FRAGMENTATION ASSOCIATED TO LEVY PROCESSES USING
SNAKE

ROMAIN ABRAHAM AND JEAN-FRANCOIS DELMAS

ABSTRACT. We consider the height process of a Lévy process with no negative jumps, and
its associated continuous tree representation. Using Lévy snake tools developed by Duquesne
and Le Gall, with an underlying Poisson process, we construct a fragmentation process, which
in the stable case corresponds to the self-similar fragmentation described by Miermont. For
the general fragmentation process we compute a family of dislocation measures as well as
the law of the size of a tagged fragment. We also give a special Markov property for the
snake which is interesting in itself.

1. INTRODUCTION

We present a fragmentation process associated to general critical or sub-critical continuous
random trees (CRT) which were introduced by Le Gall and Le Jan [15] and developed later
by Duquesne and Le Gall [10]. This extends previous work from Miermont [18] on stable
CRT. Although the underlying ideas are the same in both constructions, the arguments in
the proofs are very different. Following Abraham and Serlet [1] who deal with the particular
case of Brownian CRT, our arguments rely on Lévy Poisson Snake processes. Those path
processes are Lévy Snake, see [10], with underlying Poisson process. To prove the fragmen-
tation property, we need some results on Lévy Snake which are interesting by themselves.
Eventually we give the dislocation measure of the fragmentation process. We think this con-
struction provides non trivial examples of non self-similar fragmentations, and that the tools
developed here could give further results on the fragmentation associated to CRT.

The next three subsections give a brief presentation of the mathematical objects and state
the mains results. The last one describes the organization of the paper.

1.1. Exploration process. The coding of a tree by its height process is now well-known.
For instance, the height process of Aldous’ CRT [2] is a normalized Brownian excursion. In
[15], Le Gall and Le Jan associated to a Lévy process with no negative jumps that does not
drift to infinity, X = (X¢,¢ > 0), a continuous state branching process (CSBP) and a Lévy
CRT which keeps track of the genealogy of the CSBP. Let ¢ denote the Laplace exponent of
X. We shall assume there is no Brownian part, so that

P(A) = apA —I—/

(de) [e*” —14 M|,
(0,400)

with ag > 0 and the Lévy measure 7 is a positive o-finite measure on (0,+o00) such that
f(o o) (¢ A %)m(dl) < oo. Following [10], we shall also assume that X is of infinite variation
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a.s. which implies that [ 1) ¢r(dl) = oco. Notice those hypothesis are fulfilled in the stable
case: Y(A) =AY a € (1,2).

Informally for the height process, H = (H,t > 0), H; gives the distance (which can be
understood as the number of generations) between the individual labeled ¢ and the root, 0,
of the CRT. This process is a key tool in this construction but it is not a Markov process.
The so-called exploration process p = (p¢,t > 0) is a cad-lag Markov process taking values in
M(Ry), the set of finite measure on R, endowed with the topology of weak convergence.
The height process can easily be recovered from the exploration process as Hy = H(p;), where
H (u) denotes the supremum of the closed support of the measure p (with the convention that
H(0)=0). In some sense p;(dv) records the “number” of brothers, with labels larger than ¢,
of the ancestor of ¢ at generation v. Furthermore the jumps of p are given by

Pt — Pt— = At(;Hta

where A; is the jump of the Lévy process X at time ¢t and J, is the Dirac mass at x.
Intuitively A; represents the “size” of the progeny of such individual ¢. And the set {s >
t;min{H,,u € [t,s]} > H;} represents the “size” of the total descendants of the individual ¢.
Such individual ¢ corresponds to a node in the CRT. To each jump of X corresponds a node
in the CRT and vice-versa. Definition and properties of the height process and exploration
process are recalled in Section 2.

1.2. Fragmentation. A fragmentation process is a Markov process which describes how an
object with given total mass evolves as it breaks into several fragments randomly as time
passes. Notice there may be loss of mass but no creation. This kind of processes has been
widely studied in the recent years, see Bertoin [7] and references therein. To be more precise,
the state space of a fragmentation process is the set of the non-increasing sequences of masses
with finite total mass

+o00
St= {5:(51,52,...); s1>s82>--->0 and E(s):Zsk<+oo}.
k=1

If we denote by P, the law of a St-valued process A = (A?,6 > 0) starting at s = (s1, 82,...) €
Sl, we say that A is a fragmentation process if it is a Markov process such that 6 — 3(A?)
is non-increasing and if it fulfills the fragmentation property: the law of (A, 8 > 0) under P,
is the non-increasing reordering of the fragments of independent processes of respective laws
Pis10,.)Ps2,0,...)5 - - - In other words, each fragment after dislocation behaves independently
of the others, and its evolution depends only on its initial mass. As a consequence, to describe
the law of the fragmentation process with any initial condition, it suffices to study the laws
P = P, for any r € (0,400), i.e. the law of the fragmentation process starting with a
single mass r.

A fragmentation process is said to be self-similar of index « if, for any r > 0, the law of
the process (A?,0 > 0) under P, is the law of the process (rA™"? 6 > 0) under P;. Bertoin [6]
proved that the law of a self-similar fragmentation is characterized by: the index of self-
similarity <, an erosion coefficient which corresponds to a deterministic rate of mass loss, and
a dislocation measure v on S' which describes sudden dislocations of a fragment of mass 1.

Connections between fragmentation processes and random trees or Brownian excursion
have been pointed out by several authors. Let us mention the work of Bertoin [5] who
constructed a fragmentation process by looking at the lengths of the excursions above level ¢
of a Brownian excursion. Aldous and Pitman [3] constructed another fragmentation process,
which is related to the additive coalescent process, by cutting Aldous’ Brownian CRT. Their
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proofs rely on projective limits on trees. Those results have been generalized, by Miermont
[17, 18] to CRT associated to stable Lévy processes, using path transformations of the Lévy
process. Concerning the Aldous-Pitman’s fragmentation process, Abraham and Serlet [1]
give an alternative construction using Poisson snakes. Our presentation follow their ideas.
However, we give next a more intuitive presentation which is in fact equivalent (see Section
9.1).

We consider an excursion of the Lévy process X out of 0, which correspond also to an
excursion of the exploration process (and the height process) out of 0. Let o denote the
common length of those excursions. Intuitively, o represents the “size” of the total progeny
of the root 0. Let J = {t € [0,0]; Xy # X;_} the set of jumping times of X or nodes of the
CRT, and consider (T3;t € J) a countable family of independent random variable such that
T; is distributed according to an exponential law with parameter A;. At time T}, the node
corresponding to the jump A; is cut from the CRT. Two individuals, say v < v, belongs to
the same fragment at time @ if no node has been cut before time # between them and their
most recent common ancestor which is defined as u A v = inf {t € [0, u]; min{H,,r € [u,v]} =
min{H,,r € [t,u]}}. Let A? denote the family of decreasing positive Lebesgue measure of
the fragments completed by zeros if necessary so that A? € St. See Section 9.1 for a precise
construction.

Cutting nodes at time 6 > 0 may be viewed as adding horizontal lines under the epigraph
of H (see figure 1).

FiGure 1. Cutting at nodes: a modifier

We then consider the excursions obtained after cutting the initial excursion along the
horizontal lines and gluing together the corresponding pieces of paths (for instance, the bold
piece of the path of H in Figure 1 corresponds to the bold excursion in Figure 2). The
lengths of these excursions, ranked in decreasing order, form the fragmentation process as
0 increases. Of course, the figure are caricatures as the process H is very irregular and the
number of fragments is infinite.

Theorem 8.3 asserts that the process (A?,6 > 0) is a fragmentation process. There is no
loss of mass thanks to Proposition 8.8.
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FIGURE 2. Fragmentation of the excursion

In the stable case, ¥(\) = A* with a € (1,2), using scaling properties, we get the fragmen-
tation is self-similar with index 1/« and we recover the results of Miermont [18], see Corollary
9.3. In particular the dislocation measure is given by: for any measurable non-negative func-
tion F on St,

/ Flay(dr) = 2 _I{)(l;(_[aa; W) g s, piasy/si, ¢ <),

where (S;,t > 0) is a stable subordinator with Laplace exponent 1~'(\) = A/ and
F(AS;/S1, t < 1) has to be understood as F' applied to the decreasing reordering of the
sequence (AS;/S1, t <1).

In the general case, the fragmentation is not self-similar. However, if 7 = {# > 0; A% #
A%~} denotes the jumping times of the process A, we get as a direct consequence of Section

9.3 that
> S0
0eT

is a point process with intensity df o (ds), where (7, z € S') is a family of o-finite measures
on St There exists a family (v.,7 > 0) of o-finite measure on St, which we call dislocation
measures of the fragmentation A, such that for any 2 = (z1,29,...) € S! and any non-
negative measurable function, F, defined on S*,

[Foms = 3 [Faw @),

1€EN*;2;,>0

where z>* is the decreasing reordering of the merging of the sequences s € S and z, where
x; has been removed of the sequence . This means that only one element of x fragments and
the fragmentation depends only on the size of this very fragment. The dislocation measures
can be computed, see Theorem 9.1. In particular v,.(dz)-a.e. Y ;. o; = r assures there is no
loss of mass at the dislocation. The definition of the dislocation measures is more involved



FRAGMENTATION ASSOCIATED TO LEVY PROCESSES 5

than in the stable case. However, it can still be written using the law of the jumps of a
subordinator with Laplace exponent 1)~

1.3. The pruned exploration process. In fact the dislocation measure is computed by
studying the evolution of a tagged fragment, for example the one that contains the root of
the CRT. Therefore, it is natural to consider first the exploration process of the fragment
containing the root at time §. The pruned exploration process, p = (pt,t > 0), is defined by
pt = pc,, where Cy = inf{r > 0; A, > t} is the right continuous inverse of A;, the Lebesgue
measure of the set of individuals prior to ¢ who belongs to the tagged fragment at time 6
(Section 4). The pruned process p corresponds to the exploration process associated to the
dashed height process of Figures 1 and 2. To get the law of the pruned exploration process
(Section 6), we use a Poisson Lévy snake approach (Section 3) and we prove a special Markov
property, Theorem 5.2 in Section 5, which is of independent interest. Notice this theorem
differs from Proposition 4.2.3 in [10], or Proposition 7 in [8], where in both cases the exit
measure is singular, whereas here it is absolutely continuous w.r.t. to the Lebesgue measure.

Eventually, using martingales, we get Theorem 6.1: the pruned exploration process p is the
exploration process associated to a Lévy process, X (?), with Laplace exponent () defined
by: for A € R,

YD) = (A +0) = ¥(0).

There exists other pruning procedure for Galton-Watson trees, see for example [11] and
references therein.

Notice that conditionally on the length of the excursion, the excursions of X and X @ out
of 0 are equally distributed (see Lemma 7.1). This property, as well as the special Markov
property are essential to prove the fragmentation property. We also compute, see Proposition
7.3 the joint law of o, the initial mass of the fragment, and & the mass of the tagged fragment
at time @, under the excursion measure.

1.4. Organization of the paper. In Section 2, we recall the construction of the Lévy CRT
and give the properties we shall use in this paper. Section 3 is devoted to the definition and
some properties of the Lévy Poisson snake. From this Lévy Poisson snake, we define in Section
4 the pruned exploration process which corresponds to the tagged fragment that contains 0.
Then, we introduce in Section 5 a special Markov property for the Lévy Poisson snake:
Theorem 5.2 and Corollary 5.3. We compute in Section 6 the law of the pruned exploration
process, see Theorem 6.1. Section 7 is then devoted to the study of some properties of
the pruned exploration process under the excursion measure. Eventually, we construct in
Section 8, the fragmentation process associated to our Lévy Poisson snake and prove the
fragmentation property, Theorem 8.3, and check there is no loss of mass, Proposition 8.8.
In Section 9, we identify completely the law of the fragmentation process by computing the
dislocation measures, Theorem 9.1, and we recover the result of Miermont [18] for the stable
case in Corollary 9.3.

2. LEVY SNAKE: NOTATIONS AND PROPERTIES

We recall here the construction of the Lévy continuous random tree (CRT) introduced
in [15, 14] and developed later in [10]. We will emphasize on the height process and the
exploration process which are the key tools to handle this tree. The results of this section
are mainly extract from [10].
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2.1. The underlying Lévy process. We consider a R-valued Lévy process (X¢,t > 0) with
no negative jumps, starting from 0. Its law is characterized by its Laplace transform: for
A>0

E [e—xxt] — O,

where its Laplace exponent, v, is given by

B(N) = aoh + /

(df) [e*” 14 )\4 ,
(0.+00)

with ap > 0 and the Lévy measure 7 is a positive o-finite measure on (0, +00) such that
(1) / (A L*)7(dl) < oo and / {m(dl) = oo.
(0,400) (0,1)

The first assumption (with the condition ag > 0) implies the process X does not drift to
infinity, while the second implies X is of infinite variation a.s.

For A > 1/ > 0, we have e ™ —1 + A\ > %)\61{5225}, which implies that A~!¢()\) >
oo + f(2€700) ¢ m(dl). We deduce that

A
2 lim —— =0.
@ e P(N)
We introduce some processes related to X. Let J = {s > 0; X, # X,_}, the set of jumping
times of X. For s € 7, we denote by

Ag =X — Xso

the jump of X at time s and Ay = 0 otherwise. The random measure X = Zsej ds,A, s a
Poisson point process with intensity 7(d¢). Let I = (I3, > 0) be the infimum process of X,
I; = info<s<t X, and let S = (S, t > 0) be the supremum process, Sy = supg<,<; Xs. We
will also consider for every 0 < s <t the infimum of X over [s,t]: o
I} = inf X,.
s<r<t

The point 0 is regular for the Markov process X — I, and —1 is the local time of X — I at
0 (see [4], chap. VII). Let N be the associated excursion measure of the process X — I out
of 0, and o = inf{t > 0; Xy — I; = 0} the length of the excursion of X — I under N. We will
assume that under N, Xy = I = 0.

Since X is of infinite variation, 0 is also regular for the Markov process S — X. The local
time, L = (L, t > 0), of S — X at 0 will be normalized so that

E[G*BSL;l] = ¢ W(B)/B
where L;! = inf{s > 0; Ly > t} (see also [4] Theorem VIL.4 (ii)).

2.2. The height process and the Lévy CRT. For each t > 0, we consider the reversed
process at time ¢, X = (th),O < s<t) by:

X=X, - X, o if 0<s<t,

s

and )A(t(t) = X;. The two processes (Xs(t),O < s <t)and (X4,0 < s <t) have the same law.
Let S® be the supremum process of X® and L® be the local time at 0 of S® — X with
the same normalization as L.
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Definition 2.1. There exists a real valued process H = (Hy,t > 0), called the height process,

such that for allt >0, a.s. Hy = f)gt), and Hy = 0. Furthermore H is lower semi-continuous
a.s. and a.s. for allt’ >t >0, the process H takes all the values between H; and Hy on the
time interval [t,t'].

The height process (Hy,t € [0,0]) under N codes a continuous genealogical structure, the
Lévy CRT, via the following procedure.

(i) To each t € [0, 0] corresponds a vertex at generation Hy.
(ii) Vertex ¢ is an ancestor of vertex ¢’ if H; = Hyy, where

(3) Hyy =inf{H,,ue [t At tVI]}
In general Hyy is the generation of the last common ancestor to ¢ and ¢’
(iii) We put d(t,t') = Hy + Hy — 2H, p and identify ¢t and t' (t ~ t') if d(¢,t") = 0.

The Lévy CRT coded by H is then the quotient set [0, 0]/ ~, equipped with the distance
d and the genealogical relation specified in (ii).

2.3. The exploration process. The height process is in general not Markov. But it is a
very simple function of a measure-valued Markov process, the so-called exploration process.
If E is a polish space, let B(E) (resp. B4 (E)) be the set of real-valued measurable (resp.
and non-negative) functions defined on E endowed with its Borel o-field, and let M(E) (resp.
My (E)) be the set of o-finite (resp. finite) measures on E, endowed with the topology of
vague (resp. weak) convergence. For any measure u € M(FE) and f € B, (FE), we write

(. f) = / £() u(dz).

The exploration process p = (p¢,t > 0) is a M ¢(Ry)-valued process defined as follows: for
every f € By (Ry),

onf) = | dagze),
[0,¢]
or equivalently

(4) pldr)y = (I} = X )om,(dr).
0<s<t
Xo <If
In particular, the total mass of py is (ps, 1) = Xy — I;.
For p € M(Ry), we set

(5) H(p) = sup Supp 4,
where Supp p is the closed support of u, with the convention H(0) = 0. We have

Proposition 2.2. Almost surely, for every t > 0,
H(pt) = Ht7

pt = 0 if and only if H; =0,

if pr # 0, then Supp p; = [0, Hy].

pt = pi- + Aidp,, where Ay =0 if t € J.

In the definition of the exploration process, as X starts from 0, we have pg = 0 a.s. To
get the Markov property of p, we must define the process p started at any initial measure

pe Mp(Ry).
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For a € [0, (i, 1)], we define the erased measure k,u by
kapt([0,7]) = p([0, 7)) A ((, 1) —a),  for 7 >0.

If a > (u,1), we set k,u = 0. In other words, the measure k,u is the measure p erased by a
mass a backward from H (p).

For v,u € Ms(R,), and p with compact support, we define the concatenation [u,v] €
M(Ry) of the two measures by:

([ v), f) = (o f) + (v fF(H(p) + 1)), feBi(Ry).

Eventually, we set for every p € M(R;) and every ¢ > 0 pi' = [k_j,u, pr]. We say that
(p}'st > 0) is the process p started at pfj = p, and write P, for its law. Unless there is an
ambiguity, we shall write p; for p}'.

Proposition 2.3. The process (p;,t > 0) is a cad-lag strong Markov process in M (Ry).

Remark 2.4. From the construction of p, we get that a.s. p; = 0 if and only if —1I; > (po, 1)
and X; — I; = 0. This implies that 0 is also a regular point for p. Let (75,8 > 0) be the
right continuous inverse of —I: 74, = inf{t > 0; —I; > s}. We get the local time at 0 of p*,
(LY.t >0), is given for t > 0, by

L = =1+ Iipr, -

Notice that N is also the excursion measure of the process p out of 0, and that o, the length
of the excursion, is N-a.e. equal to inf{t > 0; p; = 0}.

Remark 2.5. Recall (Ag,s > 0) are the jumps of the process X. The process p is adapted
to the filtration generated by the process X, that is by the Poisson point process X', and
po, completed the usual way. From the construction of p, we get there exists a measurable
function, T, defined on M(R?%) x M ¢(R;) (endowed with its Borel o-field) taking values in
M (R4) (endowed with its Borel o-field), such that

pt =D( X1 xR, Po)-

On the other hand, notice that a.s. the jumping times of p are also the jumping times of X,
and for s € J, we have ps({Hs}) = As. We deduce that (A, u € (s,t]) is measurable w.r.t.
the o-field o(py, u € [s,t]).

2.4. The dual process and representation formula. We shall need the M ¢(R )-valued
process 1 = (¢, t > 0) defined by

m(dr) =Y (X = I)dn,(dr).
0<s<t
Xo_<If

The process 7 is the dual process of p under N (see Corollary 3.1.6 in [10]). We write (recall
Ay = X5 — Xs_)

(6) ki(dr) = pu(dr) +m(dr) = > Agbu, (dr).
I

We recall the Poisson representation of (p,n) under N. Let N'(dx d¢ du) be a Poisson point
measure on [0, +00)? with intensity

dx b (dl) 1o 1) (u)du.
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For every a > 0, let us denote by M, the law of the pair (pg4,V,) of finite measures on R
defined by: for f € B4 (R4)

g (s ) = [ ld dedu) L (o)t ),
(8) <%ﬁ=/wammwumvmmm

We eventually set M = f0+°° da e~ %% M,,.

Proposition 2.6. For every non-negative measurable function F' on Mf(R+)2,

NUfwmmﬂ:/wwwwwm
0
where o = inf{s > 0; ps = 0} denotes the length of the excursion.

We recall Lemma 3.2.2 from [10], we shall use later.

Proposition 2.7. Let 7 be an exponential variable of parameter A > 0 independent of X
defined under the measure N. Then, for every F' € BL(Mf(Ry)), we have

N(F(pr)lr<o) = A / M(dp dv)F(p) e ¥~ VD)

It is easy to deduce from this (see also the beginning of Section 3.2.2. [10]) that for A > 0

9) N [1 - e_)‘”] = 1N,

3. THE LEVY POISSON SNAKE

As in [1], we want to construct a Poisson snake in order to cut the Lévy CRT at its nodes.
For this, we will construct a consistent family (m? = (m{,¢t > 0),60 > 0) of measure-valued
processes. For fixed 6 and ¢, m? will be a point-measure whose atoms mark the atoms of
the measure p; and such that the set of atoms of m?T? contains those of m?. To achieve
this, we attach to each jump of X a Poisson process indexed by 6, with intensity equal to
this jump. In fact only the first jump of the Poisson processes will be necessary to build the

fragmentation process.

3.1. Definition and properties. Conditionally on X = Y _;ds,, we consider a family
(> us00Veus s € J) of independent Poisson point measures on R with respective intensity
A 1g,>0pdu. We define the M(R? )-valued process M = (M, t > 0) by

(10) Mt(dr7 dv) = § : (Ilf - XS—)( § 5Vs,u (d'l))) 5H$ (dT)
0<s<t u>0
Xs_<I}

Remark 3.1. The additional coefficient I7 — X;_ is not very important and is only needed
for the process M to be right-continuous.

Let 8 > 0. For t > 0, notice that

Mt(RJr X [070]) < Z Asgs,

0<s<t
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with {; = Card {u > 0;V;, < 6}. In particular, we have for T' > 0,

(11) sup My(Ry x [0,0]) < Y AL
te[0,7] 0<s<T

Notice the variable £ are, conditionally on X', independent and distributed as Poisson random
variables with parameter A, We have B[ g cp A&s|X] = 03 cp A7 As f(o 00) (2 N

O)m(dl) is finite, this implies the quantity > ,_ ., A? is finite a.s. In particular we have a.s.

sup My(Ry x [0,6]) < oo,
t€[0,T]

and M; is a o-finite measure on Ri. Notice that a.s.
(12) My(dr,dv) = pe(dr) My, (dv),

where M, is a o-finite counting measure on R .

We call the process S = ((pg, My),t > 0) the Lévy Poisson snake started at pg = 0, My = 0.
To get the Markov property of the Lévy Poisson snake, we must define the process S started
at any initial value (p,II) € S, where S is the set of pair (y,II) such that u € M ;(Ry) and
II(dr,dv) = p(dr)Il,(dv), II, being o-finite measures on R, such that II(R4 x [0,6]) < oo
for all 6 > 0. We set H" = H(k_y,). Then, we define the process M~ = (M ¢ > 0) by:
for ¢ € B+ (R%),

(M#H’@ — /(0 )gp(r,v)k,ltu(dr)ﬂr(dv) + /(0 )gp(r + H}',v)My(dr, dv).

We shall write M for M. By construction and since p is an homogeneous Markov process,
the Lévy Poisson snake & = (p, M) is an homogeneous Markov process.

We now denote by P, 11 the law of the Lévy Poisson snake starting at 0 from (y,II), and
by ]P’:;H the law of the Lévy Poisson snake killed when p reaches 0. We deduce from (11),
that a.s.

(13) EMH

sup M (R x [0,6]) ‘ X] <40 Z A2 +TI(R, x [0,6]) < oo.
te[0,7 0<s<T

Let F = (Fi,t > 0) be the filtration generated by S completed the usual way. Notice this
filtration is also generated by the processes (X'([0,],-),t > 0) and (D _.c 7 <t D u>0 OVeust =
0). In particular the filtration F is right continuous. And by construction, we have that p is
Markovian with respect to F.

Proposition 3.2. The Lévy Poisson snake, S, is a cad-lag strong Markov process in S C

M;(Ry) x M(B2).

Proof. We first check the process M is right continuous. Recall (12). We have by construction
a.s. for all ¢/ > t,

Mt’ (d’l“, d’U) = kilf/ pt(dT)MtJ«(dU) + py (dr)]-{r>Ht’t,}Mt’,7"(d/U)a

where H, y is defined by (3). Thanks to (11), we have, for § > 0,

| el Mo (0.0 < 3 Ak
.

t<s<t/
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In particular this quantity decreases to 0 as t’ | ¢ a.s. By the properties of the exploration

process, we recall that a.s. k_j py = pp, where ¢” = inf{s € [¢,t']; It = I,;}. From the right
tl

continuity of p, we deduce that a.s. for the vague convergence

lim Mt/ = Mt.
t'|t

This implies the right continuity of the process M for the vague topology on M(Ri)
Now, we check the process M has left limits. Let ¢ < t’. For r € [0,H;y], we have
k:,lz/pt(dr)Mt,T = l{rgHt’t/}pt’(dr)Mt’,ra as well as

M (dr,dv) = 1{r§Ht7t,}Pt/(dT)Mt’,r(dv) + [pe(dr) — k_ltt,pt(dr)]MM(dv).

If p is continuous at t', then either py({H/}) = 0 or H,y = Hy for t close enough to t'.
In particular, since lim; .y Hyy = Hy, we have limyy 1g,< H, /}PY (dr) = pp(dr). If p is not
continuous at ', this implies that py(dr) = py_(dr) + Aydm, (dr) and for ¢ close enough to
t', Hyp < Hy. Then, we get lim;py l{rgHt’t,}pt/(dr) = py_(dr). In any case, we have a.s. for
the vague convergence

ltiTrg/l I{TSHt’t/}pt/(dr)Mt/,,n(dv) = py—(dr)My (dv).

Now, we check that for the vague topology
il dr) — gy ()| Mo () = 0.

For this purpose, we remark that

By | [ ur) = kg, (], (0.6 1] =0

+

; [oe(dr) = k_p, pe(dr)](pe({r}) + me({r}))

<O+ m1) [ lpuldr) =kl

= 0({pe +m, 1)) (—I},)-

As p and 7 are respectively cad-lag and cag-lad process, they are bounded over any finite
interval a.s. Since limyyy I}, = 0, we deduce that

LImE, [/ [pt(dr) — k_p/pt(dr)]Mt7r([0,9])|X} =0.
tTt/ R+ t
Thanks to (13) and Fatou’s Lemma, we deduce that
lim [pe(dr) — k_[tlpt(dr)]Mt’r([o, 0]) = 0.
1t R, t
Therefore, we conclude that for vague topology,

lim My = My _.
!
We deduce that for the vague topology on M(Ri), the process M is a.s. cad-lag. This
implies the process § is a.s. cad-lag.
We check the strong Markov property of S. Mimicking the proof of Proposition 1.2.3 in
[10], and using properties of Poisson point measure, one gets that, for any F-stopping time
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T, we have a.s. for every t > 0,

T
P+t = |:k:_It(T)pTap§ )]
M (dr,dv) = k_jnpf" (dr) My, (dv) + M (dr + H(k_yr)pr). dv)

where I p(M) and M) are the analogues of I, p and M with X replaced by the shifted
process X(T) = (X7, — Xp,t > 0). This implies the strong Markov property. O

3.2. Poisson representation of the snake. Notice that a.s. (ps, M;) = (0,0) if and only
if py = 0. In particular, (0,0) is a regular point for the Lévy Poisson snake, with associated
local time (L2, s > 0). We still write N for the excursion measure of the Lévy Poisson snake
out of (0,0), with the same normalization as in Section 2.4.

We decompose the path of & under JP’;’H according to excursions of the total mass of
p above its minimum, see Section 4.2.3 in [10]. More precisely let («;,3;),i € I be the
excursion intervals of the process (p, 1) above its minimum under IP);H. For every 7 € I, we

define h; = H,, and S* = (p’, M%) by the formulas
W)= [ T hdpasons (ds)
(hi,+o0)

<Mti7 90> = gp(x - hi? U)M(aﬂrt)/\ﬁi(dxv dv)'

/(hiHrOO)X[O#OO)
It is easy to adapt Lemma 4.2.4. of [10] to get the following Lemma.
Lemma 3.3. Let (,11) € M¢(R;) x M(R2). The point measure 26(;”731') is under P}, 1

el
a Poisson point measure with intensity p(dr)N[dS].

3.3. The process m(®). For § > 0, we define the M(R . )-valued process m(?) = (mgg),t > 0)
by

(14) m?(dr) = My(dr, (0,0]).
We make two remarks. We have for s > 0,
(15) Poo(m® = 0]x) = & ¥ Z0<rss xo<rp B o=0ksil)

Notice that for s € J, i.e. Ag > 0, we have M({H,},dv) = Agd >0, (dv), where
conditionally on X, Y .6y, ,(dv) is a Poisson point measure with intensity A du. In
particular, we have

Pyn(m{” ({Hy}) > 01X) = P(M,({H} x (0,6]) > 0]X) = 1 —e .
From Poisson point measure properties, we get the following Lemma.

Lemma 3.4. The pruned random measure X% = Z 1{m(9)({H ds,A, 15 a Poisson point

s>0

}>0}
process with intensity
(16) n®(dl) = (1 — e %)m(d0).

We shall use later the following property, which is a consequence of Poisson point measure
properties.
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Proposition 3.5. Let M? = (Mf,t > 0) be the measure-valued process defined by
MY (dr,[0,a]) = My(dr, (6,6 + a]), for all a > 0.
Then, given p, M? is independent of M1g, vj0,6) and is distributed as M.

Eventually, the next Lemma on time reversibility can easily be deduced from Corollary
3.1.6 of [10] and the construction of M.

Lemma 3.6. Under N, the processes ((ps,ns,l{m(e)zo}),s € [0,0]) and ((N(o—s)—» P(o—s)—>
1{ ) _0}),8 € [0,0]) have the same distribution.
M o—s)—=

4. THE PRUNED EXPLORATION PROCESS

Let us fix 8 > 0. We shall write m for the process m'?) defined in the previous Section. We
define the following continuous additive functional of the process ((p¢, m¢),t > 0): for t >0

t
Ay =/ 1m.—0y ds,
0

and Cy = inf{r > 0; A, > t} its right continuous inverse, with the convention that inf () = oc.
Notice C is a F-stopping time for any ¢ > 0 and is finite a.s. from Corollary 4.2 below.

We define the pruned exploration process p = (pr = pc,,t > 0) and the pruned Lévy
Poisson snake S = (p, M), where M = (Mg,,t > 0). In particular the law of M knowing j
is the law of M knowing p = p. Notice the process p, and thus the process S, is cad-lag. We
also set H; = He,. Let F= (ft,t > 0) be the filtration generated by the pruned exploration
process S completed the usual way. In particular F; C Fc,, where if 7 is an F-stopping time,
then F, is the o-field associated to 7.

We introduce the following Laplace exponent ¢(?) defined for A > 0 by

(17) PO(A) = (A +0) — ().
Lemma 4.1. We have the following properties.

(i) For A > 0, N[1 — e=Me] = @' ().
(ii) N-a.e. 0 and o are points of increase for A. More precisely, N-a.e. for all ¢ > 0, we
have A; >0 and Ay — Ag_c)vo > 0.
(iii) N-a.e. the set {s;ms # 0} is dense in [0,0].

Before going into the proof of this Lemma, let us state two direct consequences. From
excursion decomposition, see Lemma 3.3, the second part of Lemma 4.1 implies the following
corollary.

Corollary 4.2. For any initial measures p, 11, P, 11-a.s. the process (Cy,t > 0) is finite and
starts at 0 if mg = 0.

We define ¢ = inf{t > 0;p; = 0}. From the second part of Lemma 4.1, we get that
o = inf{t > 0; p; = 0} is a left increasing point of A (N-a.e. or P(, my-a.s., u # 0). Therefore,
we have lim,14, C, = 0. As p is left continuous at o, we get that lim,14, p, = 0 which implies
that & < A,. Since 6 > A,, we get that N-a.e.

(18) &= A,
This equality holds also P, 1)-a.s., for pu # 0.
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Proof of Lemma 4.1. We first prove (i). Let A > 0. Before computing v = N[1 — exp —AA4,],
notice that A, < o implies, thanks to (9), that v < N[1 — exp —Ao] = ¥~ }(\) < +oo. We

have -
v =N [/ dA, e_/\ftadA“] = )\N [/ dAE,, Sole /\AU] )
0 0

where we replaced e dAu i the last equality by E;t,o[e*M"], its optional projection. In

order to compute this last expression, we use the decomposition of S under IP’Z i according
to excursions of the total mass of p above its minimum, see Lemma 3.3. Using the same

notations as in this Lemma, notice that under IP’; 0 We have A, = Ao = > i} Ago, with

T
(19) A?r:/o Loasi Ry x[0,07)=0y 41-

By Lemma 3.3, we get
E* O[ef)\Ao] = ei<“71>N[176Xp 7)‘A0'} = eiv<“’1> .

Now, for fixed ¢, recall (15). By conditioning with respect to X’ or to p thanks to Remark
2.5, we have

v = )\N[/Oo dA, e*v<ptvl>} - AN[/OU 014, o) e,m,w] _ AN[/OJ dt o=+ (o 1) - e<m,1>]_

Now we use Proposition 2.6 to get

+o0o
V= )\/ da e~ @0 Ma[ef(v+9)<u,1>79<u,1>]
0

+o0 a 1
= )\/ da e~ exp{ —/ dm/ du/ I (de) [1 — e’(”+9)“£*9(1fu)5] }
0 0 0 (0,00)

(20) :)\/O+Ooda exp{—a/olduw'(H—i—vu)}

v

21 =A .

2y o0+~ 00)

where, for the third equality, we used

(22) V' (\) =ag+ / m(de) £(1 — e ).
(0,00)

Notice that if v = 0, then (20) implies v = A/¢/(0), which is absurd. Therefore we have
v € (0,00), and we can divide (21) by v to get ¥ (v) = X. This proves (i).

Now, we prove (ii). If we let A — oo in (i) and use that lim, . 1 (7“) = 400, then we
get that N[A; > 0] = 4-oc0. Notice that for (u,II) € S, we have under P} ;j, Aoc = >,/ Al
with A; defined by (19). Thus Lemma 3.3 imply that if p # 0, then IP’* g-a.s. I is infinite
and A, > 0. Using the Markov property at time ¢ of the snake under N, We get that for any
t >0, N-a.e. on {o > t}, we have A, — A; > 0. This implies that o is a point of increase of
A N-a.e. By time reversibility, see Lemma 3.6, we also get that 0 is a point of increase of A
N-a.e.

To prove (iii), recall that f 7(dl) = +oo implies that 7 = {s > 0; Ay > 0} is dense in
R, a.s. Moreover, for every ¢ > 7" 2 0,

Z Ay = 400 a.s.

r<s<t
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Now, by the properties of Poisson point measures, we have
P(Vs € [r,t], my = 0) = E [~ Zrsese & =

which proves (iii).

5. A SPECIAL MARKOV PROPERTY

Let us fix # > 0 and use the notations of the previous Section.
In order to define the excursion of the Lévy Poisson snake out of {s > 0; ms = 0}, we
define O as the interior of {s > 0, mgs # 0}.

Lemma 5.1. N-a.e. the open set O is non empty.

Proof. Thanks to Lemma 4.1, (iii), {s > 0, ms # 0} is non empty. For any element, s, of
this set, there exists u < Hg such that mg([0,u]) # 0 and ps({u}) > 0. Then we consider
7s = inf{t > s,p({u}) = 0}. By the right continuity of p, 7, > s and clearly (s,75) C O
N-a.e. Therefore O in non empty. ]

We write O = (J;¢;(, 8;) and say that (o, 5;)ier are the excursions intervals of the Lévy
Poisson snake & = (p, M) out of {s >0, ms = 0}.

Next we prove a special Markov property out of {s > 0, mys = 0} under the excursion
measure N. Using the right continuity of p and the definition of M, we get that for ¢ € I,
a; >0, a; € J, that is po, {Ha, }) = Aq,, and M,, ([0, Hy, ), [0,6]) = 0. For every i € I, let
us define the measure-valued process S = (p’, M?) by: for every f € B4 (R4), ¢ € B4(R2),
t>0,

<p£7 f> = / f(l‘ - Hai)p(aﬂrt)/\,@i (dl‘)
[Haiv+oo)

<Mti7 90> = (P(x - HOW U)M(Oéi-l—t)/\ﬁi(dx? dv)'

/(Hai;f—OO)X[O,-‘rOO)
Since pg = 0A,,, With Ay, > 0, then for every t < (3; — «;, the measure pi charges 0. As
M{ = 0 we have for every t < f3; — a;, M{({0} x R;) = 0. We call A,, the starting mass of
S,

Recall F, is the o-field generated by S = ((pc,, Mc,),t > 0) and P% 11(dS) denotes the
law of the snake S started at (u,II) and stopped when p reaches 0. For £ € [0, +00), we will
write P} for P§, ;. Recall (16) and define the measure N by

(23) N(dS) = /(0+ @) (1 - ) Bi(ds) = /(O )n<9>(de)m>;f(d5).

If Q is a measure on S and ¢ is a non-negative measurable function defined on a measurable
space Ry x 2 x S, we denote by

Qlé(u,w, )] = /S o, 5)QdS).

In other words, the integration concerns only the third component of the function ¢.
Recall the definition of ¢ given after Corollary 4.2.
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Theorem 5.2. (Special Markov property) Let ¢ be a non-negative measurable function defined
on Ry x Q xS such that t — ¢(t,w,S) is progressively F-measurable for any S € S. Then,
we have N-a.e.

exp <—Z¢(Aai,w,8i)> ‘ }N'oo] = exp <— /0& duN [1 — ed’(“’“’")D .

iel

24) N

In particular, the law of the excursion process Z 0(Aa, ,S7): given Foo under N, is the law of
el
a Poisson point measure of intensity 1jg 5)(u) du N(dS).
Before going into the proof of this Theorem, we give a corollary we shall use later.

Corollary 5.3. The law of the excursion process Z O(Aa. pa._,Si)s given Foo, is the law of a
el

Poisson point measure of intensity 1y 5 (u)du 05, (dp) N(dS).

Proof. This is a direct consequence of Theorem 5.2 and Lemma 5.5. U

The rest of this Section is devoted to the proof of the special Markov property.

5.1. A remark and notations. To begin with, let us remark that to prove Theorem 5.2,
we may only consider function ¢ satisfying the hypothesis of Theorem 5.2 and those two
conditions:

(h1) ¢(s,w,S) = 0 if the starting mass of S is less than 7, that is (pg, 1) < n, for a fixed
positive real number 7.

(ha) t— ¢(t,w,S) is continuous for all S € S a.s.
Indeed if (24) holds for such functions then by monotone class Theorem and monotonicity it
holds also for every function satisfying the hypothesis of Theorem 5.2. From now on, but for
Lemma 5.5, we fix n > 0, and we assume the function ¢ satisfies the hypothesis of Theorem
5.2 and (h1). We will assume (hg) only for Sections 5.6 and 5.7.

Let ¢ < n and let us define by induction (under the measure N) the following stopping
times: 7§ = 0 and, for every integer k > 0,

Sky1 = nf{s > Tg, m({Hs}) >0, ps({Hs}) > e}
Tiyr = inf {s > S; .y, ms =0}

with the convention inf () = o. Let us then denote

(25) N. =sup{k € N, S} #c}.

Notice N, is finite N-a.e. as there is a finite number of jumps A; > €.

For every k < N, we define the measure-valued process S*¢ = (p™°, M*#) in the same
way as the processes p' and M*: for every non-negative continuous functions f and ¢, and
t>0,

(Pf’eaf>:/[H N )f(x—HS;)P(s;+t)AT,§(dx)
Siv 0

(M, ) = ol = Hsg, v)M(sg i (d, dv).

\/(Hsli,-l—oo)x[o,—&-oo)
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We call ASZ the starting mass of S¥¢. Notice that pg’e = 0a, and ASZ > ¢ for k €
k
{1,..., N:}. Notice also that N-a.e,
o € Y . .
(26) tim (J (55, 75) = (J (e, 31)-
keN i€l
5.2. Approximation of the excursion process.

Lemma 5.4. N-a.e., we have for € > 0 small enough

Ne

(27) D H(Aa,,w,8) =D ¢(Age, w,SM).
il k=2

Proof. Let I, be the set of indexes i € I, such that the starting mass of S' is larger than 7.

Because of (hq), we have

D H(Aa,,w0,8) = $(Aa,w, 8.
iel i€,

Let ¢ < 7. Then, for any i € I,, there exists £ € N*, such that She = S,

Furthermore, all the others excursions S*¢ which don’t belong to {S%,i € I,,} either have a
starting mass less that 7 (and thus ¢(Ase,w, S%€) = 0), or have a starting mass greater that
n but mg: ([0, Hsz)) > 0. But, as the set {s > 0, As > n} is finite, there exists only a finite
number of excursions S¢ which straddle a time s such that A; > 1. Therefore, the minimum
over those excursions of their starting mass, say n’, is positive a.s. and, if we choose € < 7/,
there are no excursions S*° with initial mass greater than 1 which do not correspond to a
St

Consequently, if we choose € < n A 7', we have

Ne
> Ao, w,8) = d(As;,w, 85).
el k=1
Notice also, that because of Lemma 4.1 (iii), for ¢ > 0 small enough, the starting mass of
S1¢ is less than 1. Therefore, we deduce that (27) holds N-a.e. for € > 0 small enough.
O

We can now prove the next Lemma which gives Corollary 5.3.

Lemma 5.5. Let 1) be a bounded non-negative measurable function defined on R x M ¢(R )%
S. N-a.e., we have

> (Aay P, 8 =Y $(An,,w, S,

i€l el
where ¢(t7 w, S) = Q/)(t, ﬁt(W), S) :
Proof. First we assume that ¢ (¢, 4, S) = 0 if the starting mass of S is less than n. The same
arguments as those used to prove Lemma 5.4 yields that N-a.e. for € > 0 small enough, we
have

Ne
> (Aays pa—r ST =Y (Asz, psz—, SM).
icl k=2

Notice that by construction, pg: - = pre and that mre = 0. Using the strong Markov property
at time T} and the second part of Corollary 4.2, we deduce that N-a.e. for all k € N*,

(28) Caye =T
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Therefore, as ASE = ATE we have N-a.e.
’ k K’
pAs,i = PATE = P1; = PS5—-

Hence, we have that N-a.e. for € > 0 small enough,

Ne
Z V(Aays Pai— Si) = Z QS(AS,"; ) Skﬁ)’
k=2

el
with ¢(t,w,S) = ¥(t, pt(w),S). Now, we complete the proof using Lemma 5.4 and letting

n 0.
O

5.3. A measurability result. We shall use later the next additive functional defined for
s >0 by

(29) Z / ire.sz, () du,

For k > 1, we consider the o-field F(©)* generated by the family of processes

(S(Tf*s)ASlgﬂ” 5= O)le{o,...,k—1}'
Notice that for &k € N*
(30) f(a)’k C .7:52.

Lemma 5.6. For any ¢ >0, k € N*, the function ¢p(Asz,w, ") is FEk _measurable.

Proof. We set C% the right continuous inverse of A% and we define the filtration F() =
(]}f),t > 0) generated by the process (Scz,s > 0).

We consider the counting process (Rt > 0) defined by R; = inf{k > 0;57,, > Af}.
Consider the filtration F() = (]:t(e),t > 0), where ]:t(e) = ]:"t(e) V o(Rs,s < t). In particular
for k> 1, A%E inf{t > 0; R, = k} is a F©)-stopping time. Notice then that F€)F = .7:51? .

SE

By the monotone class Theorem, to prove the Lemma, it is enough to consider snnple
processes, ¢, defined by ¢(t,w,S) = g(S)Z1{<4y, where r > 0, Z € Fr, and ¢ is a real
measurable function defined on S. For k € N*, we have qb(ASz,w, )= 9Z1(<a4.)- Notice

- k

that
¢, =inf{u>0;C; > C,}

cq
= inf{u > 0;/ Lim,—0yds > 1}
0
c
= inf{u > 0;/ 1{m3:0}dA§ >r}
0

= inf{u > 0;/ Lmee—oydt > 1},
0 t

where we used that A€ is the right continuous inverse of C¢ for the first equality, C is the
right continuous inverse of A for the second, {s;ms = 0} C U>o[T};, Sj4q] for the third, and
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the change of variable ¢t = Ag for the last. This gives that Az isa F (€)_stopping time. By
(e)

composition of random change time, we also have F, C F\? . Eventually, we have

T

{r <Asg} =A{r < Arg} ={C, < Ty} = {Ag, < A7e} = {4, < A},

where we used AS; = ATE for the first equality, (28) and the definition of C' for the second,
and similar properties for A° for the two last ones. We deduce then that Z1p<4 .y =
- k

Z1yye, <Az} is measurable with respect to .7:(25 = F©)k This ends the proof of the Lemma.
T b i

O

5.4. Computation of the conditional expectation of the approximation.

Lemma 5.7. For every Foo-measurable non-negative random variable Z, we have

Zexp< quAsstks) ZHN[ oA @) (p0>s]].

Proof. For every integer p > 2, we consider a non-negative random variable Z of the form
Z = ZyZ,, where Zy € FOPr and 7, e O'(S(TI§+S)/\SE s > 0, k > p) are bounded

k+1)

non-negative and such that N[Zy] < co.

p
Zexp <_ Z QS(ASE,W, Sk76)>
k=2

at time Tzf . We obtain

To compute N , we first apply the strong Markov property

N |Zexp < Z¢ As;,w,skﬁ))

ZO €xp ( Z¢ ASi7w78k7€)> ;Tﬁ’o [Zl]

Notice that pTE = PSs—, and consequently pT: I8 measurable with respect to .7-"55. So, when
we use the strong Markov property at time S, we get thanks to Lemma 5.6 and (30),

Zexp( Zqﬁ Ase,w Sk€)>

Zy exp < Zgb Ass w Sk€)> Eng,o { d)(AS?’w")] prs. olZ1]

=N

Recall p > 2. Conditionally on fT;A, on N > p, the measure ph° is a Dirac mass and,
by the Poisson representation of Lemma 3.4, this mass is the first atom of the Poisson point
measure X' that lies in (e, 4+00). Consequently, the mass of pb€ is distributed according
to the law nf(d¢|¢ > ¢). From Poisson point measure properties, notice that pf< is also
independent of o(S,t < S;) and thus of FEr,
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Therefore, conditionally on N, > p, pg ° is independent of Zy, PTs = PSz— and, thanks to

Lemma 5.6 of gb(Agg,w, -). So, by conditioning with respect to FEP we get

P
Z exp ( Zqﬁ Ase,w Sk€)>
k=2

Zy exp ( ZqS Asz,w, Sk 5)) [ —¢(Asgw) ‘ po > 6} Est 0lZ1]

(31) N

=N

Remark 5.8. From point Poisson measure property, notice that, conditionally on ‘7:T§_1 and
Ne>p>2,e,=5—-T »—1 1s an exponential random variable with parameter

(32) ne=n’(l >¢e) = /(5 . m(dl) (1 — e_%> .

And, conditionally on N, and N, > 2, the random variables (e, k € {2,...,N.}) are inde-
pendent exponential random variables with parameter n..

Now, using one more time the strong Markov property at time 7}, we get from (31)

P
Z exp <_ Z ¢(ASE’W’Sk7€)>
k=2
ZN {e_¢(AS§’w") ‘ po > 6} exp < Zgb Asz,w, Sk 5)) ]

From monotone class Theorem, this equality holds also for any Z € F():*° non-negative.
7¢(ASIE) 7w7') ’

N

=N

Thanks to Lemma 5.6, the non-negative random variable Z’ = ZNJe po > €] is
measurable w.r.t. F(€):*° So. we may iterate the previous argument and eventually get that
for any non-negative random variable Z € F(€):*° we have

Zexp(—zp:(b(ASz,w,SkE) ZHN[ #(Asg ) ‘p0>5]].

Let p — 400 and notice that Fae C FE)%° to end the proof. O

N

5.5. An ancillary result. Recall (25) and (32) We prove the next result.

Lemma 5.9. There exists a positive sequence (g5,j € N*) decreasing to 0, such that N-a.e.:

(i) lim —L = A,.
Jj—00 ngj

(ii) For any g € B4 (Ry) bounded continuous, we have

g

lim — = u) du.
]Hoon@];g SJ /0 g( )

Proof. Notice that {s;ms # 0} C OU{s; As # 0} (see proof of Lemma 5.1). As {s; A; # 0} is

discrete, we have thanks to (26), that N-a.e. for all s > 0, lim._,g A5 = A, where A° is defined

by (29). From Dini Theorem this convergence is uniform on [0, c] N-a.e. In particular, (ii)
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will be proved once we proved (i) and that N-a.e. for any g € B4 (Ry) bounded continuous,
we have

(33) lim — Zg(Aajs.) :/0 g(u) du.

From Remark 5.8, we see there exists a sequence of random variables (e}, k > 2), such that
conditionally on N, they are independent exponential variables of parameter n. (see (32))
and

Ne
A5 = (S5 =T5) + Y ¢ + (Sx1 — T,
k=2
We set ef = Sy 1 — T, and ef = Sf — 1§, so that we have the compact notation A7 =

évio e, and AEZ = Zle ej for k < N..
Because of Lemma 4.1 (ii) and (iii) we have that N-a.e. lim.|gef = lim.jgef = 0. We
deduce that N-a.e.

hmZek —hmA =A,.

Conditionally on N, the random Varlables (neef,k > 2) are independent exponential
variables of parameter 1. The previous equality and the law of large numbers implies that
N-a.e. for anypositive deterministic sequence (¢, j € N) that decreases to 0, and we obtain

(i)-

To get (33), we choose the sequence (g, j € N) so that for some ¢ € (0,1/3), we have

—+00
Z n;(1735)/2 < +00.
7=1

As a consequence of (i), there exists a (random) integer J such that, if j > J,

1+6
Ne; <n€;F .

Notice that to prove (33), it is enough to consider g bounded and Lipschitz. We have for
Jj=4J,

N &

Ne ..
1 2 N, . 1
B o ()| ot BEe -4 v
7 k=2 € k=2 7 k=211=2 J J J
) ) 1
< Oy () + Oy 2 (67 + )
€j €j

where Cj is the Lipschitz constant of g and

T

k

2=

=2

Z(e)

e

In order to prove that lim;_ .. Z(e;) = 0, we compute the expectation of Z(e):

1+6 1446
E[Z nEkZ2E Zel— - ] nZZE[ZnEel— k—1)

— €k2

] |
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But, as the law n.ef is the exponential law with parameter 1, we have

k 4
(Z nee§ — (k — 1)) = 6k(k — 1).
=2

Thus, the quantity IE[Z (e)] is bounded from above by

1+6 E 4 1/4 n1+5
n2 Z E <Z neej — (k—1) < 2_ Z VE < 203049)/2-2 < 9, ~(1-30)/2
k= =2 "

In particular, the series }_ .- E[Z(g;)] converges and as Z(e) is non-negative, this implies
the series » -, Z(g;) converges a.s. and thus N-a.e. we have
lim Z(e;) =0.
Jj—+o0
The convergence of the Riemann’s sums gives that N-a.e.

Ve 1 A
= — — AU/ g(uAy) du = / g(u) du.
5] ;2 <n5]> nej Ng] k=2 <n5] > J—+too 0 0
Then we deduce (33) from (18), and this finishes the proof. O

5.6. Computation of the limit.

Lemma 5.10. We assume (ha), that is t — ¢(t,w,S) is continuous for all S € S. We have,
for the sequence (g5,j € N*) from Lemma 5.9, that N-a.e.

Ne, N
< —6(A ejw,) G
lim H N [ ( i ‘ po > ej} = exp < / duN [1 — e¢(U,w,-)]> )
I k=2 0

Proof. For any sequence (¢, k € N) of non-negative measurable function on S, such that
0r(S) = 01if (po, 1) < n, we have for € € (0,7),

N, N,
7 _ T N[1 — e ¥¥]
TIn[e | m>e] =TI (1- )
k=2 [ } k=2 Nlpo > €]
Recall (32), and notice that N[1 —e™%*] < N[pg > n] < Nlpg > €] = n. and lim, |y n. = +o0.

Since log(1 — z) = —x + h(z), with |h(x)| < 22 for x € [0,1/2], we have for ¢ small enough
such that N[pg > n]/n. < 1/2,

[T (1- M) o (S (- X))
— exp <——ZN 1—e ¥k )eXp <Zh [1—e %*]/n, )>,

k=2

and ZkNEQ (N[l —e~%?*] /n.) < Nlpg > n]?>N-/n2. From the hypothesis on ¢, we can take

O = gb(ASs], ,+). Then, we deduce from Lemma 5.9 (i), that N-a.e.

N
i S ([ - ) <o
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Since (hg) is satisfied, we deduce that ¢ — N |[1 —e*‘i’(t’“’")] is continuous. We get from
Lemma 5.9 (ii), that N-a.e.

Ne . -

1 J —d(A e w,) G

tim 37N [1 oM } = [N[1- ]
J—00 nEj o 0

This finishes the proof of the Lemma. O

5.7. Proof of Theorem 5.2. Let Z € F,, non-negative such that N[Z] < oo. Let ¢
satisfying hypothesis of Theorem 5.2, (k1) and (h2). We have

Z exp <— Z (b(Aai,w,Si))

el

_ N,
N = lim N [Zexp [ =D ¢(Age,w,85%)
k
k=2

J—00

Ne.
J _¢(A €5 a')
=lim N |Z ][N [e 507 (po>gj]
e k=2

N [Z exp (- /0& N [1 - e*d’(“v“*')] du)] :

where we used Lemma 5.4 and dominated convergence for the first equality, Lemma 5.7 for the
second equality, Lemma 5.10 and dominated convergence for the last equality. By monotone
class Theorem (resp. monotonicity), we can remove hypothesis (hy) (resp. (h1)). To ends

the proof, it suffices to remark that exp <— fo(}N [1 — e_¢(“’w")] du) is Fao-measurable and
so this is N-a.e. equal to the conditional expectation (i.e. the left hand side term of (24)).

6. LAW OF THE PRUNED EXPLORATION PROCESS

Recall notations of Section 3 and definition (14). We still fix > 0 and write m for m ).
Notice that 1)(®) = (0 +-) —1(6), defined by (17) is the Laplace exponent of a Lévy process,
with Lévy measure satisfying (1). The exploration process, p(e), of this Lévy process is thus
well defined.

The aim of this section is to prove the following Theorem.

Theorem 6.1. For every finite measure p, the law of the pruned process p under P, o is the
law of the exploration process p(‘g) associated to a Lévy process with Laplace exponent 1/1(9)
under P,

The next Corollary is a direct consequence of this Theorem.

Corollary 6.2. The excursion measure of p outside 0 is equal to the excursion measure of
o9 outside 0.

6.1. A martingale problem for p. In this section, we shall compute the law of the total
mass process ((pias,1), t > 0) under P, = P, o, using martingale problem characterization.
We will first show how a martingale problem for p can be translated into a martingale
problem for p. (In a forthcoming paper, we shall compute the infinitesimal generator of p
for exponential functionals.) Unfortunately, we were not able to use standard techniques of
random time change, as developed in Chapter 6 of [12] and used for Poisson snake in [1],
mainly because t ! [Eulf(pe)1im,—01] — f(1)] does not have a limit as ¢ goes down to 0, even
for exponential functionals.
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Let F, K € B(Mf(Ry)) bounded such that, for any u € Ms(R;), {/ | K (ps)] ds} <

oo and My = F(pipns) — (f/\a K (ps), for t > 0, define an F-martingale. In particular, notice
that E,, [supy>q|M;|] < oo. Thus, we can define for ¢ > 0,

Ny =B} [Mc, | 7).

Proposition 6.3. The process N = (Ny,t > 0) is an F-martingale. And we have for all
pe MRy, Ppy-as.

/ du / &) w(dt) |F([pu. o) ~ F(pu)] < oo,
(0,00)

and the representation formula for Ny:
i tAG i o i i
3) Ni=Flpna) = [ <K<pu> " /m,oo) (1) w(de)(F(lpu.50]) - F(pu)>> .

Proof. Notice that N = (N¢,t > 0) is an F-martingale. Indeed, we have for t,s > 0,

Eu[Nits|F] = Eu[Eu[Mc,, | Fiis)| Fil
= Eu[MCt+s|ft]
= Eu[Eu[Mc,, | Fe. ]| 7]
= E,[Mc, |7,

where we used the stopping time Theorem for the last equality. To compute E,[Mc, ].7:}], we
write Mc, = N; — M, , where for u > 0,

M, :/0 K(ps)l{ms;aéo} ds.

Recall that Cy = 0 Py-a.s. by Corollary 4.2. In particular, we get
CiNo
Ni = F(pcino) —/O K(ps)Lim,=0y ds

CiNo
— F(pins) — / K(ps) dA,
0

tAG

= Fluno) = | K(pu) du.
where we used the time change u = A, for the last equality. In particular, as & is an F-
stopping time, we get that the process (N/,t > 0) is F-adapted. Since N; = N{—Eﬂ[MéJJ}t],
we are left with the computation of E,[M, | Fi].

In Section 5, the arguments are given under the excursion measure, but they can readily
be extended under P, or IF’;O. In particular, the result of Corollary 5.3 holds also under P,
or P} . We keep the notations of Section 5. We consider (pt,m?), i € I the excursions of
the process (p,m) outside {s,ms = 0} before o and let (a;,3;), @ € I be the corresponding
interval excursions. In particular we can write

CiNo
/0 |K(ps)| 1{m5750} ds = Z(I)(Aaiapaifapi),
i€l
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with
P (u, p1, p) = 1{u<t}/ ([1s ps))| ds,
where o(p) = inf{v > 0; p, = 0}. We deduce from Corollary 5.3, that P,-a.s.

CiNo _ o .
(35) E, [ [ 1K 1m0 ds|foo]= [ 1o ipn) au

with, K defined for v € M;(R,) by

Rw) = /(0700) (1) =(d) Eq [ /0 1K (v, ps))| ds]

Since B, [ [y |K(ps)| ds] is finite, we deduce that Py -a.s. du-a.e. 1{u<5}f((ﬁu) is finite.
We define K € B(M;(R})) for v € M;(R;) by

(36) R(v) = /( () s, [ | K(wed ds} ,

if K(v) < o0, or by K(v) = 0 if K(v) = +oo. In particular, we have |K(v)] < K(v) and
Pu-as. [y |K (pu)| du is finite. Using Corollary 5.3 once again (see (35)), we get that P,-a.s.,
thG

5 CiNo B
o) B MalA =B | [ KD dslF] = [ R

o
To rewrite K, we notice that, for v with compact support, E, [ / K([v, ps]) ds] is equal
0

to Epy 5] [Jo¢ K(ps) ds], where 7y = inf{s;—I, > (} is an F-stopping time. Notice that
P, t50-a-s. ¢ < o and p;, = v. We deduce from the stopping time Theorem that

(38) E[V,Z(SO] |:/TZ K(ps) d5:| = E[V,Zéo] [_MTZ + F(pTz)] = _F([Va 650]) + F(V)

Therefore, we get from (36) and (37)
tAG
B [l F] = [0 [ (1) wa) (P too) £ (@)

Eventually, as Ny = Ny —E, [M/Ct‘fw]v this gives (34).
To conclude, notice that from (38), the definition of K and (35), we have

/o& /m,oo) (1 =€) m(d) |F(pus £50]) ~ F(pu)|

o e

<[ (1) w10 @] o
0 J(0,00) 0

:/ R(ﬁU) du
0

_E, [ /0 K (03)] Lm0y dsmO} ,

which is finite P,-a.s. since E, [/ | K (ps)] ds} < 0. O
0
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Corollary 6.4. Let 1 € Ms(Ry). The law of the total mass process ((p,1), t > 0) under
P}, o is the law of the total mass process of p @ under Py.

Proof. Let X = (X;,t > 0) be under P, a Lévy process with Laplace transform 1 started

at « > 0 and stopped when it reached 0. Under IP,, the total mass process ((pino,1),t > 0)
is distributed as X under P?M - Let ¢ > 0. From Lévy processes theory, we know that the

process e~ Xt —q)(c) fg e~Xs ds, for t > 0 is a martingale. We deduce from the stopping

time Theorem that M = (M;,t > 0) is an F-martingale under P,, where M; = F(pirs) —
Y K(ps) ds, with F, K € B(M;(Ry)) defined by F(v) = e ™! for v € M(Ry) and

K =(c)F. Notice K > 0. We have by dominated convergence and monotone convergence.

t—o00

¢=eD) = lim B, [M,] = E,[e=*¢"V] — y()E, [ / o—clpo,1) ds] .
0

This implies that, for any € M(Ry), E, [/ | K (ps)| ds] is finite. For v € M¢(Ry) with
0

compact support, we have
| (1=e) w0 F (. too)) - )
(0,00)

= /( ) (1 - e—%) w(de) (e—c(u,1) _e_c<y71>_d>
0,00

=g ¢l /(O,oo) (1 - e_%) (1 - e_d) m(de)
== (0(e) ~ v ().

In particular, we have
/ (1= ™) w(d0) | F(pu, t00]) = F(p)| = =PV (1) = ().
(0,00)
From Proposition 6.3, we get that N = (Ny,t > 0), with for ¢t > 0,
tAG
Ny = el —y0) [ e g,
0

is under P, an F-martingale.
Notice that & = inf{s > 0;(p,,1) = 0}. Let X(@ = (Xt(e),t > 0) be under P}, a Lévy
process with Laplace transform 1/1(9) started at £ > 0 and stopped when it reached 0. The

two non-negative cad-lag processes ((ping,1),t > 0) and X solves the martingale problem:
for any ¢ > 0, the process defined for ¢t > 0 by

tho’
e Yina! —1/)(9)(0)/ e Ys ds,
0

where o/ = inf{s > 0; Yy < 0}, is a martingale. From Corollary 4.4.4 in [12], we deduce that
those two processes have the same distribution. To finish the proof, notice that the total

mass process of p(®) under PP}, is distributed as X ®) under P?ﬂ - O



FRAGMENTATION ASSOCIATED TO LEVY PROCESSES 27

6.2. Identification of the law of p. To begin with, let us mention some useful properties
of the process p.

Lemma 6.5. We have the following properties for the process p.

(i) p is a cad-lag Markov process.
(ii) The sojourn time at O of p is 0.
(i) 0 is recurrent for p.

Proof. (1) This is a direct consequence of the strong Markov property of the process (p,m).
(ii) We have for r > 0, with the change of variable t = A;, a.s.

T s Cr CT
/0 1¢5,—0y dt = /0 l{pctio} dt = /0 1¢p,—0) dAs = /0 1ip,—0y ds =0,

as the sojourn time of p at 0 is 0 a.s.
(iii) Since ¢ = A, and o < 400 a.s., we deduce that 0 is recurrent for p a.s. U

Since the processes p and p(® are both Markov processes, to show that they have the same
law, it is enough to show that they have the same one-dimensional marginals. We first prove
that result under the excursion measure.

Proposition 6.6. For every A > 0 and every non-negative bounded measurable function f,

o o)
N [ / =M= (ef) dt} =N / e A=, )dt] .
0 0

Proof. On one hand, we compute, using the definition of the pruned process g,

G Ao
N [ / e M) dt} =N [ / e A lped) dt] :
0 0

We now make the change of variable t = A, to get

N [/0 e~ M= (e ]) dt} =N [/U e Mu g (Pu]) dAu}
0 0
=N {/ e~ AMu g={ouf) l{muzo}du] .
0

By a time reversibility argument, see Lemma 3.6, we obtain

N |:/O' e_)\t—<l3t,f> dt:| N /0 1{mu:0} e—(nu,f> e—)\(AU—Au) du:|
0 0

=N /0 | F— e~ f) E..0 [efAA"} du}

-N /U L, —oy & 17) e~ {Pu)p® ) d“}
0

where we applied Lemma 4.1 (i) for the last equality. Now, by definition of m, we have by
conditioning,

N { / 7 A=) dt] N [ / 7 o 0u1) =) = (pu O () du} .
0 0
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Now, the Poisson decomposition of Proposition 2.6 and standard computations lead to

7 7>‘t7<ﬁt7f>
N [/0 e dt}
+00 a 1 1
= —aoa - — e U0+ f@)+up@ (V)
/0 dae exp{ /0 dm/o du/(07+oo) I (de) [1 e ]}
e a 1
:/O+ daexp{—/o dx/o du ¢'(0+(1—u)f(x)+u¢(9)1()\))}
oo @ A=vO(f(2))
= d — [ d .
/ aexp{ ;e 2O () — ()

On the other hand, the formula of Proposition 2.7, the Poisson representation of Proposi-
tion 2.6 and the same computations as before yields

(0
/ o M=ol f) dt]
0

— / M (dp dv) o (1f) o= w1

“+o00 a —1
:/ dae™ % exp —/ dm/du/ w9 (de) [1 — e Huf @)+ @ (A)(k“))]
0 0 1 (0,+00)
400 a A — 6)
:/ da exp —/ dz _Tf (/(2)) .
0 o PO - f(z)

As the two quantities are equal, the proof is over. O

N

Now, we prove the same result under P, ;, that is:

Proposition 6.7. For every A > 0, f € By (Ry) bounded and every finite measure p,

I o(0)
E [ / A= (n) dt] ~E, [ / A= (p”, >dt] .
0 0

Proof. From the Poisson representation, see Lemma 3.3, and using notations of this Lemma
and of (19) we have

E;O [/o o At=(p1.f) dt] _ E;,o [/0 o~ Mu—(pu.f) dAu]
0 0

7 i i )
= E;70 [Z e_AAai_Ui'Iaivf)/O e_<psvf71ai>—>\AS (1‘/4?9

ieJ

where the function f, is defined by f,.(z) = f(Hr(“) + x) and HW = H(k,p) is the maximal
element of the closed support of k. (see (5)). We recall that —1 is the local time at 0 of the
reflected process X — I, and that 7, = inf{s; —Is > r} is the right continuous inverse of —1I.
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From excursion formula, and using the time change —Is = r (or equivalently 7, = s), we get

0 [ / T N=Gu) dt} =E}, [ / Y g1y e o h A G(—Is)}
0 0

(1,1) N
(39) =E,, / dr e~ krinf) =M G ()
0

where the function G(r) is given by

G(r)=N [/U o (Ps fr)=AAs dAS] - N [/0 o= A= (. fr) dt] .
0

0
The same kind of computation gives

a(® ,1
/ e—/\t—<p§9) f) dt] -k [/w >dr e—<kru7f)—)\n(9) GO ()
0 0

where the function G is defined by

(40) E!

()
(6)
/ Ao 1) ds]
0

and 7@ is the right-continuous inverse of the infimum process —I ®) of the Lévy process with
Laplace exponent (@),

Proposition 6.6 says that the functions G' and G?) are equal. Moreover, as the total mass
processes have the same law (see Corollary 6.4), we know that the proposition is true for f
constant. And, for f constant, the functions G and G are also constant. Therefore, we
have for f constant equal to ¢ > 0,

G9r)=N

1
/<“ >dre*c(<“’1>”") e M| =
0

1
10 /<“ >dr eellD)=r) g=An”
’ 0

As this is true for any ¢ > 0, uniqueness of the Laplace transform gives the equality

_ [ (0
1.0 {e )‘ATT] =F e 7 ] dr — a.e.

In fact this equality holds for every r by right-continuity.
Eventually as G = G(?, we have thanks to (39) and (40), that, for every bounded non-
negative measurable function f,

(1) (p,1)
/ dr e (krif) E\ o [e*)‘A”] G(r) = / dr e~ krif) | [e*’\”(e)} a9 (r)
0 0

which ends the proof. O
Corollary 6.8. The process p under I,  is distributed as 0@ under Py

Proof. Let f € By(Ry) bounded. Proposition 6.7 can be re-written as

T e [t T g [ 1)
; e Eup [e ’ l{tS&}] dt = . [§] E“ |:e t o 1{t§0(e)}] dt.

By uniqueness of the Laplace transform, we deduce that, for almost every ¢ > 0,

E' [e—@t,f) 1 {tg&}] _E [e_ oy

)

1 {tgo@}] .



30 ROMAIN ABRAHAM AND JEAN-FRANCOIS DELMAS

In fact this equality holds for every r by right-continuity. As the Laplace functionals charac-
terize the law of a random measure, we deduce that, for fixed ¢ > 0, the law of g; under Pro
(9)

is the same as the law of p, " under P,.
The Markov property then give the equality in law for the cad-lag processes p and p®). O

Proof of Theorem 6.1. 0 is recurrent for the Markov cad-lag processes 5 and p®. This two
processes have no sojourn at 0, and when killed on the first hitting time of 0, they have the
same law, thanks to Lemma 6.8. From Theorem 4.2 of [9], Section 5, we deduce that p under
P, 0 is distributed as p@ under P,. O

7. PROPERTY OF THE EXCURSION OF THE PRUNED EXPLORATION PROCESS

We know, (cf [4], Section VII) that the right continuous inverse, (7,7 > 0), of —I is
a subordinator with Laplace exponent ¢y~!. This subordinator has no drift as (2) implies
limy oo A" 271 (A) = 0. We denote by 7, its Lévy measure: for A > 0

1y T ROV
) = /@,oo) (@)1 - )

Recall N is the excursion measure of the exploration process above 0. If o denotes the duration
of the excursion, we have N[1 — e™*?] = ¢~ }(\). Hence, under N, ¢ is distributed according
to the measure m,. By decomposing the measure N w.r.t. the distribution of o, we get that
N[d€] = f(o,oo) 74 (dr)N, [d€], where (N,,r € (0,00)) is a measurable family of probability

measures on the set of excursions such that N,[oc = r| =1 for 7*-a.e. > 0.

Lemma 7.1. Conditionally on the length of the excursion, the law of the excursion of the
pruned exploration process is the law of the excursion of the exploration process.

Proof. From the previous Section, we get that the pruned exploration process (p¢,t > 0) is
distributed according to the law of the exploration process, p(?), of a Lévy process, X ), with
Laplace exponent () = 4(# 4 -) — (#). In particular the law of the pruned exploration
process under the excursion measure is the law of the exploration process p®) under the
excursion measure.

Let o(® denote the length of the excursion of the exploration process p(®) under the excur-
sion measure. The following result is known, but since we couldn’t give a reference, we shall
give a proof at the end of this Section.

Lemma 7.2. For any non-negative measurable function, G, on the space of excursions, we
have
N [ew(e)aw) - e_G(p(m)]] - N [1 _ e—G(p)] _

In particular the distribution of p(®) under the excursion measure is absolutely continuous
w.r.t. to distribution of p under the excursion measure, with density given by e 7% We
deduce that W£9)(dr) = ¢ ™) 7, (dr), where 7 is the Lévy measure corresponding to the
Laplace exponent (¢(?)~!. And we have ,(dr)-a.e., conditionally on the length of the
excursion being equal to r, the law of the excursion of the pruned exploration process is the
law of the excursion of the exploration process.

O

Recall 6 = foa 1 (1m0} ds denotes the length of the excursion of the pruned exploration
process. We can compute the joint law of (&,0). This will determine uniquely the law of &

conditionally on o = r.
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Proposition 7.3. For all non-negative v, k, 0, the value v defined by v =N {1 N

is the unique non-negative solution of the equation
Y(v+0) =k + Yy +0).
Proof. Using the special Markov property, Theorem 5.2, with ¢(S) = ¢ (7)o, we have
v=nN[1— e—m}—w(w)a} N [1 o (50T [ Limaz0) ds]

N {1 o R FEONF = fig ey Td0)(1—e B [1—exp (—p(1)0)]]

Notice that o under PP} is distributed as 7y, the first time for which the infimum of X, started
at 0, reaches —¢. Since 7y is distributed as a subordinator with Laplace exponent 1) ~! at time
{, we have

Ej[1 — e—w(w)a] —F [1 _ e—w(w)n} —1_e .

and
/ r(d0)(1 — e P)EY[1 — ¢~V ] = / r(dO)(1 — ) (1 — &) = O (y) — ().
(0,400) (0,400)

We get
v = N1 e = g7 oy O ),

Using Corollary 6.2 and definition (17) of ), we have ¢)(v + ) = k + (v + 6). Since 1 is
increasing and continuous, this equation has only one solution. O

Proof of Lemma 7.2. Since an excursion of the exploration process above 0 can be recovered
from an excursion of the process X above its minimum. We shall prove the Lemma in the
latter case.

Let 6 > 0. We set X(@ = (Xt(e),t > 0) the Lévy process with Laplace exponent ().
Notice that (e_ext_ww),t > 0) is a martingale w.r.t. the natural filtration generated by X,
(H¢,t > 0). We define a new probability by

0 —0X—t)(6
dP(f) = e~ 0Xe= ) qpy,
The law of (X,,u € [0,]) under P is the law of (Xl(fg),u € [0,t]). Therefore, we have for
any non-negative measurable function on the path space

()
(41) E[F(xE) X790 — B[F(X<).
We define —It(g) = —infycoy Xl(f)), and 79 its right-continuous inverse. In particular, it is a

subordinator of Laplace exponent w(e)fl. Since w((’)fl()\) = L (A +9(0)) — 0, we have
E [ewﬁ“] — o O(0) 0]

Furthermore, this equality holds for A > —(6). With A = —(0), we get E {ew(e)ﬁ(e)} =efr,
From (41), we get that the process (Q,t > 0), where Q; = OXH0) g o martingale.

(6)
Since M_¢) = e Irt¥(Om" s integrable and E[MT(G)] = 1, we deduce from (41) that

0 —Or+9(0)7t”
(42) E|[F(XY,)e O] ~ E[F(X<, ).

<7r
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Let & = (Xtta; — Lo;st € [, +04]), @ € I, be the excursions of X above its minimum, up
to time 7. With F such that F'(X<; ) =e" 21 GE) | we get

E[F (X<, )e,)\n] _ eer[lfe—G(g)_)\U} ‘
We deduce from (42) that

—rN[1—e=CED) ()0 )] —rN[1—e—C(®)]

e e =e ,

where £ is an excursion of X (@ above its minimum, that is

N[1 — e~ GED+O) @] Z N[1 — e=C(E)] _ g,

Subtracting N[1 — ew((’)"(e)] = —0, in the above equality, we get
N [e¢(9)a(e) [1— e_G(g(e))]] =N {1 - e_G(‘S)} .

8. LINK BETWEEN LEVY SNAKE AND FRAGMENTATION PROCESSES AT NODES

We define the fragmentation process. Let S = (p, M) be a Lévy Poisson snake. Recall
definition of m® at the end of Section 3. For fixed § > 0, let us consider the following
equivalence relation Ry on [0, 0], defined under N or N, (see definition in Section 7) by:

0
(43) sRot = mO ([Hyy, Hy)) = m\" ([H,,, HY)) =0,
where Hy; = ir[lf ]Hu (recall definition (3)). Intuitively, two points s and ¢ belongs to the
ue|(s,t

same class of equivalence (i.e. the same fragment) at time 6, if there is no cut on their lineage
down to their most recent common ancestor (that is mge) put no mass on [Hy;, Hg] nor mgo)
on [H,y, Hy]). Notice cutting occurs on branching points, that is at node of the CRT. Each
node of the CRT correspond to a jump of the underlying Lévy process X. The cutting times
are, conditionally on the CRT, independent exponential random times, with parameter equal
to the jump of the corresponding node.

Let us index the different equivalent classes in the following way: For any s < o, let us
define HY = 0 and recursively for k € N,

HE = inf{u > 0 [ md((HE,u]) > 0},
with the usual convention inf() = +o0o0. We set
Ky =sup{j € N, H < +o0}.

Remark 8.1. Notice that we have Ky = oo if M(-,[0,60]) has infinitely many atoms. By
construction of M using Poisson point measures, this happens N[dS] ds-a.e., if and only if
the intensity measure ps + 75 is infinite. Since N[dS]-a.e., p and 7 are finite measure valued
process, we get that N[dS]-a.e., Ky < 0.

Let us remark that sRyt implies K5 = K;. We denote, for any j € N, (R k € J;) the
family of equivalent classes with positive Lebesgue measure such that Ky = j. For j € N,
k € J; we set

‘ t , A
Ag’k = / 1(scpiryds and Cf’k = inf{u >0, A%F >t}
0
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with the convention inf = 0. And we define the corresponding Lévy snake, SHF =
(p7k, MI*) by: for every f € By (Ry), o € By(Ry xRy), t >0,

vak —
<Pt ) > = / f(x— Hgjx)ppir(dz)
(Hcg,kv'i_oo) CO Ct

(MP*, ) = plz = Hopr,v = O) Mgy (dz, dv).

/(Hcé',k,+00)x(97+00)

Let 67k = ALY be the length of the excursion Si*. Since Ky < oo N[dS]ds-a.e. (Remark
8.1), the family (67%j € N,k ¢ J;) gives all the equivalent classes with positive Lebesgue
measure.

Remark 8.2. In view of the next Section we introduce the set £ = (5U:F) j € Nk € J;) of
fragments of Lévy snake as well as the the set £(?~) defined similarly but for the equivalence
relation where Ry in (43) is replaced by Ry_ defined as

(44) sRo-t <= M([Hsy, Hs| x (0,0)) = My([Hs s, Hi] x (0,6)) = 0.

Notice that mgg)(-) = M, (-, (0,0]). So the two equivalence relations are equal N-a.e. for fixed
0, but may differ if M has an atom in {0} x R..

Let us denote by A? = (A?,Ag, ...) the sequence of positive Lebesgue measures of the
equivalent classes of Ry, (69%,j € N,k € J;), ranked in decreasing order. Notice this sequence
is at most countable. If it is finite, we complete the sequence with zeros, so that N-a.s. and
N,-a.s.

Aoe St = {(ml,xQ,...), x> x9 > >0, le §oo}.

For m*(do)-a.e. o > 0, let P, denote the law of (A? 6 > 0) under N,. (The law, N,, of
S conditionally on the length of the excursion, o, being equal to r has been defined in the
previous Section.) By convention Py is the Dirac mass at (0,0,...) € St

Theorem 8.3. For m.(dr)-almost any r, under P, the process A = (A?,0 > 0) is a S!'-
valued fragmentation process. More precisely, the law under P, of the process (A9+9/, 6’ > 0)
conditionally on A% = (Ay,As,...) is given by the decreasing reordering of independents
processes of respective law Pa,,Pp,,....

Remark 8.4. We get a self-similar fragmentation when ¥(\) = A%, see Corollary 9.3. This
particular case was already studied in [18].

Remark 8.5. We may get rid of the “m,(dr)-almost any r” and have the theorem for any
positive r if we have a regular version of the family of conditional probability laws (N, > 0).
This is for instance the case when the Lévy process is stable (for which it is possible to
construct the measure N, from Nj by a scaling property) or when we may construct this
family via a Vervaat’s transform of the Lévy bridge (see [16]).

The proof of the Proposition is a consequence of Lemma 8.6, and the fact that N(.) =
f(o +00) T« (dr)N,.(-) which implies that the result of Lemma 8.6 holds N,-a.s. for m.(dr)

almost every r.

Lemma 8.6. Under N, the law of the family (S*,j e N,k € Jj), conditionally on (7,5 €
N,k € J;), is the law of independent Lévy Poisson snakes, and the conditional law of SiF s
N&j,k .
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Proof. For j = 0, notice that .Jy has only one element, say 0. And S%0 is just the Lévy snake,
S, defined in Section 5. Of course, we have %0 = . From the special Markov property
(Theorem 5.2) and Proposition 3.5, we deduce that conditionally on 5%°, 8§90 and the family
(S%,i € I) of excursions of S out of {s > 0;m? = 0} (as defined in Section 5) are independent.

From Corollary 6.2 and Lemma 7.1 for the exploration process and Proposition 3.5 for
the underlying Poisson process, we deduce that, conditionally on %9, S%0 is distributed
according to Nzo,0.

Furthermore, from the special Markov property (Theorem 5.2), the conditional law of S*
is given by N, defined in (23). Now we give a Poisson decomposition of the measure N.

For &' = (p/, M) distributed according to N, we consider (¢}, )i the excursion intervals
of the Lévy Poisson snake, S’, out of {H, = 0}. For [ € I’, we set 8" = (p'', M"") where for
s >0,

l
p/s(dr) = p/(5—|—04;)/\ﬁl, (dr)1(0,+00) (T)7
l
M’ (dr,dv) = M(/s+a§)Aﬁ{(dr’ dv)1 (g, 400 (T)-

Let us remark that in the above definition p’* and M’ don’t have mass at {0} and {0} x R
As a direct consequence of the Poisson decomposition of P} (see Lemma 3.3), we get the
following Lemma.

Lemma 8.7. Under N, the point measure Z g 18 a Poisson point measure with intensity
iel’
CyN(dS) where Cy = f(o o)1 — e~ em(dl) = ' (0) — '(0).

By this Poisson representation, each process S? is composed of i.i.d. excursions of law N.
Thus we get, conditionally on %9, a family (S* k € J;) of i.i.d. excursions distributed as
the atoms of a Poisson point measure with intensity 6%°CyN. Now, we can repeat the above

arguments for each excursion S'*, k € J;: so that conditionally on 5%°, we can

e check that SY¥ is built from S'* as S from S in Section 5,
e get a family (S*¥* K € JF), which are, conditionally on &'*, distributed as the
atoms of a Poisson point measure with intensity 6"*CyN. and are independent of
Stk
If we set Jy = Upes, J¥ x {k}, we get that conditionally on %0, and (6% k € Jy),

e the excursions S and (Sl’k, k € J1), are independent,

o Sik ig distributed as Nk, for j € {0,1}, k € Jj,

o (S 2K 1 e J2), are distributed as the atoms of a Poisson point measure with intensity
> ke 518 CyN, and are independent of S%0 and (S'*,k € J;).

Eventually, the result follows by induction.

Now we check there is no loss of mass during the fragmentation.

+oo
Proposition 8.8. For m,(dr) almost every r, P.-a.s., for every 6 > 0, ZA? =r.
=1
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Proof. Let 6 > 0. We use the notations of the proof of Theorem 8.3 and of Lemma 8.6. For

n € N, we have N-a.e.
n o
o= Z Z G-k +/ Lk, >n+1} ds.
k=0 jE€J, 0

By monotone convergence, we deduce from Remark 8.1, that we get as n — +oo that N-a.e.

o0
DI

k=0 jeJ,

+oo
As the decreasing reordering of (67%, j € N,k € J;) is A?, we get that N-a.e. Z Af =o0. As
i=1
the sequence (37, A?, 6 > 0) is non increasing, we deduce that the previous equality holds
for any 6 > 0, N-a.e.
Here again the result for P, is deduced from the one under N.

O

9. DISLOCATION MEASURES

Let A(f) be the mass of a tagged fragment at time 6 of the fragmentation process A
defined in Theorem 8.3 (typically the fragment or the equivalent class which contains 0). A
dislocation of this fragment occurs when A(f) has a jump. Let 7y be the set of time jumps
for A. Recall S denote the set of non-negative non-increasing sequence (z;,7 € N*) such that
s @i < oo. For 0 € T, let x(0") = (2;(0'),i € N*) € S}, the masses of the fragments
resulting of the dislocation at time #’. Following the Remark after Theorem 3 in [6], we call
the random point measure

5(d0, dzx) = > Sgr w(or)(dO, dx)
0'eTo

the dislocation process of the fragmentation (or dislocation process of the )-CRT fragmen-
tation at nodes). Of course, since there is no erosion, that is the total length is constant cf.
Proposition 8.8, A(§'—) = >~ ().

For self-similar fragmentation with with index - and no erosion, there exists a measure 1 on
Sll = {z € ;3 .o, 7 = 1}, called the dislocation measure, such that the dislocation process
is a point process with intensity Lx0-)>0}VA(9—) (dz)dO, where the measures (v,,r > 0) are
defined by

(45) /Sl F(z)v,(dz) =717 /sl F(rx)vi(dz),

and the equality hold for any non-negative measurable function on St. We refer to [6] for
the proof of this result and to [13] for the definition of intensity of a random point measure.

In order to give the corresponding dislocation measures for the -CRT fragmentation at
nodes, we need to consider (AS;,t > 0) the jumps of a subordinator S with Laplace exponent
Y1, Let p the measure on Ry x St such that for any non-negative measurable function, F,
on R, x S

(46) /R . F(r,x)p(dr,dz) = /W(dv)E[F(SU, (AS, t <)),
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where (ASt,t < v) has to be understood as the family of jumps of the subordinator up to
time v ranked in decreasing size.

Intuitively, u is the law of St and the jumps of S up to time T, where T and S are
independent, and T is distributed according to the infinite measure 7. Recall 7, is the “law”
of o under N (this is the Lévy measure associated to the Laplace exponent ) ~1).

Theorem 9.1. The dislocation process of the w-CRT fragmentation at nodes, is under N a
point process with intensity 1(xo—)>0)Va—)(dx)d0, where AN(6—) = ;5 xi(0) is the mass
of the fragment just before 6. And the family of dislocation measure (v,,r > 0) on St is the
result of the disintegration of ru(dr,dz) w.r.t. mw.(dr):

ru(dr,dx) = vp(dz)m(dr).

Notice that (46) implies that 7*(dr)-a.e. v.(dx)-a.e. ) ;. x; = r, where x = (z4,7 € N*).
The dislocation measure v, describe the dislocation of a fragment of size r.

Remark 9.2. Either from Lemma 7.1 or directly, it is easy to check that the dislocation

measure of the fragmentation at nodes associated to ¥(®) (see (17)), (uﬁg),r > 0), is equal to
(vp, 1 > 0), m(dr)-a.e.

The next Sections are devoted to the proof of the Theorem. In Section 9.1, we give an
other representation of the fragmentation following ideas in [1, 3] developed for ¥()\) = A\2.
In Section 9.2, we explain how to compute the intensity of the dislocation process. And we
perform the computation in Section 9.3. This will end the proof of the Theorem.

For the A“-CRT (with « € (1,2)), thanks to scaling properties, the corresponding frag-
mentation is self similar with index 1/a, and we can recover the result of [18].

Corollary 9.3. For the AX*-CRT fragmentation at nodes, the fragmentation is self-similar,
with index 1/« that is (45) holds with v = 1/a. And the dislocation measure vy on Sll 15 s.1.

/ Flayw (dz) = 22 ‘1322(_[ 5 WD g5, Fassi,e < 1),

holds for any non-negative measurable function, F', on Sll, where (ASy, t > 0) are the jumps of
a stable subordinator S = (Sy,t > 0) of Laplace exponent 1p~1(\) = N/, ranked by decreasing
size.

Proof. For ¢¥(\) = A\, we get w(dr) = a(a — DI'(2 — a) lr=17%r as well as m,(dr) =
[al([a — 1] /)]t r=(H@)/egp In particular, we have for a non-negative measurable function,
F, defined on Ry x S},

/ F(r,z) ru(dr,dz) = E [ / 7(dv) SyF(Sy, (ASy,t < v))]

?EQ 31@ [/ = S (SU,(ASt,tgv))]
?Eg‘ 31{«: [/— Sy F (1% Sy, 0™ Sy (AS, /Sy, < 1))}
a—1

dy
— @ o) /IE[51 F(y,y(AS/S1,t < 1))]?

where we used the scaling property of S, that is (AS;,t < r) is distributed as (r*AS;,t < 1),
for the third equality, and the change of variable y = v®S] for the fourth equality. From
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Theorem 9.1, we have that

1 dr a—1 dy
F = [ —E[$ F AS,, t < 1))]—=.
/ T (o —1]ja) rrayarde) F(r.2) / Fo o Bl Flo wAs, e < 1))
This implies that for a.a. r > 0,

/ () Fz) = 2 _1{25(_[0;; H/e) vegis Fir(asy/si,e < 1)

and thus /Vr(d.%') F(z) = rl/® /Vl(da:) F(rx), with

/ul(dx) Fa) = 2@ _Ifg(_[o‘a; W) grs F((aS/S1,t < 1)),

O

9.1. An other representation of the fragmentation. Following the ideas in [1, 3|, we
give an other representation of the fragmentation process described in Section 8, using a
Poisson point measure under the epigraph of the height process.

We consider a fragmentation process, as time 8 increases, of the CRT, by cutting at nodes
(set of points (s,a) such that ks({a}) > 0, where x is defined in (6)). More precisely, we
consider, conditionally on the CRT or equivalently on the exploration process p, a Poisson
point process, Q(df, ds, da) under the epigraph of H, with intensity df q,(ds,da), where

ds ks(da)

(47) ap(ds, da) = =05

with ds , = sup{u > s, min{H,,v € [s,u]} > a} and g5, = inf{u < s,min{H,,v € [u, s]} >
a}. (The set [gsq,dsq] C [0,0] represent the individuals who have a common ancestor with
the individual s after or at generation a.)

Notice that from this representation, the cutting times of the nodes are, conditionally on
the CRT, independent exponential random time, and their parameter is equal to the mass of
the node (defined as the mass of k or equivalently as the value of the jump of X corresponding
to the given node).

We say two points s, s’ € [0, 0] belongs to the same fragment at time 6, if there is no cut on
their lineage down to their most recent common ancestor H, ¢: that is for v = s and v = ¢/,

5,8

/ L (@)L, . a,()Q((0,6], du, da) = 0.

This define an equivalence relation, and we call fragment an equivalent class. Let A? be the
sequences of Lebesgue measures of the corresponding equivalent classes ranked in decreasing
order.

It is clear that conditionally on the CRT, the process (A?,6 > 0) as the same distribution
as the fragmentation process defined in Section 8. Roughly speaking, in Section 3 (which
leads to the fragmentation of Section 8) we mark the node as they appear: that is, for a given
level a, the node {s;ks({a}) > 0} is marked at g5 ,. Whereas in this Section the same node is
marked uniformly on [gs 4, ds,q]. In both case, the cutting times of the nodes are, conditionally
on the CRT, independent exponential random time, and their parameter is equal to the mass
of the node (defined as the common value of k,({a}) for u € {s;xs({a}) > 0}, or equivalently
as the value of the jump of X corresponding to the given node).
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Now, we define the fragments of the Lévy snake corresponding to the cutting of p according
to the measure g,. For (s,a) chosen according to the measure q,(ds,da), we can define the
following Lévy snake fragments (p’,i € I) of p by considering

e the open intervals of excursion after s of H above level a: ((cv, 3i),4 € 1), which are
such that a; > s, Hy, = Hp, = a, and for s’ € (o, 5;) we have Hy > a and Hy s = a
(recall definition (3));

e the open intervals of excursion before s of H above level a: ((ay, f;),i € I_), which
are such that §; < s, Hy, = Hp, = a, and for s’ € (o, ;) we have Hy > a and
Hs’,s =a;

e the excursion, is, of H above level a that straddle s: («y,, ;. ), which is such that
o, <5< B, Ha,, = Hp,_ = a, and for s’ € (y,, 5;,) we have Hy > a and Hy , = a;

e the excursion, ip, of H under level a: {s € [0,0]; Hy s < a} = [0, o) U (B4, 0]

For i€ I, UI_ U {i,}, weset p' = (p, s > 0) where

/ F(r)pi(dr) = / £ — @)L gro ) e pn ()

for f € By (R). For ig, we set p® = (p', s > 0) where pi® = p, if s < a;, and p'0 = Ps—Biy+ag
if s > (;,. Eventually, we set I = I, UI_ U {is,io}. And (p',i € I) correspond to the
fragments of the Lévy snake corresponding to the cutting of p according to one point chosen
with the measure g,. We shall denote 7, the distribution of (p',i € I) under N.

In Section 9.3, we shall use o, the length of fragment p’. For i € I_U f+, we have
o' = fB; — a;. We also have o' = ™ + 0% (vesp. 0% = 0™ 4+ 0'%), where 0™ = s — a;, (resp.
ol = @) is the length of the fragment before s and afﬁ = (;, — s (resp. afﬁ =0 — ) is
the length of the fragment after s. Notice that N-a.e. o = Zid ot.

9.2. The dislocation process is a point process. Let 7 the set of time jumps of the
Poisson process Q. For 6 € T, consider £07) = (p;,;i € 107)) and L) = (p;,i € I)) the
families of Lévy snakes defined in Remark 8.2. The length, ranked in decreasing order, of
those families of Lévy snakes correspond respectively to the fragmentation process just before
time 0 and at time . Notice that for € T the families £~) and £ agree but for only
one snake p € L) which fragments in a family (p?,i € I(?) ¢ £ . Thus we have that

£ = (9N} e € 1),

From the representation of the previous Section, this fragmentation is given by cutting the
Lévy snake according to the measure q,: that is the measure 7, defined at the end of Section
9.1. From Lemma 8.6 and the construction of the Lévy Poisson Snake, we deduce that

D 85,200 (i icio)
0eT
is a point process with intensity df 6 ,.-) Zpeﬁ(g,) Up.
Notice the evolution of a tagged fragment of the Lévy snake has the same distribution as
the evolution of the fragment of the Lévy snake which contains 0, say p%® e £©). (This is
known as the re-rooting property of the CRT.) Then, we get that

D T e @) = D O, (p1,i7) 10 belongs to (54ieT @)}
0Ty 0T

where 7 is the set of time fragmentation of the fragment which contains 0, is a point process
with intensity df U 20,(6-) -
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Now, in the dislocation process of the fragmentation, d(df,dz) = > 57 o 2(67)(d0, d),
the sequences x(6) are the length ranked in decreasing order, (o%,i € I(¥)), of the Lévy snakes
(p')i € I (9)). Using a projection argument, one can check that the dislocation process is a
point process with intensity df v o,-), where %) is the length of p%(®=) and V,0,0-) 1S
the distribution of the decreasing lengths of Lévy snakes under o 0.6 integrated w.r.t. to

the law of p%(=) conditionally on ¢% (). More precisely we have m, (dr)-a.e.

F(a)v,(de) =N, | [ F((o',i € D)o, (d(e,i € D)),
Sl

for any non-negative measurable function F' defined on S, where (0,7 € I ) as to be under-
stood as the family of length, of the fragments (p?,i € I ), ranked in decreasing size.

This prove that the dislocation process is a point process. And we will now explicit the
family of dislocation measures (v,.,r > 0).

As computations are more tractable under N than under N,., we shall compute for A > 0,
and any non-negative measurable function, F, defined on S*

/ e F(2) . (dr)v,(dz).
R4 xSt

From the definition of 7,, and using the notation at the end of Section 9.1, we get that this
last quantity is equal to

(48) N [eAU / qp(ds,da)F((c",i € I))],
where (0%,i € I) as to be understood as the family of length ranked in decreasing size.

9.3. Computation of dislocation measures. In order to compute quantities like (48), we
shall consider for p > 0, p’ > 0 and h € B (M((0,+0)))

A=N [e” /qp(ds da) (o’ + Z e PTOPI h( Z bi)

iel_Uly iel_Uly

ks(da)

As q,(ds,da) = y
s,a gs,a

and since ds , — gsq = 0" + Zieiul} o', we get

A=N / dS/ da —(p+A)oio —(p'+N)ots Z 502 Azief_uf_,_ a’

ZEI_UI+

We set iy ( Z byi) =h( Z 8i) o il ui, 7 Now, we can replace

B = ¢~ N0 (@' + )0 (> 64)
ZGI-UI+

— o (PN = (N0 — (AT — (p N ) hoy (D 0,0+ 6,4)
ZEI, Z€I+
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by its optional projection B’:
B — o= @+Ne0—(p'+N)0"

By, [ e VI tttgu<od MmN 0 e A ) (1 43 6,)]

jely ‘“/:Ziei, Ogi
Using notations introduced above Lemma 3.3, we have
B = o~ P+No 0 —(p'+N)a"
E;s |: (p+)‘) Zke] Ukl{hk<a} (p +>‘) Zke] okl{hk>a} h M + Z 60k ]
k€l;h,=a ‘”,:Zief_ Ogi
Then we deduce from Lemma 3.3, that
B = o~ P+No 0 —(p'+N)a"
e s (D@NL—e~ V7] —py((atoo)N1—e= @V i (7 Y]
— o (PHNTO— (N —ps([0,0)% T (p+N) = ps (@, +00)) YL (p'+N) Elho (1 + p)]‘ 7
“/:Ziei, 6o'i

where P is under P a Poisson point measure with intensity ps({a})N[do] = ps({a})m.(dr).
By time reversibility (see Corollary 3.1.6 in [10]), we get

/ds / (da) e~ P+N 0= +2)0"

o Ps((0,0))0~ 1 (p+A)—ps ((a,+00))Y ™ (0 +2) E[hy (1 + P)]

/ ds / (da) e~ P+ )o'0 —(p'+ )

o5 ([0,0)) ™ (p+X) =5 ((a,+00))1p " (' +X) E[h oy (1 + P")]

MI:ZiEf7 60”’]

)

‘ﬂ/22i6f+ 5(,1’]

where P’ is under P a Poisson point measure with intensity 7s({a})m«(do). Using the same
computation as above, we eventually get

A=N { / " ds / a(da) oo (00N BN o0, +)Y G Ry (pu)@ ,
0

where P” is under P a Poisson point measure with intensity ks({a})m.(do). We write
gr(rs({a})) for E[h(y(P")]. Thanks to the Poisson representation of Proposition 2.6, we
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get

A=E

o0 _ ahy—1 _ ol —1 (0]
/ dae—aoa Z Eie ij<xi ij (er)\) Zazxj>xi ij (p +)\) g)\(fz):|

0 z;<a

o =1 =Lt
_ /0 dae @R |:Z gl e—xifﬁﬂ(dﬁ) [1—et¥ (p+>\)}—(a—xi)f£7r(d€) [l—e=t¥™ (' +2)) g}\(&)]

z;<a

:/0 da E !Z l eriw’(wl(er)\))(axi)w’(wl(p’wL)\))g)\(gi)]

z;<a

= [Taa [ entan [ty et O 6T

C fom PO w(d0)
TP+ NG V)

where we used (22) for the fourth equality.
On the other side, let (AS;,t > 0) be the jumps of a subordinator S = (S, ¢ > 0) with
Laplace exponent 1! and Lévy measure 7. Standard computations yield for r > 0,

Gir)=E |5 3 ASASe A A (37 mﬂ]

t<r,s<r, t#s u<r,ug{s,t}

=E| Y ASASe PEVASEEENAS o (N Gag,)
| t<r,s<r, t#s u<r,ug{s,t}

2 [ [ et ze—wW] [ [ metae ee—“”“ﬂ E [wzw

u<r

=2 (0 + N~V (0 + N)galr),

as ) .,<,0As, is a Poisson measure with intensity rm,(dv). Notice that Y =1/ 07! to
conclude that

f(O,oo) r2gx(r) 7 (dr)
V@ + @R+ A)
Therefore, we deduce that for any p > 0, p’ > 0 and h € B4 (M((0,4+00))), we have

/ H(dr)G(r) =

N |:e)‘0/qp(d5,da)(0'is + Z Ui)e—paio—p'ais h( Z 501)]

Z’Ej,Ujﬁ, ief7Uf+

_ /ﬂ(dT)E leASr Z AS;AS, e~ PASi—p'AS h( Z 5A5u)] .

t<r,s<r, t#s u<rug{s,t}
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Recall [ = I_ U I, U {ip,is}. From monotone class Theorem, we deduce that for any h €
Bi(Ry x Ry x M((0, +00))),

/w*(dr) e N, /q(ds,da)h(aio,o*is, Z 8i)

iel-Uly
AS;  AS
—AS, t s
= /W(dT)E Sre Z S—rmh(ASt,ASS, Z 5ASu)
t<r,s<r, t#£s u<rug{s,t}

For a measurable non-negative function F defined on 8!, we deduce that
/ﬂ*(dT) e—)\T’ N, |:/ q(ds,da)F((gij € f)):| = /ﬂ(dT)E [Sr e_)‘ST F((ASU,U < T))} s

where (0%,i € I) and (AS,,u < r) are to be understood as the family of length or jumps
ranked in decreasing size. From the end of Section 9.2, we deduce that

/ e F(x)my (dr)v.(de) = /W(dU)E [SU e M F((ASy,u < v))] .
R+ xSt
From definition (46) of i, we deduce that
/ e M F(x)my (dr)v.(de) = /e)‘r F(x) ru(dr,dx).
R+ xSt

This ends the proof of theorem 9.1.
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