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Abstract

This paper deals with the control of nonlinear systems in the presence of state and control
constraints for discrete time dynamics in finite dimensional spaces. The viability kernel is known
to play a basic role for the analysis of such problems and the design of viable control feedbacks.
Unfortunately, this kernel may display very non regular geometry and its computation is not an
easy task in general. In the present paper, we show how monotonic properties of both dynamics
and constraints allow for relevant analytical upper and lower approximations of the viability
kernel through weakly and strongly invariant sets. An example on fish harvesting management
illustrates some of the assertions.
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1 Introduction

Let us consider a nonlinear control system described in discrete time by the difference equation

{
xt+1 = f(xt, ut), t ≥ 0,
x0 given,

(1)

where the state variable xt belongs to the finite dimensional state space X = R
nX , the control

variable ut is an element of the control set U = R
nU while the dynamics f maps X × U into X.

A controller or a decision maker describes “desirable configurations of the system” through a
set K ⊂ X × U termed the desirable set

(xt, ut) ∈ K, t ≥ 0, (2)

where K includes both system states and controls constraints. Typical instances of such a desirable
set are given by inequalities requirements:

K = {(x, u) ∈ X × U | ∀i = 1, . . . , p , gi(x, u) ≥ 0}.
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The state constraints set associated with K is obtained by projecting the desirable set K onto the
state space X:

V
0 def

= ProjX(K) = {x ∈ X | ∃u ∈ U , (x, u) ∈ K}. (3)

Such problems of dynamic control under constraints refers to viability [1] or invariance [8] frame-
work. Basically, such an approach focuses on inter-temporal feasible paths. It has been applied for
instance to models related to the sustainable management of resource and bio-economic modeling
as in [10, 3, 5, 4, 9, 11, 14]. From the mathematical viewpoint, most of viability and weak invariance
results are addressed in the time continuous case. However, some mathematical works deal with
the discrete-time case. This includes the study of numerical schemes for the approximation of the
viability problems of the continuous dynamics as in [1, 12]. Important contributions for discrete
time case are also captured by the study of the positivity for linear systems as in [6] or by the
hybrid control as in [2, 15].

Viability is defined as the ability to choose, at each time step t, a control ut ∈ U such that the
system configuration remains desirable. More precisely, the system is viable if the following feasible
set is not empty:

V(f,K)
def
=

{
x0 ∈ X

∣∣∣∣
∃ (u0, u1, . . .) and (x0, x1, . . .)
satisfying (1) and (2)

}
. (4)

The set V(f,K) is called the viability kernel associated with the dynamics f and the desirable set
K. By definition, we have V(f,K) ⊂ V

0 but, in general, the inclusion is strict. For a decision maker
or control designer, knowing the viability kernel has practical interest since it describes the states
from which controls can be found that maintain the system in a desirable configuration forever.
However, computing this kernel is not an easy task in general.

The present paper aims at giving explicit upper and lower approximations of this kernel using
weak (viable) or strong invariant domains in the specific context of monotonic properties of both
constraints and dynamics. To achieve this let us recall what is meant by weakly or strong invariant
domains.

A subset V of the state space X is said to be strongly invariant for the dynamics f in the
desirable set K if

∀x ∈ V , ∀u ∈ U , (x, u) ∈ K =⇒ f(x, u) ∈ V. (5)

That is, if one starts from V, any control may transfer the state in V into a desirable configuration.
This is generally a too demanding requirement.

Similarly, a subset Ṽ is said to be weakly invariant for the dynamics f in the desirable set K,
or a viability domain of f in K, if

∀x ∈ Ṽ , ∃u ∈ U , (x, u) ∈ K and f(x, u) ∈ Ṽ. (6)

That is, if one starts from Ṽ, a suitable control may transfer the state in Ṽ and the system into a
desirable configuration. In particular, it is worth pointing out that any desirable equilibrium is a
viability domain of f in K.

A desirable equilibrium is an equilibrium of the system that belongs to K, that is a pair (x̄, ū) ∈ K
such that x̄ = f(x̄, ū). Moreover, according to viability theory [1], the viability kernel V(f,K) turns
out to be the union of all viability domains, that is the largest set such that

V(f,K) =
⋃{

Ṽ, Ṽ ⊂ V
0, Ṽ weakly invariant for f in K

}
. (7)
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For the sake of completeness, we recall briefly the proof in the Appendix (see Proposition 9). A
major interest of such a property lies in the fact that any weakly invariant set for the dynamics f

in the desirable set K provides a lower approximation of the viability kernel. The characterization
of weakly invariant domains also gives hints for an algorithmic method of computation. Consider
the following decreasing sequence of subsets of X by

V0
def
= V

0 and Vk+1
def
= {x ∈ Vk | ∃u ∈ U , f(x, u) ∈ Vk and (x, u) ∈ K} . (8)

Such a dynamic programming algorithm provides approximation from above of the viability kernel
as follows:

V(f,K) ⊂
⋂

k∈N

Vk = lim
k→∞

↓ Vk. (9)

In [1], conditions for the equality to hold true are exposed. Are required the compacity for the
constraints and upper semicontinuity with closed images for the set-valued map associated with
the controlled dynamics.

It may be proved by induction that the above upper approximation Vk coincides with the so
called viability kernel until time k associated with f in K:

Vk =

{
x0 ∈ X

∣∣∣∣
∃ (u0, u1, . . . , uk) and (x0, x1, . . . , xk)
satisfying (1) and (2)

}
. (10)

We have
∀k > 0 V(f,K) ⊂ Vk+1 ⊂ Vk ⊂ V

0. (11)

Once the viability kernel, or any approximation, or a viability viability domain is known, we have
to consider the management or control issue, that is the problem of selecting suitable controls at
each time step. For any viability domain Ṽ and any state x ∈ Ṽ, the following subset UeV

(x) of the
decision set U is not empty:

UeV
(x) = {u ∈ U | (x, u) ∈ K and f(x, u) ∈ Ṽ}. (12)

Therefore UV(f,K)(x) stands for largest set of viable controls associated with x. Given a state x of
the system, the decision consists in the choice of a viable feedback control, namely any selection
Ψ : X → U which associates with each state x ∈ V(f,K) a control u = Ψ(x) satisfying Ψ(x) ∈
UV(f,K)(x).

The paper is organized as follows. Section 2 is devoted to the definitions of monotonicity for
both the dynamics and constraints. Then, Section 3 exhibits lower and upper approximations of
the viability kernel in this monotonicity context. An example is exposed in Section 4 to illustrate
some of the main findings.

2 Monotonicity properties

In this section we define what is meant by monotonicity of the desirable set K together with the
dynamics f both with respect to state x and control u.
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2.1 Set monotonicity

Let us assume that the state space X and the control space U are ordered sets. In practice, X ⊂ R
nX

and U ⊂ R
nU are supplied with the componentwise order: x′ ≥ x if and only if each component of

x′ is greater than or equal to the corresponding component of x:

x′ ≥ x ⇐⇒ x′
i ≥ xi, i = 1, . . . , n.

We also define the maximum x
∨

x′ of (x, x′) as follows:

x
∨

x′ def
= (x1

∨
x′

1, . . . , xn

∨
x′

n) = (max(x1, x
′
1), . . . ,max(xn, x′

n))

We now define the monotonicity of constraint sets.

Definition 1 [Set monotonicity] We say that a set S ⊂ X is increasing if it satisfies the following

property:

∀x ∈ S x′ ≥ x ⇒ x′ ∈ S.

We say that K ⊂ X × U is increasing if it satisfies the following property:

∀(x, u) ∈ K x′ ≥ x ⇒ (x′, u) ∈ K.

A geometric characterization of set monotonicity is given equivalently by S + R
nX

+ ⊂ S in the first
case, and by K + R

nX

+ × {0R
nU} ⊂ K in the second case (where state and control do not play the

same role in this definition).

2.2 Dynamics monotonicity

Similarly, we define monotonic characterization for the dynamics as follows:

Definition 2 [Mapping monotonicity] We say that f : X × U → X is increasing with respect
to the state if it satisfies

∀(x, u) ∈ X × U x′ ≥ x ⇒ f(x′, u) ≥ f(x, u),

and is decreasing with respect to the control if

∀(x, u) ∈ X × U u′ ≥ u ⇒ f(x, u′) ≤ f(x, u).

2.3 Saturated dynamics

Since the dynamics f has several components,
∨

u∈U,(x,u)∈K f(x, u) is generally not achieved by a
common ū. This is why we introduce the notion of function “saturated at x”.

Definition 3 The maximal dynamics f̌ is defined by

∀x ∈ V
0 , f̌(x)

def
=

∨

u∈U,(x,u)∈K

f(x, u) . (13)

We say that the maximal dynamics f̌ is saturated at x ∈ V
0 if there exists u ∈ U such that

(x, u) ∈ K and f̌(x) = f(x, u).

When U ⊂ R and the dynamics f is decreasing with respect to the control, this is the case
under reasonable topological assumptions on U and K.
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3 Viability results under monotonicity properties

This section exhibits lower and upper approximations of the viability kernel in this monotonicity
context. We show that some monotonicity properties of the dynamics f and the desirable set K are
transmitted to the associated viability kernel. This allows to compute or approximate the viability
kernel through weakly invariant domains under suitable assumptions.

A first obvious monotonicity property is that any viability domain associated with f in K is a
viability domain for any K′ such that K ⊂ K′.

Proposition 1 If the desirable set K is increasing and the dynamics f is increasing with respect

to the state, then the associated viability kernel V(f,K) is also increasing, as well as all the sets

Vk, k ∈ N given by (8).

Proof. Let us prove that V(f,K) is increasing. Consider x ∈ V(f,K) and x′ ≥ x. By definition (4),
there exists two sequences (ut)t∈N in U and (xt)t∈N in X such that

x0 = x, xt+1 = f(xt, ut) and (xt, ut) ∈ K.

Since f is increasing with respect to the state, we can show by induction that the trajectory (x ′
t)t∈N

defined by
x′

0 = x′ and x′
t+1 = f(x′

t, ut)

satisfies x′
t ≥ xt, ∀t ∈ N. Since K is increasing, we obtain that (x′

t, ut) ∈ K, ∀t ∈ N. Thus
x′ ∈ V(f,K) and, finally, V(f,K) is increasing.

For the rest, the proof uses the definition (8) of the sets (Vk)k∈N. The set V0 = V
0 is increasing

since K is supposed to be increasing. Now, assume that Vk is increasing and consider x ∈ Vk+1 and
x′ ≥ x. By the definition of Vk+1, there exists u ∈ U such that (x, u) ∈ K and f(x, u) ∈ Vk. Since
K is increasing, (x′, u) ∈ K. Since f is increasing with respect to the state and Vk is increasing then
f(x′, u) ∈ K, meaning that x′ ∈ Vk+1. Thus, Vk+1 is increasing and, by induction, we conclude
that Vk is increasing for all k ∈ N.

2

3.1 A first lower approximation of the viability kernel

As an application of Proposition 1, if there exists a desirable equilibrium (x̄, ū), then V = {x ∈ X |
x ≥ x̄} is a viability domain.

Proposition 2 If the desirable set K is increasing and the dynamics f is increasing with respect

to the state, and if there exists a desirable equilibrium (x̄, ū), then

1. the domain

{
x ∈ X | x ≥ x̄

}
is a viability domain for f in K;

2. Consequently

{
x ∈ X | x ≥ x̄

}
⊂ V(f,K).
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3.2 A first upper approximation of the viability kernel

We combine strongly invariant domains and desirable equilibria to derive an upper approximation
of the viability kernel.

Proposition 3 Assume that the desirable set K is increasing and that the dynamics f is increasing

with respect to the state. Assume also that the maximal dynamics f̌ is saturated at all x ∈ V
0.

Then

1. the domain {x ∈ X | f̌(x) ≤ x} is strongly invariant;

2. the domain {x ∈ X | x ≤ x̄} is strongly invariant, whenever x̄ is a fixed point of f̌ .

Proof. We first prove that the maximal dynamics f̌ is increasing with respect to the state:

x ≤ x′ ⇒ f(x, u) ≤ f(x′, u) , ∀u ∈ U since f is increasing with x

⇒
∨

u∈U,(x,u)∈K

f(x, u) ≤
∨

u∈U,(x,u)∈K

f(x′, u)

⇒
∨

u∈U,(x,u)∈K

f(x, u) ≤
∨

u∈U,(x′,u)∈K

f(x′, u)

since K is increasing and thus (x, u) ∈ K ⇒ (x′, u) ∈ K

⇒ f̌(x) ≤ f̌(x′) .

Thus, we deduce that

1. f̌(x) ≤ x ⇒ f̌(f̌(x)) ≤ f̌(x) ≤ x;

2. whenever f̌(x̄) = x̄, x ≤ x̄ ⇒ f̌(x) ≤ f̌(x̄) = x̄, that is,

x ≤ x̄ ⇒ ∀u ∈ U , f(x, u) ≤ f̌(x) ≤ f̌(x̄) = x̄ .

2

Proposition 4 Assume that the desirable set K is increasing and that the dynamics f is increasing

with respect to the state. Assume also that the maximal dynamics f̌ is continuous, and that V
0 is

bounded from below. Define M as the set of those elements which are larger than at least one fixed

point of f̌ in the closure V0 of the state constraints set:

M
def
= {x ∈ X | ∃x′ ∈ V0 , f̌(x′) = x′ , x ≥ x′} . (14)

Then

V(f,K) ⊂ V
0\{x ∈ V

0 | f̌(x) ≤ x and x 6∈ M} . (15)

Proof. We know that the maximal dynamics f̌ is increasing with respect to the state.
Now assume that there exists x0 ∈ V(f,K) such that f̌(x0) ≤ x0. We shall prove that necessarily

x0 ∈ M. Let (u0, u1, . . .) and (x0, x1, . . .) be such that xt+1 = f(xt, ut) and (xt, ut) ∈ K. Define
x̌(0) = x0 and x̌t+1 = f̌(x̌t), for t = 1, 2 . . .. We easily see that xt ≤ x̌t, and thus x̌t ∈ V

0 since
xt ∈ V

0 and V
0 is an increasing set by Proposition 1. The decreasing sequence (x̌t)t∈N being in

V0, it is bounded below and therefore converges to x ∈ V0. By continuity of f̌ , we have f̌(x) = x.
Thus, by x0 ≥ x, we deduce that x0 ∈ M.

2
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3.3 A second upper approximation of the viability kernel

We adapt the dynamic programming algorithm (8) to the case of saturated dynamics. We stress
that under nice monotonicity properties, we obtain an algorithm converging exactly to the viability
kernel V(f,K).

Proposition 5 Assume that the desirable set K is increasing and that the dynamics f is increasing

with respect to the state. Assume also that the maximal dynamics f̌ is saturated at all x ∈ V
0.

Then

1. the decreasing sequence (8) is now given by

V0 = V
0 and Vk+1 = Vk

⋂
f̌−1(Vk) , k ∈ N , (16)

2. any Vk is an upper approximation of the viability kernel for k ∈ N: V(f,K) ⊂ Vk

3. the decreasing sequence (Vk)k∈N converges to V(f,K):

V(f,K) =
⋂

k∈N

Vk = lim
k→∞

↓ Vk.

Proof. Let x ∈ Vk given by (8). By the assumptions on K and f , Vk is an increasing set by
Proposition 1. Thus, we have

∃u ∈ U , f(x, u) ∈ Vk and (x, u) ∈ K ⇐⇒ ∃ū ∈ U , f̌(x) = f(x, ū) ∈ Vk and (x, ū) ∈ K

since Vk is increasing

⇐⇒ x ∈ f̌−1(Vk) and ∃ū ∈ U , (x, ū) ∈ K

⇐⇒ x ∈ f̌−1(Vk) and x ∈ V
0

⇐⇒ x ∈ f̌−1(Vk) since x ∈ Vk ⊂ V
0 .

Thus, (8) is equivalent to (16).

Now, we prove that V(f,K) = limk→∞ ↓ Vk. Thanks to Proposition 8, we already know that
V(f,K) ⊂ limk→∞ ↓ Vk. We obtain the reverse inclusion V(f,K) ⊃ limk→∞ ↓ Vk by showing that
limk→∞ ↓ Vk is a viability domain associated with f in K (see Proposition 9). Consider a fixed
x ∈ limk→∞ ↓ Vk. Since the maximal dynamics f̌ is saturated at x, there exists u ∈ U such that
(x, u) ∈ K and f̌(x) = f(x, u). We claim that f(x, u) ∈ Vk for all k ∈ N. Indeed, or all k ∈ N,
there exists uk ∈ K such that (x, uk) ∈ K and f(x, uk) ∈ Vk. On the one hand, by definition
of the maximal dynamics f̌ , we have f(x, uk) ≤ f̌(x) = f(x, u). On the other hand, recall that
Vk is an increasing set. Thus, f(x, u) ∈ Vk. Since limk→∞ ↓ Vk =

⋂
k∈N

Vk, we obtain that
f(x, u) ∈ limk→∞ ↓ Vk. Hence limk→∞ ↓ Vk is a weakly invariant domain. 2

3.4 A second lower approximation of the viability kernel

If we do not start the dynamic programming algorithm (8) from V
0 but from a weakly invariant

domain, we obtain a lower approximation of the viability kernel as follows.
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Proposition 6 If Ṽ is a weakly invariant domain of f in K, then

V = {x ∈ X | ∃u ∈ U , (x, u) ∈ K and f(x, u) ∈ Ṽ} (17)

is a weakly invariant domain which contains Ṽ.

Proof. By the definition of a weakly invariant domain, we have Ṽ ⊂ V. For x ∈ V, by definition,
there exists u ∈ U such that f(x, u) ∈ Ṽ ⊂ V; that is, V is a weakly invariant domain of f in K. 2

The following Proposition 7 is a consequence of Proposition 6 and of Proposition 9.

Proposition 7 Assume that the desirable set K is increasing and that the dynamics f is increasing

with respect to the state. Assume also that the maximal dynamics f̌ is saturated at all x ∈ V
0.

Then, for all weakly invariant domain Ṽ of f in K,

1. the induction Ṽ0 = Ṽ and Ṽk+1 = f̌−1(Ṽk) is increasing;

2. and its limit is included in the viability kernel:

⋃

k∈N

Ṽk ⊂ V(f,K).

3.5 A third lower approximation of the viability kernel

A lower approximation of the viability kernel may be obtained by a lower approximation of the
dynamics as follows.

Proposition 8 Assume that the desirable set K is increasing and that the dynamics f is bounded

below by an increasing f [ : X × U → X:

f [ ≤ f and f [ is increasing with respect to the state.

Then, V(f [,K) is a weakly invariant domain associated with f in K, and thus

V(f [,K) ⊂ V(f,K). (18)

Proof. The assumptions that f [ and K are increasing ensure that V(f [,K) is increasing, according
to Proposition 1. Consider x ∈ V(f [,K). By the definition of V(f [,K), there exists u ∈ U such that
(x, u) ∈ K and f [(x, u) ∈ V(f [,K). By assumption f(x, u) ≥ f [(x, u). Since V(f [,K) is increasing,
we deduce that f(x, u) ∈ V(f [,K): V(f [,K) is a weakly invariant domain associated with f in K. 2

Consequently, if f is not well known, it can be replaced by an increasing sub-approximation which
gives a weakly invariant domain associated with f in K. This may provide a deterministic and
precautionary way of taking some uncertainty into account.
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4 An example

In this section we apply various results to a model inspired by the management of an age structured
abundance population model with a possibly non linear stock-recruitment relationship. This model
is derived from fish stock management [13].

We introduce a desirable set K based on yield. The algorithm of Proposition 5 to obtain the
viability kernel being not practicable, we instead make use of the method of Proposition 7 to
compute useful weakly invariant sets associated with the dynamics.

The state variable is x = (xa)a = 1, . . . , A ∈ R
A
+, the abundances at age, and the control variable

is u ∈ R+, the exploitation pattern multiplier ut ≥ 0, where t is the time index and a is the age
class index (a ∈ {1, . . . , A}), so that X = R

A
+ and U = R+.

The following dynamical relations relate the hereabove variables and define a dynamics f





x1
t+1 = ϕ(SSB(xt))

xa+1
t+1 = e−(M+utF a)xa

t , a ∈ {1, . . . , A − 1}
(19)

where SSB is the spawning stock biomass, defined by

SSB(x) =

A∑

a=1

pawaxa (20)

and ϕ describes a stock-recruitment relationship. We assume that ϕ is increasing with respect to its
argument. Typically, ϕ can be a Beverton-Holt like relationship [7], defined by ϕ(x) = x

α+βx . For
each time step, the exploitation is described by catch-at-age C a and yield Y , respectively defined
for a given vector of abundance x and a given multiplier u by

Ca(xa, u) =
uF a

uF a + M

(
1 − e−(M+uF a)

)
xa and Y (x, u) =

A∑

a=1

wa Ca(xa, u). (21)

State constraints set. The desirable set K we consider is simply defined by a minimum threshold
ymin on the yield:

K = {(x, u) ∈ X × U | Y (x, u) ≥ ymin}.

We first compute V
0 = ProjX(K) and, since u 7→ Ca(xa, u) is increasing, we find that

V
0 = {x ∈ R

A
+ | lim

u→+∞
Y (x, u) > ymin} = {x ∈ R

A
+ |

∑

a∈Ae

waxa > ymin},

Notice that V
0 is not weakly invariant.

Monotonicity properties. The desirable set is increasing, since Y (x, u) is increasing with re-
spect to x. The dynamics f is increasing with respect to the state, with the assumption that ϕ is
an increasing function. The dynamics f is decreasing with respect to the control and we have

f̌(x) =
∨

u∈U,(x,u)∈K

f(x, u) = f(x, ux),

where the control ux is defined by the implicit equation
∑A

a=1 Ca(xa, ux)wa = ymin.

9



Computation of desirable equilibria. Let u be fixed. Introducing Da(u) = e−((a−1)M+u(F1+...+Fa−1))

(a = 2, . . . , A), the proportion of equilibrium recruits which survive up to age a (D1(u) = 1), the

equilibrium spawners per recruits spr(u)
def
=

∑A
a=1 pawaDa(u), and assuming that the increasing

function r 7→ ϕ(r
∑A

a=1 pawaDa(u)) has a nonnegative fixed point Rϕ(u), then

x∗(u) = (Rϕ(u), D1(u)Rϕ(u), . . . , DA(u)Rϕ(u))

is such that f(x∗(u), u) = x∗(u). There remains to find conditions under which such (x∗(u), u) is
not only an equilibrium but a desirable equilibrium, that is Y (x∗(u), u) ≥ ymin.

For the sake of simplicity, we assume that the function Y ∗ : u 7→ Y (x(u), u) (yield at equilib-
rium) is continuous and goes to zero at infinity. Then, the function Y ∗ admits a maximum value,
commonly called the maximum sustainable yield, since it is the maximum equilibrium yield. We
denote it by ymsy. Moreover, it is attained for a fishing effort multiplier umsy:

ymsy
def
= max

u≥0
Y ∗(u) = Y ∗(umsy).

By definition, ymsy is the maximum value for ymin such that there exists a desirable equilibrium.

Approximation of the viability kernel. Let us consider ymin ∈]0, ymsy[. By the intermediate
value theorem, there exist u1

min < u2
min such that

x(u1
min) < x(u2

min) and Y ∗(u1
min) = Y ∗(u2

min) = ymin.

We define
Ṽ

2 = {x ∈ R
A
+ | x ≥ x(u2

min)} ⊂ Ṽ
1 = {x ∈ R

A
+ | x ≥ x(u1

min)}.

According to Proposition 1, both sets Ṽ
1 and Ṽ

2 are weakly invariant sets associated with f in K,
defined with the threshold ymin. We obtain the lower approximation of the viability kernel

Ṽ
1 ⊂ V(f,K)

The resulting patterns are shown in Figure 1 in the two-class case, that is with A = 2. Using
Proposition 6, the weakly invariant domain obtained one step backward from Ṽ

2 is sketched in
Figure 2.

Acknowledgement. We thank Lance Bode (James Cook University, Australia) for reading
and commenting our paper.

A Appendix

Proposition 9 The viability kernel V(f,K) is the union of all viability domains, that is the largest

set such that Ṽ ⊂ {x ∈ X | ∃u ∈ U , (x, u) ∈ K and f(x, u) ∈ Ṽ}.
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Figure 1: Example of two weakly invariant domains defined with two desirable equilibria.
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Figure 2: Enlargement of a viable orthant in the plan (x1, x2).

Proof. First, we prove that any viability domain Ṽ associated with f in K is a subset of V(f,K).
For x ∈ Ṽ, let us put x0 = x and u0 ∈ U be such that x1 = f(x0, u0) and (x0, u0) ∈ K. Starting
from x1, we proceed in the same way to obtain u1. Going on, we find a sequence (u0, u1, . . .) such
that xt+1 = f(xt, ut) and (xt, ut) ∈ K for all t ∈ N. Thus, x ∈ V(f,K).

Second, we prove that V(f,K) is a viability domain. By definition, for all x ∈ V(f,K), there
exists decisions (u0, u1, . . . , ut, . . .) and states starting from x at time 0 satisfying for all times t ∈ N,
(xt, ut) ∈ K and xt+1 = f(xt, ut). Set y = f(x, u0). With the states yt = xt+1 and the decisions
vt = ut+1, we obtain that y ∈ V(f,K). Then, there exists u (= u0) ∈ U such that (x, u) ∈ K and
f(x, u) ∈ V(f,K). Thus, V(f,K) is a viability domain.

We conclude that V(f,K) is the largest viability domain associated with f in K and that all
the viability domains are included within V(f,K). 2
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