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Abstract

The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state

energies of molecules. In this paper, we focus on implementations of this method which consist

in exploring the configuration space with a fixed number of random walkers evolving according to

a Stochastic Differential Equation discretized in time. We allow stochastic reconfigurations of the

walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional

example, we prove the convergence of the method for a fixed number of reconfigurations when the

number of walkers tends to +∞ while the discretization step of the SDE tends to 0. We confirm our

theoretical rates of convergence by numerical experiments.

Introduction

The computation of electronic structures of atoms, molecules and solids is a central problem in chemistry
and physics. We focus here on electronic ground state calculations where the objective is the computation
of the lowest eigenvalue (the so-called ground-state energy) E0 of a self-adjoint HamiltonianH = − 1

2∆+V
whith domain DH(H) on a Hilbert space H ⊂ L2(R3N ) where N is the number of electrons (see [3] for
a general introduction):

E0 = inf{〈ψ,Hψ〉, ψ ∈ DH(H), ‖ψ‖ = 1}, (1)

where 〈·, ·〉 denotes the duality bracket on L2(R3N ) and ‖ · ‖ the L2(R3N )-norm. For simplicity, we
omit the spin variables. The function V describes the interaction between the electrons, and between
the electrons and the nuclei, which are supposed to be fixed point-like particles. The functions ψ are
square integrable, their normalized square modulus |ψ|2 being interpreted as the probability density of the
particles positions in space, and they satisfy an antisymmetry condition with respect to the numbering
of the electrons, due to the fermionic nature of the electrons (Pauli principle): H =

∧N
i=1 L

2(R3). We
suppose that the potential V is such that E0 is an isolated eigenvalue ofH (see [4] for sufficient conditions),
and we denote by ψ0 a normalized eigenfunction associated with E0.

Due to the high dimensionality of the problem, stochastic methods are particularly well suited to compute
E0. The Diffusion Monte Carlo (DMC) method is widely used in chemistry (see [2, 10]), but has been
only recently considered from a mathematical viewpoint (see [4, 8]). This method gives an estimate of
E0 in terms of the long-time limit of the expectation of a functional of a drift-diffusion process with a

∗We thank Eric Cancès (CERMICS) and Mathias Rousset (Université Paul Sabatier, Toulouse) for many fruitful dis-
cussions and Michel Caffarel (IRSAMC, Toulouse) for introducing us to the DMC method and suggesting the toy model
studied in this paper.
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source term. It requires an importance sampling function ψI which approximates the ground-state ψ0 of

H . Let us define the drift function b = ∇ ln |ψI |, the so-called local energy EL =
HψI

ψI
and the DMC

energy:

EDMC(t) =
E

(

EL(Xt) exp
(

−
∫ t

0
EL(Xs)ds

))

E

(

exp
(

−
∫ t

0
EL(Xs)ds

)) , (2)

where the 3N -dimensional process Xt satisfies the stochastic differential equation:







Xt = X0 +

∫ t

0

b(Xs) ds+ dW t,

X0 ∼ |ψI |2(x) dx.
(3)

The stochastic process (W t)t≥0 is a standard 3N -dimensional Brownian motion. One can then show
that (see [4])

lim
t→∞

EDMC(t) = EDMC,0, (4)

where
EDMC,0 = inf{〈ψ,Hψ〉, ψ ∈ DH(H), ‖ψ‖ = 1, ψ = 0 on ψ−1

I (0)}. (5)

We have proved in [4] that EDMC,0 ≥ E0, with equality if and only if the nodal surfaces of ψI coincide
with those of a ground state ψ0 of H . In other words, if there exists a ground state ψ0 such that
ψ−1

I (0) = ψ−1
0 (0), then limt→∞EDMC(t) = E0. The error |E0 − EDMC,0| is related to the so-called

fixed-node approximation, which is well knwon by practitioners of the field (see [3]).

In this paper, we complement the theoretical results obtained in [4] with a numerical analysis in a simple
case. In practice, the longtime limit EDMC,0 in (4) is approximated by taking the value of EDMC at a
(large) time T > 0. Then EDMC(T ) is approximated by using a discretization in time of the stochastic
differential equation (3) and of the integral in the exponential factor in (2), and an approximation of the
expectation values in (2) by an empirical mean over a large number N of trajectories. These trajectories,
(Xi)1≤i≤N , also called walkers in the physical literature or particles in the mathematical literature satisfy
a discretized version of (3), and interact at times n∆t for n ∈ {1, . . . , ν − 1} where ∆t = T/ν for ν ∈ N

∗

through a stochastic reconfiguration step aimed at reducing the discrepancy between their exponential
weights. We thus obtain an interacting particle system. The number of reconfiguration steps if ν − 1.
The stochastic differential equation (3) is discretized with a possibly smaller step δt = ∆t/κ = T/(νκ)
with κ ∈ N

∗. The total number of steps for the discretization of (3) is then K = νκ.

In the following, we consider an adapted version of the DMC scheme with minimal stochastic reconfigu-
ration (see [2]):

• Initialisation of an ensemble of N walkers
(

X
j
0∆t

)

1≤j≤N
i.i.d. according to |ψI |2(x) dx.

• Iterations in time: let us be given the particle positions
(

X
j
n∆t

)

1≤j≤N
at time n∆t, for n ∈

{0, . . . , ν − 1}. The new particle positions at time (n+ 1)∆t are obtained in two steps:

1. Walkers displacement: for all 1 ≤ j ≤ N , the successive positions
(

X
j
n∆t+δt, . . . , X

j
n∆t+κδt

)

over the time interval (n∆t, (n + 1)∆t) are obtained by an appropriate discretization of (3).
In the field of interacting particles system for Feynman-Kac formulae (see [5, 6]), this step is
called the mutation step.

2. Stochastic reconfiguration: The new positions1
(

X
j
(n+1)∆t

)

1≤j≤N
which will be used as

the initial particle positions on the time interval ((n + 1)∆t, (n + 2)∆t) are obtained from

1With a slight abuse of notation and though n∆t + κδt = (n + 1)∆t, we distinguish between the particle positions

X
j
n∆t+κδt

at the end of the walkers displacement on time interval (n∆t, (n+1)∆t), and the new particle positions X
j

(n+1)∆t

obtained after the reconfiguration step, and which are used as the initial position for the next walkers displacement on time
interval ((n+ 1)∆t, (n+ 2)∆t). We will use a more precise notation for the analysis of the numerical scheme in Section 1,
but this is not required at this stage.
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independent sampling of the measure

∑N
j=1 exp

(

−δt∑κ
k=1 EL(Xj

n∆t+kδt)
)

δ
X

j
n∆t+κδt

∑N
j=1 exp

(

−δt∑κ
k=1 EL(Xj

n∆t+kδt)
) . (6)

In words, the new particle positions
(

X
j
(n+1)∆t

)

1≤j≤N
are randomly chosen among the fi-

nal particle positions
(

X
j
n∆t+κδt

)

1≤j≤N
, each of them being weighted with the coefficient

exp
(

−δt∑κ
k=1 EL(Xj

n∆t+kδt)
)

(accordingly to the exponential factor in (2)). In the field of

interacting particles system for Feynman-Kac formulae, this step is called the selection step.

An estimate of EDMC(tn+1) is then given by:

EDMC(tn+1) '
1

N

N
∑

j=1

EL

(

X
j
(n+1)∆t

)

. (7)

There are other possible estimations of EDMC(tn+1). In [2], the authors propose to use Cesaro or weighted
Cesaro means of the expression (7) . In Section 1, we will use the following expression:

EDMC(tn+1) '
∑N

j=1 EL(Xj
n∆t+κδt) exp

(

−δt∑κ
k=1 EL(Xj

n∆t+kδt)
)

∑N
j=1 exp

(

−δt
∑κ

k=1 EL(Xj
n∆t+kδt)

) , (8)

in an intermediate step to prove the convergence result.

We would like to mention that a continuous in time version of the DMC scheme with stochastic reconfig-
uration has been proposed in [8]. The author analyzes the longtime behaviour of the interacting particle
system and proves in particular a uniform in time control of the variance of the estimated energy.

We can distinguish between four sources of errors in the approximation of E0 by
1

N

N
∑

j=1

EL

(

X
j
ν∆t

)

:

1. the error due to the fixed node approximation |E0 −EDMC,0|,

2. the error due to finite time approximation of the limit: limt→∞ EDMC(t) ' EDMC(T ),

3. the error due to the time discretization of the stochastic differential equation (3) and of the integral
in the exponential factor in EDMC(t) (see (2)),

4. the error introduced by the interacting particle systems, due to the approximation of the expectation
value in (2) by an empirical mean.

The error (1) due to the fixed node aproximation has been analyzed theoretically in [4].

Concerning the error (2) due to finite time approximation of the limit, the rate of convergence in time
is typically exponential. Indeed if H admits a spectral gap (namely if the distance between E0 and the
remaining of the spectrum of H is strictly positive), and if ψI is such that 〈ψI , HψI〉 < inf σess(H), then
one can show that the operator H with domain DH(H)∩{ψ, ψ = 0 on ψ−1

I (0)} (whose lowest eigenvalue
is EDMC,0, see (5)) also admits a spectral gap γ > 0. Then, by standard spectral decomposition methods,
we have:

0 ≤ |EDMC(t) −EDMC,0| ≤ C exp(−γt).

Our aim in this paper is to provide some theoretical and numerical results related to the errors (3) and
(4), in the framework of a simple one-dimensional case. We therefore consider in the following that the
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final time of simulation T is fixed and we analyze the error introduced by the numerical scheme on the
estimate of EDMC(T ). Our convergence result is of the form:

E

∣

∣

∣

∣

∣

∣

EDMC(T ) − 1

N

N
∑

j=1

EL

(

X
j
νκ∆t

)

∣

∣

∣

∣

∣

∣

≤ C(T ) δt+
C(T, ν)√

N
, (9)

where C(T ) (resp. C(T, ν)) denotes a constant which only depends on T (resp. on T and ν) (see
Theorem 4 and Corollary 12 below).

Let us now present the toy model we consider in the following. Though our model is one-dimensional
(and therefore still far from the real problem (1)), it contains one of the main difficulties related to the
approximation of the ground state energy for fermionic systems, namely the explosive behavior of the
drift in the stochastic differential equation. We therefore think that the convergence results we obtain
are prototypical of what could be proved for more complicated systems.

We consider the hamiltonian

H = −1

2

d2

dx2
+ V, with V =

ω2

2
x2 + θx4, (10)

where ω, θ > 0 are two constants. The ground state energy E0 is defined by (1), with

H =
{

ψ ∈ L2(R), ψ(x) = −ψ(−x)
}

. (11)

We restrict the functional spaces to odd functions in order to mimic the antisymmetry constraint on ψ for

fermionic systems. The importance sampling ψI is chosen to be the ground state of H0 = − 1
2

d2

dx2 + ω2

2 x
2

with energy 3
2ω:

ψI(x) =
√

2ω
(ω

π

)1/4

xe−
ω
2 x2

. (12)

The drift function b and the local energy EL are then defined by:

b(x) =
ψ′

I

ψI
(x) =

1

x
− ωx, and EL(x) = V (x) − 1

2

ψ′′
I

ψI
(x) =

3

2
ω + θx4. (13)

Thus, using equation (2), the DMC energy is:

EDMC(t) =
3

2
ω + θ

E

(

X4
t exp

(

−θ
∫ t

0
X4

sds
))

E

(

exp
(

−θ
∫ t

0
X4

sds
)) , (14)

where

Xt = X0 +

∫ t

0

(

1

Xs
− ωXs

)

ds+Wt, (15)

with (Wt)t≥0 a Brownian motion independent from the initial variable X0 which is distributed according
to the invariant measure 2ψ2

I (x)1{x>0}dx. We recall that due to the explosive part in the drift function
b, the stochastic process cannot cross 0, which is the zero point of ψI (see [4]): P(∃t > 0, Xt = 0) = 0.
This explains why the restriction of ψ2

I to R
∗
+ is indeed an invariant measure for (15). For θ > 0, the

longtime limit EDMC,0 of EDMC(t) is not analytically known, but can be very accurately computed by a
spectral method (see Section 2.1). Let us finally precise that for the numerical analysis, we use a special
feature of our simple model, namely the fact that for s ≤ t, it is possible to simulate the conditional law
of Xt given Xs (see Appendix). The time discretization error is thus only related to the discretization of
the integral in the exponential factor in the DMC energy (2).

The paper is organized as follows. In Section 1, we prove the convergence result, by adapting the methods
of [5, 6] to analyze the dependence of the error on δt. We then check the optimality of this theoretical
result by numerical experiments in Section 2, where we also analyze numerically the dependence of the
results on various numerical parameters, including the number (ν − 1) of reconfiguration steps.

Notation: For any set of random variables (Yi)i∈I , we denote by σ((Yi)i∈I ) the sigma-field generated
by these random variables.
The parameters ω and θ are fixed positive constants.
By convention, any sum from one to zero is equal to zero :

∑0
k=1 · = 0.
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1 Numerical Analysis in a Simple Case

We perfom the numerical analysis in two steps: time discretization and then particle approximation.

1.1 Time discretization

We recall that T > 0 denotes the final simulation time, and that δt = T
K is the smallest time-step.

Since Yt = X2
t is a square root process solving dYt = (3 − 2ωYt)dt+ 2

√
YtdWt, it is possible to simulate

the increments Y(k+1)δt − Ykδt and therefore X(k+1)δt −Xkδt (see Appendix or [7] p.120). We can thus
simulate exactly in law the vector (X0, Xδt, . . . , XKδt). That is why we are first going to study the error
related to the time discretization of the integral which appears in the exponential factors in (14).

Let us define the corresponding approximation of EDMC(T ):

Eδt
DMC(T ) =

E

(

EL(XT ) exp
(

−θδt
∑K

k=1 EL(Xkδt)
))

E

(

exp
(

−θδt∑K
k=1 EL(Xkδt)

)) =
3

2
ω + θ

E

(

X4
T exp

(

−θδt
∑K

k=1 X
4
kδt)
))

E

(

exp
(

−θδt∑K
k=1 X

4
kδt

)) . (16)

Proposition 1

∀K ∈ N
∗,
∣

∣EDMC(T ) −Eδt
DMC(T )

∣

∣ ≤ CT δt.

Proof : Using Hölder inequality, we have:

∣

∣EDMC(T ) −Eδt
DMC(T )

∣

∣ ≤ θ

E

(

exp
(

−θδt
∑K

k=1X
4
kδt

))





√

E(X8
T ) +

E

(

X4
T exp

(

−θ
∫ T

0
X4

sds
))

E

(

exp
(

−θ
∫ T

0 X4
s ds
))







E





(

exp

(

−θ
∫ T

0

X4
sds

)

− exp

(

−θδt
K
∑

k=1

X4
kδt

))2








1/2

.

The conclusion is now a consequence of Lemma 2 and the fact that the function x ∈ R+ → e−θx is
Lipschitz continuous with constant θ.

Lemma 2 For any K ∈ N
∗,

E





(

∫ T

0

X4
s ds− δt

K
∑

k=1

X4
kδt

)2


 ≤ Cδt2(T 2 + T ),

where δt = T
K .

Proof of Lemma 2 : By Itô’s formula, dX4
t = (10X2

t − 4ωX4
t )dt+ 4X3

t dWt. With the integration by
parts formula, one deduces that for any k ∈ {1, . . . ,K},

∫ kδt

(k−1)δt

(X4
kδt −X4

s )ds =

∫ kδt

(k−1)δt

(s− (k − 1)δt)
(

(10X2
s − 4ωX4

s )ds+ 4X3
sdWs

)

.
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Therefore denoting τs = b s
δtcδt the discretization time just before s, one obtains

δt

K
∑

k=1

X4
kδt −

∫ T

0

X4
sds =

∫ T

0

(s− τs)(10X2
s − 4ωX4

s )ds+

∫ T

0

(s− τs)4X
3
sdWs.

Hence

E





(

δt

K
∑

k=1

X4
kδt −

∫ T

0

X4
sds

)2


 ≤ 2

∫ T

0

(s− τs)
2
E
(

T (10X2
s − 4ωX4

s )2 + 16X6
s )
)

ds.

Since X0 is distributed according to the invariant measure 2ψ2
I (x)1{x>0}dx, so is Xs. As a consequence,

for any p ∈ N, E(Xp
s ) does not depend on s and is finite and the conclusion follows readily.

In realistic situations, exact simulation of the increments X(k+1)δt − Xkδt is not possible and one has
to resort to discretization schemes. The singularity of the drift coefficient prevents the process Xt from
crossing the nodal surfaces of the importance sampling function ψI . The standard explicit Euler scheme
does not preserve this property at the discretized level. For that purpose, we suggest to use the following
explicit scheme proposed by [1]














X̄0 = X0,

∀k ∈ N, X̄(k+1)δt =

(

(

X̄kδt(1 − ωδt) +
∆Wk+1

1 − ωδt

)2

+ 2δt

)1/2

with ∆Wk+1 = W(k+1)δt −Wkδt.

(17)
Because of the singularity at the origin of the drift coefficient in (15), we have not been able so far to
prove the following weak error bound (see Remark 3 below):
∣

∣

∣

∣

∣

E

(

f(X4
T ) exp

(

−θ
∫ T

0

X4
s ds

))

− E

(

f(X̄4
T ) exp

(

−θδt
K
∑

k=1

X̄4
kδt

))∣

∣

∣

∣

∣

≤ CT δt for f(x) ≡ 1 and x4.

(18)
Such a bound is expected according to [9] and would imply that

∣

∣

∣

∣

∣

∣

EDMC(T ) −
E

(

EL(X̄T ) exp
(

−δt∑K
k=1 EL(X̄kδt)

))

E

(

exp
(

−δt∑K
k=1 EL(X̄kδt)

))

∣

∣

∣

∣

∣

∣

≤ CT δt. (19)

Remark 3 We would like to sketch a possible way to prove (18). Because the square root in (17) makes
expansions with respect to δt and ∆Wk+1 complicated, it is easier to work with Yt = X2

t and Ȳkδt = X̄2
kδt

which satisfy

dYt = (3 − 2ωYt)dt+ 2
√

Yt dWt and Ȳ(k+1)δt =

(

√

Ȳkδt(1 − ωδt) +
∆Wk+1

1 − ωδt

)2

+ 2δt.

The standard approach to analyze the time discretization error of the numerator and denominator of the
left hand side of (19) is then to introduce some functions v and w solutions to the partial differential
equation:

∂tv = (3 − 2y)∂yv + 2y∂yyv − θy2v, (t, y) ∈ R+ × (0,+∞) (20)

with initial conditions v(0, y) = y2 et w(0, y) = 1. Now, we write (for the numerator, for example):

E

(

X4
T exp

(

−θ
∫ T

0

X4
s ds

))

− E

(

X̄4
T exp

(

−θδt
K
∑

k=1

X̄4
kδt

))

=

K−1
∑

k=0

E





(

v(T − kδt, Ȳkδt) − e−θδtȲ 2
(k+1)δtv(T − (k + 1)δt, Ȳ(k+1)δt)

)

exp



−θδt
k−1
∑

j=0

Ȳ 2
jδt







 .
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An error bound of the form CT δt can now be proved by some Taylor expansions as in [9] [1], provided the
existence of a sufficiently smooth solution v to (20). We have not been able to prove existence of such a
solution so far.

1.2 Particle approximation

We now introduce some notation to study the particle approximation. We recall that ν denotes the
number of large timesteps (the number of reconfiguration steps is ν − 1), and ∆t = κδt the time period
between two reconfiguration steps. Let us suppose that we know the initial positions (X i

n,0)1≤i≤N of the
N walkers at time (n−1)∆t, for a time index n ∈ {1, . . . , ν}. The successive positions of the walkers over
the time interval ((n− 1)∆t, n∆t) are then given by (X i

n,δt, . . . , X
i
n,κδt), where (X i

n,t)0≤t≤∆t satisfies:

X i
n,t = X i

n,0 +

∫ t

0

b(X i
n,s) ds+

(

W i
t+(n−1)∆t −W i

(n−1)∆t

)

. (21)

Here (W 1, . . . ,WN ) denotes a N -dimensional Brownian motion independent from the initial positions of
the walkers (X i

1,0)1≤i≤N whixh are i.i.d. according to 2ψ2
I (x)1{x>0}dx. We recall that in our framework, it

is possible to simulate exactly in law all these random variables (see Appendix). We store the successive
positions (X i

n,δt, . . . , X
i
n,κδt) of the i-th walkers over the time interval ((n − 1)∆t, n∆t) in a so-called

particle ξi
n ∈ (R∗

+)κ (see Figure 1): ∀i ∈ {1, . . . , N}, ∀n ∈ {1, . . . , ν},

ξi
n = (X i

n,δt, . . . , X
i
n,κδt). (22)

In the following, we will denote by ξn = (ξ1n, . . . , ξ
N
n ) the configuration of the ensemble of particles at

time index n. We have here described the mutation step.

t

ξin

Xi
n,0

Xi
n,δt

Xi
(n+1),0

(n− 1)∆t

(n− 1)∆t + δt (n− 1)∆t+ κδt

n∆t

Xi
n,κδt

Figure 1: The i-th particle ξi
n at time index n is composed of the successive positions (X i

n,δt, . . . , X
i
n,κδt)

of the i-th walker on time interval ((n− 1)∆t, n∆t).

For a given configuration of the particles (ξi
n)1≤i≤N at a time index n ∈ {1, . . . , ν}, the selection step

now consists in choosing the initial positions (X i
n+1,0)1≤i≤N of the N walkers at time n∆t, conditionally

independent, with X i
n+1,0 distributed according to the measure

εng(ξ
i
n)δξi

n,κ
+ (1 − εng(ξ

i
n))

∑N
j=1 g(ξ

j
n)δξj

n,κ
∑N

j=1 g(ξ
j
n)

, (23)

where g is defined by, for y = (y1, . . . , yκ) ∈ (R∗
+)κ,

g(y) = exp

(

−θδt
κ
∑

k=1

y4
k

)

, (24)
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and εn is a non negative function of ξn such that εn ≤ 1
max1≤i≤N g(ξi

n) . In particular the following choices

are possible for εn:

εn = 0, εn = 1 and εn =
1

max1≤i≤N g(ξi
n)
. (25)

The case εn = 0 corresponds to a maximum decorrelation with the former position of the particles, while
with growing εn, more and more correlation is introduced.

For n ∈ {1, . . . , ν}, let us denote by ηN
n = 1

N

∑N
i=1 δξi

n
the particle approximation of the measure ηn

defined by: ∀f : (R∗
+)κ → R bounded ,

ηn(f) =
E

(

f
(

X(n−1)∆t+δt, . . . , X(n−1)∆t+κδt

)

exp
(

−θδt
∑(n−1)κ

k=1 (Xkδt)
4
))

E

(

exp
(

−θδt∑(n−1)κ
k=1 (Xkδt)4

)) , (26)

where the process (Xt)0≤t≤T is defined by (15).

For y = (y1, . . . , yκ) ∈ (R∗
+)κ and f : (R∗

+)κ → R, we set

Pf(y) = E (f(Xyκ

δt , . . . , X
yκ

κdt)) (27)

where for x ∈ R
∗
+,

Xx
t = x+

∫ t

0

b(Xx
s )ds+Wt (28)

denotes the solution of the stochastic differential equation (15) starting from x. By the Markov property,
the measures (ηn)1≤n≤ν satisfy the inductive relations, for any function f : (R∗

+)κ → R bounded, ∀n ∈
{1, . . . , ν − 1},

ηn+1(f) =

E

(

exp
(

−θδt∑nκ
k=1(Xkδt)

4
)

E

(

f (Xn∆t+δt, . . . , Xn∆t+κδt)

∣

∣

∣

∣

(Xjδt)0≤j≤nκ

))

ηn(g)E
(

exp
(

−θδt∑(n−1)κ
k=1 (Xkδt)4

)) (29)

=
1

ηn(g)
×

E

(

gPf
(

X(n−1)∆t+δt, . . . , X(n−1)∆t+κδt

)

exp
(

−θδt
∑(n−1)κ

k=1 (Xkδt)
4
))

E

(

exp
(

−θδt∑(n−1)κ
k=1 (Xkδt)4

)) =
ηn(gPf)

ηn(g)
,

(30)

where g is defined by (24). Moreover, we can express Eδt
DMC(T ) defined by (16) as:

Eδt
DMC(T ) =

3

2
ω + θ

ην(gy4
κ)

ην(g)
. (31)

Therefore the particle approximation of EDMC(T ) is given by

EN,ν,κ
DMC (T ) =

3

2
ω + θ

ηN
ν (gy4

κ)

ηN
ν (g)

. (32)

This approximation of EDMC(T ) corresponds to the expression (8) given in the introduction. We will also
prove in Corollary 12 below the convergence of the approximation which corresponds to the expression (7)
given in the introduction (see Equation (41) below).

The convergence of the approximation EN,ν,κ
DMC (T ) is ensured by our main result :

Theorem 4

E

∣

∣

∣
EDMC(T ) −EN,ν,κ

DMC (T )
∣

∣

∣
≤ C

νκ
+

Cν√
N
, (33)

where the constant C only depends on T and the constant Cν on T and ν.
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Remark 5 The number of selection steps is ν − 1. For instance, when ν = 1, there is no selection
involved in the expression of EN,ν,κ

DMC (T ) and the particles remain independent. In this case, the first term
in the right hand side of (33) corresponds to the time discretization error proved in Proposition 1, while
the second term is the classical error estimate related to the law of large numbers. For a fixed number
of selection steps, the theorem ensures the convergence of the particle approximation EN,ν,κ

DMC (T ) as the
time-step δt = T/(νκ) used for the discretization of the stochastic differential equation (15) tends to 0
while the number N of particles tends to +∞. But this result does not specify the dependence of Cν on ν
and gives no hint on the optimal choice of the number of selection steps in terms of error minimization.
We are going to deal with this important issue in the numerical study (see Section 2).

According to the above expressions (31) and (32) of Eδt
DMC(T ) and EN,ν,κ

DMC (T ), this theorem is easily
proved by combining Proposition 1 and the following result :

Proposition 6

E

∣

∣

∣

∣

ηN
ν (gy4

κ)

ηN
ν (g)

− ην(gy4
κ)

ην(g)

∣

∣

∣

∣

≤ Cν√
N
. (34)

Proof of Proposition 6 : One has

E

∣

∣

∣

∣

ηN
ν (gy4

κ)

ηN
ν (g)

− ην(gy4
κ)

ην(g)

∣

∣

∣

∣

≤E|ηN
ν (gy4

κ) − ην(gy4
κ)|

ην(g)

+

(

E

(

ηN
ν (gy4

κ)

ηN
ν (g)

)2
)1/2

(

E
(

ηN
ν (g) − ην(g)

)2
)1/2

ην(g)
.

According to Proposition 7 and Lemma 11 below, the first term of the right-hand-side and the quotient

in the second term are smaller than Cν/
√
N . Since by Jensen’s inequality,

(

ηN
ν (gy4

κ)
ηN

ν (g)

)2

≤ ηN
ν (gy8

κ)
ηN

ν (g) , the

boundedness of E

(

ηN
ν (gy4

κ)
ηN

ν (g)

)2

follows from Lemma 8 below.

Proposition 7 For any bounded function f : (R∗
+)κ → R,

∀n ∈ {1, . . . , ν}, E((ηN
n (f) − ηn(f))2) ≤ Cn

N
‖f‖2

∞, (35)

where the constant Cn does not depend on κ.

For any function f : (R∗
+)κ → R such that for some p ≥ 2, ‖f‖κ,p = sup

y∈R
κ
+

|f(y)|
1 + yp

κ
is finite,

∀n ∈ {1, . . . , ν}, E|ηN
n (f) − ηn(f)| ≤ Cn√

N
‖f‖κ,p, (36)

where the constant Cn does not depend on κ.

For f bounded, the first estimate (35) is proved in [6]. In order to prove Proposition 6, we need to
apply Proposition 7 with f(y) = g(y) and f(y) = g(y)y4

κ, which are bounded functions with L∞ norm
respectively equal to 1 and C

δt where C is a constant not depending on δt. But we want to obtain
the convergence when δt tends to 0. This is why we need the second estimate (36), that we use with
f(y) = g(y)y4

κ for which ‖f‖κ,p is bounded and does not depend on δt.

Notice that for f bounded, Corollary 2.20 in [6] states the convergence in law of
√
N(ηN

n (f)−ηn(f)) to a
centered Gaussian variable and gives an expression of the variance of this limit variable. Because of the
complexity of this expression, using this result with f(y) = g(y)y4

κ did not really help us to understand
the dependence of Cν on ν (see Remark 5 above).
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Proof : For f bounded, the first estimate (35) is proved by induction on n in [6] (see Proposition 2.9).
Since we follow the same inductive reasoning to deal with f such that ‖f‖κ,p < +∞, we give at the same
time the proof for f bounded.

Since the initial positions (ξi
1)1≤i≤N are independent and identically distributed with ξi

1,κ distributed
according to 2ψ2

I (x)1{x>0}dx, the statement holds for n = 1.
To deduce the statement at rank n+ 1 from the statement at rank n, we remark that according to (30),

ηN
n+1(f) − ηn+1(f) = Tn+1 +

1

ηn(g)

(

(ηN
n (gPf) − ηn(gPf)) +

ηN
n (gPf)

ηN
n (g)

(ηn(g) − ηN
n (g))

)

(37)

where we recall that P is defined by (27), and

Tn+1 = ηN
n+1(f) − ηN

n (gPf)

ηN
n (g)

.

To deal with this term Tn+1, one remarks that all the possible choices of εn given in (25) are σ(ξn)-
measurable. As a consequence, for i ∈ {1, . . . , N},

E(f(ξi
n+1)|ξn) = εng(ξ

i
n)Pf(ξi

n) + (1 − εng(ξ
i
n))

∑N
j=1 g(ξ

j
n)Pf(ξj

n)
∑N

j=1 g(ξ
j
n)

.

Multiplying this equality by 1
N and summing over i, one deduces

E(ηN
n+1(f)|ξn) =

∑N
i=1 g(ξ

i
n)Pf(ξi

n)
∑N

i=1 g(ξ
i
n)

=
ηN

n (gPf)

ηN
n (g)

. (38)

Since the variables (ξi
n+1)1≤i≤N are independent conditionally on ξn, one deduces that

E((Tn+1)
2|ξn) =

1

N2

N
∑

i=1

E

(

(

f(ξi
n+1) − E(f(ξi

n+1)|ξn)
)2 |ξn

)

≤ 1

N
E
(

ηN
n+1(f

2)|ξn
)

.

Therefore

E((Tn+1)
2) ≤ 1

N
E(ηN

n+1(f
2)). (39)

When f is bounded, ηN
n+1(f

2) ≤ ‖f‖2
∞,
∣

∣

∣

ηN
n (gPf)
ηN

n (g)

∣

∣

∣ ≤ ‖Pf‖∞, and ‖Pf‖∞ ≤ ‖f‖∞. Hence by (37),

E((ηN
n+1(f) − ηn+1(f))2) ≤ 3

(‖f‖2
∞

N
+

E((ηN
n (gPf) − ηn(gPf))2) + ‖f‖2

∞E((ηN
n (g) − ηn(g))2)

(ηn(g))2

)

with the second term of the right-hand-side smaller than C‖f‖2
∞/N by the induction hypothesis and

Lemma 11 below.

When ‖f‖κ,p < +∞, combining (37) and (39), one obtains

E
∣

∣ηN
n+1(f) − ηn+1(f)

∣

∣ ≤E(ηN
n+1(f

2))1/2

√
N

+
E
∣

∣ηN
n (gPf) − ηn(gPf)

∣

∣

ηn(g)

+

(

E

(

ηN
n (gPf)

ηN
n (g)

)2
)1/2 (

E(ηN
n (g) − ηn(g))2

)1/2

ηn(g)
.

Since ‖f2‖k,2p ≤ 2‖f‖2
k,p (by using the inequality f2(y) ≤ 2‖f‖2

κ,p(1 + y2p
κ )), the first term of the

right-hand-side is smaller than Cn‖f‖κ,p/
√
N by Lemma 8 below. Since, according to Lemma 9 below,

‖Pf‖κ,p ≤ eCp∆t‖f‖κ,p, the second term is smaller than Cn‖f‖κ,p/
√
N by the induction hypothesis and

Lemma 11. Last, by using successively Cauchy Schwartz inequalities, (38) for f 2 and Lemma 8, one

obtains that E

(

ηN
n (gPf)
ηN

n (g)

)2

≤ E

(

ηN
n (g(Pf)2)

ηN
n (g)

)

≤ E

(

ηN
n (gPf2)
ηN

n (g)

)

≤ E(ηN
n+1(f

2)) ≤ Cn‖f‖2
κ,p. And it follows
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from the Proposition statement for f bounded and Lemma 11 that
(E(ηN

n (g)−ηn(g))2)
1/2

ηn(g) is smaller than

Cn/
√
N .

Lemma 8 Let h : (R∗
+)κ → R+ be such that for some p ≥ 2, ‖h‖κ,p < +∞. Then,

∀n ∈ {1, . . . , ν}, max

(

E(ηN
n (h)),E

(

ηN
n (gh)

ηN
n (g)

))

≤ eCpn∆t‖h‖κ,p(1 + E(X0)
p),

where X0 is distributed according to the measure 2ψ2
I (x)1{x>0}dx (see (15)).

Proof : As the variables ξi
1,κ, 1 ≤ i ≤ N are distributed according to the invariant measure 2ψ2

I (x)1{x>0}dx,

one has E(ηN
1 (h)) ≤ ‖h‖κ,p(1 + E(X0)

p). In addition for n ≥ 1, according to (38), E(ηN
n+1(h)) =

E

(

ηN
n (gPh)
ηN

n (g)

)

where ‖Ph‖κ,p ≤ eCp∆t‖h‖k,p by Lemma 9. Therefore it is enough to check the bound for

E

(

ηN
n (gh)
ηN

n (g)

)

.

For n ≥ 0, one has

E

(

ηN
n+1(gh)

ηN
n+1(g)

)

≤ ‖h‖κ,p



1 + E





∑N
i=1 exp

(

−θδt∑κ
k=1(ξ

i
n+1,k)4

)

(ξi
n+1,κ)p

∑N
j=1 exp

(

−θδt∑κ
k=1(ξ

j
n+1,k)4

)







 . (40)

Let us denote in this proof ξi
n+1,0 = X i

n+1,0, where 0 ≤ n ≤ ν − 1 and 1 ≤ i ≤ N . Let us set

F = σ(ξi
n+1,k , 1 ≤ i ≤ N, 0 ≤ k ≤ κ− 1). By Lemma 10 below,

E

(
∑N

i=1 exp
(

−θδt∑κ
k=1(ξ

i
n+1,k)4

)

(ξi
n+1,κ)p

∑N
j=1 exp

(

−θδt∑κ
k=1(ξ

j
n+1,k)4

)

∣

∣

∣

∣

F
)

≤
∑N

i=1 exp
(

−θδt∑κ−1
k=1(ξi

n+1,k)4
)

E((ξi
n+1,κ)p|F)

∑N
j=1 exp

(

−θδt∑κ−1
k=1(ξj

n+1,k)4
) ,

=

∑N
i=1 exp

(

−θδt
∑κ−1

k=1(ξi
n+1,k)4

)

E((Xx
δt)

p)|x=ξi
n+1,κ−1

∑N
j=1 exp

(

−θδt∑κ−1
k=1(ξj

n+1,k)4
) ,

≤ eCpδt

∑N
i=1 exp

(

−θδt∑κ−1
k=1(ξi

n+1,k)4
)

(ξi
n+1,κ−1)

p

∑N
j=1 exp

(

−θδt
∑κ−1

k=1(ξj
n+1,k)4

) + eCpδt − 1,

where we have used the definition of the mutation step (see (21)) and the Markov property for the stochas-
tic differential equation (28) to obtain the equality, and then Lemma 9 for the last inequality. Notice that

this estimate also holds for κ = 1, in which case the right hand side reduces to
eCpδt

N
(ξi

n+1,0)
p + eCpδt − 1.

Taking expectations and iterating the reasoning, one deduces that

E





∑N
i=1 exp

(

−θδt∑κ
k=1(ξ

i
n+1,k)4

)

(ξi
n+1,κ)p

∑N
j=1 exp

(

−θδt∑κ
k=1(ξ

j
n+1,k)4

)



 ≤ eCp∆t

N

N
∑

i=1

E((ξi
n+1,0)

p) + (eCpδt − 1)

κ−1
∑

k=0

eCpkδt.

Inserting this bound in (40), one concludes that

E

(

ηN
n+1(gh)

ηN
n+1(g)

)

≤ eCp∆t‖h‖κ,p

(

1 + E

(

1

N

N
∑

i=1

(ξi
n+1,0)

p

))

.
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For n = 0, one deduces that E

(

ηN
1 (gh)

ηN
1 (g)

)

≤ eCp∆t‖h‖κ,p(1 +E(Xp
0 )), where X0 is distributed according to

the measure 2ψ2
I (x)1{x>0}dx.

For n ≥ 1, since by a reasoning similar to the one made to obtain (38), E

(

1

N

N
∑

i=1

(ξi
n+1,0)

p

)

= E

(

ηN
n (g(y)yp

κ)

ηN
n (g(y))

)

,

one also deduces that

E

(

ηN
n+1(gh)

ηN
n+1(g)

)

≤ eCp∆t‖h‖κ,pE

(

ηN
n (g(1 + yp

κ))

ηN
n (g)

)

.

The proof is completed by an obvious inductive reasoning.

Lemma 9 For any p ≥ 2, there is a constant Cp such that

∀x ∈ R
∗
+, ∀t ≥ 0, E((Xx

t )p) ≤ (1 + xp)eCpt − 1,

where Xx
t is defined by (28). Therefore, if h : (R∗

+)κ → R is such that ‖h‖κ,p < +∞ then ‖Ph‖κ,p ≤
eCp∆t‖h‖κ,p, where the operator P is defined by (27).

Proof : By Itô’s formula, d(Xx
t )p =

(

p(p+1)
2 (Xx

t )p−2 − ωp(Xx
t )p
)

dt+ p(Xx
t )p−1dWt. Hence

(Xx
t )p ≤ xp +

∫ t

0

(

p(p+ 1)

2
+
p(p+ 1 − 2ω)

2
(Xx

s )p

)

ds+ p

∫ t

0

(Xx
s )p−1dWs.

Formally, taking expectations in this inequality, one obtains

E((Xx
t )p) ≤ xp +

∫ t

0

p(p+ 1)

2
+
p(p+ 1 − 2ω)

2
E((Xx

s )p)ds,

and check by Gronwall’s lemma that the conclusion holds with Cp = p(p+1)
2 . This formal argument can

be made rigorous by a standard localization procedure.
For h : R

κ
+ → R such that ‖h‖κ,p < +∞ one deduces that

∀y ∈ R
κ
+, |Ph(y)| ≤ E|h(Xyκ

δt , . . . , X
yκ

κδt)| ≤ C‖h‖κ,p(1 + E((Xyκ

κδt)
p)) ≤ eCp∆t‖h‖κ,p(1 + yp

κ).

Lemma 10

∀(z1, . . . , zN ), (a1, . . . , aN ) ∈ R
N
+ with

N
∑

i=1

ai > 0, ∀p ≥ 0, ∀c ≥ 0,

∑N
i=1 aiz

p
i e

−cz4
i

∑N
i=1 aie−cz4

i

≤
∑N

i=1 aiz
p
i

∑N
i=1 ai

.

Proof : Let us set f(c) =
PN

i=1 aiz
p
i e−cz4

i

P

N
i=1 aie

−cz4
i

. By Hölder’s inequality, the derivative

f ′(c) =

(

∑N
i=1 aiz

p
i e

−cz4
i

∑N
i=1 aie−cz4

i

∑N
i=1 aiz

4
i e

−cz4
i

∑N
i=1 aie−cz4

i

)

−
∑N

i=1 aiz
p+4
i e−cz4

i

∑N
i=1 aie−cz4

i

is non positive. Hence for any c ≥ 0, f(c) ≤ f(0) =
PN

i=1 aiz
p
i

P

N
i=1 ai

.

Lemma 11 The sequence (ηn(g))1≤n≤ν is bounded from below by a positive constant non depending on κ.
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Proof : Since

ηn(g) =
E
(

exp
(

−θδt∑nκ
k=1 X

4
kδt

))

E

(

exp
(

−θδt∑(n−1)κ
k=1 X4

kδt

)) ≤ 1

the sequence (ηn(g))1≤n≤ν is bounded from below by

ν
∏

n=1

ηn(g) = E

(

exp

(

−θδt
νκ
∑

k=1

X4
kδt

))

.

According to Lemma 2, this expectation converges to E

(

exp
(

−θ
∫ T

0
X4

s ds
))

> 0 when κ tends to +∞,

which concludes the proof.

We can now prove, as a corollary of Theorem 4, the convergence of the approximation EN,ν,κ
DMC (T ) of

EDMC(T ), defined by:

EN,ν,κ
DMC (T ) =

3

2
ω +

θ

N

N
∑

i=1

(X i
ν+1,0)

4. (41)

Corollary 12

E

∣

∣

∣EDMC(T ) −EN,ν,κ
DMC (T )

∣

∣

∣ ≤ C

νκ
+

Cν√
N
,

where the constant C only depends on T and the constant Cν on T and ν.

Proof : By using the result of Theorem 4 and Cauchy Schwartz inequality, it is sufficient to prove the

estimate E

(

EN,ν,κ
DMC (T ) −EN,ν,κ

DMC (T )
)2

≤ Cν

N
. Let us denote in this proof ξi

ν+1,0 = X i
ν+1,0 for 1 ≤ i ≤ N .

We have:

EN,ν,κ
DMC (T )−EN,ν,κ

DMC (T ) = θ

(

ηN
ν (g y4

κ)

ηN
ν (g)

− 1

N

N
∑

i=1

(ξi
ν+1,0)

4

)

= θ

(

E

(

1

N

N
∑

i=1

(ξi
ν+1,0)

4

∣

∣

∣

∣

ξν

)

− 1

N

N
∑

i=1

(ξi
ν+1,0)

4

)

by using the fact that, for any function f : R
∗
+ → R+,

E

(

1

N

N
∑

i=1

f(ξi
ν+1,0)

∣

∣

∣

∣

ξν

)

=
ηN

ν (g(y) f(yκ))

ηN
ν (g(y))

, (42)

which is obtained by a reasoning similar to the one made to prove (38). Now, using the same method as
to obtain (39), one easily gets the estimate:

E

(

EN,ν,κ
DMC (T ) −EN,ν,κ

DMC (T )
)2

≤ θ2

N
E

(

1

N

N
∑

i=1

(ξi
ν+1,0)

8

)

=
θ2

N
E

(

ηN
ν (g(y) (yκ)8)

ηN
ν (g(y))

)

,

by using again (42). Lemma 8 completes the proof.

We end this Section by proving that Proposition 6 also holds for the numerical scheme (17).

Proposition 13 Let us consider the Markov chain (X̄jδt)0≤j≤K generated by the explicit scheme (17)
and denote by Q its transition kernel. We now define the measure ηn by replacing (Xjδt)0≤j≤K with
(X̄jδt)0≤j≤K in (26), and we define accordingly the evolution of the particle system: conditionally on ξn,
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the vectors (X i
n+1,0, X

i
n+1,δt, . . . , X

i
n+1,κδt)1≤i≤N are independent, with X i

n+1,0 distributed according to

(23) and (X i
n+1,jδt)0≤j≤κ a Markov chain with transition kernel Q. Then, we have:

E

∣

∣

∣

∣

ηN
ν (gy4

κ)

ηN
ν (g)

− ην(gy4
κ)

ην(g)

∣

∣

∣

∣

≤ Cν√
N
.

Proof : Looking carefully at the proof of Proposition 6 above, one remarks that (34) holds in this
framework as soon as Lemma 11 holds, and the following property, which replaces Lemma 9, is satisfied:

∃C > 0, ∀x ∈ R+, Qf(x) ≤ eCδt(1 + f(x)) − 1 for f(x) ≡ x4 and f(x) ≡ x8. (43)

Let us first prove (43). We have: Qf(x) = E
(

f
(

X̄x
δt

))

where X̄x
δt =

(

(1 − ωδt)2x2 + 2xWδt +
W 2

δt

(1−ωδt)2 + 2δt
)1/2

.

Now, for q ∈ N
∗,

(X̄x
δt)

2q =
∑

j1+j2+j3=q

q!

j1!j2!j3!
(1 − ωδt)2j1 2j2 x2j1+j2 W j2

δt

(

W 2
δt

(1 − ωδt)2
+ 2δt

)j3

,

where the indices (j1, j2, j3) are non negative integers. Remarking that the expectation of the terms with
j2 odd vanishes and then using Young’s inequality, one deduces that for δt ≤ 1

2ω ,

E
(

(X̄x
δt)

2q
)

≤ (1 − ωδt)2qx2q + E

((

W 2
δt

(1 − ωδt)2
+ 2δt

)q)

+ Cq

∑

j1+j2+j3=q

j1<q,j2 even ,j3<q

x2(q− j2+2j3
2 )δt

j2+2j3
2 ,

≤ x2q + Cqδt+ Cq

∑

j1+j2+j3=q

j1<q,j2 even ,j3<q

(

x2qδt+ δt
1+q

“

1− 2
j2+2j3

”
)

,

≤ (1 + Cqδt)x
2q + Cqδt ≤ eCqδt(1 + x2q) − 1. (44)

Let us now prove Lemma 11 for the scheme (17). As noticed in the proof of Lemma 11 above, it is sufficient
to bound from below E

(

exp
(

−θδt∑νκ
k=1 X̄

4
kδt

))

. By Jensen inequality, we have E
(

exp
(

−θδt∑νκ
k=1 X̄

4
kδt

))

≥
exp

(

−θ T
νκ

∑νκ
k=1 E

(

X̄4
kδt

))

. By using (44), it is easy to prove by induction that E
(

X̄4
kδt

)

≤ eC2kδt(1 +

E
(

X̄4
0

)

) − 1 and this concludes the proof of Lemma 11 in this framework.

In order to obtain a complete convergence result of the form (33) for the scheme (17), it remains to prove
the complementary bound (19), that we have not obtained so far. However, we will check by numerical
simulations that (33) still holds.

2 Numerical results

2.1 Computation of a reference solution by a spectral method

In this section, we would like to explain how we can obtain a very precise reference solution by using a
partial differential equation approach to compute EDMC(T ) (see [4]).

2.1.1 A partial differential equation approach to compute EDMC(T )

Let us introduce the solution φ to the following partial differential equation for :

{

∂φ

∂t
= −Hφ, (t, x) ∈ R+ × R

φ(0, x) = ψI(x), x ∈ R

(45)
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where H (resp. ψI) is defined by (10) (resp. (12)). Since ψI ∈ H, it is a standard result that this problem
admits a unique solution φ ∈ C0(R+,H) ∩ C0(R∗

+, DH(H)) ∩ C1(R∗
+,H). The function φ is regular and

odd, and therefore is such that φ(t, 0) = 0 for all t ≥ 0. Therefore the function φ is also solution to the
following partial differential equation:











∂φ

∂t
= −Hφ, (t, x) ∈ R+ × R

φ(t, 0) = 0, t ≥ 0
φ(0, x) = ψI(x), x ∈ R.

(46)

In [4], we have shown that since φ satisfies (46), we can express EDMC(t) (defined by (2)) using the
function φ (see Proposition 11 in [4]):

EDMC(t) =
〈HψI , φ(t)〉
〈ψI , φ(t)〉 . (47)

Our reference solution EDMC(T ) will rely on formula (47) after discretization of (45) by a spectral method.

2.1.2 Computation of the wave function φ

We will briefly present the spectral method developed to compute an approximation of φ. We recall that
the Hermite polynomials are defined by :

∀n ∈ N, hn(x) = (−1)nex2 dn

dxn
(e−x2

).

We introduce the eigenfunctions of the operator H0, normalized for the L2(R) norm associated with the
eigenvalues En = ω(n+ 1/2) for n ≥ 0,

ϕn(x) = hn(
√
ωx) exp(−1

2
ωx2)

(

(ω/π)1/4

√
2nn!

)

.

It is well known that the vector space spanned by the set of functions {ϕ2k+1}k≥0 is dense in V0 = {ϕ ∈
H1(R) ∩H | xϕ ∈ L2}, which is the domain of the quadratic form associated with H0.

Let us now introduce the functional space V = {ϕ ∈ H1(R) ∩ H | x2ϕ ∈ L2}, which is the domain of the
quadratic form associated with H . The set of functions {ϕ2k+1}k≥0 is also a basis of V .

Let Vn = Span(ϕ1, ϕ3, . . . , ϕ2n−1). We use this approximation space to build the following Galerkin
scheme for (45): find φn ∈ C0(R+,Vn) such that2 φn(0, x) = ψI , and ∀ϕ ∈ Vn

〈

∂φn(t)

∂t
, ϕ

〉

= −〈Hφn(x, t), ϕ〉 . (48)

We diagonalize the operator H restricted to Vn. We denote (ϕn
0 , ϕ

n
2 , . . . , ϕ

n
n−1) the eigenfunctions and

En
0 , E

n
2 , . . . , E

n
n−1 the associated eigenvalues. Because of the symmetry of H , it is easy to check that Vn

can also be spanned by (ϕn
0 , ϕ

n
2 , . . . , ϕ

n
n−1):

Vn = Span(ϕn
0 , ϕ

n
2 , . . . , ϕ

n
n−1). (49)

Since for t ≥ 0, φn(t, .) ∈ Vn, there exists uk(t), k = 0, . . . , n− 1, such that

φn =

n−1
∑

k=0

uk(t)ϕn
k . (50)

In view of (49) and (50), (48) is equivalent to the equations: ∀i = 0, . . . , n− 1,

n−1
∑

k=0

∂uk(t)

∂t
〈ϕn

k , ϕ
n
i 〉 = −

〈

H

n−1
∑

k=0

uk(t)ϕn
k , ϕ

n
i

〉

,

= −
n−1
∑

k=0

En
k uk(t) 〈ϕn

k , ϕ
n
i 〉 .

2Notice that ψI = ϕ1 ∈ Vn.
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We deduce that ∀k = 0, . . . , n− 1,
∂uk(t)

∂t
= −En

kuk(t),

so that

φn(t, x) =
n−1
∑

k=0

uk(0) exp(−En
k t)ϕ

n
k (x), (51)

where uk(0) = 〈ψI , ϕ
n
k 〉.

Remark 14 The eigenfunctions of H are obtained by diagonalization of the matrix A = (aij)i,j=0,...,n−1

with ∀i, j = 0, . . . , n− 1 :

aij = 〈Hϕ2i+1, ϕ2j+1〉 ,
= 〈H0ϕ2i+1, ϕ2j+1〉 + θ

〈

x4ϕ2i+1, ϕ2j+1

〉

,
= δij ω (2i+ 3

2 ) + θ
〈

x4ϕ2i+1, ϕ2j+1

〉

.

We can use the n–point Gauss-Hermite formula to deal with the integration of the second term on the
right. We recall that this method provides an exact result for

∫ +∞
−∞ p(x) exp(−x2)dx as long as p is a

polynomial of degree 2n− 1 or less.

2.1.3 Approximation of EDMC(T )

We now use formula (47) to approximateEDMC(T ). By an elementary calculation, we obtain the following
approximation:

EDMC(T ) '
En

0 +
n−1
∑

i=1

ui(0) 〈ϕn
i , ϕ1〉

u0(0) 〈ϕn
1 , ϕ1〉

En
i exp(−(En

i −En
0 )T )

1 +
n−1
∑

i=1

ui(0) 〈ϕn
i , ϕ1〉

u0(0) 〈ϕn
1 , ϕ1〉

exp(−(En
i −En

0 )T )

. (52)

In our test cases, we have observed that n = 40 is enough to reach convergence.

Notice that for a given n, the convergence in time to the lowest eigenvalue En
0 is exponentially fast, with

an exponent equal to the spectral gap En
1 −En

0 .

2.2 Numerical results of Monte Carlo simulations

In all the computations, we take T = 5.

We represent on Figure 2, the expectation e and the variance v of the error :
∣

∣

∣E
N,ν,T/(νδt)
DMC (T ) −EDMC(T )

∣

∣

∣

as a function of the number of walkers N , the time step δt and the number of reconfigurations ν − 1,

where EDMC(T ) is approximated using (52) and E
N,ν,T/(νδt)
DMC (T ) is defined by (32).

The top figures represent the expectation of the error and its variance according to the number of
walkers. To compute these quantities, we perform 2000 independent realizations, with the number of
reconfigurations ν − 1 = 50, a small time step δt = 5.10−3 and θ = 0.5. The simulations confirm the
theoretical result : the error decreases as C/

√
N .

The effect of the time step is shown on the two figures in the center. The numerical parameters are: a
large number of particles N = 5000, number of configurations ν − 1 = 30, θ = 2 and 300 independent
realizations. We can see on the figure on the left that the error decreases linearly as the time step
decreases. We also remark that the error is smaller with the approximate scheme (17) than when using
the exact simulation of the SDE (15) proposed in the Appendix. This rather amazing result can be
interpreted as follows. When using the exact simulation of the SDE, there is only one source of error
related to the time discretization, namely the approximation of the integral in the exponential factor
in (2). When using the scheme (17), we add a weak error term which seems to partly compensate the
previous one.
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Figure 2: Expectation and variance of the error when (15) is discretized according to the method described
in Appendix (solid curve) and according to the scheme (17) (dotted curve).

The last figures represent the effect of the number of reconfiguration steps. The numerical parameters
are: time step δt = 5.10−3, number of particles N = 5000, θ = 2 and 300 independent realizations. The
curve representing the variation of the error according to the number of reconfigurations has the shape of
a basin. We deduce that on the one hand a small number of reconfigurations has the disadvantage that
walkers with increasingly differing weights are kept. On the other hand a large number of reconfigurations
introduces much noise. An optimal number of reconfiguration seems to lie between 20 and 50.

On Figure 3, we check that the optimal number of reconfigurations in terms of the variance ṽ of

E
N,ν,T/(νδt)
DMC (T ) (and not of the error) is also obtained for a number of reconfiguration which seems

to lie between 20 and 50. The numerical parameters are those considered for the figures below in Fig-
ure 2: time step δt = 5.10−3, number of particles N = 5000, θ = 2 and 300 independent realizations.
We have not studied how the optimal number of reconfigurations varies according to the other numerical
parameters.

We have investigated a practical method to estimate numerically the optimal number of reconfigurations.

On Figure 4 we represent the variance of E
N,1,t/δt
DMC (t) according to time t, without any reconfiguration

step ν = 1. The other numerical parameters are again those considered for the figures below in Figure 2.
We can see that the variance is minimal at t∗ ≈ 0.25 before it starts to raise again. We remark that
ν = T/t∗ = 20 is close to the optimal number of reconfigurations obtained on the previous Figures.
Therefore, it seems that the optimal number of reconfiguration is related to T/t∗ where t∗ minimizes the

variance of E
N,1,t/δt
DMC (t).

Conclusion

In this paper, we have proved on a simple example convergence of numerical implementations of the DMC
method with a fixed number of walkers. The observed theoretical rates of convergence are confirmed by
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Figure 3: Variance of E
N,ν,T/(νδt)
DMC (T ) in function of the number of reconfigurations when (15) is discretized

according to the method described in Appendix (solid curve) and according to the scheme (17) (dotted
curve).
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Figure 4: Variance of E
N,1,t/δt
DMC (t) according to time t.

numerical experiments and is likely to hold in more general situations. We have also checked numerically
the existence of an optimal number of reconfiguration steps. For future work, we plan to investigate
criteria devoted to the choice of the number of reconfiguration steps. One interesting direction is the use
of automatic criteria based on a measure of the discrepancy between the weights carried by the walkers
to decide when to perform a reconfiguration step.

Appendix : Simulation of the stochastic differential equation (15)

In this appendix, we show that it is possible to simulate exactly in law the (K+1)-plet (X0, Xδt, . . . , XKδt),
where Xt is defined by (15). Let (G,U) denote a couple of independent random variables with G normal
and U uniformly distributed on the interval [0, 1].
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Simulation of the increment Xt −Xs, for t ≥ s.

The square Rt of the norm of a 3-dimensional Brownian motion W t =
(

W
1
t ,W

2
t ,W

3
t

)

solves dRt =

3dt+ 2
√
RtdBt where Bt =

∫ t

0

W s · dW s

‖W s‖
is a one-dimensional Brownian motion. Hence ρt =

Rt

1 + 2ωt
solves

dρt = (3 − 2ωρt)
dt

1 + 2ωt
+ 2

√
ρt

dBt√
1 + 2ωt

. (53)

It is easy to check that
(

∫ 1
2ω (e2ωt−1)

0
dBs√
1+2ωs

)

t
is a Brownian motion. Hence, performing a time-change

in (53), one obtains that ρ 1
2ω (e2ωt−1) = e−2ωtR 1

2ω (e2ωt−1) is a weak solution of the equation dYt =

(3 − 2ωYt)dt+ 2
√
Yt dWt satisfied by Yt = X2

t . Therefore e−ωt
√

R 1
2ω (e2ωt−1) is a weak solution of (15).

For v ≥ u, Rv has the same distribution as
(√
Ru + W

1
v − W

1
u

)2
+ (W 2

v − W
2
u)2 + (W 3

v − W
3
u)2, and

therefore as (
√
Ru +G

√
v − u)2 − 2(v−u) log(U) with (G,U) independent from Ru. Hence for t ≥ s, Xt

has the same distribution as

(

e−2ωt

(

(

eωsXs +
G√
2ω

(e2ωt − e2ωs)1/2

)2

− 2
1

2ω
(e2ωt − e2ωs) log(U)

))1/2

=

(

(

e−ω(t−s)Xs +
G√
2ω

(1 − e−2ω(t−s))1/2

)2

− 1

ω
(1 − e−2ω(t−s)) log(U)

)1/2

where the couple (G,U) is independent from Xs.

Simulation of X0 with distribution 2ψ2
I (x)1{x>0}dx.

The random variable 1√
2ω

(

G2 − 2 log(U)
)1/2

is distributed according to the invariant measure 2ψ2
I (x)1{x>0}dx,

as suggested by letting the time increment t − s tend to +∞ in the previous simulation. Indeed,
G2 − 2 log(U) is a Gamma random variable with density 1

23/2Γ(3/2)
1{z>0}

√
ze−z/2. And one deduces

the density of 1√
2ω

(

G2 − 2 log(U)
)1/2

by an easy change of variables.
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