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Abstract. This paper is the second part of a work attempting to give a unified analysis of
Discontinuous Galerkin methods. The setting under scrutiny is that of Friedrichs’ systems endowed
with a particular 2×2 structure in which some of the unknowns can be eliminated to yield a sys-
tem of second-order elliptic-like PDE’s for the remaining unknowns. For such systems, a general
Discontinuous Galerkin method is proposed and analyzed. The key feature is that the unknowns
that can be eliminated at the continuous level can also be eliminated at the discrete level by solving
local problems. All the design constraints on the boundary operators that weakly enforce boundary
conditions and on the interface operators that penalize interface jumps are fully stated. Examples
are given for advection–diffusion–reaction, linear elasticity, and a simplified version of the magneto-
hydrodynamics equations. Comparisons with well-known Discontinuous Galerkin approximations for
the Poisson equation are presented.
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1. Introduction. Friedrichs’s systems [8] are systems of first-order PDE’s en-
dowed with a symmetry and a positivity property. Such systems embrace both ellip-
tic and hyperbolic PDE’s, i.e., they include advection–reaction, advection–diffusion–
reaction, linear elasticity, and Maxwell’s equations in the elliptic regime, to cite a
few examples. The analysis of this class of problems and its approximation by means
of Discontinuous Galerkin (DG) methods has been initiated by Lesaint and Raviart
[10, 11] and Johnson et al. [9]. A thorough systematic analysis generalizing [10, 11, 9]
has been undertaken in the first part of this work [6].

In this second part, we specialize the setting to Friedrichs’ systems that can be set
into a 2×2 block structure such that (i) the dependent variable z can be partitioned
into the form z = (zσ, zu), and (ii) the σ-component, zσ, can be eliminated to yield a
system of second-order PDE’s for the u-component, zu, which is of elliptic type. To
efficiently approximate the above Friedrichs’ systems using DG methods, it is desirable
to reproduce at the discrete level the possibility to eliminate the σ-component of the
discrete unknown locally on each mesh element. This feature induces a non-trivial
modification of the analysis presented in [6] that constitutes the scope of the present
work. In particular, the design of boundary and interface operators has to be revised.
The analysis presented herein shows that to recover stability while allowing for the
local elimination in question requires an enhanced penalty on the boundary conditions
and the interface jumps of the discrete u-component.

This paper is organized as follows. Section 2 briefly restates the main theoretical
results of [6] on the well–posedness of Friedrichs’ systems and introduces the above
2×2 block structure. Section 3 presents three important examples of Friedrichs’ sys-
tems with 2×2 block structure, namely advection-diffusion-reaction equations written
in mixed form, linear elasticity equations written in the stress–pressure–displacement
form, and a simplified form of the magneto-hydrodynamics (MHD) equations. Sec-
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tion 4 formulates a general DG method for Friedrichs’ systems with 2×2 structure and
describes the technique to locally eliminate the σ-component of the discrete solution.
The convergence analysis is reported in Section 5. All the design assumptions on the
boundary operators which weakly enforce boundary conditions and on the interface
operators which penalize interface jumps are stated. The key results are Theorem 5.8
which contains the main estimate for the σ- and u-component of the approximation
error, and Theorem 5.14 which contains an improved estimate for the u-component
of the error in the L2-norm obtained using a duality argument. Finally, Section 6
applies the DG method to the PDE systems presented in §3; in particular, the link
with the unified analysis of Arnold et al. [1] for the Poisson equation is explicated
to illustrate the fact that various DG methods presented in the literature, e.g., the
Local Discontinuous Galerkin (LDG) method of Cockburn and Shu [4], the Interior
Penalty (IP) method of Douglas and Dupont [5], the method of Brezzi et al. [3], and
the method of Bassi and Rebay [2], fit into the present framework.

2. Friedrichs’ systems in block structure.

2.1. Main results on Friedrich’s systems in general form. Let Ω be a
bounded, open, and connected Lipschitz domain in R

d. Let m be a positive integer.
Let K and {Ak}1≤k≤d be (d+ 1) functions on Ω with values in R

m,m such that

K ∈ [L∞(Ω)]m,m, (a1)

∀k ∈ {1, . . . , d}, Ak ∈ [L∞(Ω)]m,m and

d∑

k=1

∂kA
k ∈ [L∞(Ω)]m,m, (a2)

∀k ∈ {1, . . . , d}, Ak = (Ak)t a.e. in Ω, (a3)

∃µ0 > 0, K + Kt −
d∑

k=1

∂kA
k ≥ 2µ0Im a.e. on Ω, (a4)

where Im is the identity matrix in R
m,m. Set L = [L2(Ω)]m and let D(Ω) be the

space of C∞ functions that are compactly supported in Ω. A function z in L is said
to have an A-weak derivative in L if the linear form

[D(Ω)]m 3 φ 7−→ −

∫

Ω

d∑

k=1

zt∂k(A
kφ) ∈ R, (2.1)

is bounded on L. In this case, the function in L that can be associated with the above
linear form by means of the Riesz representation theorem is denoted by Az. Clearly, if
z is smooth, e.g., z ∈ [C1(Ω)]m, Az =

∑d
k=1 A

k∂kz. Define the so-called graph space
W = {z ∈ L; Az ∈ L} equipped with the graph norm ‖z‖W = ‖Az‖L + ‖z‖L. The
space W is endowed with a Hilbert structure when equipped with the scalar product
(z, y)L + (Az,Ay)L.

Define the operator K ∈ L(L;L) by K : L 3 z 7−→ Kz ∈ L and the operator
T ∈ L(W ;L) by T = A+K, i.e.,

Tz = Kz +

d∑

k=1

Ak∂kz. (2.2)

Let K∗ ∈ L(L;L) be the adjoint operator of K, i.e., K∗ : L 3 z 7−→ Ktz ∈ L. Let
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T̃ ∈ L(W ;L) be the formal adjoint of T ,

T̃ z = Ktz −
d∑

k=1

∂k(A
kz). (2.3)

In this definition
∑d

k=1 ∂k(A
kz) is understood in the weak sense. One verifies that

this weak derivative exists in L whenever z is in W . Moreover, the usual rule for
differentiating products applies. Observe that assumption (a4) implies that

∀z ∈ W, (Tz, z)L + (z, T̃z)L ≥ 2µ0‖z‖
2
L. (2.4)

Let D ∈ L(W ;W ′) be the operator such that

∀(z, y) ∈W ×W, 〈Dz, y〉W ′,W = (Tz, y)L − (z, T̃ y)L. (2.5)

The operator D is self-adjoint and is a boundary operator in the sense that Ker(D)
is the closure of [D(Ω)]m in W ; see [7] for the proof and further results.

Consider the following problem: For f ∈ L, seek z ∈ W such that Tz = f . In
general, boundary conditions must be enforced for this problem to be well–posed. In
other words, one must find a closed subspace V of W such that the restricted operator
T : V → L is an isomorphism. To achieve this goal, a simple approach inspired from
Friedrichs’ work [6, 8] consists of introducing an operator M ∈ L(W ;W ′) such that

M is positive, i.e., 〈Mz, z〉W ′,W ≥ 0 for all z in W, (m1)

W = Ker(D −M) + Ker(D +M). (m2)

Then by setting

V = Ker(D −M) and V ∗ = Ker(D +M∗), (2.6)

where M∗ ∈ L(W ;W ′) is the adjoint of M and V and V ∗ are equipped with the
graph norm, the following Theorem can be proved (see [7, 6] for a proof):

Theorem 2.1. Assume (a1)–(a4) and (m1)–(m2). Then, the restricted operators

T : V → L and T̃ : V ∗ → L are isomorphisms.

As a result, for f in L, the following two problems are well-posed

Seek z ∈ V such that Tz = f , (2.7)

Seek z∗ ∈ V ∗ such that T̃ z∗ = f . (2.8)

A key observation at this point is that the boundary conditions enforced in (2.7) and
(2.8) are essential, i.e., they are enforced strongly by seeking the solutions in V and
V ∗, respectively. The key reason that lead us to focus on the theory of Friedrichs’s
systems is that it yields a way to enforce boundary conditions naturally, thus leading to
a suitable framework for developing a DG theory. To see this, introduce the following
bilinear forms on W ×W ,

a(z, y) = (Tz, y)L + 1
2 〈(M −D)z, y〉W ′,W , (2.9)

a∗(z, y) = (T̃ z, y)L + 1
2 〈(M

∗ +D)z, y〉W ′,W . (2.10)

It is clear that a and a∗ are in L(W ×W ; R). Consider the following problems: For
f ∈ L,

Seek z ∈W such that a(z, y) = (f, y)L, ∀y ∈W , (2.11)

Seek z∗ ∈ W such that a∗(z∗, y) = (f, y)L, ∀y ∈W . (2.12)
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The key result of this section is the following
Theorem 2.2. Assume (a1)–(a4) and (m1)–(m2). Then,

(i) There is a unique solution to (2.11) and this solution solves (2.7);
(ii) There is a unique solution to (2.12) and this solution solves (2.8).

Theorem 2.2 is proven in [6]. Contrary to (2.7) and (2.8), the boundary condi-
tions in (2.11) and (2.8) are natural, i.e., they are weakly enforced. For this reason,
problem (2.11) will constitute our working basis for designing DG methods; see §4.

2.2. The 2×2 block structure. We now assume that the (d+ 1) R
m,m-valued

fields K and {Ak}1≤k≤d have a 2×2 block structure, i.e., there are two positive integers
mσ and mu such that m = mσ +mu and

K =

[
Kσσ Kσu

Kuσ Kuu

]
, Ak =

[
0 Bk

[Bk]t Ck

]
, (2.13)

with obvious notation for the blocks of K and where for all k ∈ {1, . . . , d}, Bk is
an mσ×mu matrix field and Ck is a symmetric mu×mu matrix field. To simplify
the notation, define the operators B =

∑d
k=1 B

k∂k, B̃ =
∑d

k=1[B
k]t∂k, and C =∑d

k=1 C
k∂k. Set Lσ = [L2(Ω)]mσ and Lu = [L2(Ω)]mu .

The two key hypotheses on which the present work is based are the following:

∃k0 > 0, ∀ξ ∈ R
mσ , ξtKσσξ ≥ k0‖ξ‖

2
Rmσ a.e. on Ω, (a5)

∀k ∈ {1, . . . , d}, the mσ×mσ upper-left block of Ak is zero. (a6)

Assumption (a5), which means that Kσσ is uniformly positive definite, implies that
the matrix Kσσ is invertible.

Assumptions (a5) and (a6) allow for the elimination of zσ from the PDE sys-
tem Tz = f . With obvious notation, partition z and f into (zσ, zu) and (fσ, fu),
respectively. Then, zσ is given by

zσ = [Kσσ ]−1
(
fσ −Kσuzu −Bzu

)
, (2.14)

and zu solves the following second-order PDE:

− B̃[Kσσ ]−1Bzu + (C − B̃[Kσσ ]−1Kσu −Kuσ [Kσσ ]−1B)zu

+ (Kuu −Kuσ [Kσσ ]−1Kσu)zu = fu − (Kuσ + B̃)[Kσσ ]−1fσ. (2.15)

The objective of the present work is to design DG methods for approximating (2.15).
The strategy consists of constructing a DG approximation to (2.11), but at variance
with what has been done in [6], the construction is now specialized to the above
2×2 block structure so that the approximate unknown corresponding to zσ can be
eliminated locally on each mesh element by solving simple local problems.

Remark 2.1. The present study does not cover the DG approximation of the whole
realm of second-order PDE’s. Indeed, it is clear from (2.15) that the leading order
term in the PDE, namely B̃[Kσσ ]−1Bzu (up to first-order terms), has a very particular
structure since the matrices (Bk)t[Kσσ ]−1Bk are positive semi-definite. Hence, the
PDE’s covered by this work are elliptic-like; see §3 for various examples.

3. Examples. This section presents three examples of Friedrichs’ systems en-
dowed with the 2×2 block structure considered in §2.2.
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3.1. Advection-diffusion-reaction. Consider the PDE

−∆u+ β·∇u+ µu = f, (3.1)

with β ∈ [L∞(Ω)]d, ∇·β ∈ L∞(Ω), µ ∈ L∞(Ω), and f ∈ L2(Ω). Assume that

µ− 1
2∇·β ≥ µ0 > 0 a.e. in Ω. (3.2)

The PDE (3.1) can be written as a system of first-order PDE’s in the form
{
σ + ∇u = 0,

µu+ ∇·σ + β·∇u = f.
(3.3)

Set m = d+ 1, mσ = d, and mu = 1. Then, the mixed formulation (3.3) can be cast
into the form of a Friedrichs’ system with 2×2 block structure by introducing (d+ 1)
functions with values in R

m,m, namely K and {Ak}1≤k≤d such that

K =

[
Id 0
0 µ

]
, Ak =

[
0 ek

(ek)t βk

]
, (3.4)

where Id is the identity matrix in R
d,d, ek is the k-th vector in the canonical basis of

R
d, and βk is the k-th component of β in this basis. It is clear that hypotheses (a1)–

(a6) hold. The graph space is W = H(div; Ω) ×H1(Ω) and for all (σ, u), (τ, v) ∈ W ,

〈D(σ, u), (τ, v)〉W ′ ,W = 〈σ·n, v〉− 1
2 ,

1
2

+ 〈τ ·n, u〉− 1
2 ,

1
2

+

∫

∂Ω

(β·n)uv, (3.5)

where 〈, 〉− 1
2 ,

1
2

denotes the duality pairing between H− 1
2 (∂Ω) and H

1
2 (∂Ω). Note that

(3.5) makes sense since functions in H1(Ω) have traces in H
1
2 (∂Ω) and vector fields

in H(div; Ω) have normal traces in H− 1
2 (∂Ω).

Homogeneous Dirichlet boundary conditions can be enforced by setting

〈M(σ, u), (τ, v)〉W ′ ,W = 〈σ·n, v〉− 1
2 ,

1
2
− 〈τ ·n, u〉− 1

2 ,
1
2
. (3.6)

With this choice V = V ∗ = H(div; Ω)×H1
0 (Ω). Let % ∈ L∞(∂Ω) be such that

2%+ β·n ≥ 0 a.e. in ∂Ω. Then, setting

〈M(σ, u), (τ, v)〉W ′ ,W = −〈σ·n, v〉− 1
2 ,

1
2

+ 〈τ ·n, u〉− 1
2 ,

1
2

+

∫

∂Ω

(2%+ β·n)uv, (3.7)

yields V = {(σ, u) ∈W ; (−σ·n+ %u)|∂Ω = 0} and V ∗ = {(σ, u) ∈W ; (σ·n+ %u)|∂Ω =
0}, i.e., a Robin boundary condition is enforced. A Neumann condition corresponds
to % = 0. We refer to [6] for more details.

Remark 3.1. Advection–diffusion–reaction equations with smooth tensor-valued
diffusion can be handled by Friedrichs’ formalism as follows. Let κ = (κkl)1≤k,l≤d
be a positive definite matrix-valued field defined on Ω whose lowest eigenvalue is
uniformly bounded away from zero. Consider the PDE

−∇·(κtκ∇u) + β·∇u+ µ = f. (3.8)

Here, κ is the square root of the diffusion tensor. The natural way to write this PDE
in mixed form consists of setting

{
σ + κ∇u = 0,

µu+ ∇·(κtσ) + β·∇u = f.
(3.9)
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If the field κ is smooth, Friedrichs’ formalism can be recovered by using the identities
∇·(κtσ) = κ:∇σ + (∇·κ)·σ = κ:∇σ − (∇·κ)·(κ∇u) and setting

Ak =

[
0 κk

(κk)
t βk − κtk∇·κ

]
, (3.10)

where κk denotes the k-th column of κ. Hence, for property (a4) to hold, derivatives
up to second-order of κ must be controlled.

3.2. Linear elasticity. Let α and γ be two positive functions in L∞(Ω) uni-
formly bounded away from zero by α0 and γ0, respectively. Consider the following
set of PDE’s





σ + pId −
1
2 (∇u+ (∇u)t) = 0,

tr(σ) + (d+ γ)p = 0,

− 1
2∇·(σ + σt) + αu = f,

(3.11)

where σ is R
d,d-valued, p is scalar-valued, u is R

d-valued, and f ∈ [L2(Ω)]d. The
first and second equations in (3.11) imply p = −γ−1∇·u and σ = 1

2 (∇u + (∇u)t) +
γ−1(∇·u)Id; γ is a compressibility coefficient, σ is the stress tensor, 1

2 (∇u + (∇u)t)
is the strain tensor, and u represents the displacement field.

Set m = d2 + 1 + d. The tensor σ in R
d,d is identified with the vector σ ∈ R

d2

by setting σ[ij] = σij with 1 ≤ i, j ≤ d and [ij] = d(j − 1) + i. Then, the mixed
formulation (3.11) can be cast into the form of a Friedrichs’ system by introducing
the (d+ 1) R

m,m-valued fields with the following 3×3 block structure

K =




Id2 Z 0

(Z)t (d+γ) 0

0 0 αId


 , Ak =




0 0 Ek

0 0 0

(Ek)t 0 0


 , (3.12)

where Z ∈ R
d2 has components given by Z[ij] = δij with 1 ≤ i, j ≤ d, and for all

k ∈ {1, . . . , d}, Ek ∈ R
d2,d has components given by Ek[ij],l = − 1

2 (δikδjl + δilδjk) with
1 ≤ i, j, l ≤ d; here, δij denotes the Kronecker symbol.

To recover the 2×2 structure introduced in §2.2, set mσ = d2 +1 and mu = d, i.e.,
the σ-component corresponds to the pair (σ, p). Then, hypotheses (a1)–(a6) hold.
In particular, (a4)–(a5) result from the fact that for all z = (σ, p, u) ∈ R

m,

ztKz ≥ (1− d

d+
γ0
2

)σ2 + γ0
2 p

2 + d
d+

γ0
2

(σ+
d+

γ0
2

d
pZ)2 +α0u

2 ≥ c(σ2 + p2 +u2), (3.13)

where c only depends on d, α0, and γ0. Using the second Korn inequality for the
variable u, it is readily seen that the graph space is W = Hσ×L2(Ω)×[H1(Ω)]d with

Hσ = {σ ∈ [L2(Ω)]d
2

; ∇·(σ + σt) ∈ [L2(Ω)]d}. The boundary operator D takes the
following form: For all (σ, p, u), (τ , q, v) ∈W ,

〈D(σ, p, u), (τ , q, v)〉W ′ ,W = −〈 1
2 (τ + τ t)·n, u〉− 1

2 ,
1
2
− 〈 1

2 (σ + σt)·n, v〉− 1
2 ,

1
2
, (3.14)

where 〈, 〉− 1
2 ,

1
2

denotes the duality pairing between [H− 1
2 (∂Ω)]d and [H

1
2 (∂Ω)]d.

To enforce boundary conditions for (3.11), one possibility consists of setting for
all (σ, p, u), (τ , q, v) ∈W ,

〈M(σ, p, u), (τ , q, v)〉W ′,W = 〈 1
2 (τ + τ t)·n, u〉− 1

2 ,
1
2
− 〈 1

2 (σ + σt)·n, v〉− 1
2 ,

1
2
. (3.15)
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With this choice, the displacement is set to zero at ∂Ω as shown in the following
Lemma 3.1. Let M be given by (3.15). Then, V = V ∗ = Hσ×L2(Ω)×[H1

0 (Ω)]d.
Proof. It is clear that V = V ∗ since M +M∗ = 0. Observe that

〈(D −M)(σ, p, u), (τ , q, v)〉W ′,W = −〈(τ + τ t)·n, u〉− 1
2 ,

1
2
. (3.16)

Hence, it is clear that Hσ×L
2(Ω)×[H1

0 (Ω)]d ⊂ Ker(D −M) = V . Conversely, let

(σ, p, u) ∈ Ker(D −M). Let θ ∈ [H− 1
2 (∂Ω)]d. Consider the following problem: Seek

vθ ∈ [H1(Ω)]d such that for all w ∈ [H1(Ω)]d,

(vθ, w)[L2(Ω)]d + (∇vθ + (∇vθ)
t,∇w + (∇w)t)[L2(Ω)]d,d = 〈θ, w〉− 1

2 ,
1
2
.

This problem is well–posed owing to the second Korn inequality and the Lax–Milgram
Lemma. Set τθ = ∇vθ + (∇vθ)

t. Since τ θ ∈ Hσ , one can take (τ , p, v) = (τ θ, 0, 0)

in (3.16) yielding 〈θ, u〉− 1
2 ,

1
2

= 0. Since θ is arbitrary in [H− 1
2 (∂Ω)]d, u ∈ [H1

0 (Ω)]d.

3.3. Simplified MHD. For the sake of simplicity we assume that the space
dimension is three, i.e., d = 3. Let ν, µ, and σ be three functions in L∞(Ω), and let
β ∈ [L∞(Ω)]3 be a vector field. A simplified (time-discretized) version of the MHD
equations consists of seeking the electric field E and the magnetic field H such that

{
νH + ∇×E = 0,

σ(E + β×(µH)) −∇×H = j,
(3.17)

where j ∈ [L2(Ω)]3 is a given source term. The separation of the electromagnetic field
(H,E) into magnetic and electric fields induces a natural partitioning of [L2(Ω)]6 into
[L2(Ω)]3 × [L2(Ω)]3. Set m = 6. The PDE’s (3.17) are recast into the form of a
Friedrichs’ system by introducing the following block structured matrices in R

6,6,

K =

[
νI3 0
σµV σI3

]
, Ak =

[
0 Rk

(Rk)t 0

]
, (3.18)

where Rk
ij = εikj is the Levi-Civita permutation tensor, 1 ≤ i, j, k ≤ 3, and Vij =∑d

k=1 εikjβ
k. Assume that ν and σ are positive functions on Ω uniformly bounded

away from zero and that there is α0 > 0 such that a.e. in Ω, 2
(
ν
σ

) 1
2 −µ‖β‖L∞(Ω) ≥ α0.

In the above framework, one readily verifies that hypotheses (a1)–(a6) hold with
mσ = 3 and mu = 3. In the full MHD equations, the off-diagonal term induced by
β is compensated by a term originating from the conservation of momentum in the
Navier–Stokes equations so that the condition for (a4) to hold is simply that ν and
σ be uniformly bounded away from zero.

The graph space is W = H(curl; Ω)×H(curl; Ω) and for all (H,E), (h, e) ∈W ,

〈D(H,E), (h, e)〉W ′ ,W = (∇×E, h)[L2(Ω)]3 − (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 .
(3.19)

When (H,E) and (h, e) are smooth, the above duality product can be interpreted as
the boundary integral

∫
∂Ω

[(n×E)·h+ (n×e)·H ].
An acceptable boundary condition for (3.17) consists of setting

〈M(H,E), (h, e)〉W ′,W = − (∇×E, h)[L2(Ω)]3 + (E,∇×h)[L2(Ω)]3

+ (H,∇×e)[L2(Ω)]3 − (∇×H, e)[L2(Ω)]3 ,
(3.20)
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for all (H,E), (h, e) ∈ W . Assuming [H1(Ω)]3 is dense in H(curl; Ω), this choice yields
V = V ∗ = H(curl; Ω)×H0(curl; Ω), i.e., the tangential component of the electric field
is set to zero; see [7] for the analysis.

4. Discontinuous Galerkin method for 2×2 systems. In this section we
present the discrete setting to design a DG method to approximate the Friedrichs’
systems with the 2×2 block structure presented in §2.2.

4.1. The discrete setting. Let {Th}h>0 be a family of meshes of Ω. The
meshes are assumed to be affine to avoid unnecessary technicalities, i.e., Ω is assumed
to be a polyhedron. We denote by F i

h the set of interfaces, i.e., F ∈ F i
h if F is a

(d−1)-manifold and there are K1(F ) and K2(F ) ∈ Th such that F = K1(F )∩K2(F ).
For F ∈ F i

h, we set T (F ) = K1(F ) ∪K2(F ). We denote by F∂
h the set of the faces

that separate the mesh from the exterior of Ω, i.e., F ∈ F∂
h if F is a (d−1)-manifold

and there is K(F ) ∈ Th such that F = K(F )∩∂Ω. For F ∈ F∂
h , we set T (F ) = K(F ).

Finally, we set Fh = F i
h ∪F∂

h . We assume that the mesh family {Th}h>0 is such that
there is a positive constant c, independent of h, such that for all F ∈ Fh,

c1hT (F ) ≤ hF , (4.1)

where hT (F ) denotes the diameter of T (F ) and hF that of F . No other particular
assumption than (4.1) is made on the matching of element faces.

For a non-negative integer p, consider the finite element space of scalar-valued
functions

Ph,p = {vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ Pp}, (4.2)

where Pp denotes the vector space of polynomials with real coefficients and with total
degree less than or equal to p. The mesh family {Th}h>0 is assumed to be regular
enough so that there is a constant c, independent of h, such that for all vh ∈ Ph,p,

∀K ∈ Th, ‖∇vh‖[L2(K)]d ≤ c h−1
K ‖vh‖L2(K), (4.3)

∀F ∈ Fh, ‖vh‖L2(F ) ≤ c h
− 1

2

F ‖vh‖L2(T (F )). (4.4)

Let pu and pσ be two non-negative integers such that

pu − 1 ≤ pσ ≤ pu. (4.5)

Define the following vector spaces:

Uh = [Ph,pu
]mu , Σh = [Ph,pσ

]mσ , Wh = Uh×Σh, (4.6)

and set U(h) = [H1(Ω)]mu +Uh, Σ(h) = [H1(Ω)]mσ +Σh, andW (h) = [H1(Ω)]m+Wh.
Obviously, inequalities (4.3) and (4.4) can be applied componentwise to all functions
in Uh and in Σh. Moreover, since every function v in U(h) has a (possibly two-valued)
trace almost everywhere on F ∈ F i

h, we set

v1(x) = lim
y→x

y∈K1(F )

v(y) v2(x) = lim
y→x

y∈K2(F )

v(y), for a.e. x ∈ F , (4.7)

[[v]] = v1 − v2, {v} = 1
2 (v1 + v2), a.e. on F . (4.8)

We define τ1, τ2, and [[τ ]] similarly for all τ in Σ(h). The arbitrariness in the choice
of K1(F ) and K2(F ) could be avoided by choosing intrinsic notations that would,
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however, unnecessarily complicate the presentation; nothing that is said hereafter
depends on this choice.

For any measurable subset of Ω or FΩ = {x ∈ Ω; ∃F ∈ Fh, x ∈ F}, say E,
we denote by (·, ·)L,E the scalar product induced by [L2(Ω)]m or [L2(FΩ)]m on E,
respectively. We define similarly (·, ·)Lu,E and (·, ·)Lσ ,E .

4.2. Boundary and interface operators. Let n = (n1, . . . , nd)
t be the unit

outward normal to ∂Ω. Henceforth, we assume that the fields {Ak}1≤k≤d are suffi-

ciently smooth for the matrix D∂Ω =
∑d
k=1 nkA

k to be meaningful at the boundary.
Hence, the following representation holds

〈Dz, y〉W ′,W =

∫

∂Ω

ytD∂Ωz, (4.9)

whenever z and y and smooth functions. Owing to (2.13), D∂Ω has a 2×2 block

structure with Dσu
∂Ω =

∑d
k=1 nkB

k, Duσ
∂Ω = [Dσu

∂Ω]t, Duu
∂Ω =

∑d
k=1 nkC

k, and

Dσσ
∂Ω = 0. (4.10)

Likewise, we assume that the boundary operatorM has an integral representation,
i.e., there exists a matrix-valued field M : ∂Ω −→ R

m,m such that

〈Mz, y〉W ′,W =

∫

∂Ω

ytMz, (4.11)

whenever z and y and smooth functions. We denote by Mσu, Muσ , and Muu the
top right, bottom left, and bottom right blocks of M, respectively. For the sake of
simplicity, we hereafter assume that

Mσσ = 0. (4.12)

This simplifying assumption holds for advection–diffusion–reaction equations with
Dirichlet, Neumann, or Robin boundary conditions, the linear elasticity equations,
and the simplified MHD equations; see §3. Indeed, assuming Ker(Dσu) = {0}, the
Dirichlet boundary condition zu = 0 can be enforced by taking

M =

[
0 −Dσu

Duσ Muu

]
, (4.13)

where Muu is a suitable positive matrix in R
mu,mu . Similarly, taking

M =

[
0 Dσu

−Duσ Muu

]
, (4.14)

where Muu is a positive matrix in R
mu,mu yields the Robin boundary condition

2Duσzσ+(Duu−Muu)zu = 0; if Muu = Duu, the boundary condition is of Neumann-
type.

For all K ∈ Th, we define the matrix-valued field D∂K : ∂K → R
m,m by

D∂K(x) =
d∑

k=1

nK,kA
k(x) a.e. on ∂K, (4.15)
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where nK = (nK,1, . . . , nK,d)
t is the unit outward normal to ∂K. Owing to (2.13),

D∂K has a 2×2 block structure with Dσu
∂K =

∑d
k=1 nK,kB

k, Duσ
∂K = [Dσu

∂K ]t, Duu
∂K =

(Duu
∂K)t =

∑d
k=1 nK,kC

k, and

Dσσ
∂K = 0. (4.16)

The definition (4.15) is clearly compatible with that of D∂Ω if ∂K ⊂ ∂Ω. Moreover,
observe that for all z, y in W (h) and for all K ∈ Th,

(D∂Kz, y)L,∂K = (Tz, y)L,K − (z, T̃y)L,K . (4.17)

We now define on Fh a matrix-valued field D as follows. On F∂
h , D is single-valued

and coincides with D∂Ω. On F i
h, D is two-valued and for all F ∈ F i

h, the two values

taken by D are D∂K1(F ) and D∂K2(F ). Note that {D} = 0 a.e. on F i
h since

∑d
k=1 ∂kA

k

is bounded owing to (a2).
To weakly enforce boundary conditions, we introduce for all F ∈ F∂

h a linear
operator

MF =

[
Mσσ
F Mσu

F

Muσ
F Muu

F

]
∈ L([L2(F )]m; [L2(F )]m). (4.18)

Similarly, to penalize interface jumps, we introduce for all F ∈ F i
h a linear operator

SF =

[
SσσF SσuF

SuσF SuuF

]
∈ L([L2(F )]m; [L2(F )]m). (4.19)

Star superscripts denote the L2-adjoint of MF , SF , or any block thereof. For in-
stance, (Muσ

F )∗ ∈ L([L2(F )]mu ; [L2(F )]mσ ) is defined s.t. ((Muσ
F )∗(v), τ)Lσ ,F =

(Muσ
F (τ), v)Lu ,F for all v ∈ [L2(F )]mu and for all τ ∈ [L2(F )]mσ .
The operators MF and SF satisfy various design criteria which are collected in

§5.1. For the time being, we solely mention the important assumption

Mσσ
F = 0 and SσσF = 0. (4.20)

This assumption is essential to eliminate the σ-component of the discrete solution
by solving local problems; see §4.4. Observe that owing to (4.20), the jumps across
interfaces of the σ-component of the unknown are no longer controlled; this is an
important difference with respect to the DG method analyzed in [6].

4.3. The discrete problem and the notion of fluxes. Drawing inspiration
from (2.11), we introduce the bilinear form ah such that for all z, y in W (h),

ah(z, y) =
∑

K∈Th

(Tz, y)L,K +
∑

F∈F∂
h

1
2 (MF (z) −Dz, y)L,F

−
∑

F∈F i
h

2({Dz} , {y})L,F +
∑

F∈F i
h

(SF ([[z]]), [[y]])L,F . (4.21)

The first and second term in the right-hand-side directly come from (2.9); the third
term is zero whenever z is smooth and is meant to ensure that ah satisfies a coercivity
property (see Lemma 5.4); the last term will be used to control the jump of the
discrete solution across interfaces.
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The discrete counterpart of (2.11) is: For f = (fσ, fu) ∈ L,
{

Seek zh = (zσh , z
u
h) ∈ Wh such that

ah(zh, yh) = (f, yh)L, ∀yh = (yσh , y
u
h) ∈ Wh.

(4.22)

As in [6], the discrete problem (4.22) can be localized by using the notion of flux.
Let K be a mesh element in Th. For z ∈ W (h) and x ∈ ∂K, set

zi(x) = lim
s→x
s∈K

z(s), ze(x) = lim
s→x
s6∈K

z(s), (4.23)

[[z]]∂K(x) = zi(x) − ze(x), {z}∂K (x) = 1
2 (zi(x) + ze(x)), (4.24)

with the convention that ze(x) = 0 if x ∈ ∂Ω. Then we define the element flux of z
on ∂K, say φ∂K(z) ∈ [L2(∂K)]m, by its restriction to the faces or interfaces F of ∂K
as follows:

φ∂K(z)|F =

{
1
2 (MF (z) + Dz) if F ⊂ ∂K∂ ,

SF ([[z]]∂K |F ) + D∂K{z}∂K if F ⊂ ∂K i,
(4.25)

where ∂K i denotes that part of ∂K that lies in Ω and ∂K∂ that part of ∂K that
lies on ∂Ω. The discrete problem (4.22) is equivalently reformulated in terms of the
following local problems posed for all K ∈ Th,

{
Seek zh ∈Wh such that ∀q = (qσ , qu) ∈ [Ppσ

(K)]mσ×[Ppu
(K)]mu ,

(Tzh, q)L,K + (φ∂K(zh) −D∂Kz
i
h, q)L,∂K = (f, q)L,K ,

(4.26)

or equivalently using the local integration by parts formula (4.17),
{

Seek zh ∈Wh such that ∀q = (qσ , qu) ∈ [Ppσ
(K)]mσ×[Ppu

(K)]mu ,

(zh, T̃ q)L,K + (φ∂K(zh), q)L,∂K = (f, q)L,K .
(4.27)

Remark 4.1. Observe that owing to (4.20), the jumps across interfaces of the σ-
component of the unknown are not controlled (this is the key property that allows for
the local elimination of the σ-component of the discrete solution zh, see §4.4). This
is an important difference with respect to the DG method analyzed in [6].

4.4. Eliminating the σ-component. We now rewrite (4.26) by making use of
the 2×2 block structure, and we show how the unknown zσh can be locally eliminated.
To this end, we introduce the σ-component of the element flux

φσ∂K(zu)|F =

{
1
2 (Mσu

F (zu) + Dσuzu) if F ⊂ ∂K∂ ,

SσuF ([[zu]]∂K |F ) + Dσu
∂K{zu}∂K if F ⊂ ∂K i,

(4.28)

where we stress that φσ∂K solely depends on zu owing to (4.20). Then, (4.26) implies
that zσh solves the following local problems: For all qσ ∈ [Ppσ

(K)]mσ ,

(Kσσzσh + Kσuzuh +Bzuh , q
σ)Lσ,K + (φσ∂K(zuh) −Dσu

∂K(zuh)i, qσ)Lσ ,∂K = (fσ , qσ)Lσ ,K .

(4.29)
We now define the mapping θ1

h : U(h) −→ Σh such that for all zu ∈ U(h) and for all
K ∈ Th, θ1h(z

u)|K solves the following problem: For all qσ ∈ [Ppσ
(K)]mσ ,

(Kσσθ1h(z
u), qσ)Lσ,K = − (Kσuzu +Bzu, qσ)Lσ,K

− (φσ∂K(zu) −Dσu
∂K(zu)i, qσ)Lσ ,∂K . (4.30)
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Owing to (a5), this problem is well–posed. Similarly, we define the mapping θ2
h :

Lσ −→ Σh such that for all fσ ∈ Lσ and for all K ∈ Th, θ2h(f
σ)|K solves the following

local problem: For all qσ ∈ [Ppσ
(K)]mσ ,

(Kσσθ2h(f
σ), qσ)Lσ,K = (fσ, qσ)Lσ,K . (4.31)

Finally, define the bilinear form φh on U(h) × U(h) by

φh(z
u, yu) = ah((θ

1
h(z

u), zu), (0, yu)), (4.32)

and the linear form ψh on U(h) by

ψh(y
u) = ah((θ

2
h(f

σ), 0), (0, yu)). (4.33)

This readily leads to the following
Proposition 4.1. If the pair (zσh , z

u
h) solves (4.22), then,

zσh = θ1h(z
u
h) + θ2h(f

σ), (4.34)

and zuh solves the following problem:

{
Seek zuh ∈ Uh such that

φh(z
u
h , y

u
h) = (fu, yuh)Lu

− ψh(y
u
h), ∀yuh ∈ Uh.

(4.35)

Conversely, if zuh solves (4.35) and if zσh is defined by (4.34), then the pair (zσh , z
u
h)

solves (4.22).
Remark 4.2. The bilinear form φh and the linear form ψh are easy to compute in

practice since they involve the solution of local problems, namely (4.30) and (4.31),
that can be solved elementwise.

5. Convergence analysis. In this section, we present the design criteria for the
above DG method and perform the error analysis. The mains results are Theorem 5.8,
which estimates the error in the norm (5.9), and Theorem 5.14, which improves the Lu-
estimate of the u-component of the error by means of a duality argument. Throughout
this section, we assume that:

• For all k ∈ {1, . . . , d}, Bk ∈ [C0,1(Ω)]mσ ,mu .
• The mesh family {Th}h>0 is such that (4.1), (4.3), and (4.4) hold.
• The approximation spaces are defined according to (4.2), (4.5), and (4.6).

5.1. The design criteria for the boundary and interface operators. For
all F ∈ F∂

h , for all v, w ∈ [L2(F )]mu , and for all τ ∈ [L2(F )]mσ , we assume that

Mσσ
F = 0, (dg1)

Mσu
F + (Muσ

F )∗ = 0, (dg2)

(Muu
F (v), v)Lu,F ≥ 0, (dg3)

|(Mσu
F (v) −Dσuv, τ)Lσ ,F | ≤ ch

1
2

F |v|M,F ‖τ‖Lσ,F , (dg4)

|(Muu
F (v) + Duuv, w)Lu,F | ≤ ch

− 1
2

F ‖v‖Lu,F |w|M,F , (dg5)

|(Muu
F (v) −Duuv, w)Lu,F | ≤ ch

− 1
2

F |v|M,F ‖w‖Lu,F , (dg6)

∀y ∈ [L2(F )]m, (My −Dy = 0) =⇒ (MF (y) −Dy = 0), (dg7)

∀y ∈ [L2(F )]m, (Mty + Dy = 0) =⇒ (M∗
F (y) + Dy = 0), (dg8)
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where c is a constant independent of h and where we have introduced the following
semi-norms:

∀v ∈ U(h), |v|2M =
∑

F∈F∂
h

|v|2M,F with |v|2M,F = (Muu
F (v), v)Lu,F . (5.1)

For all F ∈ F i
h, for all v, w ∈ [L2(F )]mu , and for all τ ∈ [L2(F )]mσ , we assume that

SσσF = 0, (dg9)

SσuF + (SuσF )∗ = 0, (dg10)

(SuuF (v), v)Lu,F ≥ 0, (dg11)

|(SuuF (v), w)Lu,F | ≤ ch
− 1

2

F ‖v‖Lu,F |w|S,F , (dg12)

|(SuuF (v), w)Lu,F | ≤ ch
− 1

2

F |v|S,F‖w‖Lu,F , (dg13)

|(SσuF (v), τ)Lσ ,F | ≤ ch
1
2

F |v|S,F ‖τ‖Lσ,F , (dg14)

|(Dσuv, τ)Lσ ,F | ≤ ch
1
2

F |v|S,F ‖τ‖Lσ,F , (dg15)

|(Duuv, w)Lu,F | ≤ ch
− 1

2

F |v|S,F‖w‖Lu,F , (dg16)

where c is a constant independent of h and where we have introduced the following
semi-norms:

∀v ∈ U(h), |v|2S =
∑

F∈F i
h

|v|2S,F with |v|2S,F = (SuuF (v), v)Lu,F . (5.2)

Theorem 5.8 relies only on assumptions (dg1)–(dg5), (dg7), (dg9)–(dg12), and
(dg14)–(dg15) which are collectively referred to as (dg[). The additional assump-
tions (dg6), (dg8), (dg13), and (dg16) are needed to prove Theorem 5.14. Assump-
tions (dg1)–(dg16) are collectively referred to as (dg]).

Remark 5.1. Assumptions (dg7) and (dg8) are consistency hypotheses which
trivially hold if MF (z) = Mz. However, it is not always possible to make this
simple choice because it is often necessary to penalize the boundary values of the
u-component of the unknown. For instance, when Dirichlet boundary conditions are
enforced, i.e., Mσu = −Dσu, it may happen that Muu = 0 (see the examples dis-
cussed in §3). In this circumstance, (dg4) (see also (5.3) below) cannot be satisfied if
we set Muu

F (v) = Muuv = 0. Instead, it is necessary that Muu
F scales like h−1

F . The
consistency hypotheses (dg7) and (dg8) then mean that the extra control required
by (dg4) is compatible with the way the boundary condition is enforced.

While assumptions (dg]) are just what it takes to prove Theorems 5.8 and 5.14,
it is simpler in practice to work with a simplified set of assumptions. These are
summarized in the following lemmas. The proofs, which are straightforward, are
omitted for brevity. Lemma 5.1 is tailored for the case when Dirichlet boundary
conditions are enforced, while Lemma 5.2 is tailored for the case when Neumann or
Robin boundary conditions are enforced.

Lemma 5.1. Assume that Mσσ
F = 0, Mσu

F (v) = −Dσuv for all v ∈ [L2(F )]mu ,

Muσ
F = −(Mσu

F )∗ and that Muu
F is self-adjoint and such that for all v ∈ [L2(F )]mu ,

c1(hF ‖D
uuv‖2

Lu,F + h−1
F ‖Dσuv‖2

Lσ,F ) ≤ (Muu
F (v), v)Lu,F ≤ c2h

−1
F ‖v‖2

Lu,F , (5.3)

where c1 and c2 are independent of h. Then, (dg1)–(dg6) hold.
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Lemma 5.2. Assume that Mσσ
F = 0, Mσu

F (v) = Dσuv for all v ∈ [L2(F )]mu ,

Muσ
F = −(Mσu

F )∗ and that Muu
F is self-adjoint and such that for all v ∈ [L2(F )]mu ,

c1‖D
uuv‖2

Lu,F
≤ (Muu

F (v), v)Lu,F ≤ c2‖v‖
2
Lu,F

, (5.4)

where c1 and c2 are independent of h. Then, (dg1)–(dg6) hold.

Lemma 5.3. Assume that SσσF = 0, SuσF = 0, SσuF = 0 and that SuuF is self-adjoint

and such that for all v ∈ [L2(F )]mu ,

c1(hF ‖D
uuv‖2

Lu,F + h−1
F ‖Dσuv‖2

Lσ,F ) ≤ (SuuF (v), v)Lu,F ≤ c2h
−1
F ‖v‖2

Lu,F , (5.5)

where c1 and c2 are independent of h. Then, (dg9)–(dg16) hold.

Remark 5.2.
(i) Assumptions (dg1)–(dg4) imply that there is c, independent of h, such that

for all v ∈ [L2(F )]mu and for all τ ∈ [L2(F )]mσ ,

|v|M,F ≤ ch
− 1

2

F ‖v‖Lu,F , (5.6)

|(Mσu
F (v), τ)Lσ ,F | ≤ c‖v‖Lu,F ‖τ‖Lσ,F , (5.7)

|(Muσ
F (τ) + Duστ, v)Lu,F | ≤ ch

1
2

F |v|M,F ‖τ‖Lσ,F . (5.8)

These properties will be used in the sequel.
(ii) Conditions (5.3) and (5.5) generally imply that SuuF and Muu

F are of order
h−1
F ; this differs from the condition derived in [6] where SF and MF are of order 1.

Roughly speaking, to be able to eliminate the discrete σ-component, it is necessary
to have a stronger control of the interface jumps and of the boundary values of the
discrete u-component.

(iii) Condition (5.4) can be weakened to c1hF ‖Duuv‖2
Lu,F

≤ (Muu
F (v), v)Lu,F ≤

c2h
−1
F ‖v‖2

Lu,F
.

5.2. The direct argument. To perform the error analysis we introduce the
following two discrete norms on W (h),

‖z‖2
h,A = ‖zσ‖2

Lσ
+ ‖zu‖2

Lu
+ |zu|2J + |zu|2M +

∑

K∈Th

‖Bzu‖2
Lσ,K , (5.9)

‖z‖2
h,1 = ‖z‖2

h,A +
∑

K∈Th

[h−2
K ‖zu‖2

Lu,K
+ h−1

K ‖zu‖2
Lu,∂K

+ hK‖zσ‖2
Lσ,∂K

], (5.10)

where for all zu ∈ U(h) we have introduced the jump semi-norm

|zu|2J =
∑

F∈F i
h

|zu|2J,F with |zu|J,F = |[[zu]]|S,F . (5.11)

The norm ‖ · ‖h,A is used to measure the approximation error, and the norm ‖ · ‖h,1
serves to measure the interpolation properties of the discrete spaceWh. In this section,
it is implicitly assumed that (dg[) holds.

Lemma 5.4 (L-coercivity). For all h and for all z = (zσ, zu) in W (h),

ah(z, z) ≥ µ0(‖z
σ‖2
Lσ

+ ‖zu‖2
Lu

) + |zu|2J + 1
2 |z

u|2M . (5.12)
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Proof. Let z = (zσ , zu) in W (h). Using (4.17) and summing over the mesh
elements, we infer

∑

F∈F∂
h

1
2 (Dz, z)L,F +

∑

F∈F i
h

∫

F

{
ztDz

}
= 1

2

∑

K∈Th

[(Tz, z)L,K − (z, T̃z)L,K ].

Subtracting this equation from (4.21) and using {ztDz} = 2 {zt} {Dz}, together with
the skew-symmetry assumptions (dg2) and (dg10), yields

ah(z, z) = |zu|2J + 1
2 |z

u|2M + 1
2

∑

K∈Th

[(Tz, z)L,K + (z, T̃z)L,K ].

Then, the desired result follows from (a4).
Lemma 5.5 (Stability). There is c > 0, independent of h, such that

inf
zh∈Wh\{0}

sup
yh∈Wh\{0}

ah(zh, yh)

‖zh‖h,A‖yh‖h,A
≥ c. (5.13)

Proof. (1) Let zh = (zσh , z
u
h) be an arbitrary element in Wh. Let K ∈ Th. Denote

by BkK the mean-value of Bk over K; then,

‖Bk − BkK‖[L∞(K)]mσ,mu ≤ hK‖Bk‖[C0,1(Ω)]mσ,mu . (5.14)

Now, define the field πh such that πh|K =
∑d

k=1 B
k
K∂kz

u
h . Set $h = (πh, 0). It is

clear that πh ∈ Σh since pu − 1 ≤ pσ; hence, $h ∈ Wh. Using (5.14), together with
the inverse inequalities (4.3) and (4.4), leads, for all F ⊂ ∂K, to





‖πh‖Lσ,F ≤ c h
− 1

2

F ‖πh‖Lσ,T (F ), if F ∈ F∂
h ,

‖{πh}‖Lσ,F + ‖[[πh]]‖Lσ,F ≤ c h
− 1

2

F ‖πh‖Lσ,T (F ), if F ∈ F i
h,

(5.15)

‖πh‖Lσ,K ≤ ‖Bzuh‖Lσ,K + c ‖zuh‖Lu,K . (5.16)

From the definition of ah it follows that
∑

K∈Th

‖Bzuh‖
2
Lσ,K

= ah(zh, $h) +
∑

K∈Th

(Bzuh , Bz
u
h − πh)Lσ,K

− (Kσσzσh + Kσuzuh , πh)Lσ
−
∑

F∈F∂
h

1
2 (Mσu

F (zuh) −Dσuzuh , πh)Lσ,F

+
∑

F∈F i
h

2({Dσuzuh} , {πh})Lσ,F −
∑

F∈F i
h

(SσuF ([[zuh ]]), [[πh]])Lσ,F

= ah(zh, $h) +R1 +R2 +R3 +R4 +R5,

where R1, R2, R3, R4, and R5 denote the second, third, fourth, fifth, and sixth term
in the right-hand side of the above equation, respectively. Each of these terms is
bounded from above as follows. For the first term we have

|R1| ≤
∑

K∈Th

|(Bzuh , Bz
u
h − πh)Lσ ,K | ≤

∑

K∈Th

‖Bzuh‖Lσ,K‖Bzuh − πh‖Lσ,K

≤ cγ‖z
u
h‖

2
Lu

+ γ
∑

K∈Th

‖Bzuh‖
2
Lσ,K ,
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where γ > 0 can be chosen as small as needed. Using (5.16) yields

|R2| = |(Kσσzσh + Kσuzuh , πh)Lσ
| ≤ c(‖zσh‖Lσ

+ ‖zuh‖Lu
)‖πh‖Lσ

≤ cγ(‖z
σ
h‖

2
Lσ

+ ‖zuh‖
2
Lu

) + γ
∑

K∈Th

‖Bzuh‖
2
Lσ,K

.

Using (dg4) together with (5.15) and (5.16) leads to

|R3| ≤
1
2

∑

F∈F∂
h

|(Mσu
F (zuh) −Dσuzuh , πh)Lσ ,F | ≤ c

∑

F∈F∂
h

h
1
2

F |z
u
h |M,F ‖πh‖Lσ,F

≤ cγ(‖z
u
h‖

2
Lu

+ |zuh |
2
M ) + γ

∑

K∈Th

‖Bzuh‖
2
Lσ,K .

To bound R4, observe that 2 {Dσuzuh} = Dσu
∂K1(F )[[z

u
h ]] and use (dg15) to infer

|R4| ≤ 2
∑

F∈F i
h

|({Dσuzuh} , {πh})Lσ ,F | ≤ c
∑

F∈F i
h

|(Dσu
∂K1(F )[[z

u
h ]], {πh})Lσ,F |

≤ c
∑

F∈F i
h

h
1
2

F |z
u
h |J,F ‖{πh}‖Lσ,F ≤ cγ(‖z

u
h‖

2
Lu

+ |zuh |
2
J) + γ

∑

K∈Th

‖Bzuh‖
2
Lσ,K .

To bound |R5|, use (dg14) to infer

|R5| ≤
∑

F∈F i
h

|(SσuF ([[zuh ]]), [[πh]])Lσ,F | ≤ c
∑

F∈F i
h

h
1
2

F |z
u
h |J,F ‖[[πh]]‖Lσ,F

≤ cγ(‖z
u
h‖

2
Lu

+ |zuh |
2
J ) + γ

∑

K∈Th

‖Bzuh‖
2
Lσ,K .

Using the above five bounds, γ = 1
10 , and Lemma 5.4 leads to

1
2

∑

K∈Th

‖Bzuh‖
2
Lσ,K

≤ ah(zh, $h) + c ah(zh, zh). (5.17)

(2) Let us now prove that ‖(πh, 0)‖h,A ≤ c ‖zh‖h,A. Owing to (5.16), we infer

‖πh‖Lσ
≤ c(‖zuh‖Lu

+ (
∑

K∈Th
‖Bzuh‖

2
Lσ,K

)
1
2 ). Hence,

‖$h‖h,A = ‖πh‖Lσ
≤ c ‖zh‖h,A. (5.18)

(3) Owing to (5.12) and (5.17), there is c1 > 0 such that

‖zh‖
2
h,A ≤ c1ah(zh, zh) + ah(zh, $h) = ah(zh, c1zh +$h).

Then, setting yh = c1zh +$h and using (5.18) yields

‖zh‖h,A‖yh‖h,A ≤ c ‖zh‖
2
h,A ≤ c ah(zh, yh).

The conclusion follows readily.
Lemma 5.6 (Continuity). There is c, independent of h, such that

∀(z, yh) ∈ W (h) ×Wh, ah(z, yh) ≤ c ‖z‖h,1‖yh‖h,A. (5.19)
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Proof. The main idea is to integrate by parts ah(z, yh) by using the formal adjoint
T̃ . Observing that

∑

K∈Th

[(Tz, yh)L,K − (z, T̃yh)L,K ] =
∑

F∈F∂
h

(Dz, yh)L,F +
∑

F∈F i
h

∫

F

2
{
ythDz

}
,

and using 2 {ythDz} = 2 {yth} {Dz} + 1
2 [[yth]][[Dz]], we infer

ah(z, yh) =
∑

K∈Th

(z, T̃ yh)L,K +
∑

F∈F∂
h

1
2 (MF (z) + Dz, yh)L,F

+
∑

F∈F i
h

1
2 ([[Dz]], [[yh]])L,F +

∑

F∈F i
h

(SF ([[z]]), [[yh]])L,F . (5.20)

Let R1 to R4 be the four terms in the right-hand side.
(1) Using the Cauchy-Schwarz inequality and inverse inequalities, we obtain

|R1| ≤ c
∑

K∈Th

‖z‖L,K‖yh‖L,K + ‖zσ‖Lσ,K‖Byuh‖Lσ,K + h−1
K ‖zu‖Lu,K‖yh‖L,K .

Hence, |R1| ≤ c ‖z‖h,1‖yh‖h,A.
(2) For the second term, we have

|R2| ≤
1
2

∑

F∈F∂
h

|(Mσu
F (zu) + Dσuzu, yσh)Lσ ,F + (Muu

F (zu) + Duuzu, yuh)Lu,F

+ (Muσ
F (zσ) + Duσzσ, yuh)Lu,F |.

Using (5.7), (dg5), the boundedness of D, (5.8), and the inverse inequality (4.4), each
term in the above equality is bounded as follows:

|(Mσu
F (zu) + Dσuzu, yσh)Lσ ,F | ≤ c‖zu‖Lu,F ‖y

σ
h‖Lσ,F ≤ ch

− 1
2

F ‖zu‖Lu,F ‖y
σ
h‖Lσ,T (F ),

|(Muu
F (zu) + Duuzu, yuh)Lu,F | ≤ ch

− 1
2

F ‖zu‖Lu,F |y
u
h |M,F ,

|(Muσ
F (zσ) + Duσzσ, yuh)Lu,F | ≤ ch

1
2

F ‖z
σ‖Lσ,F |y

u
h |M,F .

As a result, |R2| ≤ c ‖z‖h,1‖yh‖h,A.
(3) For the third term, we have

|R3| ≤
1
2

∑

F∈F i
h

|([[Dσuzu]], [[yσh ]])Lσ ,F + ([[Duuzu]], [[yuh ]])Lu,F + ([[Duσzσ]], [[yuh ]])Lu,F |.

Using the boundedness of D, the inverse inequality (4.4), and (dg15), each term in
the above equality is bounded as follows:

|([[Dσuzu]], [[yσh ]])Lσ ,F | ≤ c‖{zu}‖Lu,F ‖[[y
σ
h ]]‖Lσ,F ≤ ch

− 1
2

F ‖{zu}‖Lu,F ‖y
σ
h‖Lσ,T (F ),

|([[Duuzu]], [[yuh ]])Lu,F | ≤ c‖{zu}‖Lu,F ‖[[y
u
h ]]‖Lu,F ≤ ch

− 1
2

F ‖{zu}‖Lu,F ‖y
u
h‖Lu,T (F ),

|([[Duσzσ]], [[yuh ]])Lu,F | = |({zσ} ,Dσu
∂K1(F )[[y

u
h ]])Lσ ,F | ≤ ch

1
2

F ‖{z
σ}‖Lσ,F |y

u
h |J,F .
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As a result, |R3| ≤ c ‖z‖h,1‖yh‖h,A.
(4) For the fourth term, we have

|R4| ≤
∑

F∈F i
h

|(SσuF ([[zu]]), [[yσh ]])Lσ,F + (SuuF ([[zu]]), [[yuh ]])Lu,F + (SuσF ([[zσ ]]), [[yuh ]])Lu,F |.

Using (dg12) and (dg14), together with the inverse inequality (4.4), each term in
the above equality is bounded as follows:

|(SσuF ([[zu]]), [[yσh ]])Lσ ,F | ≤ ch
1
2

F |z
u|J,F ‖[[y

σ
h ]]‖Lσ,F ≤ c |zu|J,F ‖y

σ
h‖Lσ,T (F ),

|(SuuF ([[zu]]), [[yuh ]])Lu,F | ≤ ch
− 1

2

F ‖[[zu]]‖Lu,F |y
u
h |J,F ,

|(SuσF ([[zσ ]]), [[yuh ]])Lu,F | ≤ ch
1
2

F ‖[[z
σ]]‖Lσ,F |y

u
h |J,F .

As a result, |R4| ≤ c ‖z‖h,1‖yh‖h,A. The proof is complete.
Lemma 5.7 (Consistency). Let z solve (2.7) and let zh solve (4.22). Assume that

z ∈ [H1(Ω)]m. Then,

∀yh ∈ Wh, ah(z − zh, yh) = 0. (5.21)

Proof. Since z solves (2.7) and z ∈ [H1(Ω)]m, the following properties hold: (i)
Tz = f in L, (ii) Mz = Dz a.e. on ∂Ω, and (iii) {Dz} = 0 and [[z]] = 0 a.e. on F i

h.
Owing to (dg7), property (ii) implies that for all F ∈ F∂

h , MF (z|F ) = Dz|F . As a
result, for all yh ∈Wh, ah(z, yh) = (Tz, yh)L = (f, yh)L = ah(zh, yh).

Theorem 5.8 (Convergence). Let z solve (2.7) and let zh solve (4.22). Assume

that z ∈ [H1(Ω)]m. Then, there is c, independent of h, such that

‖z − zh‖h,A ≤ c inf
yh∈Wh

‖z − yh‖h,1. (5.22)

Proof. Simple application of the Second Strang Lemma.
Owing to the definition of Uh and Σh, i.e., (4.6), and the regularity of the mesh

family {Th}h>0, the following interpolation property holds: There is c, independent
of h, such that for all z ∈ [Hpσ+1(Ω)]mσ×[Hpu+1(Ω)]mu , there is yh ∈Wh satisfying

‖z − yh‖h,1 ≤ c(hpσ+1 + hpu)
(
‖zσ‖[Hpσ+1(Ω)]mσ + ‖zu‖[Hpu+1(Ω)]mu

)
. (5.23)

Since pu − 1 ≤ pσ ≤ pu, the above interpolation error is of order hpu .
Corollary 5.9. Let z solve (2.7) and let zh solve (4.22). Then, there is c,

independent of h, such that if z ∈ [Hpσ+1(Ω)]mσ×[Hpu+1(Ω)]mu ,

‖z − zh‖h,A ≤ c hpu
(
‖zσ‖[Hpσ+1(Ω)]mσ + ‖zu‖[Hpu+1(Ω)]mu

)
. (5.24)

Remark 5.3. For both the σ- and the u-component of the solution, the error
estimate in the L2-norm is O(hpu ). If pσ = pu = p this result is suboptimal when
compared with that obtained using the DG method analyzed in [6], which yields

O(hp+
1
2 ) error estimates. The reason for this slight optimality loss is that in the

present method the interface jumps of the σ-component are not controlled to allow
for this component to be locally eliminated and the jumps on the u-component are
penalized with an O(h−1) weight. If pσ = pu− 1, the result is still suboptimal for the
u-component, but is optimal for the σ-component.
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Finally, when the exact solution is not smooth enough to be in [H1(Ω)]m but only
in the graph space W , we use a density argument to infer the convergence of the DG
approximation. For z ∈W +Wh, define the norm

‖z‖W− = ‖z‖L +

(
∑

K∈Th

‖Bzu‖2
Lσ

) 1
2

. (5.25)

Observe that ‖z‖W− ≤ ‖z‖h,A.
Corollary 5.10. Assume there is γ > 0 such that [Hγ(Ω)]mσ×[H1+γ(Ω)]mu ∩V

is dense in V . Let z solve (2.7) and let zh solve (4.22). Then,

lim
h→0

‖z − zh‖W− = 0. (5.26)

Proof. Let ε > 0. There is zε ∈ [Hγ(Ω)]mσ×[H1+γ(Ω)]mu ∩ V such that ‖z −
zε‖W ≤ ε

2 . Let zεh be the unique solution in Wh such that ah(zεh, yh) = a(zε, yh) for
all yh ∈Wh. From the regularity of zε together with Theorem 5.8 and Corollary 5.9,
it is inferred that limh→0 ‖zεh − zε‖h,A = 0. Furthermore, using the discrete inf-sup
condition (5.13) yields

‖zεh − zh‖W− ≤ sup
yh∈Wh\{0}

ah(zεh, yh) − ah(zh, yh)

‖yh‖h,A
= sup
yh∈Wh\{0}

a(zε − z, yh)

‖yh‖h,A

≤ ‖T (zε − z)‖L sup
yh∈Wh\{0}

‖yh‖L
‖yh‖h,A

≤ ‖z − zε‖W ≤
ε

2
,

where we have used the fact that for all yh ∈Wh, ah(zh, yh) = a(z, yh). Finally, using
the triangle inequality ‖z− zh‖W− ≤ ‖z − zε‖W− + ‖zε− zεh‖W− + ‖zεh − zh‖W− , it
is deduced that lim suph→0 ‖z − zh‖W− ≤ ε.

5.3. The duality argument. We now improve the error estimate on the L2-
norm of the u-component of the solution by using a duality argument. In this section,
it is implicitly assumed that (dg]) holds.

Let z solve (2.7) and let zh solve (4.22). Let ψ ∈ V ∗ solve

T̃ψ = (0, zu − zuh). (5.27)

Assume that the above problem yields (elliptic) regularity, i.e., there is c, independent
of h, such that

‖ψu‖[H2(Ω)]mu + ‖ψσ‖[H1(Ω)]mσ ≤ c‖zu − zuh‖Lu
. (5.28)

Lemma 5.11. Under the above hypotheses, the following holds:

ah(y, ψ) = (yu, zu − zuh)Lu
, ∀y ∈ W (h). (5.29)

Proof. Let y ∈ W (h). By integrating by parts (i.e., using (5.20)) and using the
fact that ψ is continuous across interfaces, we obtain

ah(y, ψ) =
∑

K∈Th

(y, T̃ψ)L,K +
∑

F∈F∂
h

1
2 (MF (y) + Dy, ψ)L,F .
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Since ψ ∈ V ∗:=Ker(M∗ + D) (see (2.6)) and ψ ∈ [H1(Ω)]m, it is inferred that
Mtψ + Dψ = 0 a.e. on ∂Ω. Hence, owing to (dg8), (MF (y) + Dy, ψ)L,F = 0 for all
F ∈ F∂

h . The conclusion is straightforward since ψ solves (5.27).
To avoid lengthy technicalities, we introduce the following norms:

‖yσ‖h,e1 =
( ∑

K∈Th

[h2
K‖yσ‖2

[H1(K)]mσ + hK‖yσ‖2
Lσ,∂K ]

) 1
2

, (5.30)

‖y‖h,A+ = ‖y‖h,A + ‖yσ‖h,e1, (5.31)

‖y‖h,1+ = ‖y‖h,1 + ‖yσ‖h,e1. (5.32)

The DG method converges optimally in the ‖ · ‖h,A+-norm as stated in the following
Corollary 5.12. Let z ∈ [H1(Ω)]m solve (2.7) and let zh solve (4.22). Then,

there is c, independent of h, such that

‖z − zh‖h,A+ ≤ c inf
yh∈Wh

‖z − yh‖h,1+ . (5.33)

Proof. Let yh be an arbitrary element in Wh. Using inverse inequalities yields

‖zσ − zσh‖h,e1 ≤ ‖zσ − yσh‖h,e1 + ‖yσh − zσh‖h,e1 ≤ ‖zσ − yσh‖h,e1 + c‖yσh − zσh‖Lσ

≤ ‖zσ − yσh‖h,e1 + c(‖yσh − zσ‖Lσ
+ ‖zσ − zσh‖Lσ

)

≤ ‖zσ − yσh‖h,e1 + c(‖z − yh‖h,A + ‖z − zh‖h,A)

≤ c(‖z − yh‖h,A+ + ‖z − zh‖h,A).

Hence, using the above inequality along with (5.22) leads to

‖z − zh‖h,A+ ≤ c(‖z − yh‖h,A+ + ‖z − yh‖h,1) ≤ c‖z − yh‖h,1+ .

That concludes the proof since yh is arbitrary in Wh.
Lemma 5.13 (Continuity). There is c, independent of h, such that for all (r, y)

in W (h)×W (h),

ah(r, y) ≤ c ‖r‖h,A+‖y‖h,1. (5.34)

Proof. Let us use (4.21) and bound all the terms in the right-hand side.
(1) For the first term, say R1, we proceed as follows:

|(Tr,y)L,K | ≤ |(Kr, y)L,K | + |(Bru, yσ)Lσ,K | + |((B̃ + C)rσ , yu)Lu,K |

≤ c‖r‖L,K‖y‖L,K + ‖Bru‖Lσ,K‖yσ‖Lσ,K + c‖rσ‖[H1(K)]mσ ‖yu‖Lu,K

≤ c(‖r‖2
L,K + ‖Bru‖2

Lσ,K + h2
K‖rσ‖2

[H1(K)]mσ )
1
2 (‖y‖2

L,K + h−2
K ‖yu‖2

Lu,K)
1
2 .

Hence, |R1| ≤ c ‖r‖h,A+‖y‖h,1.
(2) To bound the second term, say R2, use (dg4), (dg6), (5.7), and the boundedness
of D to infer

|(Mσu
F (ru) −Dσuru, yσ)Lσ ,F | ≤ c|ru|M,F h

1
2

F ‖y
σ‖Lσ,F ,

|(Muu
F (ru) −Duuru, yu)Lu,F | ≤ c|ru|M,F h

− 1
2

F ‖yu‖Lu,F ,

|(Muσ
F (rσ) −Duσrσ , yu)Lu,F | ≤ c‖rσ‖Lσ,F ‖y

u‖Lu,F ≤ ch
1
2

F ‖r
σ‖Lσ,F h

− 1
2

F ‖yu‖Lu,F .
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As a result, |R2| ≤ c ‖r‖h,A+‖y‖h,1.
(3) To bound the third term, say R3, use (dg15), (dg16), and the boundedness of D
to infer

|({Dσuru} , {yσ})Lσ,F | = |2(Dσu
∂K1(F )[[r

u]], {yσ})Lσ,F | ≤ c|ru|J,F h
1
2

F ‖{y
σ}‖Lσ,F ,

|({Duuru} , {yu})Lu,F | = |2(Duu
∂K1(F )[[r

u]], {yu})Lu,F | ≤ c|ru|J,F h
− 1

2

F ‖{yu}‖Lu,F ,

|({Duσrσ} , {yu})Lu,F | ≤ c‖[[rσ ]]‖Lσ,F ‖{y
u}‖Lu,F ≤ ch

1
2

F ‖[[r
σ ]]‖Lσ,F h

− 1
2

F ‖{yu}‖Lu,F .

These bounds yield |R3| ≤ c ‖r‖h,A+‖y‖h,1.
(4) To bound the fourth term, say R4, use (dg10), (dg13), and (dg14) to infer

|(SσuF ([[ru]]), [[yσ ]])Lσ,F | ≤ c|ru|J,F h
1
2

F ‖[[y
σ]]‖Lσ,F ,

|(SuuF ([[ru]]), [[yu]])Lu,F | ≤ c|ru|J,F h
− 1

2

F ‖[[yu]]‖Lu,F ,

|(SuσF ([[rσ ]]), [[yu]])Lu,F | ≤ ch
1
2

F ‖[[r
σ ]]‖Lσ,F |yu|J,F .

Hence, |R4| ≤ c ‖r‖h,A+‖y‖h,1. The proof is complete.

Theorem 5.14 (Convergence). Let z ∈ [H1(Ω)]m solve (2.7) and let zh solve

(4.22). Then, there is c, independent of h, such that

‖zu − zuh‖Lu
≤ ch inf

yh∈Wh

‖z − yh‖h,1+ . (5.35)

Proof. Using z−zh as test function in (5.29) we infer ah(z−zh, ψ) = ‖zu−zuh‖
2
Lu

.
Then, using the consistency property stated in Lemma 5.7, this yields for all ψh ∈ Wh,
ah(z − zh, ψ − ψh) = ‖zu − zuh‖

2
Lu

. Lemma 5.13 in turn implies

‖zu − zuh‖
2
Lu

≤ c‖z − zh‖h,A+‖ψ − ψh‖h,1, ∀ψh ∈ Wh.

Then, using the elliptic regularity (5.28) leads to

‖zu − zuh‖
2
Lu

≤ c‖z − zh‖h,A+ inf
ψh∈Wh

‖ψ − ψh‖h,1

≤ ch‖z − zh‖h,A+(‖ψu‖[H2(Ω)]mu + ‖ψσ‖[H1(Ω)]mσ )

≤ ch‖z − zh‖h,A+‖zu − zuh‖Lu
.

The conclusion follows readily using Corollary 5.12.

Remark 5.4. Stability and convergence in the ‖ · ‖h,A+-norm could have been

proved directly by adding the quantity (
∑

K∈Th
h2
K‖B̃yσ +Cyu‖2

Lu,K
)

1
2 in the defini-

tion of the ‖ · ‖h,A-norm, but this significantly lengthens the proof of Lemma 5.5.

6. Applications. In this section we apply the DG method designed in §4 and
analyzed in §5 to the Friedrichs systems presented in §3.

6.1. Advection–diffusion–reaction. We describe various DG methods that
can be used to approximate the advection–diffusion–reaction equation introduced in
§3.1 and in which the σ-component of the unknown can be eliminated locally. Com-
parisons with the unified approached developed by Arnold et al. [1] are presented to
illustrate the fact that the present DG method generalizes some of the DG methods
that have been previously developed in the literature for the Poisson equation.
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6.1.1. A first example (The LDG method). Consider first Dirichlet bound-
ary conditions. Owing to (3.5) and (3.6), the integral representations (4.9) and (4.11)
hold with the R

d+1,d+1-valued boundary fields

D∂Ω =

[
0 n

nt β·n

]
and M =

[
0 −n

nt 0

]
, (6.1)

where n is the unit outward normal to ∂Ω. Let ς > 0 and η > 0 (these design
parameters can vary from face to face). For all F ∈ Fh, set

MF =

[
0 −n

nt ςh−1
F

]
and SF =

[
0 0

0 ηh−1
F

]
(6.2)

and define for all y ∈ [L2(F )]d+1, MF (y) = MF y and SF (y) = SF y.
Lemma 6.1. Let MF and SF be defined as above. Then, properties (dg]) hold.

Proof. The consistency properties (dg7) and (dg8) are readily verified. The
remaining properties are a direct consequence of Lemmas 5.1 and 5.3.

Remark 6.1. Let δ ∈ R
d. A slightly more general choice for the interface operator

consists of setting for all F ∈ F i
h, S

σu
F = (δ·nF )nF where nF is any of the two unit

normal vectors to F . This choice leads to the so-called LDG method of Cockburn
and Shu [4] as considered in the unified approach of [1] for the Poisson equation.

When Neumann and Robin boundary conditions are enforced, the integral repre-
sentation (4.11) holds for the R

d+1,d+1-valued boundary field

M =

[
0 n

−nt 2%+ β·n

]
. (6.3)

For all F ∈ F∂
h , choose MF = M and for all y ∈ [L2(F )]d+1, define MF (y) = MF y.

Then, it is easily verified that (5.4) holds for Neumann boundary conditions and
also for Robin boundary conditions provided % ≥ (β·n)−, the negative part of β·n
(this is not restrictive since the usual Robin condition at an inflow boundary uses
% = −β·n ≥ 0). Hence, Lemma 5.2 implies that assumptions (dg1)–(dg6) hold.
Moreover, the consistency assumptions (dg7) and (dg8) trivially hold.

Remark 6.2. Observe that the scalings of the block Muu
F are radically different

whether Dirichlet boundary conditions or Robin/Neumann are enforced.

6.1.2. Comparison with other methods. In this section we restrict the set-
ting to the equation u− ∆u = f and to the homogeneous Dirichlet boundary condi-
tions so as to make comparisons with the unified approach developed in [1] where it
is shown that most of the DG methods amount to solving the following problem:

{
Seek zh = (σh, uh) ∈ Wh such that ∀yh ∈ [Ppσ

(K)]d×Ppu
(K),

(Tzh, yh)L,K + (φ̂∂K(zh) −D∂Kz
i
h, yh)L,∂K = (f, yh)L,K ,

(6.4)

where the so-called numerical fluxes φ̂∂K(zh) depend on the method under consider-
ation. In view of (4.25) and (4.26), the link between the present formalism and that
of [1] is based on following identification:

φ̂∂K(zh)|F = φ∂K(zh)|F :=

{
1
2 (MF (z) + Dz) if F ⊂ ∂K∂ ,

SF ([[z]]∂K |F ) + D∂K {z}∂K if F ⊂ ∂K i.
(6.5)
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For the purpose of comparison, we restrict ourselves to boundary and interface oper-
ators such that for all F ∈ Fh, for all v ∈ L2(F ), and for all τ ∈ [L2(F )]d,

Mσu
F (v) = −nv, Muσ

F (τ) = τ ·n, (6.6)

SσuF (v) = 0, SuσF (τ) = 0. (6.7)

Therefore, the methods that can be constructed from this set of assumptions only
differ in the design of Muu

F and SuuF .

Following the notation in [1], we set φ̂∂K(zh) = (û∂K , σ̂∂K) (note that û is R
d-

valued whereas σ̂ is R-valued). Then, the identification (6.5) is possible if the DG
method under consideration is such that

(û∂K , σ̂∂K)|F =

{
(0, σh·nK + 1

2M
uu
F (uh|F )) if F ⊂ ∂K∂ ,

(nK {uh}∂K , {σh}∂K |F ·nK + SuuF ([[uh]]∂K |F )) if F ⊂ ∂K i,

(6.8)

The DG methods that belong to this class are those from [2, 3, 5].

Comparison with the method of Brezzi et al. Let F ∈ Fh. Define the mapping
rF : [L2(F )]d −→ Σh so that for all zσ ∈ [L2(F )]d, rF (zσ) solves

(rF (zσ), yσh)Lσ
= (zσ, {yσh})Lσ ,F , ∀yσh ∈ Σh. (6.9)

Note that the support of rF (zσ) is contained in T (F ). Then, the method described
by Brezzi et al. [3] is such that for all v ∈ L2(F ),

Muu
F (v) = ζrF (vnF )·nF , SuuF (v) = κ {rF (vnF )} ·nF , (6.10)

where nF is any of the two unit normal vectors to F and where ζ and κ are positive
constants; see also [1]. The operator rF is endowed with the following property.

Lemma 6.2. There are c1 and c2, independent of h, such that for all F ∈ Fh and

for all τh ∈ [Ppσ
(F )]d, c1h

− 1
2

F ‖τh‖Lσ,F ≤ ‖rF (τh)‖Lσ
≤ c2h

− 1
2

F ‖τh‖Lσ,F .

Then, it is easily deduced from Lemma 6.2 and the definition of rF that there are
c1 and c2, independent of h, such that for all F ∈ Fh and for all vh ∈ Ppu

(F ),

c1h
−1
F ‖vh‖

2
Lu,F

≤ ({rF (vhnF )} ·nF , vh)Lu,F ≤ c2h
−1
F ‖vh‖

2
Lu,F

. (6.11)

These inequalities are just what is takes to prove that if the boundary and interface
operators are defined using (6.6), (6.7), and (6.10), properties (dg]) hold. Therefore,
the conclusions of Theorem 5.8 and of Theorem 5.14 hold.

Comparison with the method of Douglas and Dupont. The method introduced
by Douglas and Dupont [5] is the so-called Interior Penalty (IP) method. Using the
same definition for the mapping rF as in (6.9), the IP method consists of setting for
all v ∈ L2(F ),

Muu
F (v) = ζ

hF
v − rF (vnF )·nF , SuuF (v) = κ

hF
v − {rF (vnF )} ·nF , (6.12)

where ζ and κ are positive constants; see also [1]. Then, by using the same arguments
as above, we infer that the IP method satisfies all the required properties, i.e., (dg]),
provided the constants ζ and κ are large enough.
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Comparison with the method of Bassi and Rebay. The method proposed by Bassi
and Rebay [2] corresponds to the choice Muu

F = 0 and SuuF = 0. Our analysis needs to
be revised to account for this situation. Obviously, the L2-coercivity still holds in the
form ah(y, y) ≥ c ‖y‖2

L for all y ∈ W (h). Moreover, one easily derives the following
continuity estimate: For all (y, yh) ∈ W (h) ×Wh,

|ah(y, yh)| ≤ c

(
∑

K∈Th

[‖Ty‖2
L,K + h−1

K ‖y‖2
L,∂K]

) 1
2

‖yh‖L. (6.13)

Then, provided pσ = pu := p, the second Strang Lemma implies ‖z − zh‖L ≤
chp‖z‖[Hp+1(Ω)]m . Although this estimate is not optimal, it shows that the method of
Bassi and Rebay is (possibly non-optimally) convergent.

6.2. Linear elasticity. Consider the linear elasticity equations introduced in
§3.2 and let us describe a DG method where the (σ, p)-component of the unknown can
be eliminated locally. Owing to (3.14) and (3.15), the integral representations (4.9)
and (4.11) hold with the R

m,m-valued boundary fields (recall that m = d2 + 1 + d)

D∂Ω =

[
0 H

Ht 0

]
and M =

[
0 −H

Ht 0

]
, (6.14)

where H =
∑d

k=1 nk(E
k, 0)t ∈ R

d2+1,d. Observe that for all ξ ∈ R
d, Hξ = (− 1

2 (n⊗ξ+
ξ⊗n), 0). Let ς > 0 and η > 0 (these design parameters can vary from face to face).
For all F ∈ Fh, set

MF =

[
0 −H

Ht ςh−1
F Id

]
and SF =

[
0 0

0 ηh−1
F Id

]
, (6.15)

and define for all y ∈ [L2(F )]m, MF (y) = MF y and SF (y) = SF y. Then, using
Lemmas 5.1 and 5.3, one readily verifies that properties (dg]) hold.

6.3. Simplified MHD. Consider the simplified MHD equations introduced in
§3.3 and let us describe a DG method where the H-component of the unknown can
be eliminated locally (the derivation of a DG method where the E-component of the
unknown can be eliminated locally is similar). To apply the setting of §5, set σ ≡ H

and u ≡ E. Owing to (3.19) and (3.20), the integral representations (4.9) and (4.11)
hold with the R

6,6-valued boundary fields

D∂Ω =

[
0 N

N t 0

]
and M =

[
0 −N

N t 0

]
, (6.16)

where N =
∑3

k=1 nkR
k, and the R

3,3-valued fields R1, R2, and R3 are defined in
§3.3. Observe that for all ξ ∈ R

3, N ξ = n×ξ. Let ς > 0 and η > 0 (these design
parameters can vary from face to face). For all F ∈ Fh, set

MF =

[
0 −N

N t ςh−1
F N tN

]
and SF =

[
0 0

0 ηh−1
F N t

FNF

]
, (6.17)

where NF is defined as N by using nF instead of n. For all y ∈ [L2(F )]6, let MF (y) =
MF y and SF (y) = SF y. Then, using Lemmas 5.1 and 5.3, one readily verifies that
properties (dg]) hold.
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Remark 6.3. As opposed to advection–diffusion–reaction equations, the upper
bound in (5.3) and (5.5) is not sharp for the simplified MHD equations since the
operators MF and SF do not need to control the whole L2-norm of the electric field
but only that of its tangential component.

7. Conclusions. It happens sometimes that (a4) does not hold; instead, the
following weaker inequality holds:

∃µ0 > 0, ∀z ∈W, (Tz, z)L + (z, T̃ z)L ≥ 2µ0‖πz
σ‖2
Lσ
, (7.1)

where π ∈ L(Lσ ;Lσ). In other words, coercivity no longer holds for the u-component
of the unknown and holds only for some part of the σ-component, namely πzσ . The
equation −∆u = f corresponds to this situation with π equal to the identity. The
Stokes equations and the linear elasticity equations in the incompressible limit fall
also in this framework with a nontrivial operator π. It will be shown in a forthcoming
third part, that provided additional mild assumptions are made on the differential
operators and the DG setting, all that has been said herein in the fully L-coercive
case remains valid in the situation with partial coercivity.
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