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Abstract. Molecular simulation is explored from the mathematical viewpoint. The field
comprises computational chemistry and molecular dynamics. A variety of mathematical
and numerical questions raised is reviewed. Placing the models and the techniques em-
ployed for simulation on a firm mathematical ground is a difficult task, which has begun
decades ago. The time is right for assessing the field, and the issues and challenges ahead.
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1. Introduction

Molecular simulation is an increasingly important field of scientific computing. It
comprises computational chemistry, focused on the calculations of electronic struc-
tures and the related properties, and molecular dynamics, devoted to the simula-
tion of molecular evolutions, evaluations of ensemble averages and thermodynamic
quantities. Examples of reference treatises are [68, 70] and [1, 39], respectively.
We also refer to [14, Chapter 1] for a mathematically-oriented introductory text.

1.1. Ubiquity of molecular simulation. The field has several intimate
connections with many other fields. Indeed, molecular simulation is above all im-
portant because many macroscopic properties of matter originate from phenomena
at the microscopic scale. Instances are: electrical conductivities, colors, chemical
reactivities, mechanical behaviour, aging. Accurate calculations on representative
microscopic systems allow for the evaluation of such properties. Additionally, even
the macroscopic phenomena that proceed from bulk effects, and which thus ne-
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cessitate the consideration of large size microscopic systems, may now be studied
by advanced techniques in molecular simulation. Recent record calculations sim-
ulate the dynamics of billions of atoms over a microsecond. Molecular biology,
chemistry and physics are thus inseparable today from molecular simulation. An
easy observation sheds some light on this. Roughly one publication out of ten in
chemistry journals presents some numerical simulations performed on theoretical
models. This is an impressive ratio for a field so much experimentally oriented.

Computations are first seen as complements to experiments. For instance, all
the information about the electronic properties is contained in the wave function;
the latter cannot be measured but it can be computed. Computations are also seen
as an alternative to experiment. It is possible to simulate molecular systems that
have not been synthetized yet, or phenomena inaccessible to experiments (huge
temperature or pressure, time scales smaller than the femtosecond, evolutions on
decades or more). Additionally, computations can serve for the laser control of
molecular systems ([6]), and other emerging fields of high energy physics.

Other, apparently distant, fields also make an extensive use of molecular simu-
lation. Rheology of complex fluids and more generally materials science were once
focused at the macroscopic scale and based on purely macroscopic descriptions.
They used to be far from molecular concerns. However, the accuracy needed in
the quantitative evaluation of many properties (think e.g. of constitutive laws or
slip boundary conditions) requires models to be more and more precise, involving
the finest possible scales in the simulation. This eventually includes the molecular
scale.

The last application field that we shall mention, besides the fields using the
macroscopic impact of molecular simulation, regards the emerging field of nan-
otechnology. Nanosystems are indeed accessible today to a direct molecular simu-
lation.

Overall, major technological challenges for the years to come may, or more
properly stated must, be addressed by molecular simulation techniques. Examples
are the detailed simulation of protein folding, and the description of the long time
radiation damage of materials in nuclear power plants. To appreciate this ubiq-
uity of molecular simulation, it is sufficient to consider the enormous proportion
of computational time devoted to molecular simulation in the largest centers of
computational ressources worldwide.

1.2. Relation to mathematics. On the other hand, the interface of molec-
ular simulation with mathematics is not yet comparable to the practical importance
of the field.

Molecular simulation, and more precisely computational quantum chemistry,
were born in the 1950s for molecular systems consisting of a few electrons. Con-
temporary methods and techniques now allow for the simulation of molecules of
hundreds of electrons, modelled by very precise quantum models, up to samples of
billions of particles modelled by molecular dynamics. This is an enormous success.
The calculations are often surprisingly accurate, but also sometimes desperately
inaccurate. Experts in chemistry have constantly improved the models and the
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methods. They have turned the field into an allmighty tool. However, in many
respects, molecular simulation is still an art. It relies upon a delicate mix of phys-
ical intuition, pragmatic cleverness, and practical know-how. Mathematics has
already provided with significant contributions to the theoretical understanding.
Also, its companion fields, numerical analysis and scientific computing, have defi-
nitely improved the efficiency of the techniques. Yet, they all need to irrigate more
molecular simulation. To state it otherwise, there is an enormous gap between the
sophistication of the models and the success of the numerical approaches used in
practice and, on the other hand, the state of the art of their rigorous understanding.

We are witnessing an evolution that is due to two different reasons.

First, the mathematical knowledge on the models is rather satisfactory. Efforts
were initiated as early as the 1970s by pioneers such as E. H. Lieb, B. Simon,
W. Thirring, Ch. Feffermann, focusing on fundamental theoretical issues. Ques-
tions were addressed about the well-posedness of the models, and the relation
between the various models, in various asymptotic regimes. Researchers such as
R. Benguria, J. P. Solovej, V. Bach, G. Friesecke, to only name a few, contin-
ued the effort over the years. Those were later joined by contributors following
the impulsion given by P-L. Lions: M. J. Esteban, I. Catto, E. Séré, X. Blanc,
M. Lewin, and the author. A number of researchers, experts in analysis, spectral
theory, partial differential equations, evolution equations, now become involved in
the field. The enclosed bibliography cites several of them.

Second, and as a natural follow-up to mathematical analysis, numerical analysis
has indeed come into the picture. The numerical analysis of computational chem-
istry methods was a completely unexplored subject until the mid 1990s. Boosted
by the state of the mathematical analysis, it is now a quickly developing topic.
The work in this field was pioneered by E. Cancès. Researchers such as Y. Maday,
M. Griebel, W. Hackbush, Ch. Lubich, W. E, well known for their contribution in
various other fields of the engineering sciences, now get involved, along with their
collaborators (G. Turinici, ...) in electronic structure calculations or in molecular
dynamics.

It is therefore a good time for assessing the field, and the issues and challenges
ahead. Doing so might help to boost the research in the area.

The present contribution rapidly reviews some commonly used models and their
mathematical nature, indicating the progress achieved over the last decades in their
mathematical understanding. Questions of numerical analysis are also addressed.
Important unsolved issues are emphasized. Owing to the evident space limitation,
this review is not meant to be exhaustive: see [54, 55] for more comprehensive
reviews, and [56] for a recent collection of various contributions. This is rather an
invitation for mathematicians to get involved in the endeavour of placing the field
on a firm mathematical ground.
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2. Mathematical overview of the models

of computational chemistry

2.1. The Schrödinger equation. For most applications of molecular sim-
ulation, the matter is described by an assembly of nuclei, which are point particles
treated classically, equipped with electrons, which are light particles modelled by
quantum mechanics. For systems of limited size, called molecular systems, there
areM nuclei, of charge zk, located at x̄k, and N electrons of unit charge. The finest
models are called ab initio models since they only involve universal constants and
no experimentally determined parameters. Assuming the molecular system non-
relativistic, placing it at zero temperature, and, for clarity of exposition, omitting
the spin variable, the state of the electrons is modelled by the N -body Hamiltonian

H x̄1,...x̄M
e = −

N
∑

i=1

1

2
∆xi

−

N
∑

i=1

M
∑

k=1

zk

|xi − x̄k|
+

∑

1≤i<j≤N

1

|xi − xj |
, (1)

where the terms respectively model the kinetic energy, the attraction between
nuclei and electrons, the repulsion between electrons. Notice that the positions
x̄k of the nuclei are parameters of this operator. The electronic ground-state is by
definition the minimizer of the energy:

W (x̄1, x̄2, · · · , x̄M ) = inf
{

〈ψ,H x̄1,...x̄M
e ψ〉, ψ ∈ WN

}

+
∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
. (2)

The variational space reads

WN =

{

ψ ∈
N
∧

i=1

L2(IR3),

∫

IR3N

|ψ|2 = 1,

∫

IR3N

|∇ψ|2 < +∞

}

(3)

where the wedge product denotes the antisymetrized tensor product (owing to
the Pauli exclusion principle). The Euler-Lagrange equation of (2) is the (time-
independent) Schrödinger equation

H x̄1,...x̄M
e ψ = E ψ (4)

where the energy E, lowest possible eigenvalue of H x̄1,...x̄M
e on WN is called the

ground-state energy. The resolution of (2) (or one approximation of it, which we
will detail below) is at the core of any computational chemistry calculation, prior
to any calculation related to excited states, energies, linear response, etc. We
therefore focus on this problem here.

Analogously, a time-dependent version of the problem exists: then the time-
dependent Schrödinger equation

i
∂

∂t
ψ = H x̄1,...x̄M

e ψ (5)

is to be solved. The treatment of the electronic problem is usually the inner loop
of the simulation, the outer loop consisting of the treatment of the nuclei. In
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the static setting, this consists in solving the molecular mechanics problem (also
termed geometry optimization): finding the configuration of nuclei that minimizes
the overall energy, i.e. the minimizer of

inf
(x̄1,x̄2,··· ,x̄M )∈IR3M

W (x̄1, x̄2, · · · , x̄M ). (6)

The time-dependent setting requires solving the equations of molecular dynamics,
i.e. the Newton equations of motion for the nuclei:

mk

d2

dt2
x̄k = −∇x̄k

W (x̄1, x̄2, · · · , x̄M ). (7)

2.2. Standard approximations. Problem (2) is well explored mathemat-
ically: [37, 49]. In addition to their own interest, theoretical studies of (2) provide
with useful practical informations on the quantities (wavefunction and energy) to
be evaluated in practice (see [48] and other works by the same authors). The
practical bottleneck of quantum chemistry calculations is however that state-of-
the-art numerical techniques only allow for (2) to be solved for ridiculously small
numbers of electrons. Indeed, the dimension of the tensor product ∧N

i=1L
2(IR3)

makes the problem untractable by usual techniques of scientific computing for the
practically relevant numbers of electrons, say a few tens to thousands. The prac-
tice of computational chemistry is thus to approximate (2). The purpose of such
approximations is to reduce the computational complexity of the problem, whilst
providing the accuracy required by chemistry. The energy of molecular systems
must indeed be determined within an incredibly demanding degree of accuracy (of-
ten termed the chemical accuracy). Energies such as (2) are typically 103 to 106

as large as the energy of an hydrogen bond. As the interest lies in the difference of
energy between two systems, in order to determine which is the more stable one,
the difficulty is challenging. Surprisingly, clever approximations do succeed in this
task. We now review them. For more details on the analysis, implementation and
efficiency of all the numerical techniques mentioned below, see [53].

In chemistry, approximations of (2) are schematically sorted into two categories.

Wavefunctions methods are used preferably by chemists, on small systems,
when accuracy is the primary goal, and computational time is a secondary issue.
The focus is on the interaction between electrons. The prototypical example is
the Hartree-Fock model. The latter is the best known model in the mathematical
community. The bottom line for deriving the Hartree-Fock model is a variational
approximation of the set (3) by the subspace of wavefunctions ψ that read as
determinants (antisymmetrized products) of wavefunctions of one electron. More
precisely, the Hartree-Fock problem reads

inf

{

EHF ({φi}), φi ∈ H
1(IR3),

∫

IR3

φiφ
∗
j = δij , 1 ≤ i, j ≤ N

}

(8)
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with

EHF ({φi}) =
1

2

N
∑

i=1

∫

IR3

|∇φi(x)|
2 dx+

∫

IR3

ρ(x)V (x) dx

+
1

2

∫∫

(IR3)2

ρ(x) ρ(y)

|x− y|
dx dy −

1

2

∫∫

(IR3)2

|τ(x, y)|2

|x− y|
dx dy, (9)

with V = −

M
∑

k=1

zk

| · −x̄k|
, τ(x, y) =

N
∑

i=1

φi(x)φi(y)
∗, ρ(x) = τ(x, x) =

N
∑

i=1

|φi(x)|
2,

where the star denotes the complex conjuguate. Post-Hartree-Fock methods consist
in enlarging the variational space by considering linear combinations of determi-
nants: Configuration Interaction (CI) methods, Multiconfiguration Self Consistent
Field (MCSCF) methods. Nonvariational correction methods, mostly based on
linear perturbation theory, are also employed: Möller-Plesset, Coupled Cluster.

On the other hand, Density Functional Theory based methods are used prefer-
ably for larger systems (and beyond for materials science), when computational
time matters and wavefunctions methods are too expensive. They consist in
rephrasing the problem (2) in terms of the electronic density

ρ(x) = N

∫

IR3(N−1)

|ψ(x, x2, x3, ..., xN )|
2
dx2 dx3 ... dxN .

Formally, a minimization problem of the type

inf

{

E(ρ);

∫

IR3

ρ(x) dx = N

}

(10)

is obtained. The idea has a rigorous theoretical grounding, but making it tractable
in practice requires some approximation procedure. The energy E(ρ), which is a
reformulation of 〈ψ,H x̄1,...x̄M

e ψ〉, is not explicit. Adequately adjusting the param-
eters (and even the terms) of the approximate energy functional E(ρ) is an issue,
sometimes controversial. Ancestors of DFT-based methods are Thomas-Fermi type
theories, very well investigated mathematically (see [60, 63, 74] for reviews). The
latter currently see a revival through orbital-free methods, which precisely con-
sist in discretizing ρ itself as the primary unknown. They therefore allow for the
treatment of larger systems, notably for materials science applications.

The general trend is that DFT-based models are increasingly popular. A com-
monly used setting is the Kohn-Sham Local Density Approximation (KS-LDA)
setting that explicitly reads as the minimization problem

inf

{

EKS−LDA({φi}), φi ∈ H
1(IR3),

∫

IR3

φi(x)φ
∗
j (x) dx = δij , 1 ≤ i, j ≤ N

}

(11)
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with

EKS−LDA({φi}) =
1

2

N
∑

i=1

∫

IR3

|∇φi(x)|
2 dx+

∫

IR3

ρ(x)V (x) dx

+
1

2

∫∫

IR3×IR3

ρ(x) ρ(y)

|x− y|
dx dy −

∫

IR3

F (ρ(x)) dx, (12)

where F is a nonlinear function determined on chemical basis.
Reducing the complexity of (2) comes at a price: nonlinearity. Whereas the

optimality equation (4) is a linear eigenvalue problem (in a high dimensional space),
the equation to be solved for most of the approximations of (2) is a nonlinear
eigenvalue problem (in a space of lower dimension, though). This is easily seen on
the expressions (9) and (12). However they are derived and irrespective of their
chemical meaning, the wavefunctions methods and DFT-based methods both lead
to a nonlinear eigenvalue problem:

−∆φj +W(φ1, ...., φN )φj = λjφj , j = 1, ..., N, (13)

where the λj are the Lagrange multipliers of the constraints. Equations (13) are
often called Self-Consistent Field (SCF) equations to emphasize the nonlinear fea-
ture, encoded in the operator W.

There are many questions of mathematical interest. The existence of a mini-
mizer (under appropriate physically relevant conditions) for several models related
to HF and DFT-type is now established. Very important contributions in this di-
rection are [62, 61, 8, 65, 66, 73, 40, 59]. For most models of practical interest, the
existence of a minimizer is known. In contrast, nothing is known on the unique-
ness. A major reason for this is that almost all models of practical interest are
nonconvex. The relation of these approximated models with the original model (2)
has also been investigated, e.g. in [4, 38] for some physically relevant asymptotic
regimes.

Mathematically, all problems arising in electronic structure theory are nonlin-
ear minimization problems with possible lacks of compactness at infinity (most of
them are posed on the whole space IRN , and are subject to a constraint, see (8)
and (11)). The Euler-Lagrange equation is a system of nonlinear elliptic partial
differential equations such as (13). The ellipticity basically comes from the Lapla-
cian operator, modelling the kinetic energy in (1). At one stage or another, spectral
theory comes into the picture. More precisely, the spectral theory of Schrödinger
operators −∆ + V often plays a key role. All this concerns the search for the
ground state in the nonrelativistic setting, at zero temperature. When relativistic
effects have to be accounted for, the Laplacian operator is replaced by the Dirac
operator (unbounded from below), and the theoretical setting drastically changes.
Important mathematical contributions on the relativistic setting are [36, 34, 35].
They have given birth to more efficient computational techniques. On the other
hand, temperature effects may also be accounted for, through the introduction of
a statistics, see [64] for one of the rare mathematical studies. Like for temperature
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effects, the theory of excited states is not in a satisfactory state. Attempts to place
the latter notion on a sound ground are [59, 23].

In the numerical practice, the problem is discretized using Galerkin techniques,
and more precisely spectral methods. The basis functions used for discretization
are typically gaussian approximations of the eigenfunctions of a hydrogen-like op-
erator (M = N = 1 in (1)), or plane waves. The latter is very well adapted to solid
state calculations. The former is incredibly efficient for calculations of molecular
systems. A remarkable accuracy is reached with a limited number of basis func-
tions. One reason why hydrogen-like basis functions outperform all other basis sets
is that they are problem-dependent basis functions, which very well reproduce the
exponential decrease at infinity and the cusp of wavefunctions at the point nuclei.
More general purpose basis sets, such as finite elements, have difficulties in doing
so, unless expensive mesh refinement techniques are employed. Finite-difference
methods also exist, termed in this context real-space methods, but they are used
for very specific applications, related to solid-state calculations.

After discretization, the equations are solved using nonlinear optimization tech-
niques. Surprisingly, the problem is not addressed as a minimization problem, but
in the form of the optimality equations (13). The latter is the only possible ap-
proach, considering the number of local minima, and despite the fact there is no
theoretical basis for this. It reveals as an efficient approach, mostly because com-
putations often benefit from prior calculations for adequately preconditioning the
solution procedure. The algorithms in use for solving (13) are known as SCF-
algorithms. Formally, they are elaborate variants of fixed-point iterations such
as

−∆φn+1
j +W(φn

1 , ...., φ
n
N )φn+1

j = λn+1
j φn+1

j , j = 1, ..., N. (14)

Their numerical analysis, initiated in [3], was performed only recently, see [18, 19]
and [54] for a review. A rigorous mathematical insight into SCF-algorithms has
led to definite improvements of their efficiency [52]. Alternative techniques may
also be used. An original approach, based on a posteriori error estimators and
related to Newton-type algorithms, is introduced in [69].

Notice that each inner loop of the nonlinear procedure involves a linear eigen-
value problem. This limitates the range of tractable systems (say typically that
systems with a few hundreds of electrons can be standardly treated on a work-
station). Ad hoc techniques may however be employed to broaden the spectrum
of tractable systems. The latter are known as linear scaling techniques, for they
significantly reduce the complexity of the diagonalization step, which in principle
scales cubically with respect to the size of the system, see [12, 41, 42]. The bottom
line for such a reduction is that the eigenelements are not explicitly needed: only
the projector on the space spanned by the first N eigenvectors is needed for the
computation of all quantities of practical interest. The problem is thus rephrased
so that an explicit diagonalization is avoided. Correspondingly, advanced tech-
niques such as Fast Multipole techniques [51], are used for assembling the huge
matrices to be manipulated. Using a combination of such techniques, larger sys-
tems, consisting of thousands of electrons, may be treated on a workstation. The
approach however still waits for a rigorous mathematical analysis.
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The above description of the numerical approach concerns isolated molecular
systems. Specific models are employed for the simulation of the liquid phase, and
of the solid (crystalline) phase, respectively. In the former case, a commonly used
setting is the continuum model : the molecule is placed in a cavity, surrounded by
a dielectric medium modelling the solvent. Consequently, the Coulomb interaction
potential appearing in V (see (9) and (12)) is replaced by the Green function
of electrostatics set on the cavity. Integral equation methods are utilized for the
numerical resolution: [20, 21]. On the other hand, the modelling of the crystal
phase corresponds to a periodic setting [2]: loosely speaking, the functions ψj

are indexed by a vector, i.e. for each k, ψk
j (x) is the j-th eigenvector periodic

in x up to a phase factor e−ik.x. In practice, the set of vectors k is discretized,
and the corresponding equations (13), now indexed by k, are solved. For the
practical discretization and resolution of the equations, dedicated techniques are
employed: see [53, 30]. Several theoretical issues regarding the rigorous derivation
of the models for the crystalline phase have already been considered: see [62, 24],
and other works by the same authors. Seminal contributions by L. Van Hove,
F. Dyson, A. Lenard, D. Ruelle, E. Lieb, J. Lebowitz, B. Simon, Ch. Fefferman
predated those. The bottom line is to justify the models of the solid phase proving
they are the limits of models for molecular systems, as the system size grows. More
generally, this is part of an enormous body of literature in mathematical physics
addressing questions related to thermodynamic limits.

2.3. Emerging approaches. Wavefunctions methods and DFT-based meth-
ods are dominant computational methods. Apart from the main stream, there are
three promising tracks followed either by chemists or mathematicians, that need
to be advertised. They consist in addressing the problem (2) in its original form,
without any approximation, in principle.

The first approach ([28]), actually almost as old as theoretical chemistry itself,
is based on a rephrasing of the minimization problem in terms of the marginals

γ(x1, x2, x
′
1, x

′
2) =

∫

IR3(N−2)

ψ(x1, x2, x3, ..., xN )ψ∗(x′1, x
′
2, x3, ..., xN ) dx3 ... dxN ,

called second-order reduced density matrices. This is possible because the operator
(1) only involves the positions xi and xj of two electrons simultaneously.

The second approach (called diffusion Monte-Carlo in the specific context of
chemistry) consists in determining the minimizer to problem (2) by solving the
fictitious evolution equation

∂ψ

∂t
+Heψ = 0,

using the Feynmann-Kac representation formula. Considering the long time limit
provides with a strategy to evaluate (2), see [67, 22].

The third approach, advocated by some mathematicians ([44, 43]), consists in
recognizing (4) as a high-dimensional partial differential equation and applying
the techniques of sparse tensor products. The technique relies upon a theoretical
framework set in this context in [78] (see also other works by the same author).
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For all these three approaches, enormous theoretical and practical difficulties
are still unsolved. For the first approach, the theoretical challenge is to determine
the variational space for γ corresponding to the variational space (3) for ψ. This
is where approximations are again introduced. The story is not closed. Current
techniques rely upon semi-definite programming or Augmented Lagrangian meth-
ods to solve the associated discretized problem. Somehow related to this, the
difficulty for the last two approaches lies in the fermionic nature of the electrons:
the wavefunction is constrained to be antisymmetric. In addition, the problem also
requires appropriate techniques such as high-dimensional integration techniques,
mainly based upon Monte-Carlo, or Quasi Monte-Carlo, techniques.

These three approaches are not in position today to compete with the other
more classical ones, which have benefited over the past years from constant efforts
shared by a huge community. They are however instances of approaches that may
be turning points and may change the landscape of computational chemistry in
the years to come.

All the above describes approaches to determine the electronic structure. As
mentioned in the Introduction, this is most often the inner part of a calculation.
The outer part concerns the nuclei, parameters of the inner calculation so far. In
the static setting, the problem is usually to determine their optimal position, i.e.
the most stable conformation. This is the molecular mechanics problem (6). In
biology, such a problem is crucial. It is the well-known question of determining the
3-dimensional structure of the molecule (protein,...) under study. Techniques of
discrete optimization, combinatorial optimization, in particular using stochastics-
based algorithms, are employed. Notice that the mathematical question of the
existence of such a most stable configuration is mostly open for all models of
interest, in spite of outstanding contributions on academic models [25].

3. Dynamical problems

and problems at larger scales

Regarding time-dependent problems, the evolution of the nuclei is again often con-
sidered classical. The Newton equations of motion (7) are solved. This is the
extremely popular field of molecular dynamics. It is called ab initio when W in
the right-hand side of (7) is calculated on-the-fly from quantum mechanical models
for the electronic structure (see [76] for a review), and classical when W has a pa-
rameterized analytic form, fitted on previous calculations or experiments. Param-
eterized potentials reportedly work well in biological applications, but experience
some difficulties for materials science applications.

For the explicit evaluation of W , a very common assumption in chemistry is
adiabaticity (see [45, 46, 75] and other works by the same authors for mathematical
discussions). When adiabaticity is assumed, W ideally takes the form (2) and is
computed using the static models and the techniques of Section 2.

In some cases such as collisions that involve electronic excited states with inter-
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secting energy surfaces, the adiabatic approximation is not valid. Then equations
(7) are coupled with the explicit time evolution of the electronic structure, simu-
lated by (5), or one of its approximation (analogous to those of Section 2, adapted
to the dynamics setting): see [17, 26, 50] for related mathematical studies.

A pecularity to be borne in mind, which has a huge impact on the mathematical
analysis, is that (7) is not only solved in order to determine the precise evolution
of the system. Often, based on the ergodicity assumption, (7) serves as a tool for
sampling the configuration space of the system in the microcanonical ensemble.
Averages on this space are indeed related to quantities of macroscopic interest.
Examples include the determination of the temperature, or the pressure, of a liquid
system, or the determination of some mechanical properties such as the Young
modulus of a crystalline solid.

Numerous challenging issues in numerical analysis arise from molecular dynam-
ics. First, system (7) contains several, disproportionate, timescales. Think e.g. of
bond lengths or angles oscillating either rapidly (i.e. at the femtosecond (10−15 s)
scale) or slowly (hundreds of femtoseconds). Adequate techniques must be em-
ployed: multi-timestep techniques, homogenization, damping of rapid degrees of
freedom, integration of differential algebraic equations. Second, the integration
of (7) over long times raises specific questions: geometric integration, backward
error analysis, integration of Hamiltonian, symplectic, reversible systems, etc. For
related questions, reference treatises or reviews in the numerical analysis literature
are e.g. [11, 58, 47, 71, 13]. See also [72, 31] in the molecular dynamics community.
Third, the longest timescales that may be reached using an explicit Hamiltonian
dynamics are not sufficient to cover the practical needs. Say the limit is, in good
cases, the microsecond and, more generally, the nanosecond. A major reason for
this is that the evolution of the system basically consists of long period of oscil-
lations around metastable sets (basins of energy), separated by rapid hoppings
between these states (simulation of infrequent events). Techniques for reaching
extremely long simulation times or for efficiently sampling the phase space are
mandatory to complement standard molecular dynamics: stochastic differential
equations, Markov chains, path integrals, etc. In addition, other ensembles than
the microcanonical ensemble may be sampled by adequate deterministic modifica-
tions of Hamiltonian dynamics (thermostated equations of motion) or by stochastic
equations (Langevin dynamics). See [27, 29, 33, 32, 77] and many other references
by these authors and others, for examples of techniques. The above shows that
molecular dynamics problems have a twofold multiscale nature: even on small
time frames, they involve degrees of freedom with drastically different characteris-
tic times, and in addition to this, the integration must be carried over extremely
long times. This is a significant difficulty. In spite of this, molecular dynamics
simulation, along with acceleration techniques, is an extremely successful field and
provides with impressively good quantitative results on some macroscopic quanti-
ties. Standard calculations on workstations simulate 108 atoms over the nanosec-
ond, record calculations largely outperform this. Here again, some practical and
theoretical pitfalls remain and the mathematical understanding of the methods is
to be improved. In a nutshell, one could say that it is not thoroughly understood
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why molecular dynamics techniques perform so well, i.e. why averages calculated
from erroneous or approximate trajectories are so close to the actual values of
macroscopic quantities.

The connection between the microscopic scale and the macroscopic scale is a
broad subject. Calculations of ensemble averages using molecular dynamics and
related techniques is one instance of it. Other questions concern the relation of
molecular simulation with continuum mechanics. An example of a theoretical work
in this direction is [9]. See also [10] for a review and references on the numerous
practical applications, in particular applications related to computational materials
science where strategies coupling molecular simulation techniques and continuum
mechanics techniques are rapidly developping.

4. Trends

As briefly overviewed above, molecular simulation is an extremely rich application
field of mathematics. Only a tiny part of the models and methods used in practice
have been explored mathematically to date. There is much room for improvement
in the mathematical understanding, the numerical analysis, the design of advanced
techniques, to further enhance the field.

Some theoretical challenges concern the uniqueness of the ground state, the
definition of excited states, the foundations of models at finite temperature, etc.

On the numerical side, current efforts in the mathematical community are di-
rected towards the development of novel methods: sparse grids techniques, do-
main decomposition methods [7], stochastic methods for electronic structure cal-
culations [22], methods for the determination of excited states [23], reduced basis
methods [15, 16], parallel-in-time methods [5], stochastic methods for the compu-
tation of free energies [57], etc.
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