}\right]_{F}\left\|_{0, F}\right\| w_{h}^{\downarrow}-\Pi_{F}^{0} w_{h}^{\downarrow} \|_{0, F}\right. \\
& \leqslant c \varepsilon^{-\frac{1}{2}} h_{F}^{\frac{3}{2}}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\left\|\varepsilon^{\frac{1}{2}} \nabla w_{h}\right\|_{0, \mathscr{T}_{F}}
\end{aligned}
$$

Collecting the above estimates yields

$$
j_{h}\left(u_{h}, w_{h}\right) \leqslant c\left(\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}\left(\left\|\varepsilon^{\frac{1}{2}} \nabla w_{h}\right\|_{0, \Omega}+\left\|w_{h}\right\|_{0, \Omega}\right)
$$

Finally, owing to the L^{2} - and H^{1}-stability of the Cl^{\prime} ement interpolation operator [5], it is inferred that

$$
j_{h}\left(u_{h}, w_{h}\right) \leqslant c\left(\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}\|w\|_{\varepsilon \beta \sigma, \Omega}
$$

(3) Estimate of $s_{h}\left(u_{h}, w_{h}\right)$. Let $F \in \mathscr{F}_{h}^{i}$.
(3.a) Assume $\alpha_{F}=1$. Owing to (2.5) and (2.6),

$$
\left.\int_{F} \frac{h_{F}^{2}}{\beta_{\infty, F}} \llbracket \beta \cdot \nabla_{h} u_{h}\right]_{F} \llbracket\left[\beta \cdot \nabla w_{h}\right]_{F} \leqslant c h_{F}^{\frac{1}{2}} \|\left[\left[\nabla_{h} u_{h}\right]_{F}\left\|_{0, F}\right\| w_{h} \|_{0, \mathscr{T}_{F}} .\right.
$$

(3.b) Assume $\alpha_{F}=\varepsilon^{-\frac{1}{2}} h_{F}$. Then,

$$
\begin{aligned}
\int_{F} \frac{h_{F}^{2}}{\beta_{\infty, F}}\left[\beta \cdot \nabla_{h} u_{h}\right]_{F}\left[\llbracket \beta \cdot \nabla_{w}\right]_{F} & \leqslant c h_{F}^{2}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F} h_{F}^{-\frac{1}{2}}\left\|\nabla w_{h}\right\|_{0, \mathscr{T}_{F}} \\
& \leqslant c \varepsilon^{-\frac{1}{2}} h_{F}^{\frac{3}{2}}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\left\|\varepsilon^{\frac{1}{2}} \nabla w_{h}\right\|_{0, \mathscr{T}_{F}}
\end{aligned}
$$

Collecting the above estimates and using the L^{2} - and H^{1}-stability of the Cl^{\prime} ement interpolation operator yields

$$
s_{h}\left(u_{h}, w_{h}\right) \leqslant c\left(\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}\|w\|_{\varepsilon \beta \sigma, \Omega}
$$

(4) Estimate of $a_{h}\left(u_{h}-v_{h}, w\right)$.
(4.a) Estimate of the diffusive term. Let $T \in \mathscr{T}_{h}$. Use (2.10) to infer

$$
\int_{T} \varepsilon \nabla_{h}\left(u_{h}-v_{h}\right) \cdot \nabla w \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} \varepsilon^{\frac{1}{2}} h_{F}^{\frac{1}{2}}\left\|\left[\left[\nabla_{h} u_{h}\right]_{F} \|_{0, F}\right)\right\| \varepsilon^{\frac{1}{2}} \nabla w \|_{0, T}\right.
$$

(4.b) Estimate of the reactive term. Let $T \in \mathscr{T}_{h}$. Use (2.10), and (4.3) to infer

$$
\begin{aligned}
\int_{T} v\left(u_{h}-v_{h}\right) w & \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{O}}} h_{F}^{\frac{3}{2}}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\right)\|w\|_{0, T} \\
& \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{O}}} h_{F}^{\frac{1}{2}} \alpha_{F}\left\|\left[\left[\nabla_{h} u_{h}\right]_{F} \|_{0, F}\right)\right\| w \|_{0, T}\right.
\end{aligned}
$$

(4.c) Estimate of the advective and face terms. Observe that these terms can be written in the form $\Sigma_{T \in \mathscr{T}_{h}} \Xi_{T}$ with

$$
\begin{align*}
\Xi_{T} & =\int_{T} \beta \cdot \nabla_{h}\left(u_{h}-v_{h}\right) w-\int_{\partial T \cap \partial \Omega_{\mathrm{in}}}\left(\beta \cdot n_{T}\right)\left(u_{h}-v_{h}\right) w \tag{4.8}\\
& =-\int_{T}\left(u_{h}-v_{h}\right) \beta \cdot \nabla w-\int_{T}(\nabla \cdot \beta)\left(u_{h}-v_{h}\right) w+\int_{\partial T^{*}}\left(\beta \cdot n_{T}\right)\left(u_{h}-v_{h}\right) w, \tag{4.9}
\end{align*}
$$

where n_{T} denotes the outward normal to T and $\partial T^{*}=\partial T \backslash\left(\partial T \cap \partial \Omega_{\text {in }}\right)$. If $\alpha_{T}=1$, consider (4.8) and use (2.10) to infer

$$
\begin{aligned}
\int_{T} \beta \cdot \nabla_{h}\left(u_{h}-v_{h}\right) w & \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} h_{F}^{\frac{1}{2}}\left\|\left[\left[\nabla_{h} u_{h}\right]_{F} \|_{0, F}\right)\right\| w \|_{0, T}\right. \\
& \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{Os}}} h_{F}^{\frac{1}{2}} \alpha_{F}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\right)\|w\|_{0, T},
\end{aligned}
$$

owing to the shape-regularity of the mesh family. Moreover, if T has a face on $\partial \Omega_{\mathrm{in}}$, say F_{T}, using (2.6) and (2.10) leads to

$$
\int_{\partial T \cap \partial \Omega_{\mathrm{in}}}\left(\beta \cdot n_{T}\right)\left(u_{h}-v_{h}\right) w \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{s}}} h_{F}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\right)\left\||\beta \cdot n|^{\frac{1}{2}} w\right\|_{0, F_{T}} .
$$

Hence,

$$
\left|\Xi_{T}\right| \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{O}}} h_{F}^{\frac{1}{2}} \alpha_{F}\left\|\left[\left[\nabla_{h} u_{h}\right]\right]_{F}\right\|_{0, F}\right)\left(\|w\|_{0, T}+\left\||\beta \cdot n|^{\frac{1}{2}} w\right\|_{0, F_{T}}\right) .
$$

If $\alpha_{T}=\varepsilon^{-\frac{1}{2}} h_{T}$, consider (4.9). Owing to (2.10),

$$
\int_{T}\left(u_{h}-v_{h}\right) \beta \cdot \nabla w \leqslant c\left(\sum_{F \in \mathscr{F}_{T}^{\mathrm{os}}} \varepsilon^{-\frac{1}{2}} h_{F}^{\frac{3}{2}}\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}\right)\left\|\varepsilon^{\frac{1}{2}} \nabla w\right\|_{0, T} .
$$

Furthermore, the term $\int_{T}(\nabla \cdot \beta)\left(u_{h}-v_{h}\right) w$ is estimated as in step (4.b). Let $F \subset \partial T^{*}$. Assume first that $F \in \mathscr{F}_{h}^{i}$. Observe that

$$
\int_{F} \beta \cdot n_{F}\left[\left[u_{h}-v_{h}\right]_{F} w=\int_{F}\left(\beta-\Pi_{F}^{0} \beta\right) \cdot n_{F}\left[\left[u_{h}\right]\right]_{F} w+\int_{F} \Pi_{h}^{0} \beta \cdot n_{F}\left[\left[u_{h}\right]_{F}\left(w-\Pi_{F}^{0} w\right)\right.\right.
$$

since $v_{h} \in P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)$. Proceeding as above yields

$$
\begin{aligned}
\int_{F} \beta \cdot n_{F}\left[\left[u_{h}-v_{h}\right]_{F} w\right. & \leqslant c h_{F}^{\frac{3}{2}} \|\left[\left[\nabla_{h} u_{h}\right]_{F}\left\|_{0, F}\right\| w\left\|_{0, F}+c \varepsilon^{-\frac{1}{2}} h_{F}^{\frac{3}{2}}\right\|\left[\nabla_{h} u_{h}\right]_{F}\left\|_{0, F}\right\| \varepsilon^{\frac{1}{2}} \nabla w \|_{0, \mathscr{T}_{F}}\right. \\
& \leqslant c \varepsilon^{-\frac{1}{2}} h_{F}^{\frac{3}{2}} \|\left[\left[\nabla_{h} u_{h}\right]_{F} \|_{0, F}\left(\left\|\varepsilon^{\frac{1}{2}} \nabla w\right\|_{0, \mathscr{T}_{F}}+\|w\|_{0, \mathscr{T}_{F}}\right),\right.
\end{aligned}
$$

where we have used the trace inequality $\|w\|_{0, F} \leqslant c\|w\|_{0, \mathscr{T}_{F}}^{\frac{1}{2}}\|w\|_{1, \mathscr{T}_{F}}^{\frac{1}{2}}$ valid for all $w \in H^{1}(\Omega)$. Furthermore, if $F \subset \partial \Omega_{\text {out }}$, using (2.6), (2.10), and (4.2) yields

$$
\begin{aligned}
\int_{F} \beta \cdot n\left(u_{h}-v_{h}\right) w & \leqslant\left. c\left\|u_{h}-v_{h}\right\|_{0, F}\| \| \beta \cdot n\right|^{\frac{1}{2}} w \|_{0, F} \\
& \leqslant c\left(\sum_{F^{\prime} \in \mathscr{F}_{T(F)}^{\mathrm{O}}} h_{F^{\prime}}\left\|\left[\nabla_{h} u_{h}\right]_{F^{\prime}}\right\|_{0, F^{\prime}}\right)\left\||\beta \cdot n|^{\frac{1}{2}} w\right\|_{0, F} \\
& \leqslant c\left(\sum_{F^{\prime} \in \mathscr{F}_{T(F)}^{\mathrm{Os}}} h_{F^{\prime}}^{\frac{1}{2}} \max \left(\varepsilon^{\frac{1}{2}}, \alpha_{F^{\prime}}\right)\left\|\left[\nabla_{h} u_{h}\right]_{F^{\prime}}\right\|_{0, F^{\prime}}\right)\left\||\beta \cdot n|^{\frac{1}{2}} w\right\|_{0, F}
\end{aligned}
$$

Collecting the above inequalities yields

$$
a_{h}\left(u_{h}-v_{h}, w\right) \leqslant c\left(\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}\|w\|_{\varepsilon \beta \sigma, \Omega}
$$

(5) Owing to steps (1)-(4) above, it is inferred that

$$
c\left\|u-v_{h}\right\|_{\varepsilon \beta \sigma, \Omega} \leqslant\left(\sum_{T \in \mathscr{T} h}\left[\eta_{T}\left(u_{h}\right)^{2}+\delta_{T}\left(u_{h}\right)^{2}\right]+\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}
$$

Using (2.10), (4.3), and the shape-regularity of the mesh family yields

$$
\begin{aligned}
\left\|\varepsilon^{\frac{1}{2}} \nabla_{h}\left(u_{h}-v_{h}\right)\right\|_{0, \Omega}+\left\|u_{h}-v_{h}\right\|_{0, \Omega} & \leqslant c\left(\sum_{F \in \mathscr{F}_{h}^{i}}\left(\varepsilon h_{F}+h_{F}^{3}\right)\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}^{2}\right)^{\frac{1}{2}} \\
& \leqslant c\left(\sum_{F \in \mathscr{F}_{h}^{i}}\left(\varepsilon h_{F}+h_{F} \alpha_{F}^{2}\right)\left\|\left[\nabla_{h} u_{h}\right]_{F}\right\|_{0, F}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Moreover, for all $F \in \mathscr{F}_{h}^{\partial}$, owing to (2.6), (2.10), and (4.2),

$$
\begin{aligned}
&\left\||\beta \cdot n|^{\frac{1}{2}}\left(u_{h}-v_{h}\right)\right\|_{0, F} \leqslant c \sum_{F^{\prime} \in \mathscr{F}_{T(F)}^{\mathrm{O}}} h_{F}\left\|\left[\| \nabla_{h} u_{h}\right]_{F^{\prime}}\right\|_{0, F^{\prime}} \\
& \leqslant c \sum_{F^{\prime} \in \mathscr{F}_{T(F)}^{\mathrm{os}}} h_{F^{\prime}}^{\frac{1}{2}} \\
& \max \left(\varepsilon^{\frac{1}{2}}, \alpha_{F^{\prime}}\right)\left\|\left[\nabla_{h} u_{h}\right]_{F^{\prime}}\right\|_{0, F^{\prime}}
\end{aligned}
$$

Collecting the above estimates yields

$$
\left\|u_{h}-v_{h}\right\|_{\varepsilon \beta \sigma, \Omega} \leqslant c\left(\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}
$$

Use the triangle inequality to conclude.
Let $T \in \mathscr{T}_{h}$ and let Δ_{T} denote the union of elements of \mathscr{T}_{h} sharing at least a vertex with T. For all $w \in V(h)$, localize $\|w\|_{\varepsilon \beta \sigma, \Omega}$ as follows:

$$
\|w\|_{\varepsilon \beta \sigma, \Delta_{T}}=\left\|\varepsilon^{\frac{1}{2}} \nabla_{h} v\right\|_{0, \Delta_{T}}+\left\|\sigma^{\frac{1}{2}} w\right\|_{0, \Delta_{T}}+\left(\sum_{F \in \mathscr{F}_{\Delta_{T}} \cap \mathscr{F}_{h}^{\partial}}\left\||\beta \cdot n|^{\frac{1}{2}} w\right\|_{0, F}^{2}\right)^{\frac{1}{2}},
$$

where $\mathscr{F}_{\Delta_{T}}$ denotes the set of faces of the elements in Δ_{T}.
Theorem 4.2 (Local Lower bound) There is a constant c such that for all $T \in \mathscr{T}_{h}$,

$$
\begin{equation*}
\eta_{T}\left(u_{h}\right) \leqslant c\left(\left(1+\varepsilon^{-\frac{1}{2}} \alpha_{T}\right)\left\|u-u_{h}\right\|_{\varepsilon \beta \sigma, \Delta_{T}}+\delta_{\Delta_{T}}\left(u_{h}\right)\right) \tag{4.10}
\end{equation*}
$$

where $\delta_{\Delta_{T}}\left(u_{h}\right)=\sum_{T^{\prime} \in \Delta_{T}} \delta_{T^{\prime}}\left(u_{h}\right)$, and for all $F \in \mathscr{F}_{h}^{i}$,

$$
\begin{equation*}
\eta_{F}\left(u_{h}\right) \leqslant c \varepsilon^{-\frac{1}{2}} \alpha_{F}\left(\left\|u-u_{h}\right\|_{\varepsilon \beta \sigma, \mathscr{T}_{F}}+\inf _{z_{h} \in\left[P_{c}^{1}\left(\mathscr{T}_{h}\right) d^{d}\right.}\left\|\varepsilon^{\frac{1}{2}}\left(\nabla u-z_{h}\right)\right\|_{0, \mathscr{T}_{F}}\right) . \tag{4.11}
\end{equation*}
$$

Proof. The upper bound (4.10) is obtained by using the techniques presented in [30]. To prove (4.11), let $z_{h} \in\left[P_{\mathrm{c}}^{1}\left(\mathscr{T}_{h}\right)\right]^{d}$ and let $F \in \mathscr{F}_{h}^{i}$. Observe that $\left[\left[\nabla_{h} u_{h}\right]_{F}=\left[\left[\nabla_{h} u_{h}-z_{h}\right]\right]_{F}\right.$. Then, using (2.6) and the triangle inequality yields

$$
\|\left[\left[\nabla_{h} u_{h}\right]_{F}\left\|_{0, F} \leqslant c h_{F}^{-\frac{1}{2}}\right\| \nabla_{h} u_{h}-z_{h} \|_{0, \mathscr{T}_{F}} \leqslant c h_{F}^{-\frac{1}{2}}\left(\left\|\nabla u-\nabla_{h} u_{h}\right\|_{0, \mathscr{T}_{F}}+\left\|\nabla u-z_{h}\right\|_{0, \mathscr{T}_{F}}\right) .\right.
$$

The conclusion is straightforward.
REMARK 4.1 Keeping ε fi xed, $\delta_{\Delta_{T}}\left(u_{h}\right)$ and $\inf _{z_{h} \in\left[P_{c}^{1}\left(\mathscr{T}_{h}\right)\right]^{d}}\left\|\varepsilon^{\frac{1}{2}}\left(\nabla u-z_{h}\right)\right\|_{0, \mathscr{T}_{F}}$ converge at least with the same order as $\left\|u-u_{h}\right\|_{\varepsilon \beta \sigma, \Delta_{T}}$ and $\left\|u-u_{h}\right\|_{\varepsilon \beta \sigma, \mathscr{T}_{F}}$, respectively.

5. Numerical results

In this section two test cases are presented to illustrate the above theoretical results. In both cases, $\Omega=(0,1) \times(0,1)$ and we consider a shape-regular family of unstructured triangulations of Ω with mesh-size $h_{i}=h_{0} \times 2^{-i}$ with $h_{0}=0.1$ and $i \in\{0, \cdots, 4\}$. The diffusion coeffi cient ε takes the values $\left\{10^{-2}, 10^{-4}, 10^{-6}\right\}$, the reaction coeffi cient v is set to 1 , and the parameter γ in (2.15) is set to 0.005 .

5.1 Test case 1

Let $\beta=(1,0)^{T}$ and choose the data f and g such that the exact solution of (2.1) is

$$
\begin{equation*}
u(x, y)=\frac{1}{2}\left(1-\tanh \left(\frac{0.5-x}{a_{w}}\right)\right) \tag{5.1}
\end{equation*}
$$

with internal layer width $a_{w}=0.05$.
Table 5.1 presents the convergence results for the error $\left\|u-u_{h}\right\|_{A, \Omega} ; N_{\text {fa }}$ denotes the number of degrees of freedom (i.e., the number of mesh faces) and ω denotes the convergence order with respect to the mesh-size. In the advection-dominated regime ($\varepsilon=10^{-4}$ and $\varepsilon=10^{-6}$), the error decreases as $h^{\frac{3}{2}}$. In the intermediate regime $\left(\varepsilon=10^{-2}\right)$, the convergence order changes from $\frac{3}{2}$ to 1 as the mesh is refi ned. These results are in agreement with the estimate derived in Theorem 3.1.

Mesh		$\varepsilon=10^{-2}$		$\varepsilon=10^{-4}$		$\varepsilon=10^{-6}$							
i	N_{fa}	$\left\\|u-u_{h}\right\\|_{A, \Omega}$	ω	$\left\\|u-u_{h}\right\\|_{A, \Omega}$	ω	$\left\\|u-u_{h}\right\\|_{A, \Omega}$	ω						
0	374	1.04	-	1.01	-	9.9910^{-1}	-						
1	1441	4.0510^{-1}	1.40	3.7610^{-1}	1.46	3.7110^{-1}	1.47						
2	5621	1.5310^{-1}	1.43	1.2910^{-1}	1.57	1.2610^{-1}	1.59						
3	22330	6.0210^{-2}	1.35	4.5210^{-2}	1.52	4.4010^{-2}	1.52						
4	88961	2.4510^{-2}	1.30	1.6110^{-2}	1.49	1.5510^{-2}	1.51						

Table 1. Numerical errors and convergence orders for the different values of ε

Let $\eta_{1}\left(u_{h}\right), \eta_{2}\left(u_{h}\right)$, and $\delta\left(u_{h}\right)$ be the global error estimators defi ned as

$$
\begin{equation*}
\eta_{1}\left(u_{h}\right)=\left(\sum_{T \in \mathscr{T}_{h}} \eta_{T}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}, \quad \eta_{2}\left(u_{h}\right)=\left(\sum_{F \in \mathscr{F}_{h}^{i}} \eta_{F}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}}, \quad \delta\left(u_{h}\right)=\left(\sum_{T \in \mathscr{T}_{h}} \delta_{T}\left(u_{h}\right)^{2}\right)^{\frac{1}{2}} \tag{5.2}
\end{equation*}
$$

where the local error indicators $\eta_{T}\left(u_{h}\right), \eta_{F}\left(u_{h}\right)$, and $\delta_{T}\left(u_{h}\right)$ are defi ned in (4.6), (4.7), and (4.5), respectively. The asymptotic behavior of the global error estimators with respect to the number of degrees of freedom is presented in Figure 1. The error $u-u_{h}$ measured in the norm $\|\cdot\|_{\varepsilon \beta \sigma, \Omega}$ is also presented in Figure 1. For the three values of the diffusion coeffi cient, the error estimator $\eta_{l}\left(u_{h}\right)$ has approximately the same convergence order as the error. In the diffusion-dominated regime, the error estimators $\eta_{2}\left(u_{h}\right)$ and $\delta\left(u_{h}\right)$ exhibit a super-convergent behavior. In the advection-dominated regime, the convergence order of $\left\|u-u_{h}\right\|_{\varepsilon \beta \sigma, \Omega}$ and $\eta_{1}\left(u_{h}\right)$, is close to $\frac{3}{2}$ while the convergence order of $\delta\left(u_{h}\right)$ and $\eta_{2}\left(u_{h}\right)$ is close to 1 . The effi ciency index evaluated as

$$
\begin{equation*}
I=\frac{\eta_{1}\left(u_{h}\right)+\eta_{2}\left(u_{h}\right)+\delta\left(u_{h}\right)}{\left\|u-u_{h}\right\|_{\varepsilon \beta \sigma, \Omega}} \tag{5.3}
\end{equation*}
$$

is in the range 9.7 to 33.7 for $\varepsilon=10^{-2}, 81.1$ to 347.4 for $\varepsilon=10^{-4}$, and 95.8 to 1571.4 for $\varepsilon=10^{-6}$. The increase of the effi ciency index is roughly proportional to $\varepsilon^{-\frac{1}{2}}$, in agreement with the theoretical results of Section 4.

FIG. 1. Exact error and global error estimators against degrees of freedom. Left: $\varepsilon=10^{-2}$; center: $\varepsilon=10^{-4}$; right: $\varepsilon=10^{-6}$

5.2 Test case 2

The goal of this section is to present a test case for which the mesh is adaptively refi ned based on the a posteriori error analysis. Let Γ_{1} denote the lower horizontal edge of Ω and let Γ_{2} denote its left vertical edge. Set $\beta=(2,1)^{T}$, $f=0$, and g such that $g=1$ on Γ_{1} and $g=0$ on Γ_{2}. Owing to the discontinuity of the Robin boundary condition, the solution exhibits an inner layer located along the line $\{x=2 y\}$. Similar results are obtained if the data g ensures a sharp but continuous transition from 0 to 1 at the origin. Figure 2 presents the contour lines of the computed solution for the different values of ε.

FIG. 2. Contour lines of the solution for test case 2. Left: $\varepsilon=10^{-2}$; center: $\varepsilon=10^{-4}$; right: $\varepsilon=10^{-6}$

To refi ne the mesh adaptively using the local error indicator $\eta_{T}\left(u_{h}\right)$ (evaluated by setting $\alpha_{T}=$ $\varepsilon^{-\frac{1}{2}} h_{T}$), the following algorithm is considered:
(i) Construct an initial mesh \mathscr{T}_{h}^{0}. Set $i:=0$.
(ii) Compute the approximate solution u_{h}^{i} on \mathscr{T}_{h}^{i} and compute the local error indicators $\eta_{T_{i}}\left(u_{h}^{i}\right)$ for all $T_{i} \in \mathscr{T}_{h}^{i}$.
(iii) If the global error is suffi ciently small, stop; otherwise, compute the quantities

$$
\hat{h}_{T_{i}}=l\left(\eta_{T_{i}}\left(u_{h}^{i}\right)\right) h_{T_{i}},
$$

where $l\left(\eta_{T_{i}}\left(u_{h}^{i}\right)\right)=\frac{1}{2}$ if $\eta_{T_{i}}\left(u_{h}^{i}\right) \leqslant S_{i}$ and $l\left(\eta_{T_{i}}\left(u_{h}^{i}\right)\right)=1$ otherwise. The threshold S_{i} is evaluated as $S_{i}=\frac{1}{2 n t_{i}} \sum_{T_{i} \in \mathscr{T}_{h}^{i}} \eta_{T_{i}}\left(u_{h}^{i}\right)$ where $n t_{i}$ denotes the number of triangles in the mesh \mathscr{T}_{h}^{i}.
(iv) Using the quantities $\hat{h}_{T_{i}}$ to construct a new mesh \mathscr{T}_{h}^{i+1}. Go to step (ii).

Figure 3 presents the adaptively refi ned meshes after fi ve iterations of the above algorithm. For the three values of the diffusion coeffi cient, the mesh is refi ned at the origin. In the diffusion-dominated regime the mesh is refi ned around the inner layer and at the outflow layer. In the advection-dominated regime the meshes are refi ned along the inner layer. The refi ned zone becomes smaller as the diffusion coeffi cient ε takes smaller values, indicating that the local error indicator $\eta_{T}\left(u_{h}\right)$ alone can detect the inner layer.

FIG. 3. Adaptive meshes after fi ve iterations. Left: $\varepsilon=10^{-2}$ and $N_{\mathrm{fa}}=18157$; center: $\varepsilon=10^{-4}$ and $N_{\mathrm{fa}}=7145$; right: $\varepsilon=10^{-6}$ and $N_{\text {fa }}=6934$

Figure 4 presents the asymptotic behavior of the three global error estimators as a function of the number of degrees of freedom in the adaptively refi ned meshes. The local error indicator $\eta_{\mathcal{S}}\left(u_{h}\right)$, where S denotes either a triangle T or a face F, is evaluated by setting $\alpha_{S}=\varepsilon^{-\frac{1}{2}} h_{S}$. In the diffusion-dominated regime the convergence order of $\eta_{1}\left(u_{h}\right)$ and $\eta_{2}\left(u_{h}\right)$ is greater than 1 , and $\eta_{2}\left(u_{h}\right)$ converges faster than $\eta_{1}\left(u_{h}\right)$. In the advection-dominated regime $\eta_{1}\left(u_{h}\right)$ and $\eta_{2}\left(u_{h}\right)$ exhibit the same convergence order except on the coarser meshes where $\eta_{1}\left(u_{h}\right)$ super-converges.

FIG. 4. Global error estimators against degrees of freedom. Left: $\varepsilon=10^{-2}$; center: $\varepsilon=10^{-4}$; right: $\varepsilon=10^{-6}$

6. Conclusions

In this paper we have presented an a priori and an a posteriori error analysis for a nonconforming fi nite element method to approximate advection-diffusion equations. The method is stabilized by penalizing the jumps of the solution and those of its advective derivative across mesh interfaces. The a priori error analysis leads to (quasi-)optimal error estimates in the mesh-size in the sense that keeping the P^{\prime} 'eclet number fi xed the estimates are sub-optimal of order $\frac{1}{2}$ in the L^{2}-norm and optimal in the broken graph norm for quasi-uniform meshes. These estimates are similar to those obtained with other methods. A drawback of the present scheme is the presence of face-oriented bilinear forms leading to a stencil larger than that resulting from the use of the Crouzeix-Raviart fi nite element. When solving nonlinear problems, e.g., the Navier-Stokes equations, these terms can be treated in the framework of a nonlinear iterative solver thus avoiding the widening of the stencil; see, e.g., [26]. Finally, the a posteriori error analysis of the present scheme leads to semi-robust error indicators, meaning that the factor between the lower and upper bounds scales as the square root of the P^{\prime} eclet number. The present analysis provides the fi rst semi-robust a posteriori error estimator in a nonconforming setting and can be viewed as a first step towards establishing robust a posteriori error estimators in this setting.

Acknowledgement. This work was partly supported by the GdR MoMaS (CNRS-2439, ANDRA, BRGM, CEA, EdF)

References

[1] Y. Achdou, C. Bernardi, and F. Coquel. A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math., 96(1):17-42, 2003.
[2] R. Araya, E. Behrens, and R. Rodriguez. An adaptive stabilized finite element scheme for the advection-diffusion equation. submitted, 2004.
[3] R. Araya, A. Poza, and S. Ernst. A hierarchical a posteriori error estimate for an advection-diffusion-reaction problem. In Eccomas Proceedings, 2004.
[4] Courbet B. and J.-P. Croisille. Finite volume box schemes on triangular meshes. ESAIM, Math. Mod. Numer. Anal., 32(5):631-649, 1998.
[5] C. Bernardi and V. Girault. A local regularization operator for triangular and quadrilateral finite elements. SIAM, J. Numer. Anal., 35(5):1893-1916, 1998.
[6] M. Boman. A posteriori error analysis in the maximum norm for a penalty finite element method for the time dependent obstacle problem. Technical Report 2000-12, Chalmers University of Technology, 2000.
[7] F. Brezzi and A. Russo. Choosing bubbles for advection-diffusion problems. Math. Models Meth. Appl. Sci., 4:571-587, 1994.
[8] A. Brooks and T. Hughes. Streamline upwind/Petrov-Galerkin formulations for convective dominated fbws with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg, 32:199-259, 1982.
[9] E. Burman. A unified analysis for conforming and non-conforming stabilized finite element methods using interior penalty. to appear in SIAM, J. Numer. Anal, 2005.
[10] E. Burman and P. Hansbo. Edge stabilization for Galerkin approximations of the generalized Stokes' problem. Comput. Methods Appl. Mech. Engrg, 2003. submitted.
[11] E. Burman and P. Hansbo. Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg, 193:1437-1453, 2004.
[12] J.-P. Croisille. Finite volume box schemes and mixed methods. ESAIM, Math. Mod. Numer. Anal., 31(5):10871106, 2000.
[13] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming mixed finite element methods for solving the
stationary Stokes equations I. RAIRO Mod'el Math. Anal. Num 'er., 3:33-75, 1973.
[14] J. Douglas Jr. and T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods. R. Glowinski and J.L. Lions (Eds), Computing Methods in Applieds Sciences, Springer-Verlag, Berlin, 1976.
[15] L. El Alaoui and A. Ern. Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods. ESAIM, Math. Mod. Numer. Anal., 38(6):903-929, 2004.
[16] L. El Alaoui and A. Ern. Nonconforming finite element methods with subgrid viscosity applied to advection-diffusion-reaction equations. Numer. Methods Partial Differ. Equations, 2005. submitted.
[17] J.L. Guermond. Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM, Math. Mod. Numer. Anal., 33(6):1293-1316, 1999.
[18] J.L. Guermond. Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA, Journal of Numerical Analysis, 21:165-197, 2001.
[19] R.H.W Hoppe and B. Wohlmuth. Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. ESAIM, Math. Mod. Numer. Anal., 30:237-263, 1996.
[20] V. John, G. Matthies, F. Schieweck, and L. Tobiska. A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems. Comput. Methods Appl. Mech. Engrg, 166:85-97, 1998.
[21] C. Johnson, U. N"avert, and J. Pitk"aranta. Finite element methods for linear hyperbolic equations. Comput. Methods Appl. Mech. Engrg, 45:285-312, 1984
[22] C. Johnson and J. Pitk aranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation Math. Comput., 46(173):1-26, 1986
[23] O. Karakashian and F. Pascal. A-posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM, J. Numer. Anal., 41(6):2374-2399, 2003.
[24] P. Knobloch and L. Tobiska. The $P_{1}^{m o d}$ element: a new nonconforming finite element for convection-diffusion problems. SIAM, J. Numer. Anal., 41(2):436-456, 2003.
[25] G. Matthies and L. Tobiska. The streamline-diffusion method for conforming and nonconforming finite elements of lowest order applied to convection-diffusion problems. Computing, 66:343-364, 2001.
[26] A. Ouazzi and S. Turek. Unified edge-oriented stabilization of nonconforming finite element methods for incompressible fbw problems. Technical Report 284, Universit"at Dortmund, 2005.
[27] G. Sangalli. Analysis of the advection-diffusion operator using fractional order norms. Numer. Math., 97(4):779796, 2004.
[28] G. Sangalli. On robust a posteriori estimators for the advection-diffusion-reaction problem. Technical Report 04-55, ICES, 2004.
[29] M. Stynes and L. Tobiska. The streamline-diffusion method for nonconforming $Q_{1}^{\text {rot }}$ elements on rectangular tensor-product meshes. IMA J. Numer. Anal., 21(1):123-142, 2001.
[30] R. Verf ürth. A posteriori error estimators for convection-diffusion equations. Numer. Math., 80:641-663, 1998.
[31] R. Verf urth. Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM, J. Numer. Anal., 2004. submitted.

