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A CONTINUOUS FINITE ELEMENT METHOD WITH FACE PENALTY TO
APPROXIMATE FRIEDRICHS’ SYSTEMS

ERIK BURMAN! AND ALEXANDRE ERN?

Abstract. A continuous finite element method to approximate Friedrichs’ systems is proposed and
analyzed. Stabilization is achieved by penalizing the jumps across mesh interfaces of the gradient
of some components of the discrete solution. The convergence analysis leads to optimal convergence
rates in the graph norm and suboptimal of order % convergence rates in the L>-norm. A variant of the
method specialized to Friedrichs’ systems associated with elliptic PDE’s in mixed form is also proposed
and analyzed. Finally, numerical results are presented to illustrate the theoretical analysis.

Résumé. On analyse une méthode d’éléments finis continus pour approcher les systémes de Friedrichs.
La stabilisation est obtenue en pénalisant le saut & travers les interfaces du maillage du gradient de
certaines composantes de la solution discréte. L’analyse de convergence conduit & des estimations
optimales en norme du graphe et & des estimations sous-optimales d’ordre % dans la norme L2 On
propose également une variante de la méthode adaptée aux systémes de Friedrichs associés aux EDP
elliptiques sous forme mixte. Enfin, des résultats numériques sont présentés afin d’illustrer 'analyse

théorique.
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Draft version: 6th January 2006.

1. INTRODUCTION

Friedrichs’ systems are systems of first-order PDE’s endowed with a symmetry and a positivity property. The
mathematical analysis of such systems, which was initiated by Friedrichs in 1958 [13], has made considerable
progress in the last decades; see, e.g., the review by Jensen [16]. Recently, the theory was revisited by Ern
and Guermond [10] where the well-posedness of the Friedrichs’ system was established whenever a suitable
boundary operator can be defined on the graph of the differential operator. Friedrichs’ systems are encountered
in many applications, including advection—reaction equations, advection—diffusion-reaction equations, the linear
elasticity equations, the wave equation, the linearized Euler equations, and the Maxwell equations in the so-
called elliptic regime, to cite a few examples.

The finite element approximation of Friedrichs’ systems was initiated by Lesaint and Raviart in 1974 [19, 20]
where the Discontinuous Galerkin method (DGM) was analyzed. The convergence estimate was subsequently
improved by Johnson et al. [17], and more recently a thorough systematic analysis generalizing [17,19, 20] was
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proposed by Ern and Guermond [10,11]. From a practical viewpoint, the DGM offers various advantages, includ-
ing the flexibility in using non-matching grids, handling heterogeneous media, and performing hp-refinement.
However, a drawback is that keeping the mesh fixed, the method involves a much larger number of degrees of
freedom than the continuous finite element method (CFEM). There is therefore a clear motivation to design
and analyze suitable approximation schemes for Friedrichs’ systems based on continuous finite elements.

To approximate satisfactorily the simplest example of Friedrichs’ systems, namely an advection—reaction
equation, using continuous finite elements, it is well-known that a stabilization technique must be used. Drawing
on earlier ideas by Babugka [1], Babuska and Zlamal [2], and Douglas and Dupont [7], the analysis of face
penalty finite element methods has been recently extended to advection—diffusion equations [3,4]. The principle
of the method consists of stabilizing the continuous finite element approximation by penalizing the jumps of
the advective derivative of the discrete solution across mesh interfaces. The degrees of freedom in the resulting
stabilized continuous finite element method (SCFEM) are those of the CFEM on the same mesh, which represents
a substantial saving with respect to a DGM. However, the penalty term acting on the gradient jumps extends
the discretization stencil, since a mesh node v is coupled to the nodes located in the set 7, of the elements to
which v belongs, but also to the nodes located in the neighboring elements sharing a face with the elements in
7,. In two space dimensions, when working with first-order finite elements, the number of nonzero entries in
the stiffness matrix scales as 7, 13, and 72 times the number of mesh vertices for CFEM, SCFEM, and DGM,
respectively, and when working with second-order finite elements, this number scales as 63, 100, and 288 times
the number of mesh vertices for CFEM, SCFEM, and DGM, respectively.

The goal of this work is to generalize the above face penalty technique to approximate satisfactorily Friedrichs’
systems using continuous finite elements. In §2 the main results on Friedrichs’ systems derived in [10,11] are
briefly restated and four examples of Friedrichs’ systems are discussed. In §3 the SCFEM with face penalty is
designed and analyzed. In §4 the setting is specialized to a certain class of Friedrichs’ systems associated with
elliptic-like PDE’s written in mixed form. Approximating the mixed form of the PDE presents some advantages:
it provides a more accurate reconstruction of the fluxes (the gradient of the primal variable for diffusion-like
problems and the stress tensor for linear elasticity problems), it reduces the condition number of the stiffness
matrix from a multiple of =2 to a multiple of h=1 (see, e.g., [12]), and it is often the only viable formulation
whenever complex constitutive laws such as those of viscoelastic fluids are considered. Finally, in §5 numerical
results are presented to illustrate the convergence estimates and the fact that oscillations produced by CFEM
without stabilization can effectively be controlled by the present face penalty technique.

2. FRIEDRICHS’ SYSTEMS

2.1. The setting

Let Q be a bounded, open, and connected Lipschitz domain in R? and let m be a positive integer. Let K
and {A*}1<r<q be (d + 1) functions on Q with values in R™™. Assume that these fields satisfy

K e [L=(@)]™™, (A1)

AF e [L>(Q)]™™  and zd:(')k.Ak e [L=())™™, (A2)

AP = (AF)" ae.in Q, - (a3)

Juo >0, K+K'— i O A* > 2u0T,, a.e. on Q, (a4)
k=1

where 7, is the identity matrix in R™™. Set L = [L?(Q2)]™ and let D(2) the space of € functions that are
compactly supported in Q. Let w € L. If the linear form [D(Q)]" 3 ¢ — — [ Zzzl w'o(AFp) € R, is
bounded on L, the function w is said to have an A-weak derivative in L, and the function in L that can be
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associated with the above linear form by means of the Riesz representation theorem is denoted by Aw. Clearly,
if w € [€H(Q))™, Aw = ZZ:1 AFOpw. Define the graph space W = {w € L; Aw € L}. Equipped with the graph
norm ||w||, = ||Aw||% + ||w||?, W is a Hilbert space. Define the operators T € L(W; L) and T' € L(W; L) as

d d
Tw=Kw+Y A%w,  Tw=Kw-> 0(Aw). (1)
k=1

k=1

Let D € L(W;W’) be the operator such that for all (v,w) € W x W,

(Dv,wywrw = (Tv,w), — (v, Tw). (2)

One readily verifies that the operator D is self-adjoint; D is also a boundary operator since [D(2)]™ C Ker(D).

Consider the following problem: For f in L, seek z € W such that Tz = f. In general, boundary conditions
must be enforced for this problem to be well-posed. In other words, one must find a closed subspace V of W
such that the restricted operator T': V — L is an isomorphism. To specify the space V, the key assumption
consists of assuming that there exists an operator M € L(W;W’) such that

(Mw,w)w w > 0 for all win W, (M1)
W = Ker(D — M) + Ker(D + M). (M2)

Assumptions (M1)—(M2) have been introduced in [10,11] drawing on earlier ideas by Friedrichs [13]. In particular,
they imply that Ker(D) = Ker(M) so that M is also a boundary operator. Define the following bilinear form:
For all (v,w) € W x W,

a(v,w) = (Tv,w) g + %((M — D)yv,w)w,w. (3)

In this framework, the main result proven in [10] is the following

Theorem 2.1. Assume (A1)—(A4) and (M1)—(M2). Then, for all f € L, the following problem is well-posed:
Seek z € W such that a(z,y) = (f,v)L, Vy € W, (4)

and the unique solution to (4) is such that z € V :=Ker(D — M) and Tz = f in L.

On 99, define the R™™-valued field D = 3¢_, n,A* where n = (n1,...,n4)" is the unit outward normal
vector to Of). Then, it is clear that for v, w smooth enough,

<l)’U7 ’w>W/7W = 0 ’wt'D’U. (5)

Henceforth, we assume that the boundary operator M can be associated with a matrix-valued field M : 092 —
R™™ gsuch that for v, w smooth enough,

<M’U,w>W/1W = wt./\/lv. (6)
1)
This assumption holds true for the various examples presented in the following section.

Remark 2.1. In some situations, assumption (A4) can be relaxed. For instance, this is the case for Friedrichs’
systems endowed with a 2 x 2 block structure such that a Poincaré-like inequality holds for some components
of the dependent variable; see Remarks 2.2 and 2.3 for more details.
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2.2. Examples

This section briefly presents four examples of Friedrichs’ systems: the advection-reaction equation, the
advection—diffusion—reaction equation, the linear elasticity equations in the mixed stress—pressure—displacement
form, and the Maxwell equations in the so-called elliptic regime.

2.2.1. Advection—reaction

Let p € L>(Q), let 8 € [L°>°(Q)]? with V-8 € L>(Q), and assume that u(z) — 2V-8(z) > po > 0 a.e. in (.

Let f € L?(Q2). The PDE

pu+ f-Vu = f (7
falls into the category of Friedrichs’ systems by setting m = 1, K = p and A* = ¥ for k € {1,...,d}. The
graph space is W = {w € L*(Q); 3-Vw € L*(Q)}.

To enforce boundary conditions, define Q% = {z € 99; + B(z)-n(z) > 0}. Assume that €'(Q) is dense in
W and that 0Q~ and Q7 are well-separated, i.e., dist(9Q~, Q") > 0. Then, the boundary operator D admits
the following representation [10]: For all v,w € W,

(Dv, w)ywrw = vw(B-n). (8)
o0

Let M € L(W;W’) be defined such that for v,w € W,
Moo = [ vulpal, ©
a0

Then, (M1)-(M2) hold and V' = {v € W; v|gq- = 0}, i.e., homogeneous Dirichlet boundary conditions are
enforced at the inflow boundary. Observe that (5)—(6) hold with

D = fB-n, M =|3n|. (10)

2.2.2. Advection—diffusion—reaction
Let u, 8, and f be as above. The PDE —Au + 8-Vu + pu = f written in the following mixed form

o+ Vu =0, 1
{MU+V-J+/B'Vuf, (11)
falls into the category of Friedrichs’ systems by setting m = d + 1 and
IC _ ,,Z,-d,i,o, Ak _ ,,,Q,,,if,e,]?, (12)
T 0 (ek)téﬂk ’

where 7, is the identity matrix in R%? and e is the k-th vector in the canonical basis of R?. The graph space
is W = H(div; Q) x H*(9).
The boundary operator D is such that for all (o,u),(1,v) € W,

(D(o,u), (T, v))wr,w = (on,v)_1 1+ (Tn,u)_1 1+ /6‘Q(ﬂ~n)uv, (13)

where (,) _1 1
that for all (o,

denotes the duality pairing between H = (9Q) and H= (). Let M € L(W; W) be defined such
u), (1,v) € W,

(M (o,u), (T,0))w.w = (o-n, v>*%v% — <T~n,u>7%7% (14)
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Then, (M1)-(M2) hold and V = H(div;Q)x HJ (), i.e., homogeneous Dirichlet boundary conditions are en-
forced. Neumann and Robin boundary conditions can be treated as well; see [10]. Observe that (5)—(6) hold

with
M= {Ot”} _ (15)

Remark 2.2. Using a Poincaré inequality, one can show that the well-posedness of (4) still holds if p(z) —
iV-B(z) > 0 ae. in Q.

2.2.3. Linear elasticity

Let 71 and 72 be two positive functions in L>°(Q) uniformly bounded away from zero. Let f € [L?(2)]%.

Let u be the R%-valued displacement field and let o be the R%“-valued stress tensor. The PDE’s ¢ = 1(Vu +
(Vu)t) + %1(V-u)Id and —V-0 + yu = f can be written in the following mixed stress—pressure—displacement
form

o+pZq— 2(Vu+ (Vu)') =0,

tr(o) + (d+m)p =0, (16)

—5Vi(o+0") +u=f

The tensor o in R%? can be identified with the vector & € RY by setting Tlij] = 0y with 1 < i,j < d and
[ij] = d(j — 1) + i. Then, (16) falls into the category of Friedrichs’ systems by setting m = d? + 1 + d and

el 2 001 [ 0 0"
K=& d+n)i 0 |, A= 0 0.0, (17)
0T T (EF)10 0

where Z € R? has components given by Zi;) = 6ij, and for all k € {1,...,d}, &F € R4 has components
given by 5[’23'],1 = —1(6k0;1 + 0u0;1); here, i, 4,1 € {1,...,d} and the §’s denote Kronecker symbols. The graph
space is W = Hzx L2(Q)x[H'(Q)]¢ with Hy = {7 € [L2(Q)]¥; V(o + o?) € [L2(Q)]4}.
The boundary operator D is such that for all (7, p,u), (7,q,v) € W,
<D(67pau)7(F7Qav)>W’,W = —<%(T+’rt)~n,u>7 - <%(O’+O’t)'n,’0>7 (18)

11 11,
272 272

where (,)_1 1 denotes the duality pairing between [H~2(8Q)]% and [H2 (8Q)]%. Let M € L(W;W’) be defined
such that for all (7,p,u), (T,q,v) € W,

<M(E,p7 U)’ (?7Q7v>>W’,W = <%(T+Tt)'nau>f%,% - <%(U+Ut)'nvv>f%,%' (19)

Then, (M1)-(M2) hold and V = HzxL?(Q)x[HZ(Q)]¢, i.e., homogeneous Dirichlet boundary conditions are
enforced on the displacement. Observe that (5)—(6) hold with

0:i0iH 00 -H
: , M=1]0:0:0 |, (20)
HEIOD 0

where H = 2221 npEF € R¥: is such that HE = —3(§®n 4 n®¢) for all £ € RY.

Remark 2.3. Using a Korn inequality, one can show that the well-posedness of (4) still holds if 7o > 0 a.e. in Q.
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2.2.4. Maxwell’s equations in the elliptic regime

Let 0 and u be two positive functions in L*°(Q)) uniformly bounded away from zero. A simplified form of
Maxwell’s equations in R? in the elliptic regime, i.e., when displacement currents are negligible, consists of the
PDE’s

{,LLH+VXEf, (1)

cF —VxH =g,
with data f and g in [L?(2)]3. The above PDE’s fall into the category of Friedrichs’ systems by setting m = 6

and .
K= [“130] . A= l(ORk] : (22)

with Rfj = ey for 0,7,k € {1,2,3}, €;x; being the Levi-Civita permutation tensor. The graph space is
W = H(curl; Q) x H(curl; Q).
The boundary operator D is such that for all (H, E), (h,e) € W,

(D(H, E), (h,e))wr,w = (VXE, h)2)p — (B, VXh)r2a)e + (H, VXe) 2y — (VXH, e)ir2@)p. (23)
Let M € L(W;W’) be defined such that for all (H, E), (h,e) € W,
(M(H,E),(h,e))wr,w = =(VXE, h)2)p + (B, VXh)r2)e + (H, Vxe)r2 )z — (VXH, e)r2ye.  (24)

Then, (M1)-(M2) hold and V = {(H, E) € W; (Exn)|aq = 0}, i.e., homogeneous Dirichlet boundary conditions
are enforced on the tangential component of the electric field. Observe that (5)—(6) hold with

=[N, - [LEH] -

where N = Zzzl npRF € R33 is such that V¢ = nx¢ for all € € R3.

3. THE CONTINUOUS FINITE ELEMENT METHOD WITH FACE PENALTY

The purpose of this section is to design and analyze a continuous finite element method to approximate
Friedrichs’ systems. The two main features of the method are that boundary conditions are enforced weakly
and that some components of the gradient jump across mesh interfaces are penalized.

3.1. The discrete setting

Let {71}r>0 be a shape-regular family of affine meshes of 2. We assume that the meshes do not possess
hanging nodes and that 2 is a polyhedron so that the meshes cover (2 exactly. The notation A < B represents
the inequality A < ¢B with ¢ positive and independent of h.

Let F} be the set of interior faces in the mesh, let 7 the set of the faces that separate the mesh from the
exterior of (2, and set Fj, = Fi UF?. For all F € F}, let Ty (F) and T>(F) € Tj, be such that F = Ty (F) N Ty (F)
and set 7 (F) = T1(F) UT2(F). Let np be the unit normal vector to F pointing from T} (F) to T2(F') (nothing
that is said hereafter depends on the orientation of nr) and set Dp = 22:1 AFnp s then, |Dr| is well-defined.
Furthermore, for an R™-valued function v such that Vv admits a (possibly two-valued) trace on F', define the
R™-valued normal jump of its gradient as

[[VU]]F = (VU|T1(F) — VU|T2(F))'71F- (26)

The subscript F' in jumps is omitted if there is no ambiguity.
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For T € Ty, (resp., F' € F1), hr (resp., hr) denotes the diameter of T (resp., of F'). Let § be the continuous,
piecewise affine function equal on each vertex v of 7, to the mean-value of the elements of the set {hr; T > v}.
Owing to the shape-regularity of the mesh family, for all T' € 7;, and for all T’ € 7, such that T NT # 0,
hr S blr S heo

Let p be a positive integer and set

Vi = {v, € €°(Q); VT € Ty, vi|7r € P}, (27)

where P, denotes the vector space of polynomials of total degree less than or equal to p. Set W), = [V,,]™ and
W(h) = Wy, + [H(Q)]™.

For any measurable subset of ), say E, (-,-)z denotes the usual L?-scalar product on F, and || - ||z the
associated norm. The same notation is used for vector-valued functions. Since the mesh family is shape-regular,
for all v, € V}, and for all T € 73,

IVorllr < hitllonllr, (28)

_1
lonlle S by ® lonllr,  VE C OT. (29)

To enforce boundary conditions weakly, we introduce for all F' € F, ,? an R™™-valued field M g such that for
all v,w € [L2(F)]™,

0 < Mp <1y, (30)
(Mv =Dv) = (Mpv="Dv), (31)
((MF =D)v,w)r,r| S |vlm,FlwlF, (32)
((MF +D)v,w)r,r| S lvlFlwlar, (33)

1
where we have introduced for all v € W (h) the semi-norms |v|yr,p = (Mpv,v)%. Furthermore, to penalize
gradient jumps across interfaces, we introduce for all F' € F} an R™™-valued field Sr such that

Sp is symmetric, (34)
hE|Dr| S Sk < hiTm, (35)

and we introduce for all v € W(h) the semi-norms |v|g r = (Spv, v)[%7
On W (h)xW (h) define the bilinear form

ap(v,w) = (Tv,w)q + Z H(Mp —D)v,w)p + Z(SF[[V’U]], [Vw])F. (36)

FeF? FeFi

In the last term, (Sp[Vv],[Vw])r = Zzzl(SF[[akv]], [Orw])r = (Sp[0nv], [Onw])r where O, denotes the
normal derivative across F since functions in W (h) are continuous. Then, to approximate the solution z of (4),
the following problem is considered:

Seek z;, € W}, such that ah(zh,yh) = (f7 Yn)a, Yyn € Wh. (37)
Remark 3.1. The design conditions on the boundary field Mg are similar to those introduced for the DGM

by Ern and Guermond [10]. The design of the interface field Sp is, however, different, since in the DGM, this
operator penalizes the jumps of the discrete solution and scales independently of h.
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3.2. Convergence analysis

To perform the error analysis we introduce the following norm on W (h),

Iol” = llola + D" lolir + D IIVellEp + (162 Avfla. (38)

FeF? FeFi

Using integration by parts yields for all v,w € W (h),

ap(v,w) = w)a + Z (Mg +D)v,w)r + Z (Sr[V], [Vw])F. (39)

FE]:d Fe]:l

Hence, owing to (A4), for all v, € Wy,
an(vn,vn) 2 lonllé+ Y [alir e+ D [Vl r, (40)
FeFp FeFi

which shows that the bilinear form a, is at least L-coercive on Wj. To control the graph norm, a sharper
stability result is needed. This is the purpose of the following

Lemma 3.1 (Stability). Assume that for all k € {1,...,d}, AF € [C®2(Q)]™™. Then, the following holds:

o € W, sup  2n(vnsn)

2 llonll- (41)
wnew\{o}  lwnll

Proof. Let v, € W, o
(i) For all T € 75, denote by A% the mean-value of A* on T. Then, by assumption

— 1
HA!} - Ak”[Loc(T)]m,m 5 hrlz’v
Define Avy|r = 3¢, AEdpvs. Set ¢ = hAuv, and observe that for all T € Ty, ¢} |r € [P,]™ and that

<kl < min([fonllz, b7 (52 Avnllz + b [[onllz)- (42)

Let ¢, = (), where m, is the Oswald interpolation operator defined as follows: For all wy, € [L?(2)]™ such
that wy|r € [Pp]™ for all T' € Ty, mpwy, € W), is defined by its values at the usual Lagrange interpolation nodes

by setting
1
mhwn(v) = m Z wp|7(v),
TeT,
where v is a Lagrange interpolation node and 7, is the the set of elements to which v belongs. Recall the
following local stability and interpolation results [3,8,9,15,18]:

Imnwnlle < lonlla ), (43)
lwn, — mrwp |7 < Z hFH wp] || 7, (44)
FelAs(T)

where Al(T) = {T' S 'Th; NnT 75 (Z)}, AQ(T) = {F S f,iL; FNT 75 @}, and [[wh]] = wh|T1(F) — wh|T2(F).
The shape-regularity of the mesh family implies that card(A;(T)) < 1 and card(A2(T")) < 1. Furthermore,
using (28), (29), (30) (upper bound), (35) (upper bound), (42) (both bounds), and (43), it is inferred that

ISall < flonl-
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(ii) Observe that

152 Avg |3 = an(vn, Cn) — (Ko, o — Z L(MF —D)on, (n)r — Z(SF[[vvh]]a V¢ r

FeF? FeF}
+ (Avn, bAvy, — Cn)a := an(vn, Cu) + R1 + R2 + R3 + Ry.

We now bound the remainder terms R; to R4. Using (42) (first bound) and (43) yields

1Rl S D lonllzléallr < llowllé-
TeT,

Using (32), (29), (42) (second bound), (43), and Young’s inequality leads to

1
|Bal < lonlléy + D lonlie e +v[1h* Avn[3,
FeF?

where v can be chosen as small as needed. Similarly, using (35) (upper bound), (28), (29), (43), (42) (second
bound), and Young’s inequality yields

1
Rl < lonlléy + D 1IVol[Ep +110= Av 3,
FeF}

Finally, observe that
Ry = (Avp, hAv, — () + (Avk, §, — () := Raq + Raa.
Using (28) yields
|Raa| S llonlld +v[17 Ava |3
Using (44) yields

[Riol S > I02Avlr [ D0 G IIe

TET, FEA(T)

For all F' € F}, using the continuity of h leads to

ISl < I6CA = Ava]lle + [6[AvndllF < vllz ) + [[Vonlls.r,

owing to (35) (lower bound). This yields

1
|Razl < llonlld + D [IV0nl[E,p + 1102 Ava 3,
FeF},

Collecting the above bounds and using (40), it is inferred that
162 Avall < an(vn, Gn) + alvn, va).

Since ||Cn ]l < [|vnll, the conclusion is straightforward. O

Lemma 3.2 (Continuity). Define the following norm on W (h),

o2 = ol + > [hz*ol7 + lloll3z]. (45)
TeTh
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Then, the following holds:
V(v,w) € W(h) x W(h), an(v,w) S [Jv]|«[lwl]. (46)
Proof. We bound the three terms in the right-hand side of (39). For the first term, we obtain using (28),

(v, Tw)al £ Y Iollr(lwlr + | Aw]r) S Jollfwll.
TeT)

For the second term, (33) yields

Y sl(Me+ Dy, w)pl S Y lollrlwlr S folllwl.

FeFp FeF?
The bound on the third term is straightforward. (|

Lemma 3.3 (Consistency). Let z solve (4) and let zj, solve (37). If z € [H%(Q)|™, then,
Vyh < Wh, ah(z — Zp, yh) =0. (47)

Proof. Since z € [H*(Q)]™ solves (4), Mz = Dz a.e. on 9Q and Tz = f in L. Assumption (31) yields
Mpz|p = Dz|F for all F € F2. Moreover, [Vz]r = 0 for all F' € F}. The conclusion follows readily. O

The above results readily yield the following

Theorem 3.1 (Convergence). Let z solve (4) and let z;, solve (37). Assume z € [H?(Q)]™. Then, under the
assumptions of Lemma 3.1,

Iz =zl S Iz = vnll-- (48)

inf
vp EWp

Using standard interpolation properties in W, it is inferred that
1
Iz = 2ull S WP*2 2| (o gy, (49)

if z € [HP™1(Q)]™. In particular, the method yields (p + 1)-order convergence in the L-norm and, provided the
mesh family is quasi-uniform, optimal order convergence in the graph norm. These estimates are identical to
those that can be obtained by other stabilization methods like Galerkin/Least-Squares, subgrid viscosity, and
other methods.

Remark 3.2. When the exact solution is too rough to be in [H?2(£2)]™, assuming that [H?(Q)]™ NW is dense in
W, it can be proven by proceeding as in [10] that limp_.¢ ||z — zp]|q = 0.
3.3. Examples

In this section we apply the theoretical results of §3.2 to the Friedrichs’ systems discussed in §2.2. For brevity,

proofs are omitted.
3.3.1. Advection—reaction
Let o > 0 and take
Sp = aht|Bnrl, Mp = |B-n|. (50)
Then, (30)-(35) hold. Hence, if 3 € [C%2(€2)]? and the exact solution is smooth enough,

e = unlle + 1162 8-V (u = un)lla S B2 [[ull goer ). (51)
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3.3.2. Advection—diffusion—reaction
Let a; > 0, as > 0, and 1 > 0 and take

! 0 3 —Nn
Sp = h% |:O‘1nF®nF§O:| , Mp = [t’ ””” ‘| . (52)

Then, (30)-(35) hold. Hence, if 3 € [C%2(€2)]? and the exact solution is smooth enough,
lu = unlla + 152V (w = un)llo + o = onlla + 152 V-(o = on)lla S K72 (0, w)|| o1 o - (53)

3.3.3. Linear elasticity
Let a; > 0, ag > 0, and 1 > 0 and take

arHpHEi 0] 0
; (54)

where Hp is defined similarly to H by substituting ng to n. Then, (30)—(35) hold. Hence, if the exact solution
is smooth enough,

1
lu—unlla+ 152V (u —un)lla+ [lp — prlle
+ o= anlla + 162V-((0 + ') — (o1, + o}))lle S KPTE | (@, p, Wl gro+1(yazer4as  (55)

where Korn’s Second Inequality has been used to simplify the estimate on the graph norm of the displacement.

Remark 3.3. The above finite element method needs to be modified in the incompressible limit; see, e.g., [5] for
an analysis of a face penalty stabilized finite element approximation to the Stokes equations.

3.3.4. Mazwell’s equations in the elliptic regime

Let a3 > 0, as > 0, and > 0 and take

S _ 12 041./\/}-./\/.}7‘ 0 M 0 ,,,,,, - N
F=Nhp [ 0 ”””””” c; QN}NF ; F NEINEA | (56)

where Nr is defined similarly to A by substituting ng to n. Then, (30)—(35) hold. Hence, if the exact solution
is smooth enough,

|E — Enlla + 02 VX (E — Ey)lla + | H — Halla + 02V x(H — Hy)llo S hPF2|(H, E)|griye- (57)

4. FRIEDRICHS’ SYSTEMS WITH 2 X 2 BLOCK STRUCTURE

This section deals with a specific class of Friedrichs’ systems endowed with a particular 2 x 2 block structure
such that the dependent variable z in (4) can be partitioned into the form z = (27, z*) and the variable z° can
be eliminated to yield a system of second-order PDE’s for z* that is of elliptic type. This class of Friedrichs’
systems and its approximation by a local DGM was recently analyzed in [11]. The purpose of this section is to
design and analyze a SCFEM where only the jumps of the gradient of the z“-component are penalized. One
motivation for this strategy is to substantially reduce the number of nonzero entries in the stiffness matrix, thus
alleviating considerably memory requirements.
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4.1. The continuous and discrete settings

Let m, and m, be two positive integers such that m = m, + m,, and assume that for all k£ € {1,...,d}, the
matrices AF have the following structure

; (58)

where BF is R™>"u_valued and C* is R"«™«_valued. To handle the case of advection—diffusion equations with
dominant advection, we have also included a positive parameter ¢ that is at most of order unity but can take
arbitrarily small values. The notation A < B now means that A < ¢B with ¢ positive and independent of h
and e. Furthermore, the fields B* and C* are of order unity. Examples of Friedrichs’ systems endowed with the
above structure are advection—diffusion-reaction equations (e is the diffusion coefficient, m, = d, and m, = 1),
linear elasticity equations (e = 1, m, = d? + 1, and m,, = d), and the Maxwell equations in the elliptic regime
(e =1, myz = 3, and m,, = 3). Owing to (58), the matrix D is such that

D= [Gé(Dgu)tépuul ’ 59

with obvious notation. For simplicity, we restrict ourselves to the case where the boundary conditions can be
enforced by taking

(60)

This corresponds to a Dirichlet condition on u both for the advection—diffusion-reaction equation and for the
linear elasticity equations, while it enforces the condition Exn = 0 for the Maxwell equations in the elliptic
regime.

To enforce boundary conditions weakly, we introduce for all F' € F? a matrix-valued field M p such that

(61)

We still assume that the consistency condition (31) holds. However, instead of (30), (32), and (33), we now
assume that M%" is symmetric and that

(D7) D)2 + D™ S ME" S (1 + 75 ) Im, (62)

If € = 1, this yields /L ((D7")'D7")% < My <
satisfy (30), (32), and (33). .
To penalize the jumps of the gradient of the z“-component only, we introduce for all F' € F, a matrix-valued

field Sg such that

#=Zm,, while if ¢ < h, (62) implies that M* and D**

0: 0
Sp= | iguil- 63
F [o LSt ] (63)
Instead of (34) and (35), we now assume that SE* is symmetric and that
ou ou 1 UU uu €
ﬁ((DF )'DE)? + |DE| < %SF S+ E)Imu- (64)

If € = 1, this yields hp((D*)!D3*)2 < S8 < hpZ,,,, while if € < h, conditions (34) and (35) are recovered.
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Owing to the above setting, the bilinear form a, defined by (36) becomes

ap(v,w) = (Kv,w)q + eé(Bv“, w?)q + eé(éva, w)q + (Cv*,w)q
+ D@ 0 E + S (ME =DM w)p] 4+ Y (SR V] [Vur e, (65)

FeF? FeF,

where B = Y°0_ B*0y, B = Y2¢_,(B*)'8), and C = Y¢{_, C¥d;. The discrete problem is still (37) with the
discrete space W}, unchanged.

4.2. Convergence analysis

To perform the error analysis we introduce the following norm on W (h),

1 1
Iol® = llvll + > [0 R + D IIV0 TS0 + 62 But[§ + 12 Cot3, (66)
FeF? FeF),

1
2

with the semi-norms |[v¥|y;,p = (M% 0%, v*) % and |[[Vo']|s,r = (SE VY], [Vo¥]) E.

Lemma 4.1 (Stability). Assume that for all k € {1,...,d}, BF € [C%1(Q)]™™u and C* € [C®1(Q)]™« ™, and
that

VT € Ty, Ywp, € Wy, ||Cwi|r S ||Bwi||r- (67)
Then, the following holds:
Von € Wa,  sup  Om) 5 (68)
wnew\ {0} llwnll

Proof. Let vy, € Wj. It is clear that the coercivity property (40) now becomes

an(on,vn) 2 lonlléy + D 1kl + Y IVl e
FeFp FeF}

(i) Take ¢ = (0, hCv}). Proceeding as in the proof of Lemma 3.1, it is inferred that

: u 3 1 u 3 U
[Crllr S min(lloglla, (), h2I10Z Coplla ) + hzllogllascr)-
Observe that
1% Cvil3, = an(vn, Gu) — (Kvn, Ga)a — (€2 Bvf, Gia — D L(ME = D"™)upt, ¢i)p
FeF?
- Z(S%U[WUZ]], VD + (Cuy, bCoy — () == an(vn, Cpn) + Ri + R2 + R3 + Ry + Rs.
FeF}

The term R; is controlled as in the proof of Lemma 3.1. The same is possible for the term Rs since (64) (lower
bound) implies that h%|D%| < S¥. Furthermore, owing to (29) and (67),

1

N

15 0 ru o o
(e2 Buy, )1 S ez ||lop |7l Cog [ aycr)
S e opllr(I(C = C)villa, ) + 1ICU | ar (1)
<

1 o m u
e [lopllr(lvrllay @ + [1Bogllai ),

€



14 TITLE WILL BE SET BY THE PUBLISHER
owing to (67), whence it follows that
[Rel < [lonllé + e Buit |,
where «y can be chosen as small as needed. To bound R, observe that since |D"| < M%* and M%" is positive,
|(ME* =Dy, G| S (MEvy, G S oy, pICH b, -
Using (62) (upper bound) leads to
G r S (GG R+ 75 (G G e

The first term is bound as in the proof of Lemma 3.1. Moreover, using (29), (43), and (67) to bound the second
term eventually leads to

(Gl e S Il A ey + 1162 COlIA, ) + €2 Bl A, ()

with Az(F) = {T € Tp; TN F # 0}, whence it follows that

1 1
[Rs| < lonlléy + D 1wilarm + 1102 CoRllg + e Bui |3
FeF?

Finally, to bound R4 use the positivity of S¥* and (64) (upper bound) and proceed as above to infer

1 1
[Ral S llonllgy + D 1IV0R1IEr + 2102 CoRllE +vlle® Buj |,
FeF;,

Collecting the above bounds yields
102 Cuitl3 S an(on, Gu) + anlon, vn) + 7]l Bujl 15 (69)
(i) Take &, = m,(e2 Bu¥, 0) so that

u 1 u
I€nllT S lvpllas ) + [l€2 Buglla, (),

since the fields B* are Lipschitz and € < 1 by assumption. Observe that

le? Bug |4 = an(vn, &) — (Kvon, &) + > (ED70f, &) p + (2 By, e Bup — €7)a
FeF?
= an(vn,Cn) + R1 + R2 + Rs.
It is clear that )
|Ry| S [lop 18, + 7lle B3

Furthermore, since ﬁ((D‘”‘)tD‘”‘)% S MY owing to (62) (lower bound), it is inferred that

1 1
(2D vy, &) S (5)* D7 vyl pliénllr(ry S vi|anpllEnllz(r),

whence it follows that

1
|Ra| S llokl& + D [wklas,p + vlle* Bopllg.
FeF?
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Finally, proceeding as in the proof of Lemma 3.1 and using ((D%*)!D3*)2 < (¢hp) 1S% from (64) (lower
bound) yields

|Rs| S llolla + Y IIVoRlIE  + e Bop1g.
FeF;,
Collecting the above bounds leads to
le? Byt 1 S alvn, &) + an(vn, vn)- (70)
(iii) The bounds (69) and (70) readily imply
lonll* < alvn, Cn) + avn, &) + an(vn, vn).

Since the fields C* are Lipschitz, assumption (67) implies ||Cvl|r < ||Bvi||lr + ||v¥]|r. Hence, owing to (62)
(upper bound) and proceeding as above yields

u u 1 u 1 W
ICh I, m S Mokl asry + €2 Bogllasry + 152 Cvg |l ag(m)-

Proceeding similarly to bound the other terms in |||, it is inferred that

ISkl < lonll-
Similarly, ||€x]| < |lvnll, and (68) follows readily. O
Lemma 4.2 (Continuity). Define the following norm on W (h),

Ioll2 = loll” + D 10+ 55)hp v 17 + (1 + 75l l3r + hrllv”[132)- (71)
TET,

Then, the following holds:
V(v,wp) € W(h) x Wi, an(v,wn) < ol [lwall. (72)

Proof. The idea is to bound the three terms in the right-hand side (39) making use of the block structure under
consideration. Owing to (28) and the symmetry of C*,

(v, Twn)r| < [vllzllwallr + 07 [|zlle? Bwy |z + (v, €2 Bwf)| + |(v"*, Cw})r |
1 1. -1 1
S lollzllwnllr + 07 l|7lle2 Bwy Iz + €2 bzt [o¥ || [|wf [l + he® 0¥l 26 % Cuwjt | 7.

Hence, 5
(v, Twa)al S [Jvll«[lwnl-
Furthermore,
1
(MF + D)v,wn)r = 2(e2 (D)7, wi)p + (ME" + D" )", wy) p.
Using (62) yields

1 1 u u
[(Mp +D)v,wn)p| S hpllo7|lplwy e + (1 + 75) 2 ([0 plwy [ a,p-

Hence,
> 3(Me + D)o, wn)e| S olllwnll-

FeFp
Finally, the bound on the third term is straightforward. (|
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Since a consistency result analogous to Lemma 3.3 holds, the following convergence theorem is readily inferred
from Lemma 4.1 and Lemma 4.2.

Theorem 4.1 (Convergence). Let z solve (4) and let zj, solve (37). Assume that z = (27,2%) € [H}(Q)]™" x
[H%(Q)]™=. Then, under the assumptions of Lemma 4.1,

- < inf — opl«-
lz—2nl < inf llz —val (73)
Corollary 4.1. Ife ~ 1 and if z = (27, 2%) € [HP(Q)]™* x [HPTL(Q)]™=, then
Iz = 2nll < B2 M2 (zre () mo x (o1 () - (74)
If e < h and if 2 = (27, 2%) € [HPTL(Q)]™, then
Iz — znll S BPF2 ||zl {fro s pm- (75)
Estimate (74) yields that the error 2" — z}*||o converges to order p, which is suboptimal. This estimate can
be improved by using the duality argument introduced in [11] for Friedrichs’ systems. Consider the following
continuous dual problem: letting V* = Ker(D + M*) where M* € L(W;W’) is the adjoint of the operator M,
Seek ¢ € V* such that T4 = (0, 2% — z/') in L. (76)
Assume the following (elliptic) regularity result:
197l @me + 190" 2 @)me S 12 = 23 (77)
Lemma 4.3. Under the above hypotheses,
Vv € W(h)7 ah(vv 1/)) = (qu 2% — Zﬁ)fz' (78)

Proof. The identity results from (39). Since ¢ solves (76), (v, T¥)q = (v*, 2% — 2}*)q. Moreover, since 1) € V*
and owing to the particular structure of M and Mp, it is clear that (M?% + D)y = 0. Hence,

> L(Mp + Dy, ¢)p =0.

FeFp
Finally, the last term in (39) vanishes because y* € [H?(Q)]™«. O
Lemma 4.4. The following holds:
V(v = (0,v"),w) € W(h) x W(h), an((0,v"),w) < [I(0,v*)[| w]- (79)
Proof. The proof is similar to that of Lemma 4.2 except that we use (65) instead of (39). O

Theorem 4.2. In the above framework, the following holds:

2" = zille S hllz = znll + A inf > el —a@ilE 12— @il |- (80)
(g5,0)eWp, Per?
h

Hence, if z € [HP(2)]™e x [HPT1(Q)]™«, then

2% = 2ille S PP 2l e @pme x (e @) (81)
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Proof. Owing to (78),
2% = 21§ = an(z — 2, %) = an(z — zn, ¥ — wp),
where wy, is arbitrary in W;,. Hence,

N

12 = 2 lIE = an((0,2" = 2}), ¢ — wn) + (K(27 = 27,0),9 —wn)a + €2 (B(z" = 27), 9" — wj)a

=11+ 15+ T5.

Owing to (79),
T2l Sz = znllle — wnll-,
and clearly, |T2| < ||z — znllllv — wn |« Integrating by parts and using (62) (lower bound) yields

1
Tl S 112° = 2 lalle* B@" —willla+ Y hElle” = 2 | plo" —whlarr
FeF?

Sz —anlly —wnll + | Y2 hrellz” =205 | I — wall.
FeF?

Using (29) yields for all (¢7,0) € Wh,

ITsl S Uz = 2l = wnlls + | D2 helle” = aflF + 112" = a7 | 1Y — wnll,
FeFp

where T'(F) is the mesh element of which F is a face. Using (77) and classical interpolation results yields
I — wpl« S hl|z* = z}*||o. The conclusion is straightforward. O

Remark 4.1. Estimate (74) also yields that the error |27 — z7||o converges to order p, which is suboptimal.
Optimality for both the o- and u-components can be recovered by considering polynomial interpolation of order
(p—1) for the o-component, but this procedure can make the implementation more cumbersome. Moreover,
numerical experiments on structured and unstructured meshes for smooth solutions indicate that |27 — 27 ||
often converges to optimal order when considering equal-order interpolation for the o- and u-components.

4.3. Examples
In this section we apply the theoretical results of §4.2 to the three Friedrichs’ systems endowed with the 2 x 2

block structure discussed in §4.1.
4.3.1. Advection—diffusion-reaction
Set 2z = o and z* = u. Clearly (67) holds since |3-Vw}| < |[|[Vw}||. Let o > 0 and take

Sp' = ahp(|8nr| + 55), F=100+ 55 (82)

The boundary operator M%* is designed in such a way that the boundary operator relevant to the pure
advection-reaction limit is recovered as ¢ — 0. If ¢ ~ 1, 8 € [C*!(Q)]¢, and the exact solution is smooth
enough,

lu—unlla +hIV(w—un)la +hllo = onlla < B HI(0,u) | @) xar+i9) (83)
and if € < h and the exact solution is smooth enough,

lu = wnllo + 152 8-V (u—un)lle + o = onllo < B2 [[(0,0)][ e+ ayas- (84)
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Comparing with the estimate (53), we observe that the optimal convergence of |V (o — o1,)||q is lost and that
|o — onle converges only to order p (instead of p + 3).

4.3.2. Linear elasticity
Set 27 = (7,p) and z* = u. Clearly (67) holds since C = 0. Let a > 0 and 7 > 0 and take

SEt = ahpTy, W= nhp' Ty (85)
Then, if the exact solution is smooth enough,
lu—unlle + Rl (e~ wn)llo + kllp — prlle + Allo — onlle < B @0l groepyee s x o ge: (86)

Comparing with the estimate (55), we observe that the optimal convergence of |V-(c — op,)||q is lost and that
|o — onlla and ||p — prllo converge only to order p (instead of p + 3).

4.3.3. Mazwell’s equations in the elliptic regime
Set 2 = H and z* = E. Clearly (67) holds since C' = 0. Let a > 0 and n > 0 and take

St = ahpNENF, = nh;l./\/t./\/. (87)
Then, if the exact solution is smooth enough,
|E — Byl +h|VX(E = Ep)lle + hlH — Hyllo S WHH(H, B) || tms @ x(ar@)- (88)

Comparing with the estimate (57), we observe that the optimal convergence of ||V x (H — H},)||q is lost and that
|H — Hpllo converges only to order p (instead of p + 1).

5. NUMERICAL RESULTS

All the numerical experiments are carried out using FREEFEM++ [14]. We first consider test cases with
analytical solutions to illustrate the convergence analysis and then test cases with rough solutions to illustrate
how the present finite element method is suitable to control oscillations. The stabilization parameter for M is
set to 1 and those for Sp to 1072, Although a systematic investigation to optimize the values of jump penalty
parameters goes beyond the present scope, we observe that setting them to 102 leads to a fairly efficient choice
for two-dimensional problems and polynomials orders up to 2; see, e.g., [6] for further discussion.

5.1. Convergence rates for smooth solutions

We consider the four examples of Friedrichs’ systems presented in §2.2. The data and right-hand side are
chosen to yield the following exact solutions on the unit square:

(y=0.5)
0.1

e Advection-reaction: =1, 3 = (1,0)!, u(x,y) = arctan( ) exp(—pa), and homogeneous Dirichlet
boundary conditions enforced on the line {z = 0}.

e Advection—diffusion—reaction: u =1, 8 = (1,0)", u(z,y) = sin(wz) sin(my), and homogeneous Dirichlet
boundary conditions enforced on wu.

e Linear elasticity: v1 = v = 1, ui(x,y) = u2(z,y) = sin(rz)sin(ny), and homogeneous Dirichlet
boundary conditions enforced on wu.

o Maxwell’s equations (two-dimensional setting): u =1, 0 = 1, E(z,y) = sin(27x)sin(2ny), H(z,y) =
27 (sin(27x) cos(2my), sin(2my) cos(2mz))?, and homogeneous Dirichlet boundary conditions enforced on
E.
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h | hzx(51) h2x(53) h2x(55) h2x(57) | (83) (86)  (88)
23 3.2e-2 1.4e-1 4.2e-1 1.6e-0 3.4e-2 T7.8e-2 2.0e-1
274 | 7.7e-3 3.7e-2 1.2e-1 2.9e-1 | 8.4e-3 1.5e-2 3.6e-2
275 1.8e-3 8.5e-3 2.3e-2 6.1e-2 | 1.7e-3 3.1e-3 7.5e-3
276 | 3.9e4 2.1e-3 6.4e-3 1.5e-2 | 4.8e-4 8.4e-4 1.8e-3
27| 1.le4 5.1e-4 1.6e-4 3.8¢-3 |1l.le-4 2.0e-4 4.6e-4

TABLE 1. Convergence results for p = 1 on unstructured meshes. The number in the first row
refers to the equation number of the corresponding estimate

h | h2x(51) h2x(53) h2x(55) hzx(57)| (83) (86)  (88)
23] 85e-3  1.2e-1  42e1  1.5e0 |3.2e2 8.2e-2 1.6e-1
274 1.8¢-3  1.7e2 6202  2lel |6.2e-3 1.2e-2 2.3e-2
25| 3.2e4  27e-3  9.4e-3  3.0e-2 |1.3e-3 2.0e-3 4.0e-3
2 6
2 7

5.6e-5 4.2e-4 1.5e-3 4.5e-3 | 2.6e-4 4.le-4 T.7e4
9.7e-6 7.1e-5 2.5e-4 6.9e-4 | 5.6e-5 8.9e-5 1.7e-4
TABLE 2. Convergence results for p = 1 on structured meshes. The number in the first row
refers to the equation number of the corresponding estimate

h | hzx(51) h2x(53) hzx(55) hzx(57)| (83) (86)  (88)
273 5.3e-3 1.6e-2 4.9¢-2 2.5e-1 | 5.4e-3 1.1e-2 4.6e-2
274 2.2-3 1.9¢-3 5.5e-3 2.9e-2 | 7.1e-4 1.5e-3 6.3e-3
27% | 9.4e-5 2.1e-4 6.3e-4 3.4e-3 | 9.0e-5 2.0e-4 7.2e-4
2761 2.0e-5 2.7e-5 8.5e-5 4.2e-4 |1.1e-5 2.4e-5 8.7e-5

TABLE 3. Convergence results for p = 2 on unstructured meshes. The number in the first row
refers to the equation number of the corresponding estimate

Tables 1 and 2 present convergence results obtained with p = 1 and the two stabilization techniques discussed
in §3 and §4. To better appreciate the convergence orders, the errors associated with the method designed in §3
have been multiplied by a factor h2 so that all the errors in Tables 1 and 2 should theoretically be divided by a
factor of 4 from one mesh to the next finer one. All the errors obtained on unstructured meshes (Table 1) match
theoretical predictions. When working on structured meshes (Table 2), a super-convergence phenomenon by a
factor of h? is observed for the estimates derived in §3. This can be linked to the fact that when using uniform
meshes in one space dimension, the stabilization parameter can be chosen to yield a finite difference scheme of
higher order on a 5-point stencil.

Tables 3 and 4 present convergence results obtained with p = 2 and the two stabilization techniques discussed
in §3 and §4. All the errors in Tables 3 and 4 should theoretically be divided by a factor of 8 from one mesh
to the next finer one. On unstructured meshes (Table 3), numerical results match theoretical predictions.
For the advection-reaction equation, the overall convergence order is correct, despite some irregularities on
coarser meshes. On structured meshes (Table 4), numerical results also match theoretical predictions. The
super-convergence phenomenon is much less pronounced than for p = 1.



20 TITLE WILL BE SET BY THE PUBLISHER

h | hzx(51) h2x(53) h2x(55) h2x(57) | (83) (86)  (88)
31 2.2e-3 1.5e-2 8.8e-2 2.6e-1 | 8.8¢-3 1.6e-2 5.7e-2
4| 224 183 1lle2 322 |123 24e3 923
5
6

1.9¢e-5 2.1e-4 1.3e-3 3.9e-3 | 1.5e-4 3.0e-4 1.3e-3
1.8e-6 2.5e-5 1.5e-4 4.6e-4 | 1.7e-5 3.6e-5 1.6e-4
TABLE 4. Convergence results for p = 2 on structured meshes. The number in the first row
refers to the equation number of the corresponding estimate

N NN N

FIGURE 1. Advection—reaction: approximate solution obtained with CFEM without (left) and
with (right) stabilization

5.2. Controlling oscillations in rough solutions

For the four Friedrichs’ systems, we now consider geometries and data leading to rough solutions producing
oscillations if approximated by a CFEM without stabilization. The test cases are the following;:

e Advection-reaction: €2 is the unit square, u =0, 8 = (3, 3)!, u(0,y) = arctan( (y(;_gis) ), and u(z,0) = 0.
Observe that the inflow data is discontinuous at the origin.

e Advection—diffusion-reaction: (2 is an L—shaped domain, homogeneous Dirichlet boundary conditions
are enforced, =0, 3 = (1,0), e = 1, and f = 100 exp(—100((x — 0.5)% + (y — 0.5)?)).

e Linear elasticity: 2 is an L-shaped domain, homogeneous Dirichlet boundary conditions are enforced
on the displacement, v; = 72 = 1, f1 = 50 exp(—50((x — 0.5)% + (y — 0.5)?)), and f> = 0.

e Maxwell’s equation in the diffusive regime: ( is the unit square, homogeneous Dirichlet boundary
conditions are enforced on the electric field, p =1, 0 = 1, f = 750 exp(—750((x — 0.5)% + (y — 0.5)?)),

and g = 0.

Figure 1 compares the approximate solution obtained with CFEM without (left) and with (right) stabilization
for the advection—reaction equation. As expected, global oscillations are eliminated by the SCFEM; as for all
stabilized finite element methods, spurious oscillations remain in the vicinity of layers.

Figure 2 compares the approximate solution obtained with CFEM without stabilization (left), with stabiliza-
tion on ¢ and u (center), and with stabilization on u only (right) for the advection—diffusion-reaction equation.
The o-components computed with CFEM without stabilization exhibit some oscillations in the lower part of
the domain. Furthermore, owing to the sharp variations in the data f near the point (%, %) yielding insufficient
regularity in the o-components, the SCFEM with stabilization on u produces slightly better results than the

SCFEM with stabilization on ¢ and w.
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FIGURE 2. Advection—diffusion-reaction: approximate solution (o, 02) obtained with CFEM
without stabilization (left), with stabilization on o and u (center), and with stabilization on u
only (right)
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FIGURE 3. Linear elasticity: approximate solution (o11,012) obtained with CFEM without
stabilization (left), with stabilization on o and u (center), and with stabilization on u only
(right)

Figure 3 compares the approximate solution obtained with CFEM without stabilization (left), with stabi-
lization on o and u (center), and with stabilization on w only (right) for the linear elasticity equations. The
o-components computed with CFEM without stabilization exhibit some oscillations in the lower part of the do-
main. Furthermore, the two versions of the SCFEM produce similar results since the data f has now smoother
variations than that considered in the previous case.

Figure 4 compares the approximate solution obtained with CFEM without stabilization (left), with stabi-
lization on H and E (center), and with stabilization on F only (right) for Maxwell’s equations in the elliptic
regime. The magnetic field produced by the CFEM without stabilization is polluted by oscillations, while the
two versions of the SCFEM yield similar and acceptable results.

6. CONCLUSION

In this paper we have shown that the SCFEM provides a viable alternative to approximate Friedrichs’ systems
with respect to existing methods such as the DGM. The convergence analysis yields similar error estimates,
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FIGURE 4. Maxwell’s equations in the elliptic regime: approximate solution (H;, H2) obtained
with CFEM without stabilization (left), with stabilization on H and E (center), and with
stabilization on E only (right)

while for low-order elements, the SCFEM yields a significant reduction of the number of nonzero entries in
the stiffness matrix compared to the DGM. For elliptic-like PDE’s, the mixed form has to be considered. Two
stabilization strategies have been proposed yielding different convergence orders for the primal variable and
its flux. The choice between the two strategies can be driven by the regularity of the exact solution and cost
considerations since the demand on memory is much lighter when the flux is not stabilized.
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