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Abstract

The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state
energies of molecules. In this paper, we focus on implementations of this method which consist
in exploring the configuration space with a fixed number of random walkers evolving according to
a Stochastic Differential Equation discretized in time. We allow stochastic reconfigurations of the
walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional
example, we prove the convergence of the method for a fixed number of reconfigurations when the
number of walkers tends to +oo while the discretization step of the SDE tends to 0. We confirm our
theoretical rates of convergence by numerical experiments.

Introduction

The computation of electronic structures of atoms, molecules and solids is a central problem in chemistry
and physics. We focus here on electronic ground state calculations where the objective is the computation
of the lowest eigenvalue (the so-called ground-state energy) Ey of a self-adjoint Hamiltonian H = — ; A+V
whith domain Dy¢(H) on a Hilbert space H C L*(R3") where N is the number of electrons (see [3] for
a general introduction):

Eo = inf{(y, HY), ¥ € Dy (H), ||| =1}, (1)

where (-,-) denotes the duality bracket on L2(R3M) and || - | the L?(R*Y)-norm. For simplicity, we
omit the spin variables. The function V describes the interaction between the electrons, and between
the electrons and the nuclei, which are supposed to be fixed point-like particles. The functions 1) are
square integrable, their normalized square modulus |1|? being interpreted as the probability density of the
particles positions in space, and they satisfy an antisymmetry condition with respect to the numbering
of the electrons, due to the fermionic nature of the electrons (Pauli principle): H = /\Zil L3(R3). We
suppose that the potential V' is such that Ey is an isolated eigenvalue of H (see [4] for sufficient conditions),
and we denote by ¥y a normalized eigenfunction associated with Ej.

Due to the high dimensionality of the problem, stochastic methods are particularly well suited to compute
Ey. The Diffusion Monte Carlo (DMC) method is widely used in chemistry (see [2, 10]), but has been
only recently considered from a mathematical viewpoint (see [4, 8]). This method gives an estimate of
Ey in terms of the long-time limit of the expectation of a functional of a drift-diffusion process with a
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cussions and Michel Caffarel (IRSAMC, Toulouse) for introducing us to the DMC method and suggesting the toy model
studied in this paper.



source term. It requires an importance sampling function t; which approximates the ground-state g of

H
v and the DMC
Ur

H. Let us define the drift function b = Vln [¢;], the so-called local energy Ep, =

energy:
E(EL(X0)exp (- fy Br(X,)ds))

E (exp (— fot EL(XS)ds))

where the 3/N-dimensional process X satisfies the stochastic differential equation:

Epmc(t) = (2)

t

X, =X, +/ b(X,)ds + dW,,

0 3)
Xo ~ [¢r|*(x) de.

The stochastic process (W)i>o is a standard 3N-dimensional Brownian motion. One can then show
that (see [4])

tlglélo Epnmc(t) = Epmc,os (4)
where
Epnic,o = inf{(¢, HY), ¥ € Dy(H), ||| =1, ¢ = 0 on ¢; *(0)}. (5)

We have proved in [4] that Epmc,o > Eo, with equality if and only if the nodal surfaces of ¢; coincide
with those of a ground state ¥y of H. In other words, if there exists a ground state g such that
Y71 (0) = 95*(0), then lim; . Epmc(t) = Fo. The error |Ey — Epmc,ol is related to the so-called
fixed-node approximation, which is well knwon by practitioners of the field (see [3]).

In this paper, we complement the theoretical results obtained in [4] with a numerical analysis in a simple
case. In practice, the longtime limit Epnmc,o in (4) is approximated by taking the value of Epyc at a
(large) time T > 0. Then Epmc(T) is approximated by using a discretization in time of the stochastic
differential equation (3) and of the integral in the exponential factor in (2), and an approximation of the
expectation values in (2) by an empirical mean over a large number N of trajectories. These trajectories,
(X i)lgig N, also called walkers in the physical literature or particles in the mathematical literature satisfy
a discretized version of (3), and interact at times nAt for n € {1,...,v — 1} where At =T /v for v € N*
through a stochastic reconfiguration step aimed at reducing the discrepancy between their exponential
weights. We thus obtain an interacting particle system. The number of reconfiguration steps if v — 1.
The stochastic differential equation (3) is discretized with a possibly smaller step §t = At/k = T/(vk)
with x € N*. The total number of steps for the discretization of (3) is then K = vk.

In the following, we consider an adapted version of the DMC scheme with minimal stochastic reconfigu-
ration (see [2]):

e Initialisation of an ensemble of N walkers (X%At) i.i.d. according to |¢;|*(x) dz.
1<j<N

e Iterations in time: let us be given the particle positions (XZLM) at time nAt, for n €
1<j<N

{0,...,v —1}. The new particle positions at time (n 4+ 1)At are obtained in two steps:

1. Walkers displacement: for all 1 < j < N, the successive positions (Xflm_%t, ey X{zAt—Q—mSt)

over the time interval (nAt, (n + 1)At) are obtained by an appropriate discretization of (3).
In the field of interacting particles system for Feynman-Kac formulae (see [5, 6]), this step is
called the mutation step.
2. Stochastic reconfiguration: The new positions? (Xgn-u)m) - which will be used as
1<j<N
the initial particle positions on the time interval ((n + 1)At, (n + 2)At) are obtained from

I'With a slight abuse of notation and though nAt + xkdt = (n + 1)At, we distinguish between the particle positions
XiAt+m§t at the end of the walkers displacement on time interval (nAt, (n+1)At), and the new particle positions X{nJrl)At
obtained after the reconfiguration step, and which are used as the initial position for the next walkers displacement on time
interval ((n + 1)At, (n + 2)At). We will use a more precise notation for the analysis of the numerical scheme in Section 1,

but this is not required at this stage.



independent sampling of the measure

N K j
Dj—16xp (*57f > k=1 EL(XzzAtJFkét)) 5X{lm+m (©)
Z;-Vzl exp (‘575 i1 B (Xflm%at))

In words, the new particle positions (X J ) are randomly chosen among the fi-
(n+1)At 1<j<N

nal particle positions (sz At Jm&) , each of them being weighted with the coefficient
1<j<N

exp (fét Srey EL(Xf;AHk&)) (accordingly to the exponential factor in (2)). In the field of

interacting particles system for Feynman-Kac formulae, this step is called the selection step.

An estimate of Epyc(tn+1) is then given by:

N
1 .
Epmc(tngr) =~ N Z Er (X€n+1)At) : (7)
j=1

There are other possible estimations of Epnyc(tn+1)- In [2], the authors propose to use Cesaro or weighted
Cesaro means of the expression (7) . In Section 1, we will use the following expression:

N J K 1
Zj:l Er (X?nAt+m§t) exp (_‘% > k=1 EL(X;AtJrszt))

Zj‘vﬂ €xp (*& Dhet EL(X{zAt—i-két))

: (8)

Epnc(tn+1) ~

in an intermediate step to prove the convergence result.

We would like to mention that a continuous in time version of the DMC scheme with stochastic reconfig-
uration has been proposed in [8]. The author analyzes the longtime behaviour of the interacting particle
system and proves in particular a uniform in time control of the variance of the estimated energy.

N
1 .
We can distinguish between four sources of errors in the approximation of Fy by N E Er (X 7 At):
j=1

1. the error due to the fixed node approximation |Ey — Epwmc,ols
2. the error due to finite time approximation of the limit: lim; ... Epmc(t) ~ Epmc(T),

3. the error due to the time discretization of the stochastic differential equation (3) and of the integral
in the exponential factor in Epmc(t) (see (2)),

4. the error introduced by the interacting particle systems, due to the approximation of the expectation
value in (2) by an empirical mean.

The error (1) due to the fixed node aproximation has been analyzed theoretically in [4].

Concerning the error (2) due to finite time approximation of the limit, the rate of convergence in time
is typically exponential. Indeed if H admits a spectral gap (namely if the distance between Ey and the
remaining of the spectrum of H is strictly positive), and if ¢ is such that (5, Hir) < inf 0ess(H), then
one can show that the operator H with domain Dy (H)N{%, 1 = 0 on 17 *(0)} (whose lowest eigenvalue
is Epmc,o, see (5)) also admits a spectral gap v > 0. Then, by standard spectral decomposition methods,
we have:

0 < |Epmc(t) — Epmc,o| < Cexp(—nt).

Our aim in this paper is to provide some theoretical and numerical results related to the errors (3) and
(4), in the framework of a simple one-dimensional case. We therefore consider in the following that the



final time of simulation T is fixed and we analyze the error introduced by the numerical scheme on the
estimate of Epyc(T). Our convergence result is of the form:

1 & C(T,v)
E|Epmc(T) - N Z ErL (X{/nAt) <C(T)dt+ ’
j=1

N 9)

where C(T) (resp. C(T,v)) denotes a constant which only depends on T (resp. on T and v) (see
Theorem 4 and Corollary 12 below).

Let us now present the toy model we consider in the following. Though our model is one-dimensional
(and therefore still far from the real problem (1)), it contains one of the main difficulties related to the
approximation of the ground state energy for fermionic systems, namely the explosive behavior of the
drift in the stochastic differential equation. We therefore think that the convergence results we obtain
are prototypical of what could be proved for more complicated systems.

We consider the hamiltonian

1 d? , w? 4
where w, 6 > 0 are two constants. The ground state energy Fy is defined by (1), with
H={y e L*R), ¢(x) =—¢(-=z)}. (11)
We restrict the functional spaces to odd functions in order to mimic the antisymmetry constraint on 1 for
2 2
fermionic systems. The importance sampling v; is chosen to be the ground state of Hy = —% % + %xQ

with energy %w:
1/4 w 2
Yr(z) = V2w (ﬂ) ze 2. (12)
m

The drift function b and the local energy Ep, are then defined by:

b(x) = w—ll(x) 1 wzx, and Er(x) =V (z) — 1 w—lll(x) = §w + 0zt (13)
Y ’ B 2 2 '
Thus, using equation (2), the DMC energy is:
3 E (X;1 exp (—9 fg X;lds))
Epmc(t) = v +46 - (14)
E (exp (—9 Jo Xglds))
where
i
Xt:X0+/ (Y—WXé) dS+Wt, (15)
0 s

with (W});>0 a Brownian motion independent from the initial variable Xy which is distributed according
to the invariant measure Zw?(x)l{zw}dx. We recall that due to the explosive part in the drift function
b, the stochastic process cannot cross 0, which is the zero point of ¥ (see [4]): P(3t > 0, X; = 0) = 0.
This explains why the restriction of 17 to R% is indeed an invariant measure for (15). For § > 0, the
longtime limit Epmc,o of Epwmc(f) is not analytically known, but can be very accurately computed by a
spectral method (see Section 2.1). Let us finally precise that for the numerical analysis, we use a special
feature of our simple model, namely the fact that for s <, it is possible to simulate the conditional law
of X; given X, (see Appendix). The time discretization error is thus only related to the discretization of
the integral in the exponential factor in the DMC energy (2).

The paper is organized as follows. In Section 1, we prove the convergence result, by adapting the methods
of [5, 6] to analyze the dependence of the error on §t. We then check the optimality of this theoretical
result by numerical experiments in Section 2, where we also analyze numerically the dependence of the
results on various numerical parameters, including the number (v — 1) of reconfiguration steps.

Notation: For any set of random variables (Y;);cr, we denote by o((Y;)icr) the sigma-field generated
by these random variables.

The parameters w and 6 are fixed positive constants.

By convention, any sum from one to zero is equal to zero : 22:1 -=0.



1 Numerical Analysis in a Simple Case

We perfom the numerical analysis in two steps: time discretization and then particle approximation.

1.1 Time discretization

We recall that T > 0 denotes the final simulation time, and that §t = % is the smallest time-step.
Since Y; = X7 is a square root process solving dY; = (3 — 2wY;)dt + 2/Y;dW,, it is possible to simulate
the increments Y(j41yst — Yrse and therefore X ;4 1)5: — Xpse (see Appendix or [7] p.120). We can thus
simulate exactly in law the vector (Xo, X5, ..., Xkst). That is why we are first going to study the error
related to the time discretization of the integral which appears in the exponential factors in (14).

Let us define the corresponding approximation of Epyc(T):

E (EL(XT) exp (79515 Zszl EL(Xkét))) 3 E (X% €xXp (*9& ZkK:I Xgét)))

Epo(T) = — = sw+6 - . (16)
E (exp (—9& Y ket EL(Xk(;t))) E (exp (79515 D ket Xgét))
Proposition 1
VK € N*, |Epnc(T) — Edlye(T)| < Crét.
Proof : Using Holder inequality, we have:
4 T 34
9 E (XT exp <79 fo Xsds))
|Epnc(T) = Epyc(T)] < % E(X}) + T
E (exp (—00t S/, X)) E (exp (0 Jy Xids))
- % 2 1/2
E <exp <—9/ des) — exp (—9&2X;§5t>>
0 k=1
The conclusion is now a consequence of Lemma 2 and the fact that the function z € Ry — e 9% is
Lipschitz continuous with constant 6. |

Lemma 2 For any K € N*,
T K 2
E (/ Xds — 5tZX,§5t> < CSt*H(T? +7),
0 k=1

_T
where 6t = %

Proof of Lemma 2 : By It6’s formula, dX; = (10X7? — 4wX})dt + 4XdW,. With the integration by
parts formula, one deduces that for any k € {1,..., K},

kdt kot
/(k 1)&()(,3& — XHds = /(k 1)&(5 — (k= 1)6t) ((10X2 — 4w X)ds + 4X2dW) .



Therefore denoting 7, = | 37 ]dt the discretization time just before s, one obtains

K T T T
5ty Xils, — / Xlds = / (s — 75)(10X2 — 4w X 1)ds +/ (s — 76)AX2dW,.
1 0 0 0

Hence
K T 2 T
E <5t Z Xits, — / X;*ds> < 2/ (s — 75)°E (T(10X 2 — 4w X)) + 16X7)) ds.
k=1 0 0

Since X is distributed according to the invariant measure Qw?(z)l{zw}daz, so is X,. As a consequence,
for any p € N, E(X?) does not depend on s and is finite and the conclusion follows readily. [ |

In realistic situations, exact simulation of the increments X ;4 1ys; — Xgst is not possible and one has
to resort to discretization schemes. The singularity of the drift coefficient prevents the process X; from
crossing the nodal surfaces of the importance sampling function ;. The standard explicit Euler scheme
does not preserve this property at the discretized level. For that purpose, we suggest to use the following
explicit scheme proposed by [1]

Xo = Xo,

AW
1— wot

) 1/2
Vk € N, X(k+1)6t = ((ngt(l — w5t) + > + 25t> with AWy = W(k+1)6t — Whist.

(17)
Because of the singularity at the origin of the drift coefficient in (15), we have not been able so far to
prove the following weak error bound (see Remark 3 below):

E (f(X%)eXp <—9/0T des>> —E <f(XT exp ( GétZXk,;t))

Such a bound is expected according to [9] and would imply that

E (EL(XT exp ( at Zk 1 (X’“St)))
E (exp (fét Zk:l EL(Xth)))

< Cpét for f(z) =1 and 2.

(18)

Epne(T) —

< Ordt. (19)

Remark 3 We would like to sketch a possible way to prove (18). Because the square root in (17) makes
expansions with respect to 6t and AWyy1 complicated, it is easier to work with Y; = X and Yis: = Xkét
which satisfy

AWpi
1 — wdt

2
dY: = (3 — 2wYy)dt + 24/ Y; dW; and }7(k+1)5t = <\/ Yise(1 — wét) + > + 20t.

The standard approach to analyze the time discretization error of the numerator and denominator of the
left hand side of (19) is then to introduce some functions v and w solutions to the partial differential
equation:

v = (3 — 2y)dyv + 2ydy,v — Oy*v, (t,y) € Ry x (0, +00) (20)

with initial conditions v(0,y) = y* et w(0,y) = 1. Now, we write (for the numerator, for example):

T K
E <X% exp <—9/ X?ds)) —E (X% exp (—95752)?,3&))
0 k=1

= Z E (’U(T — k6t, Yist) — 670&?(2’“*1)“’()(7—’ — (k4 1)6t, Y1)50) ) exp | —06t Z Vi

|
—



An error bound of the form Crdt can now be proved by some Taylor expansions as in [9] [1], provided the
existence of a sufficiently smooth solution v to (20). We have not been able to prove existence of such a
solution so far.

1.2 Particle approximation

We now introduce some notation to study the particle approximation. We recall that v denotes the
number of large timesteps (the number of reconfiguration steps is v — 1), and At = kdt the time period
between two reconfiguration steps. Let us suppose that we know the initial positions (X }'1,0)195 n of the
N walkers at time (n —1)At, for a time index n € {1,...,v}. The successive positions of the walkers over
the time interval ((n — 1)At, nAt) are then given by (X} 5;,..., X} .5), where (X}, ,Jo<t<a satisfies:

t
X:z,t = XZL,O +/O b(X:z,s) ds + (WtZJr(nfl)At - W(anl)At) : (21)

Here (W1, ..., W?¥) denotes a N-dimensional Brownian motion independent from the initial positions of
the walkers (X%,O)lﬁiSN whixh are i.i.d. according to Zw?(x)l{mw}dx. We recall that in our framework, it
is possible to simulate exactly in law all these random variables (see Appendix). We store the successive
positions (X, 5, ..., X}, .5¢) of the i-th walkers over the time interval ((n — 1)At,nAt) in a so-called

particle &/, € (R% )" (see Figure 1): Vi € {1,...,N},Vn € {1,...,v},

=Kot Xy wsr): (22)
In the following, we will denote by &, = (£L,...,&N) the configuration of the ensemble of particles at
time index n. We have here described the mutation step.

i
Xn,()

X(in+1),0
(n — 1)At + 5t (n — 1)At + kbt
Loy
LA A B B
t
(n—1)At nAt

Figure 1: The i-th particle ) at time index n is composed of the successive positions (X! 4,..., X! )
of the i-th walker on time interval ((n — 1)At, nAt).
For a given configuration of the particles (£ )1<i<n at a time index n € {1,...,v}, the selection step

now consists in choosing the initial positions (X¢ +1,0)1<i<n of the V walkers at time nAt, conditionally
independent, with X7, , distributed according to the measure

POATISALI

€ng(€L)0¢i 1 —eng(€ ~ = 23
9(&a)0;, , + ( 9(&2)) S 4 (23)

where g is defined by, for y = (y1,...,y.) € (R})",

9(y) = exp (—9& > yi) : (24)



and €, is a non negative function of &, such that ¢, < 1 . In particular the following choices

— maxi<i<n 9(&})

1

max;<i<n g(&h)

are possible for €,:

€, =0, ¢, =1and ¢, = (25)

The case ¢, = 0 corresponds to a maximum decorrelation with the former position of the particles, while
with growing ¢,,, more and more correlation is introduced.

For n € {1,...,v}, let us denote by nY = % Zf;l d¢i the particle approximation of the measure 7,
defined by: Vf : (R% )" — R bounded ,

B ]E(f (Xn—1yat4sts - X(n—1)At+rot) eXP( 0t S\, 1)K(Xk6t)4)) 26
= E (exp (—03t 20" (X)) ) ’ )

where the process (X;)o<i<r is defined by (15).

For y = (y1,...,yx) € (RY)" and f: (RL)" — R, we set
Pfy) =E(f(X5 - X)) (27)
where for z € R},
t
X7 :x—i-/ b(XZ)ds + Wy (28)
0

denotes the solution of the stochastic differential equation (15) starting from 2. By the Markov property,
the measures (1),)1<n<, satisfy the inductive relations, for any function f : (R% )" — R bounded, Vn €

{1,...,v—1},
E (exp (*9& ZZL(Xkat)“) E (f (XnAtJrJta e 7XnAt+m3t)

n(9)E (exp( 95152(" I)K(szit)4))

1 E (!]Pf (X(nfl)AHféta e X(nfl)AtJrnét) exp ( 04t Z(n D (Xkét)4)) M (9Pf)

(ngt)o<j<m>)

= X
() E (exp (—03t 2" (X)) ) n(9)
(30)
where g is defined by (24). Moreover, we can express E2Y;o(T) defined by (16) as:
3 L gvlgyy)
E T)=—w+0—"2, 31
DMC( ) ) 771/(9) ( )
Therefore the particle approximation of Epyc(T) is given by
. 3 N 4
BN (T) = S 4 o (90 (32)

2 ny (g)

This approximation of Epymc(T") corresponds to the expression (8) given in the introduction. We will also
prove in Corollary 12 below the convergence of the approximation which corresponds to the expression (7)
given in the introduction (see Equation (41) below).

The convergence of the approximation nglfcn (T) is ensured by our main result :

Theorem 4

c C,
= Uk \/N,

where the constant C' only depends on T and the constant C, on T and v.

E |Epmc(T) — ng\}fg(T)




Remark 5 The number of selection steps is v — 1. For instance, when v = 1, there is no selection
inwvolved in the expression of Eglvlfg(T) and the particles remain independent. In this case, the first term
in the right hand side of (33) corresponds to the time discretization error proved in Proposition 1, while
the second term is the classical error estimate related to the law of large numbers. For a fixed number
of selection steps, the theorem ensures the convergence of the particle approximation Eglvlfc'{(T) as the
time-step 6t = T/(vk) used for the discretization of the stochastic differential equation (15) tends to 0
while the number N of particles tends to +o00. But this result does not specify the dependence of C,, on v
and gives no hint on the optimal choice of the number of selection steps in terms of error minimization.

We are going to deal with this important issue in the numerical study (see Section 2).

According to the above expressions (31) and (32) of Efo(T) and EL;¥%5(T), this theorem is easily
proved by combining Proposition 1 and the following result :

Proposition 6

N 4 4
My (9Ys) _ (9Ys) | o Cv (34)

n(g) n.(9) N

Proof of Proposition 6 : One has

m' (9ye) _ gy | _Elny(gyi) — (gl

w9 (g 1 (9)
1/2 o\ 1/2
" E<M>2 / (E(niv(g)*nu(g)))
' (9) M (9)

According to Proposition 7 and Lemma 11 below, the first term of the right-hand-side and the quotient

2
in the second term are smaller than C,/v/N. Since by Jensen’s inequality, ("g&g%)) < e ]S?Z')), the

boundedness of E ( 1\(,9( )”)) follows from Lemma 8 below. [ |

Proposition 7 For any bounded function f: (R% )" — R,

Cn
¥n € {1, v} B0 (F) = (1)) < S 1% (35)
where the constant C,, does not depend on k.
For any function f : (R%)" — R such that for some p > 2, ||f|lx,p = sup lfiy)l is finite,
€RY Yk
N Cn
VTLE{L...J/}, ]E|nn (f)_nn(f)lg \/—NHmeP’ (36)

where the constant C,, does not depend on kK.

For f bounded, the first estimate (35) is proved in [6]. In order to prove Proposition 6, we need to
apply Proposition 7 with f(y) = g(y) and f(y) = g(y)y:, which are bounded functions with L° norm
respectively equal to 1 and 5; where C is a constant not depending on dt. But we want to obtain
the convergence when 6t tends to 0. This is why we need the second estimate (36), that we use with
f(y) = g(y)yt for which || f||,.p is bounded and does not depend on &t.

Notice that for f bounded, Corollary 2.20 in [6] states the convergence in law of VN (7N (f) —nn(f)) to a
centered Gaussian variable and gives an expression of the variance of this limit variable. Because of the
complexity of this expression, using this result with f(y) = g(y)y* did not really help us to understand
the dependence of C, on v (see Remark 5 above).



Proof : For f bounded, the first estimate (35) is proved by induction on n in [6] (see Proposition 2.9).
Since we follow the same inductive reasoning to deal with f such that || f|| ., < +00, we give at the same
time the proof for f bounded.

Since the initial positions (£%);1<;<y are independent and identically distributed with ﬁﬂ distributed
according to 21)? (7)1{z>0ydz, the statement holds for n = 1.
To deduce the statement at rank n + 1 from the statement at rank n, we remark that according to (30),

nY (gPf)

777];[+1(f) = Mnt1(f) = Tog1 + na (9)

(mff (9PF) —m(gPF) + ((g) — ¥ <g>>) (37)

b
mn(9)
where we recall that P is defined by (27), and

nY (9P f)
n(g)

To deal with this term T),41, one remarks that all the possible choices of €, given in (25) are o(&,)-
measurable. As a consequence, for i € {1,..., N},

Thy1 = 777];[-1—1(]8) -

PP 9(ENPI(EL)

E 1)ISn) = €n P n) + (1 —én :l .
6hlen) = gl €PFED + (1~ nglE) =L

Multiplying this equality by % and summing over %, one deduces

S 9(EIPIE) _ Y (gPf)

E(n n) = = 38
(g1 (F)[€n) ST ) (38)
Since the variables (¢! 41)1<i<n are independent conditionally on &,, one deduces that
1 & . . 1
E((T041)*16n) = 775 22 B (F(€41) — B (€in)l€n)” 160) € B (0a (FD)I6n)
i=1
Therefore 1
E((Tn+1)?) < <E®mY(F2). (39)

N

When £ is bounded, 1, (/) < |1, |52 < 1P flloc, and |Pf o < £l Hence by (37),

E((ny (gPf) = ma(gP))?) + IFIZE((n) (9) — nn(g))Q))
(1n(9))?

with the second term of the right-hand-side smaller than C||f||2,/N by the induction hypothesis and
Lemma 11 below.

E((n1(f) = s (£))?) <3 ('J;lloo +

When || fllx,p < 400, combining (37) and (39), one obtains

E(n) 1 (f2))"/? N E|nY (gPf) — (9P )|
VN M (9)

N (E (% <ng>)2> 7 B0 (@) - m(9))

ny (9) M (9)

Since ||f?|[k2p < 2[fIIZ, (by using the inequality f*(y) < 2[|f[Z (1 + y2P)), the first term of the
right-hand-side is smaller than C,, || f| .,/VN by Lemma 8 below. Since, according to Lemma 9 below,
IPfllnp < P2 f]lw.ps the second term is smaller than Cy,| f||..p/v'N by the induction hypothesis and
Lemma 11. Last, by using successively Cauchy Schwartz inequalities, (38) for f2 and Lemma 8, one

obtains that E (’7 5511;{)) <E ("”;géfg{)”) < IE( s >) <EMY,1(f2) < Callf]2,. And it follows

E‘Ufzvﬂ(f) *Un+1(f)‘ <

10



N/ y_ 2\1/2
from the Proposition statement for f bounded and Lemma 11 that (B (g)n ?;')(g)) ) is smaller than

Cn/VN. ]

Lemma 8 Let h: (R} )" — Ry be such that for some p > 2, ||h||.,, < +00. Then,

ny (gh)

Yn € {1,...,v}, max <E(¢7£V(h)),]E < N (g)

)) < OB Rl p (1 + E(X0)"),

where X is distributed according to the measure 203 (x)1(z50ydx (see (15)).

Proof : Asthe variables ﬁ'ﬁ, 1 <7 < N aredistributed according to the invariant measure 2’(/1%($)1{I>0}d1‘,
one has E(n{(h)) < ||hllxp(1 + E(Xo)?). In addition for n > 1, according to (38), E(n) ,(h)) =

N
E (nﬁh(lg(l;h)) where || Phl|,.p < e“»2t||h||xp by Lemma 9. Therefore it is enough to check the bound for

B ()

n¥ (9)

For n > 0, one has

N i
E (U%l(gh)) <l (14 D1 eXP( 06t > 51 (Ehi, k)4) (Enr1.6)” (40)

Z;’\le exp (_9& Zk:l( 7Jz+1,k)4)

Let us denote in this proof ffﬂrl,o = Xviz+1,07 where 0 < n < v-—-—1and 1 < ¢ < N. Let us set
F=0( 14 1<i< N, 0<k<rk—1). By Lemma 10 below,

n+1( )

3

<Z£V_1exp(—e<stzz_1<:m>4) <«s:;+1,n>p‘ ) Sy exp (=00t ETH (€1 0)*!) B, F)
E Fl<
Zj‘vzl exp( 00ty (& n+1, k)4) Zjvﬂ exp( 0oty - (n+1 k)4)
2 exp (00t T G ) ) B e,
S exp (00t SR (€00
[ exp (<00t R (€ )?) (Ehennms)”
S exp (—06t 41 (€407

)

< Cpd Cpét _ 1

+e ,

where we have used the definition of the mutation step (see (21)) and the Markov property for the stochas-

tic differential equation (28) to obtain the equality, and then Lemma 9 for the last inequality. Notice that
C,ét
e-’'p .
this estimate also holds for x = 1, in which case the right hand side reduces to T( nt1.0) + eCrot 1,

Taking expectations and iterating the reasoning, one deduces that

S exp (00t o7 (€, k>4) (1) eor
Ej'vﬂ eXp( 0ot Zk (& nt1, k)4)

Inserting this bound in (40), one concludes that
N N
Mn+1 (gh)> CpAt
B () < o, (148 5 D06
M (9) ' N ; +10)”

11
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For n = 0, one deduces that E (%) < %2 h]|, (1 +E(XD)), where X is distributed according to
1

the measure 2¢%(z)1 {z>0}dT.

- m 9wy
For n > 1, since by a reasoning similar to the one made to obtain (38), Z nt10)?’ | =E <”(7

N (g(y)

=

g1 (gh) Cpit na (g(1+y2))
" ( 1%1(9) ) = |h””’pE< n (9) ) '

The proof is completed by an obvious inductive reasoning. [ |

one also deduces that

Lemma 9 For any p > 2, there is a constant C, such that
Vo € R, Vt >0, E(XF)P) < (1 + 2P)e%' —1,

where X[ is defined by (28). Therefore, if h : (R%)" — R is such that ||h||x,p < +oo then ||Phl., <
e“rAY bl p, where the operator P is defined by (27).

Proof : By Itd’s formula, d(X¥)? = (%(Xg)r2 - wp(Xg)P) dt + p(XF)P~1dW,. Hence

(XF)P <af + /Ot (p(p; D, et 12_ 2) (Xg)?) ds +p/0t(Xg)P—1dWs.

Formally, taking expectations in this inequality, one obtains

t
1 1-2
0
and check by Gronwall’s lemma that the conclusion holds with C}, = p(p—2+1). This formal argument can

be made rigorous by a standard localization procedure.
For h : R — R such that ||h||,p, < 400 one deduces that

Vy €RY, [Ph(y)] < E(XF, ... X25)| < CllAllep(1 +E(X5)7)) < e“ 2 hllep(1 + yk).

| |
Lemma 10
N N p —cz4 N p
A a;iz;e Az
V(z1,...,2n), (a1,...,aN) eRf with Zai >0, Vp >0, Ve >0, 21]\,1 ! — < Ez—]\} Lty
i=1 D iz aie” Dim1 G
. Zi\]:1 aizfefcz? . . . . .
Proof : Let us set f(c) = T By Holder’s inequality, the derivative
i=1 Qi ‘
N _ - N 4 x4
fl(c) B ZZ 1azz e cz Z L azz4e cz B ZZ 1a12p+ cz;
Zivzl aje=° Zf\; aje=°% Zivzl aje°
N P
is non positive. Hence for any ¢ > 0, f(c) < f(0) = 2 i) 015 [ |

i= 1

Lemma 11 The sequence (1,(g))1<n<v s bounded from below by a positive constant non depending on k.

12



Proof : Since
B (o (0T X))

(eXp( 961?2 X;c*&)) B

the sequence (1,(g))1<n<y is bounded from below by
I =E (exp (9515 > Xfist)) :
n=1 k=1

According to Lemma 2, this expectation converges to E (exp (—9 fOT Xﬁds)) > 0 when & tends to +oo,

nn(g) =

which concludes the proof. [ |

We can now prove, as a corollary of Theorem 4, the convergence of the approximation Egl\gc'f” (T) of
Epne(T), defined by:

N,v,k i
Epje (T) = YT N Z(Xu+1,o)4- (41)

Corollary 12
N,v,k C CI/
E|Epye(T) — Epye (T)‘ S -+ N

where the constant C' only depends on T and the constant C, onT and v.

Proof : By using the result of Theorem 4 and Cauchy Schwartz inequality, it is sufficient to prove the
_ 2 O, . .

estimate E (Egﬁ’cﬁ(T) - Egﬂg’cﬁ(T)) < w Let us denote in this proof &, ., o = X, ;o for 1 <i < N.

We have:

N N N
N,v,k N,v,k U gy/{
EDMC<T>EDMC<T>9( SO ) ( ( ACHY ) R N )

' (

by using the fact that, for any function f: R} — Ry,

(1 e

n>(9(y))

) _ (o) S (ue) 2)

which is obtained by a reasoning similar to the one made to prove (38). Now, using the same method as
to obtain (39), one easily gets the estimate:

~N,v.k 2 2 N . 2 N 8
= (s ) < e () - o (g

i=1

by using again (42). Lemma 8 completes the proof. [ |

We end this Section by proving that Proposition 6 also holds for the numerical scheme (17).

Proposition 13 Let us consider the Markov chain (Xjs:)o<j<k generated by the explicit scheme (17)
and denote by Q) its transition kernel. We now define the measure n, by replacing (Xjst)o<j<r with
(Xjst)o<j<k in (26), and we define accordingly the evolution of the particle system: conditionally on &,

13



the wvectors (X}, o, X};H’&, .. aX£+1,n§t)1§i§N are independent, with X}, o distributed according to
(23) and (X}, jsi)o<j<n @ Markov chain with transition kernel Q. Then, we have:

g | gy gy | o Co
n (9) m(9) VN

IN

Proof : Looking carefully at the proof of Proposition 6 above, one remarks that (34) holds in this
framework as soon as Lemma 11 holds, and the following property, which replaces Lemma 9, is satisfied:

3C >0, Vo € Ry, Qf(z) < e“'(1+ f(z)) — 1 for f(x) =2* and f(z) = 2®. (43)
— - 2 1/2
Let us first prove (43). We have: Q f(z) =E (f (X§,)) where X§, = ((1 — wbt)?x? + 22Ws + (1_1/27‘5&)2 + 261?)
Now, for ¢ € N*,

J3
X 7(1! 271 9J2 p2J1+7 J2 W62t
(XSIt)Qq = Z ———— (1 — wdt)™r 272 g2 72 Wy + 26t
Liolial t _ 2 )
142 tis=q J1:02:93: (1 W(St)
where the indices (j1, jo, j3) are non negative integers. Remarking that the expectation of the terms with
j2 odd vanishes and then using Young’s inequality, one deduces that for §t < %,

_ W2 1 _Jat2ja _ da+2d3
E((X%)%) < (1-wdt)?2* +E ((ﬁ +26t) ) + C, Z g2 ) 5y 2
. Jiti2tiz=a
J1<q,j2 even ,jz<q
< 24 Ct+Cp Y (x2q6t + (5t1+q<112+22j3)) :
. Jj1tiz2+iz=q
J1<q,j2 even ,jz<q
< (14 Cyot)a 4 Cyot < e9a%H(1 + 2%4) — 1. (44)

Let us now prove Lemma 11 for the scheme (17). As noticed in the proof of Lemma 11 above, it is sufficient
to bound from below E (exp (=60t 31", X}ls,))- By Jensen inequality, we have E (exp (_—9675 S X)) =
exp (—0-L 37" E (X}5,)). By using (44), it is easy to prove by induction that E (Xj5,) < e2%(1 +
E (Xé)) — 1 and this concludes the proof of Lemma 11 in this framework.

In order to obtain a complete convergence result of the form (33) for the scheme (17), it remains to prove
the complementary bound (19), that we have not obtained so far. However, we will check by numerical
simulations that (33) still holds.

2 Numerical results

2.1 Computation of a reference solution by a spectral method

In this section, we would like to explain how we can obtain a very precise reference solution by using a
partial differential equation approach to compute Epmc(T') (see [4]).

2.1.1 A partial differential equation approach to compute Epnc(T)

Let us introduce the solution ¢ to the following partial differential equation for :

¢
{ 57 = ~Ho. (o) Ry xR (45)
¢(0,z) = ¢r(x), z €R

14



where H (resp. 1) is defined by (10) (resp. (12)). Since 1y € H, it is a standard result that this problem
admits a unique solution ¢ € C*(Ry, H) N CO(R%, Dy (H)) N C* (R, H). The function ¢ is regular and
odd, and therefore is such that ¢(¢,0) = 0 for all ¢ > 0. Therefore the function ¢ is also solution to the
following partial differential equation:

% =—H¢, (t,z) eR. xR
o(t,0)=0, t>0 (46)

¢(0,x) = ¢y(z), z €R.
In [4], we have shown that since ¢ satisfies (46), we can express FEpyc(t) (defined by (2)) using the
function ¢ (see Proposition 11 in [4]):
<’l/)[a ¢(t)>

Our reference solution Epyc (7)) will rely on formula (47) after discretization of (45) by a spectral method.

Epnc(t) = (47)

2.1.2 Computation of the wave function ¢

We will briefly present the spectral method developed to compute an approximation of ¢. We recall that
the Hermite polynomials are defined by :

3
n o2 d

VnEN, hy(x) = (-1 —— (e=).

We introduce the eigenfunctions of the operator Hp, normalized for the L?(R) norm associated with the
eigenvalues E,, = w(n +1/2) for n >0,

1 (w/ﬂ')l/4)
() = hp(vVwz) exp(——wz?) | =t— ) .
on () (Vor) exp(—3 )( o
It is well known that the vector space spanned by the set of functions {pagt1}r>0 is dense in Vo = {¢ €

HYR)NH | zp € L?}, which is the domain of the quadratic form associated with Hy.

Let us now introduce the functional space V = {p € H'(R) N'H | 2% € L?}, which is the domain of the
quadratic form associated with H. The set of functions {¢ax+1}r>0 is also a basis of V.

Let V,, = Span(p1,ps3,...,0an—1). We use this approximation space to build the following Galerkin
scheme for (45): find ¢, € C°(R,V),) such that? ¢,(0,2) = ¢, and Vi € V,

(226, =~ (Hron(a,0). ). (49)

We diagonalize the operator H restricted to V,. We denote (¢f, ¢, ..., ¢k ;) the eigenfunctions and

Ey,E3,...,E}_, the associated eigenvalues. Because of the symmetry of H, it is easy to check that V),
can also be spanned by (¢f, ¥, ..., 0" _;):
Vn = Span(eg, 93, - - Pn_1)- (49)

Since for ¢t > 0, ¢,,(t,.) € V,, there exists ux(t), k =0,...,n — 1, such that
n—1
dn =) ur(t)py- (50)
k=0
In view of (49) and (50), (48) is equivalent to the equations: Vi =0,...,n — 1,

n—1 n—1
Ouy(t

k=0 k=0

n—1
= Epui(t) (g, ¢} -
k=0

2Notice that ¥ = @1 € Vp.
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We deduce that VE=0,...,n—1,

so that

Zuk exp(~ E{t)¢ (2), (1)
where u(0) = (Y7, ¢}).

Remark 14 The eigenfunctions of H are obtained by diagonalization of the matriz A = (ai;)i j=o0,... n—1
with Vi,j=0,...,n—1:

aij = (Hp2it1,92j+1)
(Howait1, p2j11) + 0 (2t 02it1, 02541)
Sijw (2i 4+ 3) + 0 (z*02i41, P2541)

We can use the n—point Gauss-Hermite formula to deal with the integration of the second term on the
right. We recall that this method provides an exact result for fjooj p(x) exp(—x?)dx as long as p is a
polynomial of degree 2n — 1 or less.

2.1.3 Approximation of Epyc(T)

We now use formula (47) to approximate Epyic(T). By an elementary calculation, we obtain the following
approximation:

’u’l 0 ) n mn n
2, +Z LA exp(— (7 - E§)T)

uo(0) (¢7, p1
Uj 901 y P1 n n
1+ exp(—(E" — E)T
ZUOO ot o) p(—( 0)7T)

In our test cases, we have observed that n = 40 is enough to reach convergence.

Notice that for a given n, the convergence in time to the lowest eigenvalue Ef} is exponentially fast, with
an exponent equal to the spectral gap B} — E{.

2.2 Numerical results of Monte Carlo simulations

In all the computations, we take T = 5.

We represent on Figure 2, the expectation e and the variance v of the error : ‘Egﬁg/("&) (T) — Epmc(T)

as a function of the number of walkers IV, the time step 0t and the number of reconfigurations v — 1,
where Epyc(T) is approximated using (52) and EE)VRZCT/(”&)( T) is defined by (32).

The top figures represent the expectation of the error and its variance according to the number of
walkers. To compute these quantities, we perform 2000 independent realizations, with the number of
reconfigurations ¥ — 1 = 50, a small time step 6t = 5.1073 and § = 0.5. The simulations confirm the
theoretical result : the error decreases as C'/v/N.

The effect of the time step is shown on the two figures in the center. The numerical parameters are: a
large number of particles N = 5000, number of configurations v — 1 = 30, § = 2 and 300 independent
realizations. We can see on the figure on the left that the error decreases linearly as the time step
decreases. We also remark that the error is smaller with the approximate scheme (17) than when using
the exact simulation of the SDE (15) proposed in the Appendix. This rather amazing result can be
interpreted as follows. When using the exact simulation of the SDE, there is only one source of error
related to the time discretization, namely the approximation of the integral in the exponential factor
in (2). When using the scheme (17), we add a weak error term which seems to partly compensate the
previous one.
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Figure 2: Expectation and variance of the error when (15) is discretized according to the method described
in Appendix (solid curve) and according to the scheme (17) (dotted curve).

The last figures represent the effect of the number of reconfiguration steps. The numerical parameters
are: time step 6t = 5.1073, number of particles N = 5000, § = 2 and 300 independent realizations. The
curve representing the variation of the error according to the number of reconfigurations has the shape of
a basin. We deduce that on the one hand a small number of reconfigurations has the disadvantage that
walkers with increasingly differing weights are kept. On the other hand a large number of reconfigurations
introduces much noise. An optimal number of reconfiguration seems to lie between 20 and 50.

On Figure 3, we check that the optimal number of reconfigurations in terms of the variance v of
ngv'fg/ (U&)(T) (and not of the error) is also obtained for a number of reconfiguration which seems
to lie between 20 and 50. The numerical parameters are those considered for the figures below in Fig-
ure 2: time step 6t = 5.1073, number of particles N = 5000, § = 2 and 300 independent realizations.
We have not studied how the optimal number of reconfigurations varies according to the other numerical

parameters.

We have investigated a practical method to estimate numerically the optimal number of reconfigurations.
On Figure 4 we represent the variance of Egﬂ,}g/ M(t) according to time ¢, without any reconfiguration
step v = 1. The other numerical parameters are again those considered for the figures below in Figure 2.
We can see that the variance is minimal at t* ~ 0.25 before it starts to raise again. We remark that
v = T/t* = 20 is close to the optimal number of reconfigurations obtained on the previous Figures.
Therefore, it seems that the optimal number of reconfiguration is related to T'/t* where t* minimizes the

. N,1,t/5t
variance of Epy e/ (t).

Conclusion

In this paper, we have proved on a simple example convergence of numerical implementations of the DMC
method with a fixed number of walkers. The observed theoretical rates of convergence are confirmed by
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Figure 3: Variance of Egﬂ/?cT/ (vot) (T") in function of the number of reconfigurations when (15) is discretized

according to the method described in Appendix (solid curve) and according to the scheme (17) (dotted
curve).
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Figure 4: Variance of Egl’v}g/&(t) according to time ¢.

numerical experiments and is likely to hold in more general situations. We have also checked numerically
the existence of an optimal number of reconfiguration steps. For future work, we plan to investigate
criteria devoted to the choice of the number of reconfiguration steps. One interesting direction is the use
of automatic criteria based on a measure of the discrepancy between the weights carried by the walkers
to decide when to perform a reconfiguration step.

Appendix : Simulation of the stochastic differential equation (15)

In this appendix, we show that it is possible to simulate exactly in law the (K +1)-plet (Xo, X5, - . ., XKkst),
where X; is defined by (15). Let (G,U) denote a couple of independent random variables with G normal
and U uniformly distributed on the interval [0, 1].
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Simulation of the increment X, — X, for ¢t > s.

The square R; of the norm of a 3-dimensional Brownian motion W; = (W,‘}, w2, W?) solves dR; =
t
W, -dW, R

is a one-dimensional Brownian motion. Hence p; =

3dt + 2v/R;dB; where B; =

0 (|W ] 1+ 2wt

solves " IB
dpy = (3 — 2wpy) ———— + 2./ ————. 53
pr = ( wpt)l—i—th Pt 1 2wt (53)

1 (2wt
It is easy to check that ( 0 (e b \/fﬁ) is a Brownian motion. Hence, performing a time-change
¢

in (53), one obtains that PL(ezwt—1) = e_Q‘UtRﬁ(ezw,l) is a weak solution of the equation dY; =

(3 — 2wY;)dt + 2v/Y; dW; satisfied by Y; = X7. Therefore ™!, /R 1 (2we_y) is a weak solution of (15).

For v > u, R, has the same distribution as (vVR, + W, — Wi)2 + (W2 -W2)2 + (W3 - W?3)2 and
therefore as (vR, + Gyv/v — u)? — 2(v —u)log(U) with (G, U) independent from R,,. Hence for t > s, X,
has the same distribution as

) 1/2
1
<e2wt <<ewsXS + C;w (e2wt B 62(*)5)1/2> _ 2%(62‘” _ 62w5) 10g(U)>>

1/2

G S
— —w(t—s)X 1 — —2w(t—s)\1/2 — (1= —2w(t—s) 1
(( (B ) L ) o)

2w

where the couple (G,U) is independent from X.

Simulation of X, with distribution 2¢7(z)1{,>0dz.

The random variable \/é (G? —21log(U)) 172 s distributed according to the invariant measure 247 (2)1 ;-0 dz,

2w
as suggested by letting the time increment t — s tend to 4+o0o in the previous simulation. Indeed,

G? — 2log(U) is a Gamma random variable with density W(B/Q)I{Z>O} Vze */2. And one deduces

the density of \/%—w (G2 — 210g(U))1/2 by an easy change of variables.
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