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FINITE ELEMENT EVALUATION OF DIFFUSION AND

DISPERSION TENSORS IN PERIODIC POROUS MEDIA WITH

ADVECTION

P. TARDIF D’HAMONVILLE1, A. ERN1, AND L. DORMIEUX2

Abstract. This paper presents three-dimensional finite element simulations
to evaluate diffusion and dispersion tensors in periodic porous media in the
presence of an advection velocity field. These tensors are evaluated in the
framework of the double-scale expansion technique. Two problems, a Newto-
nian flow and a vector-valued advection–diffusion equation, have to be sequen-
tially solved at the pore scale. Finite element techniques to approximate these
problems are proposed and analyzed. Numerical results in three-dimensional
networks of spheres are presented to quantitatively assess the impact of the
pore morphology and of the advection velocity on the diffusion and dispersion
tensors.

1. Introduction

The modelling of transport phenomena in porous media has been considered
for a long time and can be traced back to Darcy’s pioneering work which identi-
fied the pressure gradient as the driving force of fluid flow. The result of Darcy’s
phenomenological approach was the well-known linear relationship between the fil-
tration velocity and the pressure gradient which is classically referred to as Darcy’s
law and which introduces the concept of permeability tensor. More recently, this
law was given a micromechanical interpretation in the framework of periodic ho-
mogenization [8]. Darcy’s law in fact appears as the macroscopic counterpart of
Stokes equations written at the microscopic scale, i.e., that of the pores, and is
widely used for the modelling of advection.

When the pore fluid is a mixture comprising a solvent and a solute, a relative
motion of the solute with respect to the solvent can be activated whenever the
concentration of the solute in the mixture is not homogeneous. Its driving force
at the microscopic scale is the solute concentration gradient and its modelling at
this scale goes back to Fick’s law. This second mode of mass transport is referred
to as diffusion [1]. When diffusion is not coupled with advection, the correspond-
ing macroscopic transport law takes the form of a linear relationship between the
macroscopic diffusive flux and the macroscopic gradient of solute concentration.
This relationship is formally identical to the microscopic Fick law, except for the
fact that the (scalar) diffusion coefficient is replaced by the homogenized tensor of
diffusion which takes into account the tortuosity of the pore space. Estimates of
this tensor can be derived by standard techniques [7].
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The present paper is devoted to the situation where diffusion is coupled with
advection. In this case, in addition to the advective and diffusive terms, the flux of
the solute comprises a dispersive term [5]. The periodic homogenization technique
based on double-scale expansions provides an appropriate theoretical framework to
relate the diffusion and dispersion tensors to the morphology of the pore space and
to assess the influence of advection on them [3].

This paper is organized as follows. Section 2 briefly restates the theoretical
framework of the double-scale expansion technique to evaluate the diffusion and
dispersion tensors in periodic porous media with advection [3]. These tensors are
evaluated by taking mean-values at the pore scale of a vector-valued field that solves
a vector-valued advection–diffusion equation involving a velocity field that, in turn,
solves a Stokes problem at the pore scale. Section 3 describes and analyzes various
finite element techniques that can be used to approximate the fluid flow and the
vector-valued advection–diffusion equations at the pore scale. Section 4 contains
the numerical results. First, test cases with analytical solutions are considered to
validate the methodology. Then, three-dimensional networks of spheres are investi-
gated to quantify the impact of the pore morphology and of the advection velocity
on the diffusion and dispersion tensors. Finally, Section 5 draws some conclusions.

2. Theoretical background

This section briefly restates the theoretical background based on periodic ho-
mogenization by double-scale expansion techniques to formulate the diffusion and
dispersion tensors from the solution of problems posed at the pore scale. In this
section, primes indicate non-dimensional quantities. Furthermore, the summation
convention for repeated indices is adopted throughout the paper.

2.1. Notational preliminaries. Let (e1, . . . , ed) denote the canonical basis of R
d.

Let y = (y1, . . . , yd) denote the spatial coordinates in this basis. Consider a periodic

porous medium with elementary parallelepipedic cell Ω =
∏d
i=1[0, ai] in R

d. All
the edge lengths ai are of the order of the length scale ` that is characteristic of
the medium heterogeneities. The elementary cell is embedded into a macroscopic
structure of characteristic size L. The scale separation condition δ = `

L
� 1 means

that the macro-structure comprises a large number of elementary cells.
The theory of periodic homogenization based on the double-scale expansion tech-

nique (see, e.g., [2]) classically regards any physical quantity A, which is originally
a function of y, as a function of two new spatial coordinates Z ′ := 1

L
y and z′ := 1

`
y,

i.e., A(y) := A(Z ′, z′), in such a way that this function is periodic with respect to
z′. Accordingly, the dependence of A with respect to z′ is related to fluctuations at
the microscopic scale, i.e., within the elementary cell. In contrast, the dependence
with respect to Z′ takes into account the variations of A at the scale of the macro-
scopic structure. In the sequel, ∇y refers to the gradient operator with respect to
the original spatial coordinates. In turn, ∇Z′ and ∇z′ are respectively associated
with variations at the macroscopic scale and local fluctuations. These differential
operators are related by the so-called chain rule ∇y = 1

L
∇Z′ + 1

`
∇z′ .

The elementary cell Ω is partitioned into Ω = Ωf ∪ Ωs where Ωf denotes the
volume occupied by the fluid phase and Ωs that occupied by the solid phase. It
is assumed that the solid phase is not deformed by the fluid flow. Furthermore,
∂Ωfs denotes the fluid–solid interface, i.e., ∂Ωfs = ∂Ωf ∩ ∂Ωs, and ∂Ωff denotes the
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Figure 1. Elementary cell Ω in two dimensions; Ωs is shaded in
gray; ∂Ωfs consists of the four arcs drawn in bold; ∂Ωff consists of
the four segments indicated by a bold dashed line

fluid–fluid interface (that part of the fluid domain boundary where the fluid is in
contact with the fluid in neighboring cells), i.e., ∂Ωff = ∂Ωf \ ∂Ωfs. The notation

is illustrated in Figure 1. Set Ω′ =
∏d
i=1[0,

ai

`
] and define Ω′

f , ∂Ω′
fs, and ∂Ω′

ff as
above.

Let |Ω′| denote the d-dimensional measure of the elementary cell Ω′ and |Ω′
f | that

of Ω′
f . The ratio ϕ =

|Ω′

f
|

|Ω′| is the porosity of the medium. For a quantity ω(Z ′, z′)

attached to the fluid and thus defined on Ω′
f only, 〈ω〉f(Z

′) = 1
|Ω′|

∫
Ω′

f

ω(Z ′, z′)dz′

denotes the apparent mean of ω and ωf = ϕ−1〈ω〉f its intrinsic mean. The fluc-
tuation of a physical quantity ω defined on the fluid domain with respect to its
intrinsic mean is defined as ω̃ = ω − ωf .

2.2. The flow problem. Consider a stationary flow of a Newtonian fluid through
the porous medium. The flow is driven by a macroscopic pressure gradient α(Z).
Denoting by µ the viscosity of the fluid, the flow is governed by the Stokes equations
in the form

−∇yp+ µ∆yuiei = 0,(1)

∇y·u = 0.(2)

Here, u denotes the velocity field and p the pressure field. It can be shown [2] that
an expansion of the pressure p up to first order in the scale separation parameter δ
yields

(3) p(Z, z) = p0(Z) + φ(Z, z)δ with φ
f
(Z) = 0,

that is, the leading order p0(Z) does not depend on z, i.e., does not vary at the scale
of an elementary cell. Accordingly, ∇Zp0 can be interpreted as the macroscopic
pressure gradient α. In contrast, φ represents the fluctuation of the pressure at the
scale of the elementary cell.

Define the non-dimensional velocity u′ and pressure fluctuation φ′ at the pore
scale as

(4) u′ =
µ

`2α
u and φ′ =

1

αL
φ,
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where α = αeα and α denotes the Euclidean norm of α. Introduction of (3) into
(1), together with (2), yield

−∇z′φ
′ + ∆z′u

′
iei = eα on Ω′

f ,(5)

∇z′ ·u
′ = 0 on Ω′

f .(6)

The boundary conditions are

u′ = 0 on ∂Ω′
fs,(7)

u′ and φ′ are z′-periodic on ∂Ω′
ff .(8)

Note that owing to (3), φ′ has zero-mean over Ω′
f . Furthermore, since the above

problem is linear, there is k(z′) such that u′ = −k(z′)eα. Switching back to dimen-
sional quantities yields Darcy’s law in the form

(9) uf = −
`2

µ
k

f
·∇Zp0.

The maximum norm in Ω′
f of the non-dimensional velocity u′ solving (5)–(8) is

denoted by Υmax; it is a non-dimensional parameter depending only on the shape
of Ω′

f . Typical values are of the order of 10−2–10−3 for the problems of interest
here. Accordingly, the flow velocity scale within the pore, say VF, is given by

(10) VF = Υmax
α`2

µ
.

To assess the validity of the Stokes equations to describe the fluid flow, i.e., to assess
whether inertial effects are negligible with respect to diffusive effects, one computes
the so-called Reynolds number such that

(11) Re =
ρVF`

µ
= Υmax

ρα`3

µ2
,

where ρ is the density of the fluid. The validity of the Stokes regime is granted
provided Re ≤ 1, yielding an upper bound for the macroscopic pressure gradient in
terms of the fluid properties and of the morphology of the porous medium, namely

(12) α ≤
µ2

Υmaxρ`3
.

As a numerical example, assume that the fluid is water so that ρ ∼ 103 kg·m−3

and µ ∼ 10−3 kg·m−1·s−1. Therefore, considering a pore scale of ` = 10−3 m yields
α ≤ 1 kg·m−2·s−2 if Υmax = 1 and α ≤ 102 kg·m−2·s−2 if Υmax = 10−2.

2.3. The vector-valued advection–diffusion problem. We consider a single
chemical species γ diluted in a solvent that circulates in the porous medium. The
(dimensional) velocity fields of the solvent and that of the solute are respectively
denoted by u and uγ . Let Dγ denote the diffusion coefficient of the solute in the
solvent. This coefficient, which refers to the diffusion of the solute through the
solvent in an infinite fluid domain, is independent of the morphology of the porous
medium. Fick’s law relates the relative motion of the solute with respect to the
solvent to the gradient of solute mass density ργ as follows:

(13) jγ
diff

= −Dγ∇yρ
γ
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where jγ
diff

= ργ(uγ−u) is the microscopic diffusive flux. The mass balance equation
for the solute then reads as follows:

(14) ∂tρ
γ + ∇y·(ρ

γu−Dγ∇yρ
γ) = 0.

In order to discuss the influence of advection on the mass balance of the solute at
the macroscopic level, it is convenient to introduce the reference velocity VD = Dγ

L
.

Three regimes can be identified (see [3]).

• The moderate advection regime in which VF ≤ VD; in this regime, advection
has no effect on the macroscopic description of diffusion, that is, dispersive
effects are negligible with respect to diffusive effects.

• The advection dominated regime in which VF ≤ VDδ
−1; this regime consti-

tutes the scope of the present work and is further discussed below.
• The non-homogenizable regime in which VF � VDδ

−1.

Using (10), the advection dominated regime is characterized by the upper bound

(15)
VFδ

VD
=

Υmaxα`
3

µDγ
= Re

µ

ρDγ
≤ 1,

where the Reynolds number is defined in (11). Recall that the macroscopic gradi-
ent α is chosen such that Re ≤ 1; hence, a sufficient condition for the advection
dominated regime to hold is µ

ρDγ ≤ 1.

We now focus on the advection dominated regime and we assume that the time
scale of advection is of the same order of magnitude as the time scale of concentra-
tion changes. Using the double-scale expansion technique, it can be shown [3] that
at the macroscopic scale, the mass balance of the solute is expressed as follows:

(16) ∂tρ
γ
0 + ∇Z ·(ϕρ

γ
0u

f + J
γ
diff + J

γ
disp) = 0,

with macroscopic diffusive and dispersive fluxes Jγdiff and Jγdisp given by

(17) J
γ
diff = ϕjγ

diff

f
and J

γ
disp = ϕρ̃γ ũ

f
.

The expansion of the solute mass density ργ up to first order in the scale separation
parameter δ yields

(18) ργ(Z, z) = ρ
γ
0 (Z) + ρ

γ
1(Z, z)δ with ργ1

f
(Z) = 0.

In other words, the leading term ρ
γ
0 does not depend on the variable z, that is,

does not fluctuate at the scale of a cell. It only varies at the scale of the macro-
scopic structure and, as such, can be interpreted as the solute mass density at the
macroscopic scale. In turn, the quantity ρ

γ
1 represents the fluctuation at the cell

scale and can be shown to be proportional to the macroscopic gradient of solute
concentration. In other words, the following holds:

(19) ρ
γ
1 (Z, z) = χ(Z, z)·∇Zρ

γ
0(Z) with χf(Z) = 0.

The field χ can be evaluated by solving a vector-valued advection–diffusion prob-
lem at the pore scale which is conveniently written in non-dimensional form. Set
χ′ = 1

L
χ and introduce the non-dimensional velocity field

(20) u′λ =
δ

VD
u = λu′ with λ =

α`3

µDγ
.
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Condition (15) can be reformulated as

(21) λ ≤
1

Υmax
,

meaning that the maximum norm of the normalized velocity u′λ is of the order of
1. Moreover, χ′ solves

(22) −∆z′χ
′
iei + ∇

z′
χ′·u′λ = u′λ

f
− u′λ on Ω′

f ,

subjected to the boundary conditions

∇
z′
χ′·n = −n on ∂Ω′

fs,(23)

χ′ is z′-periodic on ∂Ω′
ff ,(24)

where n is the unit outward normal to Ω′
f . A field χ′ solving (22)-(23)-(24) is only

determined up to an additive constant. This arbitrariness is removed using the

condition χ′f = 0 stated in (19).
Switching back to dimensional variables, it is now possible to derive expressions

of the macroscopic diffusive and dispersive fluxes in the form

(25) J
γ
diff = −DγDdiff∇Zρ

γ
0 and J

γ
disp = −DγDdisp∇Zρ

γ
0 ,

where the (non-dimensional) diffusion and dispersion tensors Ddiff and Ddisp are
given by

(26) Ddiff = ϕT with T = I + (∇
z′
χ′)t

f
,

where I is the identity tensor, and

(27) Ddisp = −ϕu′λ⊗χ
′
f
.

In the limit of zero advection, the tensor T can be interpreted as the so-called
tortuosity tensor.

3. Numerical methods

The problems (5)–(8) and (22)–(24) are solved approximately using finite element
techniques. In the sequel, only problems posed in non-dimensional form on Ω′

f are
considered; hence, primes are systematically omitted and the index z ′ is dropped
from differential operators. Moreover, for any subset R of Ωf , ‖·‖0,R denotes the
canonical norm in L2(R) and for an integer k ≥ 1, ‖·‖k,R denotes the canonical
norm in the Sobolev space Hk(R) (for simplicity, the same notation is employed for
vector-valued functions). Furthermore, d denotes the space dimension; generally,
d = 3, but in some instances, the case d = 2 is considered.

3.1. The discrete setting. Let {Th}h>0 be a family of meshes of the fluid domain
Ωf consisting of simplices (triangles if d = 2 and tetrahedra if d = 3). The param-
eter h refers to the maximum mesh-size. Henceforth, c denotes a generic constant
independent of h and whose numerical value can change at each occurrence. Set
H1(Th) = {q ∈ L2(Ωf); ∀τ ∈ Th, q|τ ∈ H1(τ)}.

Let τ̂ be the reference simplex and for any mesh element τ ∈ Th, let Tτ be the
mapping from τ̂ into τ . We assume that the meshes are affine; since only first-
order finite elements are employed hereafter, this poses no restriction on accuracy
in domains with curved boundaries. Moreover, we assume that the meshes do
not contain hanging nodes. To enforce periodic boundary conditions on ∂Ωff , the
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meshes are constructed in such a way that for all i ∈ {1, . . . , d}, the trace of Th on
the hyperplane {zi = ai

`
} is the image of the trace of Th on the hyperplane {zi = 0}

by the uniform translation of vector ai

`
ei.

For τ ∈ Th, F(τ) denotes the set of faces of τ ; all the mesh faces are collected

in the set F ]
h =

⋃
τ∈Th

F(τ). Owing to the particular nature of the boundary

conditions addressed here, it is useful to distinguish various subsets of F ]
h.

• F i
h denotes the set of mesh interfaces, i.e., F ∈ F i

h if there are τ1(F ) and
τ2(F ) in Th such that F = τ1(F ) ∩ τ2(F ). For F ∈ F i

h, nF denotes the
unit normal vector to F pointing from τ1(F ) towards τ2(F ), and T (F ) =
{τ1(F ), τ2(F )}. For a function v ∈ H1(Th), we define its jump across F as
[[v]]F = v|τ2(F ) − v|τ1(F ). The jump operator is extended to vector-valued
functions using the same notation.

• F fs
h denotes the set of mesh faces located on ∂Ωfs. For F ∈ F fs

h , nF denotes
the unit normal vector to F pointing towards the exterior of Ωf , τ(F ) the
mesh element of which F is a face, T (F ) = {τ(F )}, and for v ∈ H1(Th),
[[v]]F = v|τ(F ).

• By periodicity, the set of faces located on ∂Ωff is divided into the subsets
Fff
h and Fff′

h . For F ∈ Fff
h , we denote by τ1(F ) and τ2(F ) the two mesh

elements sharing F by periodicity in such a way that F ⊂ ∂τ1(F ). Then,

nF , T (F ), and [[v]]F are defined as for F ∈ F i
h. For F ∈ Fff′

h , nF and [[v]]F
take the opposite values to those of the corresponding face in Fff

h .
• It is also convenient to introduce the set Fh = F i

h ∪ F fs
h ∪ Fff

h .

For a face F ∈ F ]
h, hF denotes its diameter and |F | its (d−1)-dimensional mea-

sure. Similarly, for a mesh element τ ∈ Th, hτ denotes its diameter and |τ | its
d-dimensional measure. For the purpose of the present simulations, it is sufficient
to work with quasi-uniform mesh families; this means that there is c such that for

all F ∈ F ]
h, h ≤ chF .

For an integer k ≥ 0, let Pk denote the vector space of polynomials of total
degree less than or equal to k. In the sequel, we shall use the following finite
element spaces:

P 1
h = {vh ∈ L2(Ωf); ∀τ ∈ Th, vh|τ ∈ P1},(28)

P 0
h = {vh ∈ L2(Ωf); ∀τ ∈ Th, vh|τ ∈ P0},(29)

P 1
Lag,h = {vh ∈ P 1

h ; ∀F ∈ F i
h, [[vh]]F = 0},(30)

P 1
Lag,h,0 = {vh ∈ P 1

Lag,h; ∀F ∈ F fs
h ∪ Fff

h , [[vh]]F = 0},(31)

P 1
CR,h = {vh ∈ P 1

h ; ∀F ∈ F i
h,
∫
F
[[vh]]F = 0},(32)

P 1
CR,h,0 = {vh ∈ P 1

CR,h; ∀F ∈ F fs
h ∪ Fff

h ,
∫
F
[[vh]]F = 0}.(33)

P 1
h is the space of piecewise affine functions, P 0

h that of piecewise constant functions,
P 1

Lag,h the Lagrange finite element space of degree one, and P 1
CR,h the so-called

Crouzeix–Raviart finite element space. Recall the following trace and inverse trace
inequalities: there is c such that for all τ ∈ Th and for all vh ∈ P 1

h ,

‖vh‖0,F ≤ ch
− 1

2

F ‖vh‖0,τ ,(34)

‖vh‖L∞(F ) ≤ ch
−d−1

2

F ‖vh‖0,F ,(35)

where F is an arbitrary face of τ .
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We introduce a local gradient operator ∇h such that for a function v ∈ H1(Th),
its local gradient is defined for all τ ∈ Th as (∇hv)|τ = ∇(v|τ ). Similarly, for a
vector-valued function v ∈ [H1(Th)]

d, its local divergence is defined for all τ ∈ Th
as (∇h·v)|τ = ∇·(v|τ ). Recall that in the distributional sense over Ωf , the following
holds:

(36) ∇·v = ∇h·v +
∑

F∈F i

h

[[v]]F ·nF δF ,

where the second term in the right-hand side is a combination of Dirac delta func-
tions that are interpreted as 〈[[v]]F ·nF δF , ψ〉 =

∫
F
[[v]]F ·nFψ where ψ is an arbitrary

smooth function compactly supported in Ωf .

3.2. Finite element approximation of the flow problem. To set the prob-
lem (5)–(8) in weak form, we introduce the spaces

V = {v ∈ [H1(Ωf)]
d; v = 0 on ∂Ωfs; v is periodic on ∂Ωff},(37)

M = {q ∈ L2(Ωf);
∫
Ωf

q = 0}.(38)

Then, the flow problem consists of seeking (u, φ) ∈ V×M such that

(39)





∫

Ωf

∇u:∇v −

∫

Ωf

φ∇·v +

∫

Ωf

eα·v = 0, ∀v ∈ V,

∫

Ωf

ψ∇·u = 0, ∀ψ ∈M.

It is straightforward to verify that this problem is well–posed.
Two classes of finite element methods can be employed to approximate (39),

namely mixed finite element methods in which the velocity and the pressure finite
element spaces satisfy a discrete inf-sup condition and stabilized finite elements
in which the discrete inf-sup condition does not hold and least-squares terms are
added to the weak formulation to control the residual; see, e.g., [9, p. 183–208]. For
the purpose of comparison, one method in each class is considered. Equation (36)
is useful to discuss the various finite element approximations. When working with
stabilized conforming (i.e., continuous) finite elements, the second term in the right-
hand side of (36) vanishes, but not the first owing to the presence of the stabilization
term. When working with the mixed Crouzeix–Raviart/P0 finite element, the first
term vanishes but not the second owing to the nonconformity of the discrete velocity
space. In this second case, it is possible to design an accurate postprocessing
of the discrete velocity field yielding continuity of the normal component across
interfaces while preserving the local divergence, thus leading to a divergence-free
discrete velocity field. Finally, since first-order finite elements will be employed
to approximate the advection–diffusion problem (see §3.3), there is no point in
utilizing a finite element method with accuracy larger than one to approximate the
velocity field.

3.2.1. Stabilized finite elements. The main advantage of stabilized finite elements is
ease of implementation since equal-order polynomial interpolation can be considered
for both the velocity and the pressure. The approximate problem consists of seeking
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(uh, φh) ∈ [P 1
Lag,h,0]

d×P 1
Lag,h,∗ such that

(40)





∫

Ωf

∇uh:∇vh −

∫

Ωf

φh∇·vh +

∫

Ωf

eα·vh = 0, ∀vh ∈ [P 1
Lag,h,0]

d,

∫

Ωf

ψh∇·uh +

∫

Ωf

cstabh
2(∇φh + eα)·∇ψh = 0, ∀ψh ∈ P 1

Lag,h,∗,

where P 1
Lag,h,∗ = P 1

Lag,h∩M ensures that functions in P 1
Lag,h,∗ have zero-mean over

Ωf and cstab ∼ 1 is a user-dependent constant independent of h. The above problem
is well–posed and assuming elliptic regularity (this is generally the case since Ωf

has only convex corners) yields the following error estimate:

(41) ‖u− uh‖0,Ωf
+ h‖∇u−∇uh‖0,Ωf

+ h‖φ− φh‖0,Ωf
≤ ch2.

Since uh is continuous across interfaces, ∇h·uh = ∇·uh; however, owing to the
second equation in (40), ∇·uh 6= 0.

3.2.2. Mixed finite element methods. To approximate (39) in a mixed setting, we
consider the mixed Crouzeix–Raviart/P0 finite element. Thus, we seek (uh, φh) ∈
[P 1

CR,h,0]
d×P 0

h,∗ such that

(42)





∫

Ωf

∇huh:∇hvh −

∫

Ωf

φh∇h·vh +

∫

Ωf

eα·vh = 0, ∀vh ∈ [P 1
CR,h,0]

d,

∫

Ωf

ψh∇h·uh = 0, ∀ψh ∈ P 0
h,∗,

where P 0
h,∗ = P 0

h ∩ M . The above problem is well–posed and assuming elliptic
regularity yields the following error estimate:

(43) ‖u− uh‖0,Ωf
+ h‖∇u−∇

h
uh‖0,Ωf

+ h‖φ− φh‖0,Ωf
≤ ch2.

Owing to the second equation in (42), ∇h·uh = 0. However, because uh is discon-
tinuous across interfaces, ∇·uh 6= 0. In the sequel, the following result is needed.

Lemma 3.1. There is c such that

(44)

(
∑

F∈Fh

‖[[uh]]F ‖
2
0,F

) 1

2

≤ ch
3

2 .

Proof. Let ihu be the Lagrange interpolant of the exact solution u in P 1
Lag,h. Us-

ing (34) yields for all F ∈ Fh,

‖[[uh]]F ‖0,F = ‖[[uh − ihu]]F ‖0,F ≤ ch
− 1

2

F ‖uh − ihu‖0,T (F )

≤ ch
− 1

2

F (‖uh − u‖0,T (F ) + ‖u− ihu‖0,T (F )).

The conclusion follows by summing over mesh elements and using (43) as well as
the approximation properties of the interpolation operator ih. �

3.2.3. A divergence-free projection of the discrete velocity field. When solving the
advection–diffusion problem, it is interesting to use a discrete velocity field which is
divergence-free; see §3.3 for further discussion and §4.2 for numerical results. To this
purpose, we design a projector from [P 1

h ]d into H(div; Ωf) = {v ∈ [L2(Ωf)]
d; ∇·v ∈
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L2(Ωf)} by using a technique closely inspired from [4]. Consider the so-called
Brezzi–Douglas–Marini finite element space [6]

(45) Dh = {vh ∈ H(div; Ωf); ∀τ ∈ Th, vh|τ ∈ [P1]
d}.

For any face F̂ of the reference element τ̂ , let (p̂ bF,1, . . . , p̂ bF,d
) be a basis of P1(F̂ ).

Then, for all F ∈ F ]
h, define pF,i(x) = p̂ bF,i

(T−1
τ (x)) for all i ∈ {1, . . . , d} and x ∈ F ,

where τ is an element of which F is a face and F = Tτ (F̂ ).

Let F ∈ F ]
h and i ∈ {1, . . . , d}. For any function vh that is single-valued on F ,

set

(46) σF,i(vh) =

∫

F

(vh·nF )pF,i,

where nF is already defined for F ∈ Fh and for F ∈ Fff′

h , nF is defined to be the
unit normal vector pointing towards the exterior of Ωf . In the sequel, we always
choose p̂ bF,1 ≡ 1 so that σF,1(vh) is the mean-value of (v·nF ) over F .

Let τ ∈ Th. There is a basis (θτ,F,i)F∈F(τ),1≤i≤d of [P1(τ)]
d such that for all

F, F ′ ∈ F(τ) and for all i, i′ ∈ {1, . . . , d}, σF,i(θτ,F ′,i′) = δFF ′δii′ where δFF ′ and

δii′ are Kronecker symbols. For all vh ∈ [P 1
h ]d, observe that

(47) vh =
∑

τ∈Th

∑

F∈F(τ)

∑

1≤i≤d

σF,i(vh|τ )θτ,F,i.

Finally, define

(48) πh : [P 1
h ]d 3 vh 7−→

∑

τ∈Th

∑

F∈F(τ)

∑

1≤i≤d

σF,i({vh}F )θτ,F,i ∈ Dh,

where {vh}F is the mean-value of vh on F defined as {vh}F = 1
2 (vh|τ1(F )+vh|τ2(F ))

if F ∈ F ]
h \ F

fs
h , whereas {vh}F = 0 if F ∈ F fs

h .

Lemma 3.2. Let u solve (39) and let uh solve (42). Then, the following holds:

∇·(πhuh) = 0,(49)

‖u− πhuh‖0,Ωf
≤ ch2.(50)

Proof. (1) Let τ ∈ Th. Since uh ∈ [P 1
CR,h]

d,
∫

τ

∇·(πhuh) =
∑

F∈F(τ)

∫

F

(πhuh)·nτ =
∑

F∈F(τ)

∫

F

ετ,F{uh}F ·nF

=
∑

F∈F(τ)

∫

F

uh·nτ =

∫

τ

∇h·uh = 0,

where ετ,F = nτ ·nF = ±1, nτ being the outer normal to τ . Since ∇·(πhuh) is
constant on τ and πhuh ∈ H(div; Ωf), this proves (49).
(2) To prove (50), let τ ∈ Th. For all F ∈ F(τ) and for all i ∈ {1, . . . , d}, observe

that ‖θτ,F,i‖0,τ ≤ chτ |τ |
− 1

2 . In addition, uh|τ−{uh}F = ετ,F
1
2 [[uh]]F if F ∈ F ]

h\F
fs
h

and uh|τ − {uh}F = uh|τ if F ∈ F fs
h . Hence, owing to (47) and (48),

‖uh − πhuh‖0,τ ≤ c
∑

F∈F(τ)

∑

1≤i≤d

‖[[uh]]F ‖0,F‖pF,i‖0,Fhτ |τ |
− 1

2 .
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Using Lemma 3.1 and the fact that ‖pF,i‖0,F ≤ c|F |
1

2 for all F ∈ F ]
h yields ‖uh −

πhuh‖0,Ωf
≤ ch2, whence (50) follows using (43) and the triangle inequality. �

Remark 3.1. Using an inverse inequality, the triangle inequality, and estimate (41),
it is readily inferred that ‖∇u−∇

h
(πhuh)‖0,Ωf

≤ ch. Also observe that the normal
component of πhuh is exactly zero on ∂Ωfs and periodic over ∂Ωff . However, the
tangential component of πhuh has no longer zero-mean on the faces of ∂Ωfs. Us-

ing (34), it is inferred that ‖tF ·(uh−πhuh)‖0,F ≤ ch
3

2 where tF is a unit tangential

vector to F ∈ F fs
h , and hence 1

|F | |
∫
F
tF ·πhuh| ≤ ch2− d

2 ≤ ch
1

2 for d ≤ 3.

3.3. Finite element approximation of the advection–diffusion problem.

To set the problem (22)–(24) in weak form, introduce the space

(51) X = {χ ∈ [H1(Ωf)]
d; χ is periodic on ∂Ωff ;

∫
Ωf

χ = 0},

as well as the forms

a(w;χ, ψ) =

∫

Ωf

∇χ:∇ψ +

∫

Ωf

(∇χ·w)·ψ,(52)

b(w;ψ) =

∫

Ωf

(wf − w)·ψ +

∫

∂Ωfs

ψ·n,(53)

where w is a given velocity field. In the sequel, we shall consider w = u meaning
that w solves the exact flow problem (39), w = uCR

h meaning that w ∈ [PCR,h,0]
d

solves (42), w = uBDM
h meaning that w ∈ Dh is the divergence-free projection of

uCR
h constructed in §3.2.3, and w = u

Lag
h meaning that w ∈ [P 1

Lag,h,0]
d solves (40).

Then, the advection–diffusion problem consists of seeking χ ∈ X such that

(54) a(w;χ, ψ) = b(w;ψ), ∀ψ ∈ X.

Before approximating (54), we address its well–posedness.

Lemma 3.3. Problem (54) is well–posed if w = u, or if w = uBDM
h , or if w = uCR

h

and h is small enough, or if w = u
Lag
h , h is small enough, and ‖uLag

h − u‖L∞(Ωf ) ≤

ch2−d
2 .

Proof. The proof relies on the identity

(55) a(w;χ, χ) = ‖∇χ‖2
0,Ωf

− 1
2

∫

Ωf

(∇h·w)χ2

︸ ︷︷ ︸
A

+ 1
2

∑

F∈Fh

∫

F

([[w]]F ·nF )χ2

︸ ︷︷ ︸
B

,

and the Poincaré–Wirtinger inequality stating that ‖∇χ‖0,Ωf
≥ c‖χ‖1,Ωf

for all

χ ∈ X . Recall also that owing to the standard trace inequality in [H1(Ωf)]
d, for all

τ ∈ Th and for all F ∈ F(τ), ‖χ‖0,F ≤ c‖χ‖1,τ .

(1) If w = u or if w = uBDM
h , then A = B = 0; hence, a(w; ·, ·) is coercive on X and

thus (54) is well–posed.
(2) If w = uCR

h , then A = 0. Moreover, using (35) and (44) yields

|B| ≤ c
∑

F∈Fh

‖[[w]]F ‖L∞(F )‖χ‖
2
0,F

≤ c
∑

F∈Fh

h
−d−1

2

F ‖[[w]]F ‖0,F ‖χ‖
2
1,T (F ) ≤ ch2− d

2 ‖∇χ‖2
0,Ωf

.
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Hence, a(uCR
h ;χ, χ) ≥ (1 − ch2− d

2 )‖∇χ‖2
0,Ωf

.

(3) If w = v
Lag
h , it is more convenient to work with (52). Observe that if u

solves (39), then u is divergence-free and hence,
∫
Ωf

(∇χ·u)·χ = 0. This leads
to

a(uLag
h ;χ, χ) = ‖∇χ‖2

0,Ωf
+

∫

Ωf

(∇χ·(uLag
h − u))·χ.

Since ‖uLag
h − u‖L∞(Ωf ) ≤ ch2−d

2 , a(uLag
h ;χ, χ) ≥ (1 − ch2−d

2 )‖∇χ‖2
0,Ωf

. �

Remark 3.2. The hypothesis ‖uLag
h − u‖L∞(Ωf ) ≤ ch2− d

2 is very weak; in general,
second-order convergence is observed in the L∞(Ωf)-norm.

We now turn to the finite element approximation of (54). We consider Lagrange
finite elements of degree one. Owing to (21), the velocity norm is always less than
one; hence, in the vocabulary of finite elements, (54) is in the so-called dominant
diffusion regime, and no stabilization of advective derivatives is needed. Let

(56) Xh = {χ
h
∈ [P 1

Lag,h]
d; ∀F ∈ Fff

h , [[χ
h
]]F = 0;

∫
Ωf

χ
h

= 0}.

Note that functions in Xh are periodic on ∂Ωff . Then, the discrete problem consists
of seeking χ

h
∈ Xh such that

(57) a(wh;χh, ψh) = b(wh;ψh), ∀ψ
h
∈ Xh.

Here, wh is one of the three finite element approximations of the velocity field
discussed above. Since Xh ⊂ X , (57) is well–posed under the assumptions of
Lemma 3.3.

Theorem 3.1. Let χ solve (54) with w = u and assume χ ∈ [H2(Ωf)]
d. Let χ

h

solve (57) with wh equal to uBDM
h , uCR

h , or u
Lag
h . Then, the following holds:

(58) ‖χ− χ
h
‖1,Ωf

≤ ch.

Proof. Since χ ∈ [H2(Ωf)]
d and d ≤ 3, χ is continuous and bounded on Ωf . Let ihχ

denote the Lagrange interpolant of χ in [P 1
Lag,h]

d. Let wh be taken equal to uBDM
h ,

uCR
h , or uLag

h . The proof of (58) relies on the First Strang Lemma which yields the
following estimate:

c‖χ− χ
h
‖1,Ωf

≤ ‖χ− ihχ‖1,Ωf
+ sup
ψ

h
∈Xh

a(u; ihχ, ψh) − a(wh; ihχ, ψh)

‖ψ
h
‖1,Ωf

+ sup
ψ

h
∈Xh

b(u;ψ
h
) − b(wh;ψh)

‖ψ
h
‖1,Ωf

≡ T1 + T2 + T3.

(1) Clearly, |T1| ≤ ch.
(2) To estimate the second term, observe that

a(u; ihχ, ψh) − a(wh; ihχ, ψh) =

∫

Ωf

(∇ihχ·(u− wh))·ψh

= −

∫

Ωf

(∇ψh·(u− wh))·ihχ−

∫

Ωf

(∇h·wh)(ψh·ihχ) +
∑

F∈Fh

∫

F

[[wh]]F ·nF (ψ
h
·ihχ)

≡ T2,1 + T2,2 + T2,3.
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Clearly, |T2,1| ≤ c‖∇ψh‖0,Ωf
‖u− wh‖0,Ωf

‖ihχ‖[L∞(Ωf )]d ≤ ch2‖ψ
h
‖1,Ωf

.

(2.a) If wh = uBDM
h , then T2,2 = T2,3 = 0.

(2.b) If wh = uCR
h , then T2,2 = 0 and owing to (34) and (44),

|T2,3| ≤ c
∑

F∈Fh

‖[[uCR
h ]]F ‖0,Fh

− 1

2

F ‖ψ
h
‖0,T (F )‖ihχ‖[L∞(F )]d ≤ ch‖ψ

h
‖1,Ωf

.

(2.c) If wh = u
Lag
h , then T2,3 = 0 and

|T2,2| ≤ ‖∇h·u
Lag
h ‖0,Ωf

‖ψ
h
‖0,Ωf

‖ihχ‖[L∞(Ωf )]d ≤ ch‖ψ
h
‖1,Ωf

.

(3) To estimate the third term, observe that

b(u;ψ
h
) − b(wh;ψh) =

∫

Ωf

(uf − u− wh
f + wh)·ψh.

Since ‖uf − wh
f‖0,Ωf

≤ ‖u− wh‖0,Ωf
≤ ch2, it is clear that |T3| ≤ ch2. �

To complete the analysis, we derive an error estimate in the L2-norm using the
duality technique of the Aubin–Nitsche lemma. To this purpose, we consider the
adjoint problem which consists of seeking Ξ ∈ X such that

(59) a(u;ψ,Ξ) = (χ− χ
h
, ψ)Ωf

, ∀ψ ∈ X,

where χ solves (54) with w = u and χ
h

solves (57) with wh equal to uBDM
h , uCR

h ,

or uLag
h . We assume that the above problem yields elliptic regularity, i.e., there is

c such that

(60) ‖Ξ‖2,Ωf
≤ c‖χ− χ

h
‖0,Ωf

.

Theorem 3.2. In the above framework, the following holds:

(61) ‖χ− χ
h
‖0,Ωf

≤ c(h‖χ− χ
h
‖1,Ωf

+ h2).

Proof. Since Ξ solves (59), testing with ψ = χ− χ
h

yields

‖χ− χ
h
‖2
Ωf

= a(u;χ− χ
h
,Ξ)

= a(u;χ− χ
h
,Ξ − ψ

h
) + a(u;χ− χ

h
, ψ

h
)

= a(u;χ− χ
h
,Ξ − ψ

h
) + [a(wh;χh, ψh) − a(u;χ

h
, ψ

h
)]

+ [b(u;ψ
h
) − b(wh;ψh)] ≡ T1 + T2 + T3,

where ψ
h

is arbitrary in Xh and where wh is taken equal to uBDM
h , uCR

h , or uLag
h .

Since Ξ ∈ [H2(Ωf)]
d and d ≤ 3, Ξ is continuous and bounded on Ωf . Take ψ

h
= ihΞ,

the Lagrange interpolant of Ξ in [P 1
Lag,h]

d.

(1) Owing to (60) and classical interpolation properties of ih,

|T1| ≤ c‖χ− χ
h
‖1,Ωf

h‖Ξ‖2,Ωf
≤ ch‖χ− χ

h
‖1,Ωf

‖χ− χ
h
‖0,Ωf

.

(2) Since ‖ψ
h
‖[L∞(Ωf )]d ≤ c‖Ξ‖2,Ωf

≤ c‖χ− χ
h
‖0,Ωf

and ‖∇χh‖0,Ωf
≤ c,

|T2| ≤ ‖∇χh‖0,Ωf
‖u− wh‖0,Ωf

‖ψ
h
‖[L∞(Ωf )]d ≤ ch2‖χ− χ

h
‖0,Ωf

.

(3) Finally,

|T3| ≤ ch2‖ψ
h
‖0,Ωf

≤ ch2‖Ξ‖2,Ωf
≤ ch2‖χ− χ

h
‖0,Ωf

.

The conclusion is straightforward. �
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Combining the estimates of Theorems 3.1 and 3.2 with (26) and (27) shows that
with the three finite element techniques for the velocity field, the approximation for
the diffusion tensor converges to first-order in the mesh-size and the approximation
for the dispersion tensor converges to second-order in the mesh-size.

3.4. Implementation aspects. This section briefly reviews some implementation
aspects of the finite element approximations analyzed in the previous sections.

For the Stokes problem, it is convenient to discard the global constraint
∫
Ωf

φh =

0 to work with finite element spaces having localized basis functions. Hence, P 0
h,∗

(resp., P 1
Lag,h,∗) is replaced by P 0

h (resp., P 1
Lag,h) in (42) (resp., (40)). An approx-

imate solution to the linear system is obtained using the Uzawa algorithm and
the conjugate gradient method to solve the velocity subsystem (resp., the GMRes
algorithm to solve the pressure–velocity system). Upon convergence, the discrete
pressure field can be filtered to ensure the zero-mean constraint.

For the advection–diffusion problem, the same motivation pleads for using the
finite element space

(62) Yh = {χ
h
∈ [P 1

Lag,h]
d; ∀F ∈ Fff

h , [[χ
h
]]F = 0},

instead of Xh in (57). When the discrete velocity field is divergence-free, i.e., for
wh = uBDM

h , this poses no problem since it is straightforward to verify the following

Lemma 3.4. Let wh be a divergence-free velocity field.

(i) If χ
h

solves (57), then ∀κ ∈ R
d, χ′

h
= χ

h
+ κ is in Yh and such that

(63) a(wh;χ
′
h
, ψ

h
) = b(wh;ψh), ∀ψ

h
∈ Yh.

(ii) Conversely, if χ′
h
∈ Yh solves (63), then χ

h
= χ′

h
− 1

|Ωf |

∫
Ωf

χ′
h
∈ Xh is the

unique solution of (57).

When working with the linear system associated with (63), an approximate so-
lution can be obtained using the GMRes algorithm and upon convergence, the
zero-mean constraint on χ

h
is enforced by filtering. However, when the discrete

velocity field is no longer divergence-free, i.e., for wh = uCR
h or for wh = u

Lag
h , the

linear system associated with (63) does not admit any solution. This results from
the fact that for any constant field κ in Ωf ,

(64) b(wh;κ) = 0 and a(wh;χ
′
h
, κ) 6= 0,

in general (whereas a(wh;χ
′
h
, κ) = 0 if wh is divergence-free). In practice, it is

still possible to employ the GMRes algorithm to find the discrete field χ′
h

that
minimizes the Euclidean norm of the residual associated with the linear system,
but this procedure can result in a loss of accuracy when evaluating the diffusion
and dispersion tensors since it is not known a priori to which level the linear system
residual can be minimized. A quantitative discussion is postponed to §4.

4. Results

This section presents numerical results, first on analytical test cases to validate
the convergence analysis and then on three-dimensional sphere networks to assess
quantitatively the impact of the pore morphology and of the advection velocity on
macroscopic diffusive and dispersive transport. As in the previous section, only
problems in non-dimensional form are considered and primes are omitted.
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Stokes advection–diffusion

i ‖u− uh‖0,Ωf
‖u− uh‖1,Ωf

‖φ− φh‖0,Ωf
‖χ− χ

h
‖0,Ωf

‖χ− χ
h
‖1,Ωf

0 5.5e-4 3.2e-2 6.0e-3 1.7e-5 3.8e-4

1 1.8e-4 1.9e-2 3.4e-3 6.7e-6 2.5e-4

2 4.5e-5 9.4e-3 1.6e-3 1.8e-6 1.3e-4

3 1.1e-5 4.7e-3 7.8e-4 4.5e-7 6.5e-5

4 2.8e-6 2.4e-3 3.9e-4 1.1e-7 3.2e-5

Table 1. Convergence results for two infinite parallel planes; the
flow problem is solved using the mixed Crouzeix–Raviart/P0 finite
element and the advection–diffusion problem is solved using the
divergence-free velocity field in the space Dh.

4.1. Analytical test cases. Two test cases with analytical solution are consid-
ered, first that where the fluid flows between two infinite parallel planes and then
that where the fluid flows in a circular cylinder.

4.1.1. Infinite parallel planes. Consider two planes located at z3 = ±a. Set eα = e1
in (5). Then, the solution to the flow problem is

(65) u = 1
2 (a2 − z2

3)e1 and φ = 0,

and the solution to the advection–diffusion problem is

(66) χ = (− 1
24z

4
3 + 1

12a
2z2

3 − 7
360a

4)e1.

All the coefficients of the diffusion and dispersion tensors vanish except

(67) Ddiff
11 = ϕ and D

disp
11 = 2

945ϕa
6,

where ϕ = 2a is the porosity.
Two-dimensional simulations are performed on the plane {z2 = 0} and for a =

0.3. Table 1 presents convergence results for the discrete Stokes problem (42) and
the discrete advection–diffusion equation (57) in which wh = uBDM

h . The meshes are
uniformly refined with maximum mesh-size hi = h02

−i with i ∈ {0, . . . , 4} and h0 =
0.2. We observe that the convergence orders match theoretical predictions. Similar
convergence orders are observed if the flow problem is approximated using (40).

4.1.2. Circular cylinder. Consider a circular cylinder with radius a and generatrix
parallel to e1. Set eα = e1 in (5). Then, the solution to the flow problem is

(68) u = 1
4 (a2 − r2)e1 and φ = 0,

with r2 = z2
2 + z2

3 , and the solution to the advection–diffusion problem is

(69) χ = (− 1
64r

4 + 1
32a

2r2 − 1
96a

4)e1.

All the coefficients of the diffusion and dispersion tensors vanish except

(70) Ddiff
11 = ϕ and D

disp
11 = 1

3072ϕa
6,

where ϕ = πa2 is the porosity.
Three-dimensional simulations are performed for a = 0.3. Table 2 presents

convergence results; the same finite element techniques as in Table 1 are used.



16 P. TARDIF D’HAMONVILLE, A. ERN, AND L. DORMIEUX

Stokes advection–diffusion

i ‖u− uh‖0,Ωf
‖u− uh‖1,Ωf

‖φ− φh‖0,Ωf
‖χ− χ

h
‖0,Ωf

‖χ− χ
h
‖1,Ωf

0 1.1e-4 3.0e-3 6.7e-4 1.2e-6 3.5e-5

1 2.7e-5 1.6e-3 3.2e-4 3.5e-7 2.0e-5

2 7.1e-6 8.4e-4 1.4e-4 9.1e-8 1.0e-5

3 1.8e-6 4.6e-4 7.5e-5 3.1e-8 5.6e-6

Table 2. Convergence results for a circular cylinder; the flow
problem is solved using the mixed Crouzeix–Raviart/P0 finite el-
ement and the advection–diffusion problem is solved using the
divergence-free velocity field in the space Dh.

Figure 2. Three-dimensional cubic network of spheres.

The meshes are uniformly refined with maximum mesh-size hi = h02
−i with i ∈

{0, . . . , 3} and h0 = 0.1. We observe that the convergence orders are close to
theoretical predictions.

4.2. Cubic sphere networks. The porous medium now consists of a cubic net-
work of spheres such as the one illustrated in Figure 2. To avoid singular mesh
elements, the spheres are not tangent, but their radius a is larger than 0.5. This
also allows us to vary the porosity. The contact area between two adjacent spheres
is a circle whose radius is denoted by %. Figure 3 illustrates the mesh of the fluid
domain Ωf in the case % = 0.1.

To investigate the impact of advection on the values taken by the diffusion and
dispersion tensors, we solve (57) by scaling the discrete velocity field wh by the
numerical factor λ. The values of the diffusion and dispersion tensors are then
plotted as a function of λΥav where Υav denotes the norm of the average velocity
within the pore. Recall that λ can take values between 0 and 1

Υmax
; see (21). The

constant Υmax, which is the maximum norm of the velocity solving (5)–(8), depends
on the shape of the fluid domain Ωf and is generally of the order of 10−2–10−3;
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Figure 3. Mesh of the fluid domain Ωf in the case % = 0.1.

Υmax, h = 0.05 Υmax, h = 0.025 Υav, h = 0.025

% u
Lag
h uCR

h u
Lag
h uCR

h u
Lag
h uCR

h

0.1 2.36e-2 2.38e-2 2.37e-2 2.37e-2 4.86e-3 4.77e-3

0.3 1.08e-2 1.14e-2 1.13e-2 1.14e-2 1.63e-3 1.58e-3

Table 3. Maximum velocity norm Υmax and norm of average ve-
locity Υav for the two pore morphologies evaluated by solving (40)
or (42).

see Table 3 below. Hereafter, we vary λ in the range [0, 103] independently of
the morphology of the porous medium, keeping in mind that in some cases, the
larger values may fall slightly beyond the strict validity domain of the theoretical
framework.

Two cubic networks of spheres are considered, one with parameter % = 0.3 (the
sphere radius is a = 0.583 and the porosity is ϕ = 0.244) and one with parameter
% = 0.1 (the sphere radius is a = 0.510 and the porosity is ϕ = 0.448). For
both geometries, two quasi-uniform simplicial meshes are constructed, a coarse
mesh with mesh-size parameter h = 0.05 and a fine mesh with mesh-size parameter
h = 0.025. For % = 0.1, the coarse (resp., fine) mesh contains 14,626 (resp., 120,082)
tetrahedra, while for % = 0.3, the coarse (resp., fine) mesh contains 11,483 (resp.,
60,112) tetrahedra. Observe that the meshes used for % = 0.3 are somewhat coarser
than those used for % = 0.1.

Table 3 presents the maximum velocity norm Υmax and the norm of the average
velocity Υav obtained with the two pore morphologies when solving (40) or (42).
Results obtained on the coarse and fine meshes are reported for Υmax, showing

that uLag
h is not yet very accurate on the coarse mesh for % = 0.3. Furthermore,

the values obtained for Υmax and Υav confirm that it is reasonable to use values of
λ up to 103. We also observe that Υmax is five to ten times larger than Υav.

Table 4 presents the minimum linear system residual attained by GMRes for the

two pore morphologies when solving (57) with u
Lag
h , uCR

h , or uBDM
h . The tolerance
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h = 0.05 h = 0.025

% u
Lag
h uCR

h uBDM
h u

Lag
h uCR

h uBDM
h

0.1 1.7e-3 4.0e-4 9.9e-7 1.7e-4 3.6e-5 5.3e-7

0.3 9.3e-4 3.7e-4 5.7e-7 1.8e-4 6.0e-5 3.0e-7

Table 4. Minimum linear system residual attained by GMRes for

the two pore morphologies when solving (57) with u
Lag
h , uCR

h , or
uBDM
h .

for solving the Stokes problem is set to 10−9. When solving the advection–diffusion
problem, the parameter λ is set to 103 to emphasize the effects of the non-zero
divergence of the discrete velocity field. Results obtained on the coarse and fine
meshes are reported. In both cases, the minimum value for uCR

h is an order of

magnitude smaller than that for uLag
h . Moreover, the minimum value for uBDM

h is
two orders of magnitude smaller than that for uCR

h .
Tables 5 (resp., 6) presents the values taken by the diffusion (resp., dispersion)

coefficients Ddiff
11 and Ddiff

22 (resp., Ddisp
11 and D

disp
22 ) for the two pore morphologies

when solving (57) with u
Lag
h , uCR

h , or uBDM
h . Results obtained on the coarse and

fine meshes are reported. The data for the Stokes problem is eα = (1, 0, 0), and
the parameter λ is set to 103 to emphasize the effects of advection on the diffusion
and dispersion tensors and to study the sensitivity of the predicted values for these
tensors to the accuracy of the discrete velocity field. For the diffusion tensor, the
three discrete velocity fields yield fairly accurate values (errors within a few percent)
even on the coarse mesh for both geometries. For the dispersion tensor, the results

lead to different conclusions. In all cases, the dispersion tensor evaluated with uLag
h

is inaccurate, even on the fine mesh. This is due to the fact that the total number

of degrees of freedom needed to compute uLag
h is 4Nve, where Nve is the number

of mesh vertices, which is much less than that needed to compute uCR
h which is

Nte+3Nfa where Nte is the number of mesh tetrahedra and Nfa the number of mesh
faces. Furthermore, the accuracy of the dispersion tensors computed using uCR

h and

uBDM
h is similar, uCR

h yielding slightly more accurate results for Ddisp
11 (especially

on coarse meshes) and uBDM
h yielding more accurate results for Ddisp

22 (especially
for % = 0.3). Thus, from a practical viewpoint, it seems sufficient to work with
uCR
h , though the advantage of using uBDM

h is that the discrete advection–diffusion
problem is granted to be solved with high accuracy.

Figures 5 and 4 present for the two pore morphologies the values taken by the
diffusion and dispersion tensors, respectively, as a function of λΥav. Recall that
in the advection dominated regime, the value of λΥav should be smaller than one
and not too small. Simulations are performed with mesh-size h = 0.05, and (57)
is solved using the divergence-free velocity field uBDM

h . The dispersion coefficients

D
disp
11 and Ddisp

22 roughly scale as (λΥav)
2.
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Ddiff
11 Ddiff

22

% h u
Lag
h uCR

h uBDM
h u

Lag
h uCR

h uBDM
h

0.1 0.05 3.56e-1 3.65e-1 3.67e-1 3.12e-1 3.13e-1 3.13e-1

0.1 0.025 3.57e-1 3.60e-1 3.60e-1 3.08e-1 3.09e-1 3.09e-1

0.3 0.05 1.37e-1 1.40e-1 1.40e-1 1.25e-1 1.25e-1 1.25e-1

0.3 0.025 1.36e-1 1.37e-1 1.37e-1 1.23e-1 1.23e-1 1.23e-1

Table 5. Diffusion coefficients Ddiff
11 and Ddiff

22 for the two pore

morphologies evaluated by solving (57) with uLag
h , uCR

h , or uBDM
h .

D
disp
11 D

disp
22

% h u
Lag
h uCR

h uBDM
h u

Lag
h uCR

h uBDM
h

0.1 0.05 1.85e-1 2.26e-1 2.36e-1 1.60e-3 2.77e-3 3.08e-3

0.1 0.025 2.12e-1 2.19e-1 2.21e-1 2.44e-3 2.85e-3 2.92e-3

0.3 0.05 2.13e-2 2.78e-2 3.05e-2 6.49e-5 9.72e-5 1.17e-4

0.3 0.025 2.44e-2 2.68e-2 2.77e-2 9.11e-5 1.12e-4 1.18e-4

Table 6. Dispersion coefficients Ddisp
11 and Ddisp

22 for the two pore

morphologies evaluated by solving (57) with uLag
h , uCR

h , or uBDM
h .
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Figure 4. Cubic network of spheres with parameter % = 0.1; dif-
fusion (upper row) and dispersion (lower row) tensors as a function
of λΥav.
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Figure 5. Cubic network of spheres with parameter % = 0.3; dif-
fusion (upper row) and dispersion (lower row) tensors as a function
of λΥav.

Finally, we consider a centered cubic network of spheres. The spheres located at
the cube vertices have radius a = 0.57 while the sphere located at the center of the
cube has radius a = 0.15. The resulting porosity is ϕ = 0.262. Results are obtained
on a mesh containing 41,208 tetrahedra. The maximum velocity norm Υmax and
the norm of the average velocity Υav are respectively equal to 1.0e-2 and 1.6e-3.
The diameter of the spheres in the centered cubic network have been chosen so that
Υav takes approximately the same value as for the cubic network with % = 0.3; see
Table 3. Figure 6 presents the values taken by the diffusion and dispersion tensors
as a function of λΥav. Comparing the pore morphology with an obstacle (the
centered cubic network) to the pore morphology without an obstacle (Figure 5),

we observe that Ddisp
11 is about 20% smaller while Ddisp

22 is up to six times larger,
indicating that the presence of obstacles enhances transverse dispersive effects.

5. Conclusions

In the present work we have designed and analyzed a finite element tool to
evaluate quantitatively diffusion and dispersion tensors in the presence of advec-
tion for various three-dimensional pore morphologies. The analysis shows that the
most robust approach consists of approximating the velocity field using the mixed
Crouzeix–Raviart/P0 finite element and then to construct a divergence-free dis-
crete velocity field in the Brezzi–Douglas–Marini finite element space to solve the
vector-valued advection–diffusion equation. From a practical viewpoint, the present
numerical experiments indicate that the estimates for the diffusion and dispersion
tensors are generally accurate enough without postprocessing the Crouzeix–Raviart
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Figure 6. Centered cubic network of spheres with porosity ϕ =
0.262; diffusion (upper row) and dispersion (lower row) tensors as
a function of λΥav.

velocity field. On the contrary, working with stabilized finite elements to approxi-
mate the velocity field often yields insufficient accuracy, especially when evaluating
the transversal components of the dispersion tensor.
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