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LIMIT THEOREMS FOR BIFURCATING MARKOV CHAINS.
APPLICATION TO THE DETECTION OF CELLULAR AGING

JULIEN GUYON

ABSTRACT. We propose a general method to study dependent data in a binary tree,
where an individual in one generation gives rise to two different offspring, one of type
0 and one of type 1, in the next generation. For any specific characteristic of these
individuals, we assume that the charcteristic is stochastic and depends on its ancestors’
only through the mother’s characteristic. The dependency structure may be described by
a transition probability P(z, dydz) which gives the probability that the pair of daughters’
characteristics is around (y, z) given that the mother’s characteristic is . Note that y,
the characteristic of the daughter of type 0, and z, that of the daughter of type 1, may
be conditionally dependent given x, and their respective conditional distributions may
differ. We then speak of bifurcating Markov chains.

We derive laws of large numbers and central limit theorems for such stochastic pro-
cesses. We then apply these results to detect cellular aging in Escherichia Coli, using
the data of E. J. STEWART et al. and a bifurcating autoregressive model.

1. INTRODUCTION

1.1. Motivation. This study has been motivated by a collaboration [8] with biologists
from the Laboratoire de Génétique moléculaire, évolutive et médicale (INSERM U571,
Faculté de Médecine Necker, Paris). F. TADDEI, E. J. STEWART, A. LINDNER and G.
PAUL, together with R. MADDEN from the Institut des Hautes Etudes Scientifiques, have
been working on Escherichia Coli’s aging. E. Coli is a single-celled, model organism. It
has been widely studied by the biologists who have gathered a large amount of information
on its physiology. Whereas aging is obvious in macroscopic organisms, it is not in single-
celled ones, where nevertheless one has the best chances of describing and quantifying the
molecular process involved. It is especially hard to identify in E. Coli, which reproduces
without a juvenile phase and with an apparently symmetric division. E. J. STEWART et
al. [19] have designed an experimental protocol which brings evidence of aging in E. Coli
and we propose a statistical study of the data they collected.

In this section, we describe the biological experiment and present the data (Subsection
1.2). Inter-experiment averaging shows a clear segregation between the new and old poles
(see Subsection 1.2.1), whereas single-experiment data does not. In Subsection 1.3, we
propose a linear Gaussian model that allows to study the populations of old and new
poles experiment-wise. The model consists of a bifurcating markovian dynamics. This
motivates Section 2, where we give a detailed study of such stochastic processes. We pay
special attention to limit theorems such as laws of large numbers (Theorems 8, 11 and 14)
and central limit theorems (Theorem 19 and its corollaries). Eventually, in Section 3, we
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FIGURE 1. The life cycle of E. coli, from E. J. STEWART et al. [19]

apply these results to the model and get rigorous estimation and test procedures which
are performed on the data in order to detect cellular aging.

1.2. The biology. Here we briefly describe E. Coli’s life cycle, the experiment designed
by E. J. STEWART et al. and the data they get. Figure 1 is taken from [19] where one can
find further information.

1.2.1. The experiment. E. Coli is a rod-shaped bacterium. It reproduces by dividing in
the middle, producing a new end per progeny cell (see Figure 1). This new end is called
the new pole, whereas the other end is pre-existing and is called the old pole.

This defines an age in divisions for each pole, and hence for each cell. One expects
any cell component formed in the poles and with limited diffusion to accumulate at the
old pole, so that there might be a physiological asymmetry between the old and new
poles. To determine if E. Coli experiences aging related to the inheritance of the old
pole, E. J. STEWART et al. followed 95 individual exponentially growing cells through up
to nine generations in an automated fluorescence microscopy system which allowed them
to determine the complete lineage, the identity of each pole and, among other physical
parameters, the growth rate of each cell. Let us now present their results.

1.2.2. Original data. Fach of the 95 films gives rise to a genealogical tree such as the ones
in Figure 2. The new poles are the solid lines and the old poles the dashed lines. On
the y-axis appears the growth rate, whereas the x-axis displays time in divisions. There
is no striking evidence for reproductive asymmetry between the progeny cells visible to
the naked eye. Note that generally the data is not regular: some generations are not
completely observed, and in few cases a cell’s growth rate might be measured whereas her
sister’s is not.
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FIGURE 2. Two single-experiment data trees (two films)
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FI1GURE 3. The average data tree

1.2.3. Averaged data. In order to eliminate the random effects which appear in Figure 2,
E. J. STEWART et al. have averaged the 95 lineages by each unique cell position within the
lineage. Figure 3 is the average tree thus produced for generations 5, 6 and 7. It clearly
shows a segregation between the new and old poles. The old poles grow slower than the
old poles, which is evidence for aging.

However, we would prefer to study each expermiment separately, since we do not know
if the experiments are independent and/or identically distributed. Indeed, two initial cells
giving rise to two different films are actually taken from the same macrocolony, so that
there might be a correlation between the experiments. Moreover, as shown in Figure 2,
the range of values of the growth rate changes from film to film, probably due to a slight
change in the experimental conditions. In the next section, we propose a statistical model
that allows us to study the populations of old and new poles experiment-wise. It also has
the advantage of taking into account the structure of the dependencies within a lineage.
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1.3. The mathematical model. In order to describe the dynamics of the growth rate,
let X; denote the growth rate of individual 4 and n denote the mother of 2n - the new pole
progeny cell - and 2n+1 - the old pole progeny cell, see Figure 4. We propose the following
markovian model with memory one: X;, the ancestor’s growth rate, has distribution v
and for all n > 1,

(1) Xop = opXp+ ﬁO + €on,
Xont1 = o Xy + P14 €y,

where ag, a1 € (—1,1), Bo,f1 € R and ((e2n,e2n+1),n > 1) forms a sequence of inde-
pendent and identically distributed (i.i.d.) centered bivariate Gaussian random variables
(I‘.V.), say (Ezn,62n+1) ~ NZ(O,F) with

I‘:02<1 p), o2 >0, p€(-1,1)
p 1

(€2 and e9,,1 are thus supposed to have common variance 02?). We speak of memory
one because a cell’s growth rate is explained by its mother’s. For instance, a markovian
model with memory two would also take into account the grandmother’s growth rate. We
regard model (1) as “the simpler” reasonable model which describes a dependency within
the colony.

Remark 1. Since a Gaussian r.v. may take arbitrarily big negative values, here we allow
the growth rate to take negative values. However, provided we correctly estimate the
parameters, this should happen with extremely small probability.

We aim at

(1) estimating the 4-dimensional parameter 8 = (ag, B, a1,51), p and o2,
(2) testing the null hypothesis Hy = {(ag,80) = (@1, 1)} against its alternative H; =

{(aw, Bo) # (a1, 51)}-

In view of the biological question addressed here, point (2) is crucial: rejecting Hy comes
down to accepting that the dynamics of the growth rate of the old pole offspring is different
from that of the new pole offspring. We shall actually see the old pole progeny cell
experiences slowed growth rate and hence should be considered an aging parent repeatedly
producing rejuvenated offspring.

Bifurcating autoregressive (BAR) models, such as model (1), have already been studied.
R. CowAN and R. STAUDTE (7] were pioneers and studied model (1) in the special case
when (ag, o) = (a1,51), i.e. under Hy. Several extensions [3, 6, 10, 11, 12, 18] followed,
improving inference results or/and generalizing the model, but no distinction was never
made between new and old poles. In mathematical terms, in all these papers, the distri-
bution of Xs, given X,, has always been assumed to be the same as the distribution of
Xon+1 given X,,. Now, detecting a discrepancy between these distributions is the central
question addressed here. Hence, model (1) generalizes existing BAR models and allows us
to detect dissymetry between sisters. Such a generalization is a source of mathematical
difficulties. For instance, there is no stationary distribution in the sense of [7], that is to
say a distribution common to all cells in the clone. This leads us to develop a new theory
(see Section 2).

We shall call X = (X,,,n > 1) a bifurcating Markov chain. The next section is devoted
to the study of this family of stochastic processes. Establishing laws of large numbers and
central limt theorems will be crucial in achieving the two above objectives. That is the
reason why we will pay a special attention to such limit theorems.
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2. BIFURCATING MARKOV CHAINS. LIMIT THEOREMS

2.1. Definitions. Markov chains (MCs) are usually indexed by the integers. Here we give
a definition of a MC when the index set is the (regular) binary tree T. We then speak of
bifurcating Markov chain or T-Markov chain, which we often write T-MC. T-MCs are well
adapted to modeling data on the descent of an initial individual, where each individual in
one generation gives rise to two offspring in the next one. Cell lineage data, such as the
one presented in Section 1.2, are typically of this kind.

Let us introduce some notation about the binary tree T, see Figure 4. Each vertex
n € T is seen as a positive integer n € N*. It should be thought of as an individual or
a cell. Tt has exactly two daughters, 2n and 2n + 1, and we label the root 1. We denote
by G, = {29,297 +1,...,29T1 — 1} the ¢-th generation and by T, = Ug=0Gq the subtree
consisting of the first 7 + 1 generations. With this notation, Gy = {1} and, | | standing
for the cardinality, |G,;| = 29 and |T,| = 2""! — 1. We also denote by r, = |log,n| the
generation of individual n, i.e. n € G, . In terms of labelling the vertices, T is assimilated
to N*, but the topology is different: within T, n and 2n (resp. n and 2n + 1) should be
seen as neighbours.

Let (S,S) be a metric space endowed with its Borel o-field, and think of it as the state
space. For instance, in model (1), S = R. For any integer p > 2 we equip S? with the
product o-field, say SP.

Definition 2. We call T-transition probability any mapping P : S x S? — [0, 1] such that

e P(-,A) is measurable for all A € S,
e P(z,-) is a probability measure on ($2,5?) for all z € S.



6 JULIEN GUYON

We also define, forz € Sand B € S, Py(z, B) = P(z, BxS) and P,(z, B) = P(z, SxB).
Py and P; are transition probabilities on (S, S). In model (1), they respectively correspond
to the transition probabilities of the new poles and of the old poles.

For p > 1, we denote by B(SP) (resp. By(S?), C(SP), Cp(SP)) the set of all SP-measurable
(resp. SP-measurable and bounded, continuous, continuous and bounded) mappings f :
SP — R. If p € {2,3} and f € B(SP), when it is defined, we denote by Pf € B(S) the

function [ Fls ) P )
_ 2 fly, z2)P(x, dydz if p=2,
© > Pfz) = { o2 f(@,y,2)P(z, dydz) if p=3.
Let (Q,F, (F,,r € N),P) be a filtered probability space and, defined on it, (X,,,n € T)
be a family of S-valued random variables. Let v be a probability on (S,S) and P be a
T-transition probability.

Definition 3. We say that (X,,,n € T) is a (F,)-bifurcating Markov chain, or (F;,)-T-MC
(with initial distribution v and T-transition probability P), if
e X, is F, -measurable for all n € T,

e X, has distribution v,
e for all ¢ € N and for all family (f,,n € G;) in By(S?),

E H fn(XQnaXZn—i—l) Fq = H an(Xn)

neGy neG,

This means that, given generations 0 to g, Ty, one builds generation G,y; by drawing
29 independent couples (X, Xon11) according to P(X,,, ) (n € G;). A (F,)-T-MC is also
a (FX)-T-MC, where FX = o(X;,i € T,). When unstated, the filtration implicitely used
is the latter. Note that for f € By(S?), E[f (Xon, Xonys1)|Fr,] factorizes through X,,, so
that E[f (Xon, Xon+1)|Fr,] = E[f(Xon, Xon+1)|Xn]. This means that any X,, depends on
past generations only through her mother. This explains why we speak of a Markov chain
(with memory one).

Last but not least, note that, contrary to much of the (still sparse) literature on the
subject, we allow conditional dependency between sisters. Conditional independance cor-
responds to the case when P factorizes as a product Py ® P; of two transition probabilities
on (S,S), that is P(z,dydz) = Py(z,dy)®Pi(z,dz) forallz € S. [1, 2, 4, 13, 14, 15, 16, 20]
deal with more general than binary -and possibly random- trees but all assume that, condi-
tionally on their mother’s type, the daughters have independant and identically distributed
types. In our case, this corresponds to conditional independency with Py = P;. As said
in Section 1.3, to our best knowledge, BAR models, although they allow for conditional
dependence, have always been studied until now under the assumption that Py = P;.
Now, detecting that Py # P; will be the central question when we study cellular aging
(see Section 3). Moreover, like in [2], we consider general state spaces whereas [1, 4] deal
only with countable ones and [13, 14, 15, 16, 20] only with finite ones. Note that in the
latter case, one may regard a T-MC X as a multitype branching process and apply F.
MAAOUIA and A. TOUATI’s identification techniques [16].

2.2. Weak law of large numbers.

2.2.1. Introduction. A first natural question is to know whether a T-Markov chain (X))
obeys laws of large numbers (LLN), that is convergence of empirical means.
Given f € B(S) and a finite subset I C T, let us write M;(f) = > ,c; f(X;) and

Mi(f) = |I|™" Mi(f). Several empirical averages can be considered:
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e One may average over the ¢-th generation, i.e. compute MGL] (f)-

e One may prefer to average over the first 7 + 1 generations, i.e. compute M, (f).
This is meaningful because G, naturally precedes G441, since one cannot draw the
whole (g + 1)-th generation without having completely drawn the g-th one.

e One may also average over the “first” n individuals, i.e. compute n™' Y- | f(X;).
However, there is no natural order within a generation G,: all the individuals
(Xn,n € Gq) of the g-th level can be generated simultaneously. That is why we
introduce the set & of all permutations of N* that leave each G4 invariant and, for
f € B(S) and w € &, consider the sums

My (f) = Zf(Xﬂ'(z'))'

As far as the asymptotic behaviour of M, (f) = n~ ' M7 (f) is concerned, the choice
of m matters. To illustrate this, consider the following example.

Example 4. Assume that S = {0,1}, f = idg and, whatever the mother’s type, X, =1

and X9, 1 =0 - in other words, P(z,dydz) = §1(dy)do(dz) for all z € S, where §, stands

for the Dirac mass at point z. If 7 € & sends the “first half” of each G, i.e. {29,297 +

1,...,3-2971 — 1}, onto the even elements in G, i.e. G, N (2N), then lim inf, o m(f) =

1/2 and limsup,,_,,, M, (f) = 2/3: the empirical average M, (f) oscillates between 1/2

and 2/3. Conversely, if 7 sends the “first half” of each G, onto the odd elements in G,
0

i.e. Gy N (2N + 1), then liminf, 00 M, (f) = 1/3 and limsup,_,, M, (f) = 1/2. But for
7 = idy-, M, (f) converges to 1/2.

e A natural answer to this issue is to explore each new generation “by chance”, i.e.
to draw a permutation II “uniformly” on &, independently on X = (X,,,n € T).
Drawing II “uniformly” on & means drawing the restriction of II on G, uniformly
among the (29)! permutations of G,, independently for each g. Then we consider

the empirical average M, (f) = n~'MI(f), where
M, () =) f(Xug).
i—1

Thus we introduce extra randomness, but this will allow us to get through Lia-
punov’s condition when we try to derive a central limit theorem for X.

Remark 5. Note that for all 7 € & and r > 0, M&Tl(f) = Mr,(f). Besides, for all r > 0,

_ G |
® M, () = 3 1 M, ()
and, for all # € G and n > 1,

_ 1 &
Calize, (042 3 £ne)

1o,
(3) - My (f) = 2 P

(we systematically use the convention that a sum over an empty set is zero).

Because of the branching, empirical averages of T-MCs may not behave like correspond-
ing MCs’ones. Precisely, given a transition probability R, a LLN may hold for MCs with
transition probability R and fail for T-MCs with T-transition probablity R ® R. A very
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simple but crucial illustration of this is Example 6. At least for the case of finite state
spaces, let us keep in mind that periodicity is problematic and that there is more to ask
than irreducibility and recurrence for a T-MC to obey a LLN.

Example 6. Consider the two-state MC, say S = {0, 1}, with R(0,-) = ; and R(1,-) = do.
For a MC Y, a LLN holds true: whatever the initial state, the empirical average % Y Y
converges to 1/2 when n grows to infinity. But for the corresponding T-MC X with T-
transition probablity P = R® R, i.e. P(0,) = d; ® §; and P(1,-) = §p ® dp, it endlessly
fluctuates from 1/3 to 2/3. Indeed, assume that X; = 0. Then Mg, (id) is 0 when g is
even and 1 when ¢ is odd, so that (2) shows that

2s s—1
_ . 29 92141 192s+1 _ 9
Mr,,(id) = Z 22541 _ | Lant1(g) = Z 225t1 _ 1 3925+l _ |
q=0 =0
tends to 1/3, whereas
25+1 s 20+1
— ) 24 2 2
My, (id) = D s 1lonn (@0 =D i1 = 5
q=0 =0

Conversely, if X; = 1, then limy_,o, Mr,,(id) = 2/3 and lim,_,o Mr,,,(id) = 1/3.

2.2.2. Results. Here we ask ourselves whether the various empirical averages introduced
in Section 2.2.1 converge, in quadratic mean, when the size of the tree grows to infinity
and we then speak of weak LLN. A sufficient condition for a weak LLN to hold appears
to be the ergodicity, see Definition 7, of the induced MC (Y,,r € N) defined as follows.
Start from the root and recursively choose one of the two daughters tossing a balanced
coin, independently on the T-MC X. In mathematical terms, Yy = X; and if Y, = X,
then Y, 11 = Xopy¢,,, for a sequence of independent balanced Bernoulli r.v. ({4, q € N*)
independent on (X,II). Here ‘balanced’ means that P({; = 0) = P({, = 1) = 1/2. It is
easy to check that (Y,,r € N) is a MC with initial distribution v and transition probability

Py+ P
QZT-

Definition 7. We say that a MC Y is ergodic if there exists a probability y on (S,S)
such that lim, o By [f(Y;)] = [ f dp for all z € S and f € Cy(S).

Then p is the unique stationary distribution of Y, and the sequence (Y, € N) converges
in distribution to y. Sufficient conditions for ergodicity may be found in [5, 17]. We are
now in the position to state the main theorem of this section:

Theorem 8. Assume that the induced MC (Y;,r € N) is ergodic, with stationary distri-
bution p. Then, for any f € Cy(S), the three empirical averages Mg, (f), Mr,(f) and

Hg(f) converge to (u, f) in L2

Remark 9. It is noteworthy that the asymptotic behaviour of the three above empirical
averages depends on the T-transition probability P only through Q = (P + P;)/2.

Remark 10. K. ATHREYA and H.-J. KANG [2] use an analogous ergodicity hypothe-
sis to get laws of large numbers. Namely, their results hold for Galton-Watson trees
in which particles move according to a Markov chain R on (S,S), and they assume
limy, 00 R™(z,-) = p. If this happens uniformy in z on the compact subsets of S, they
get a weak LLN; if this happens uniformy in z on S, they get a strong LLN. Observe that
we do not assume any uniformity in z (but our tree is deterministic).
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In the application (Section 3), the function f will typically be unbounded so that we
shall actually prove an extended version of Theorem 8. To this end, let us first introduce
some notation. We denote by:

e i A j the most recent common ancestor of 7,5 € T,

* f ®g the mapping (z,y) — f(z)g(y),

e ()P the p-th iterated of @, recursively defined by the formulas Q°(z,-) = &, and
Q" (z,B) = [¢Q(z,dy)QP(y, B) for all B € S; QP is a transition probability on
(5,8),

e v(Q) the distribution on (S, S) defined by vQ(B) = [, v gV B); vQP is the law
of Yy,

z) = [ f(y)Q(z,dy) when it is defined,
e v(f) or (v, f) the integral [ f dv when it is defined.

With such a notation, for any distribution A, transition probability () and function f €
B(S) such that AQ(|f]) < oo, we have AQ(f) = A(Qf) which is hence simply written AQ f.
Now, let F' denote a subspace of B(S) such that

(i) F contains the constants,
(ii) F2 C F,
(iii) F® F C LY(P(x,-)) forallz € S, and P(F® F) C F,
(iv) there exists a probability y on (S, S) such that F C L'(p) and lim, oo B, [f(Y;)] =
(u, f) forallz € Sand f € F,
(v) for all f € F, there exists g € F such that for all r € N, |Q" f| < g,
(vi) F C L'(v),
where we have used the notations F? = {f?|f € F}, F® F = {f ® g|f,g € F} and
PE = {Pf|f € E} whenever an operator P acts on a set E. Note that (i) and (iii) imply
the condition

(iii’) for z = 0,1, F C L*(P,(z,-)) forallz € S and P,F C F,
since Pof = P(f®1) and P, f = P(1® f). This in its turn implies

(iii*) F c LY(Q(z,-)) forallz € S and QF C F,
so that in (iv) and (v) E;[f(Y,)] = Q" f(z) is well defined. Note also that if F' contains
enough functions, e.g. if it contains the set of all bounded lipschitz functions, then x is

the unique stationary distribution of Y, i.e. u@ = p. The next theorem states that the
result in Theorem 8 remains true for f’s in such a F":

Theorem 11. Let F satisfy conditions (i)-(vi) above. Then, for any f € F, the three
empirical averages M((;,q (f), Mr,(f) and Mg(f) converge to (u, f) in L2,

Obviously F = Cy(S) fulfils conditions (i)-(vi) as soon as Y is ergodic, so that Theorem
11 implies Theorem 8. In Section 3 we shall take F' to be the set of all continuous and
polynomially growing functions.

We shall also need an easy extension of Theorem 11 to the case when f does not only
depend on an individual X;, but on the mother-daughters triangle (Xj;, Xo;, X2;41). This
will be useful in the application (Section 3). Let us denote A, = (X, Xon, Xon+1) and,
for f € B(S?) and I a finite subset of T,

— Zf(A,) and Mg(f) = Zf (AH(z’))
=1

el
Then we have
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Theorem 12. Let F satisfy conditions (i)-(vi). Let f € B(S®) such that Pf and Pf?

exist and belong to F. Then the three empirical averages M@q (f), Mt,(f) and Mg(f)
converge to (u, Pf) in L2.

2.2.3. Proofs. This section is devoted to the proofs of Theorems 11 and 12.

Proof of Theorem 11. Considering the function f — (u, f) leaves us with the case when
(4, f) = 0. Then condition (iv) implies that

(4) Vz €8, T11>11010 Q" f(z)=0.

We shall study the three empirical averages Mg, (f), Mr,(f) and ME (f) successively.

Step 1. Let us first deal with Mg, (f). First note that f(X;) € L? for all i € G.
Indeed, there is a unique path (z1,...,24) € {0,1}7 in the binary tree from the root 1 to
i; here (21,...,24) should be seen as the realisation of the coin toss r.v. ((1,...,(,) that
joins 1 to 7. For instance, (1,0,0,1) is the path from 1 to 25. Thus

E[f(Xz)Q] =vP, "'quan

which, from (i), (iii’) and (vi), is finite.
Independently on X, let us now draw two independent indices I; and J; uniformly from
Ggq- Then f(Xp,)f(Xs,) € L' and we have

B[, (1)2) = —— S ELF(X:)F(X,)] = ELF(X5,) F(X0,)]

2
|Gq | i,je(}q

Let us fix p € {0, ..., ¢} and reason conditionally on the event {I,AJ, € G, }. Then I;A
J is uniformly distributed on Gy, so that X7 Aj, has the same distribution as Y), i.e. has
distribution vQP. Besides, for p < g, conditionally on the states (Xa(z,aJ,)s Xo(,n7,)+1) Of
the two daughters of I; A J,, X;, and X, are independent and have the same distribution
as Y;_p—1 with respective initial conditions Xo A7) and Xy aj,)41- Provided we use

the convention that P(Q~'f ® Q™1 f) = f2, we then have
(5) Elf(X1,)f (X5 ) Ig A Jy € Gyl = vQPP (QT P 1 f @ QY P 1f).

Now, P(I, A Jy € Gg) =PIy = J;) =279 and, for p € {0,...,q— 1}, P(I, A Jy; € Gp) =
27P~1  Indeed, since I, and J; are independent, the paths (C{, .- ,Cé-) from 1 to I, and
(¢/,...,¢]) from 1 to J, are independent so that for p € {0,...,q — 1},

]P(Iq NJg € Gp) = P(Cll = Cf,---,é}f = Cj;]>CI£+1 # CpJ+1) =277

In short, we write P(I, A J, € G,) = 27P~1r<a}. Combined with (5), this finally gives
q

(6)  EMc, (f)") = Elf(X1,)(X5,)] = 3 277 oo u@PP (Q7P ' f © Q77 ).

p=0

Let us now fix ¢ > 0 and choose p, € N such that 27P¢ < ¢. Then Zp>ps 27P < g
Besides, from (iii), (v) and (vi), there is a ¢y > 0 such that

(7) [vQPP(QT P f @ QTP < ¢
for all 0 < p < ¢q. Hence for ¢ > p,

De
(8) E[Mg,(f)%] <ecp+ Y [vQPP (QUP ' f@QTP7'f)|.

p=0
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From (v), there exists g € F such that for all7 € N, |Q"f ® Q"f| < ¢ ® g. From (iii),
P(g®g) € F so that, using (v) and (vi), P(g ® g) € NpenL!(vQP). This shows that the
sequence of functions (Q"f ® Q" f,r € N) is dominated by g ® g € NpenL' (vQPP). Then
(4) and Lebesgue’s dominated convergence theorem imply that

9) YeN,  limvQ'P(Qf®Qf)=0.

As a consequence, the r.h.s. of (8) converges to ecy as ¢ grows to infinity. Since ¢ is
arbitrary, the proof is complete for Mg, (f)-

Convergence results for M, (f) or MS (f) may be easily deduced from those for Mg, (f)
by using (2) or (3) and the following lemma.

Lemma 13. Let (u,,r € N) be a sequence of nonnegative real numbers converging to 0.
Let

rn—1
— |G
= Z ||'JI' | and an = Z %uq.

Then (vy,r € N) and (an,n € N*) converge to 0.

Proof. Let us fix ¢ > 0. We can find ¢ € N* such that u, < ¢ for all ¢ > ¢.. Letting
M = supg ey ug, we then have, for all r > g, v, <e+ M ZZE:BI %. The r.h.s. tends to ¢
as r grows to infinity, so that lim, ., v, = 0.

As for (a,,,n € N*), it is enough to notice that, since |T,, _1| < n, a, = vy, 1 |Tp,,—1]| /1 <
vy, —1 and to apply the result for (v,,r € N). O

Step 2. Let us now treat Mt (f). From (2), we have by the triangle inequality
3=, (Dl < Simo 24 [¥s, (D)2
mean. Lemma 13 1mphes that the r.h.s. tends to 0, which ends the proof for M (f).

Step 3. Eventually, let us look at M}f (f). From (3) and the triangle inequality,
HHS(]‘)HL2 < ap + b, where

. From Step 1, Mg, (f) converges to 0 in quadratic

n—Z'G'HM@q ()ss and b=

Z fXHz)

z 2™n

Since MGq (f) converges to 0 in quadratic mean, Lemma 13 implies that lim,,_, a, = 0.
As for b, first note that since each f(X;) belongs to L?, f (X)) f(Xng) € L! for all
i,7 € {2™,...,n} so that

> EIf (Xng)f (Xng))-

i’j:27‘n

Let us compute the latter expectation, dependingoni = jori # j. Foralli € {2™,...,n},
I1(i) has the uniform distribution on G, so that when i = j, E[f(Xu))f(Xny)] =
E[f2 (Xm@)l = vQ™ f?. Let us now treat the case when i # j. Then r, > 1. Independently

on (X, II), draw two independent indices I, and J,, uniformly from G;,,. Then since i # j,
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the law of (II(z),II(4)) is the conditional law of (I, J,,) given {I, # J, } so that
Elf (Xu@) ) f (Xug)l = Elf (X1, ) (X5, 25,3/ PUr, # Jr,)

= (1-27")" 1]E[f(XIm)f(XJm)1{17”;,%”}]
(1 —27")"" (BIf (X1, ) f(Xs,)] — E[f* (X1, )11, =0, 1))
(1 —27") " (Blf (X1, ) f(X5,)] — Bl (X5, )Py, = Jr,))
= (-2 (Blf (X1, )f(Xs,,)] - 27 vQ™ )

= (1-27) Z 27 WQPP (QT TP e Q)

where we have used P(I,, = J,,) = 27" in the second and fifth equalities, the inde-
pendence of (X,1,,) and 1;7, _; 1 in the fourth one, the fact that Xj, has the same
distribution as Y;, in the fifth one and (6) with ¢ = 7y, in the last one. Eventually, we
have proved that b2 = b, + b/ with

941
p, = 222 gy
n
n—2")(n—2™ +1 i Tp— T
w = R S e @ e 0y,

Since (n — 2™ + 1)/n? < 1/n, and using (ii), (v) and (vi), lim, o b, = 0. As for b/,
let us fix ¢ > 0 and choose p. € N* such that 277¢ < e. From (7), there is a ¢;f > 0
such that |VQPP(QT”_p_1f ® Q’"n_p_lf)‘ < ¢ for all p and n such that 7, > p. Since
(n—2™)(n — 2™ 4+ 1)/n?(1 —27™) < 1, we then have

pe—1

bl <ecp+ Z lvQPP (Q™ P ' fo Q™ P f)].

p=0
Now, using (9), we get that each term of the latter finite sum tends to 0 as n tends to
infinity, so that finally lim,,_, b/ = 0, which completes the proof. O

Proof of Theorem 12. Considering the function f — (u, Pf) leaves us with the case when
(1, Pf) = 0. Let us treat the case of Mg, (f). Observe that f(A;) € L? for all i €
G- Indeed, (z1,...,7,) denoting the path from the root 1 to 4 in the tree, E[f(A;)?] =
VP, -+ P, Pf? which is finite from (iii’) and (vi), since Pf? € F. Thus, by conditioning
on F,, Blf (A0)/(A,)] = EIPS(X;)PF(X))] foralli # j € Gy, and F[f? (Ay)] = B[P (X))
for all « € G,. Hence

E[Mg,(f)’] = > Elf(A:)f(A))]

1,J€Gy
= Y EPF(X)]+ Y E[PF(X)Pf(X;)]
i€Gy i#§€Gq

= E[Mg, (Pf)? +E[Mg, (Pf? - (Pf)?)],
so that _
E[M, (Pf? - (PH))]

E[MGLI (f)2] = E[MG(I (Pf)2] + |Gq|
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We can apply Theorem 11 twice: limg o, IE[M(;,(I (Pf)?] = 0 and lim,_0 E[ng (Pf? —
(PFH] = (u, Pf? — (Pf)?), so that limg_,o E[M g, (f)?] = 0, i.e. Mg,(f) converges to
0 in L2, Using Lemma 13 we extend this result to Mt (f). The proof for Hg (f) is
similar to Step 3 of the proof of Theorem 11, with the same extra conditioning argument
as above. d

2.3. Strong law of large numbers. So far, we have proved weak LLN, that is conver-
gence in quadratic mean for empirical averages. We now seek for strong LLN. Theorem
14 gives sufficient conditions under which the empirical averages over the ¢g-th generation
and over the first r + 1 generations converge to a constant with probability one.

Theorem 14. Let F satisfy conditions (i)-(vi). Let f € F such that (u, f) = 0. Assume
that there exists h € F' such that

P (Z Q" f® Qrfl) <h.
reN
Then Mg, (f) and Mr,(f) almost surely converge to 0 as g — oo.

Proof. Step 1. Let us first treat Mg, (f). Let us write n, = E[M g, (f)?]. It is enough to
check that }° 7y < co. Now, using (6) and Fubini’s theorem, we have

q
domg = YD 2P QPP (QUPT @ QU

geN q€eN p=0

+oo
DD rrles PP (TP @ Q)|
peN g=p
< > 2P (P +P (Z Q"f @ fo|>>
peEN reN
< D 2TQN(f7 4 h)
peEN

which, from (v) and (vi), is finite, since f2 +h € F.

Step 2. Let us now deal with Mr,(f). From (2), [Mr,(f)| < z;zo% Mg, (f)|-
From Step 1, a.s. lim,_, ‘H(;,q (f)‘ = 0. It is enough to apply Lemma 13 to get that
Mr,(f) a.s. converges to 0. O

IA

In particular, we have

Corollary 15. Let F satisfy conditions (i)-(vi). Let f € F such that (i, f) = 0. Assume
there exists c € F' and a nonnegative sequence (k;,7 € N) such that ) .y kr < 00 and

VreS, VreN, |Q" f(z)| < ¢(z)kr-
Then Mg, (f) and Mr,(f) almost surely converge to 0.

Proof. From (iii), h = (X ,enfr) Plc®c) € F and P(},on |Q"f ® Q" f]) < h, so that
Theorem 14 gives the result. g

Remark 16. In the case when s, = k" for some « € (0,1), we speak of geometric ergod-
icity. Geometric ergodicity implies the almost sure convergence of Mg, (f) and M, (f).
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Remark 17. Assume that the state space S is finite, and that the induced MC Y is
irreducible and aperiodic. Then Y is ergodic and, y standing for its stationary distribution,
the sequence of functions (Q"g,r € N) uniformly converges to (u,g) with exponential
speed. Taking F = B(S) and f = g — (u,g), Corollary 15 applies: Mg, (f) and Mr,(f)
almost surely converge to 0, i.e. Mg, (g) and Mr,(g) almost surely converge to (u,g).
This covers the main result in [14, 15, 20] when applied to the binary tree.

In the case when f depends on the mother-daughters triangle A, = (X, Xon, Xon+1),
we can prove as well

Theorem 18. Let F satisfy conditions (i)-(vi). Let f € B(S®) such that Pf and Pf?
exist and belong to F', with (u, Pf) = 0.
(i) Assume that there ezists h € F such that P (},cn|Q"Pf ® Q"Pf|) < h. Then
Mg, (f) and My, (f) almost surely converge to 0.

(ii) In particular, if there exists ¢ € F and a nonnegative sequence (k,,7 € N) such
that ), oy kr < 00 and

Ve e S, VreN, |Q"Pf(x)| < c(z)ke,
then Mg, (f) and Mr,(f) almost surely converge to 0.

2.4. Central limit theorem. We are now interested in proving a central limit theorem
(CLT) for the T-MC (X,,). This will be done by using a CLT for martingales.

Theorem 19. Let F satisfy (i)-(vi). Let f € B(S3) such that Pf? and Pf* exist and
belong to F. Assume that Pf = 0. Then n_l/QMg(f) converges in distribution to the
Gaussian law N(0,s?), where s2 = (u, Pf?).

Proof. Let M'(f) = 0, Ho = o(X1) and Hy = o(Apg),1 < i < n) for all n > 1. Note
that Xy(;) is H;—i-measurable and that, conditionally on #; 1, Apy; has distribution
0xpay ® P(Xn),-)- Since Pf =0, (M2 (f),n > 0) is a (H,)-martingale. It has bracket

(M (f))n =D E[f* (Anw) Hi 1] = > PF* (Xng) = M(Pf?).
i=1 i=1
According to Theorem 11, since Pf? € F, n~Y(M"(f)),, converges to (u, Pf?) = s% in

L?, and thus in probability. It remains to check Liapunov’s condition, say for the fourth
moment, that is to prove that the sequence of positive r.v. (L,,n > 1) defined by

1 n
In=— ;E [ (An) [Hii]

tends in probability to 0 (see for instance [9]). But L, = Hg(Pf‘l)/n and Mg(Pﬁ)
converges to (u, Pf*) in quadratic mean, so that L, converges to 0 in probability. O

In the general case when Pf # 0, we have

Corollary 20. Let F satisfy (i)-(vi). Let f € B(S?) such that Pf, Pf? and Pf* eist
and belong to F. Then n~Y2(MI(f) — MI(Pf)) converges in distribution to N(0,s?),
where s*> = (u, Pf?) — (u, (Pf)?).

Proof. Tt is enough to apply Theorem 19 to the function g defined by g(z, vy, 2) = f(z,y,z)—
Pf(z). O
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Considering the subsequence of indices n = |T,|, r € N, we can state

Corollary 21. Let F satisfy (i)-(vi). Let f € B(S3) such that Pf, Pf? and Pf* exist
and belong to F. Then |T,|"?>(Mr,(f) — M1, (Pf)) converges in distribution to N'(0, s%),
where s* = (,U,,Pf2) - (/1" (Pf)2)

If we take F' to be Cy(S), we get

Corollary 22. Assume that the induced MC (Y,,r € N) is ergodic, with stationary distri-
bution u (see Definition 7). Then, for any f € Cy(S%), n V2(MI(f)— MI(Pf)) converges
in distribution to N'(0,s2), where s2 = (u, Pf%) — (u, (Pf)?).

Remark 23. Note that the normalizing factor is the square root of the number of in-

dividuals, n or |T,|, and not the square root of the number of generations, r, or r, as
one might have thought. Convergence is fast with r: with 20 generations (r = 19), the

normalizing factor |'JI‘T|1/ 2 is approximately 103.

Eventually, let us state a generalization of the preceding results to the case when f is
vector-valued.

Corollary 24. Let F satisfy (i)-(vi). Let fi,...,fs € B(S®) such that Pfi, P(fif;)
and P(fififefi) exist and belong to F for all i,5,k,1. Let f = (fi,...,fa). Then
n~2(MI(f) = MIY(Pf)) converges in distribution to the d-dimensional Gaussian law
Nd(o’ Z): where Eij = (“’P(fifj)) - (Naninj)'

Proof. Let us denote R™(f) = n Y2(MX(f) — MI(Pf)). Let u = (uy,...,uq) € R®. The
characteristic function of R™(f) is
p(u) = Elexp(i(ur BT (f) + - - + ualtg(f))] = Elexp (iR" ((u, )))].

where <’U,,f) = ulfl + e+ udfd' NOW7 since P((“’af))? P(<u7f>)2 and P(<u7f>)4 € Fa
Corollary 20 implies that the latter term tends to

exp (= 5 (0 P 1) = s (Pl 1)) ) =exp (3 u'5u).

which completes the proof. O

3. DETECTION OF CELLULAR AGING

3.1. Limit theorems in model (1). Here we seek to apply the results in Section 2 to
model (1).

3.1.1. Weak law of large numbers and central limit theorem. In this section, we take F' to
be the set Cp(R) of continuous and polynomially growing functions, i.e. the set of all
continuous functions f : R — R such that there exists ¢ > 0 and m € N such that for all
z€R

|f (@) < c(1+]2]™).
In order to apply Theorems 11 and 12 and Corollary 24, we need to check conditions

(1)-(vi). Conditions (i) and (ii) are obvious. The next lemma states that condition (iii) is
fulfilled too.

Lemma 25. Let f,g € Cooi(R). Then f ® g € L'(P(z,-)) and P(f ® g) € Cpu(R).
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Proof. Let Gy, G1 be two independent standard Gaussian variables. Let

_( Go _ ( @z +Bo (1 0
G_<G1>’ M(w)_(a1x+ﬂ1) and A—a(p 1—p2>'

Then G(z) = M (z)+AG has distribution P(z,-). Hence, P (|f ® g|) (z) = E[| f ® g(G(x))|]-
Now, | | denoting the euclidian norm in R?, we can find ¢ > 0 and m € N such that
If ®g(G(x))| < c(1+]G(@)]™). Since |G(z)]| < ¢(1 + |z|+ ||G]|) for a constant ¢ and
E[|| G||™] < oo, we may enventually find a ¢ > 0 such that for all z € R

P(f®gl) (@) <c(l+]a™),
which completes the proof. O
Lemma 26. C,,(R) fulfils conditions (iv)-(v); p is the stationary distribution of Y.
Proof. In model (1), the induced MC has the stochastic dynamics
(10) Yri1 = ar1Yr + brya,

where ((a,,b,),r € N¥) is a sequence of i.i.d. r.v., independent of Yj. Precisely, a,4+1 =
Qyp1s br1 = B¢,y €, where (g, ¢ € N*) and ({y, ¢ € N*) are independent sequences of
ii.d. r.v., independent of Yy, each e;, has law N (0, 0?) and each (; is a balanced Bernoulli
rv., ie. P(C;=0)=P(C,=1) = 1/2. Then

r
Y. =arar 1---a2a1Yp + Z arQr 1+ G y1bg.
k=1

Since the r.v. ((ar,br), € N*) are i.i.d., Y, has the same distribution as

,
(11) Zp =19 Qp_1a,Y) —I—Zalaz---ak,lbk.
k=1

Let us first prove (v). Let f € Cpa(R), z € Rand S = Y 7o, |a1az- - - ak—1bg|. From
(11), |Zy| < |Yo|+S for all 7 € N, so that we can find ¢ > 0 and m € N* such that
E.[|f(Z)]] < c(|z|™ +E[S™]). Now, let us denote @ = max{|ag|,|a1|} < 1. Using the
triangle inequality in the first line and the fact that the L™-norm of by, ||bkl| m = cm,
does not depend on k in the last one,

o 0o o
(12 ISllgn < Y llaraz - axobillpn < D2 el = em Y 0! < ox.
k=1 k el

=1
Eventually, |Q"f(z)| < Ex[|f(V;)l] = Bz [I£(Z)]] < (1 + [|™) for some c;, which does
not depend on 7, which proves (v).
Let us now prove (iv). Since |a1a2---a,—16,Yy| < o™ |Yy|, limy o0 @102 - - ar_10,Yy =0
a.s.. Besides, the sum in (11) a.s. converges as r grows to infinity as E[|S|"'] < oo.
Eventually, the sequence (Z,,r € N) almost surely converges to

00
(13) Zoo = Zalag---ak,lbk.
k=1

Let 4 denote the distribution of Zy. Then Cpoi(R) C L!(u). Indeed, || Zool|pm < ||S]m <
oo for all m € N. Let us eventually prove that lim, o, E,[f(Y;)] = (i, f). Since |f(Z,)| <
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c(|Yo|™ +8™) € L'(P,) and (Z.,r € N) almost surely converges to Z.,, we can apply
Lebesgue’s dominated convergence theorem and get that

Tim B, [£(Y,)] = lim E,[f(Z)] = Es[f(Zeo)] = (1, ).
Condition (iv) is now fully checked, and y is the unique stationary distribution of Y. O

Let us denote by C,oi(R?) the set of all continuous and polynomially growing functions
f:R = R Since Cpoi(R?)? C Cpoi(R?) and P(Cpo1(R?)) C Cpo1(R), Theorems 11 and 12
and Corollary 24 imply

Proposition 27. In model (1), assume that the distribution of the ancestor X1, v, has
finite moments of all orders. Let u be the unique stationary distribution of the induced
MC (Y;,r € N). Then,

(i) for all f € Coa(R), Mg, (f), Mr,(f) and Mg(f) converge to (u, f) in L2,

(ii) for all f € Coau(R®), Mg, (f), Mr,(f) and Hg(f) converge to (u, Pf) in L2,

(iii) for all f1,...,fq € Cou(R?), n Y2(MI(f) — MI(Pf)) converges in distribution
to Ng(0,%), where f = (f1,..., fa) and Z¢5 = (n, P(fif;)) — (1, PfiPf;).

3.1.2. Strong law of large numbers. We can also derive almost sure convergence results:

Proposition 28. With the assumptions of Proposition 27,
(i) almost surely, for any f € Cpa(R), Mg, (f) and Mr,(f) converge to (, f),
(ii) almost surely, for any f € Cou(R?), Mg, (f) and Mr,(f) converge to (u, Pf).

Proof. Let us take F' to be the set CL, (R) of all C* functions f: R — R such |f|+|f'| is
bounded above by a polynomial. One can easily check that C},(R) satisfies (i)-(v).
Step 1. Let us first prove that

14  VfeCL,®, P ( lim Mo, (f) = lim Mr,(f) = <u,f)) =

q—o0 r—00

Let f € CL,(R). We want to apply Corollary 15 with F = C,(R) and to the function

9=~ () € Cpyy(R). First note that Q"g(z) = Q" f(z) — (1, ) = Ex[f(Z;) — f(Zo)],
so that using Cauchy-Schwarz’s inequality
1/2
@ 9(@)| < Bl Wr |2 — Zool) < (Ba W (Zr — Zo0)?]) "
where W = sup,¢(z, z..1|f'(2)|. We can find ¢; > 0 and m € N such that for all z € R,

1F'(2)]* < e1(1 + |2|™) so that, using (11) and (12), there is a ¢/, > 0 such that for all
z€Rand r € N,

Bz [W7] < By

sup  ¢i(1+ |Z|m)] < er(1+ B[ Z: "] + B [| Zoo|™]) < (1 + |2[™).
2€[Zr, Zoo]

Moreover, Z, — Zoo = 162+ Qr_10,Yy — ch’gﬂ aiag -+ ak_1bg so that, recalling a =
max{|aol, |1}, |2y — Zooll 2,y < o'z + ”2;24—1 alaz---ak,lbk”p. Now we have

HZI:;X;H aias - --ak,lkam < e ZZ’;’?H oa*~1 = cea” /(1 — ) where ca = ||bg||;2 does
not depend on k. Thus we can find ¢ > 0 such that for all z € R and r € N

E:[(Zr — Zoo)?] < 30" (1 + 2).
Eventually,

(15) 1Q7g(x)| < (cesa® (1+ |2[™)(1 +22)) " < e(z)ay
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with o, = o” and a function ¢ € C,,,(R). Corollary 15 implies that Mg, (g) and Mt (g)
almost surely converge to 0, i.e. Mg, (f) and Mr,(f) almost surely converge to (u, f),
which proves (14).

Step 2. Let us now prove that almost surely, the empirical distributions H@,q and
M, weakly converge to p. There exists a sequence (f,,p € N) of C*® functions with
compact support which characterizes convergence in distribution. Hence it is enough to
show that almost surely, for all p € N, limg_, M(;,q (fp) = limy 00 M1.(fp) = (1, fp)- But
this immediately follows from Step 1, since f, € Cé (R).

Step 3. Let us now prove assertion (i). Let us deal with M(;,q (the proof for Mr, is
similar). For k,I € N, let us write fy(z) = k(1 4+ 2*). Since fr; € Cio(R), from Step 1,
almost surely,

(16) VE,l €N, lim Mg, (fr1) = (4, frp)-
q—00

ol

From Step 2, the empirical distributions M@Q a.s. weakly converge to u. Besides, for
all f € Cpa(R), there exists k,I € N such that f2 < f,;. Thus from (16), a.s. for all
f € Cou(R) the sequence (Hq;,q (f?),q € N) is bounded, which proves that a.s. every
f € Coa(R) is (Mg, ,q € N)-uniformly integrable. Hence a.s., for all f € Cya(R), Mg, (f)
converges to (u, f).

Step 4. The proof of (ii) is similar to the proof of (i). O

Remark 29. A natural choice for v is the stationary distribution p. Indeed, the ancestor
X is picked from a metacolony that has evolved for a long time, so that in model (1) its
distribution should be close to p. With this particular choice, we can apply Propositions
27 and 28. Indeed, p has finite moments of all orders, since Cpo1(R) C L* ().

3.2. Estimation of the parameters. We seek to estimate the 4-dimensional parameter
0 = (o, B0, 1,B1), as well as 02 and p. Assume we observe a complete subtree T, .
Then, since the couples (e9;,£9;41) are i.i.d. bivariate Gaussian vectors, the maximum
likelihood estimator 6" = (G5, Bo, af, B{) of 6 is also the least squares one: for ¢ € {0,1},

(
T Y w7 D) (7 3 e
Ar €T, ieT, €T,
O = 2 ’
- Y X (mml 5 xi)
€T, i€T,

/Bg = |’]I‘7"|71 Z X2’i+€ - 556 |']I‘r|71 Z Xi-

\ 1€y 2€T,

Hence &f (resp. &f) is the empirical correlation between new (resp. old) pole daughters
and their mothers. We shall denote by xy (resp. x,y,x?) the element of C,,,(R?) defined

by (z,y,2) = zy (resp. z,y,7°).

Remark 30. Note that (u,x%) — (4,x)? > 0. Indeed, it is nonnegative, and if it were 0, p
would be a Dirac mass. Now a Dirac mass cannot be stationnary for Y, because o2 > 0.

Proposition 31. In model (1), assume that the distribution of the ancestor X1, v, has
finite moments of all orders. Then (0",r € N) is a strongly consistent estimator of .
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Proof. Let us treat &j. Convergence of Bg , @] and B’l" may be treated in a similar way.
Note that &y = C,/B, with

C, = MTT(xy) - HTT(X)HTT(}’) and B, = MTT(XZ) - MTT(X)2.

Since P(xy)(z) = z(apz + Bo) and P(y)(z) = apz + By, Proposition 28 implies that C,
a.s. converges to (u,x(cox + Bo)) — (1, %) (1, % + Bo) = ao((1,x2) — (1, x)?) and B, a.s.
converges to (u,x2) — (u,x)?, which from Remark 30 is positive, so that &} a.s. converges
to ayp. O

Remark 32. Let us denote & = (ag + a1)/2, 8 = (8o + 1)/2 and so on. Then
_ 20BB/(1 - @) + B2 + o2
1-a? '

Indeed, recalling (10) and (13), Z has the same law as a1 Zy + by where the pair (a1, b;)
is independent of Z., and takes values (o, Bp) and (cu, 1) with probability 1/2. Hence
(4, x) = B[Zs]| = Ela1 Zoo + b1] = @(ps,x) + 3, as announced. Likewise,

(18  wx=L amd ()

Qi

(Max2) = E[Zc%o] = E[(al Zoo + b1)2] = E[G%Zgo] + 2]E[a'1 bIZoo] + E[b%]
= a?(u,x%) + 20B(p, %) + f? + 07,
from which we deduce the second equality in (18).

From the preceding remark, we define two continuous functions 1 : © — R and s :
© x R} — R by writing

(19) (uyx) = (0)  and  (4,x°) = pa(6,07).
where 0 = (ag, By, @1,61) € © = (—1,1) x R x (—1,1) x R. Let us now build a confidence

region for 6.

Proposition 33. In model (1), assume that the distribution v of the ancestor X1 has
finite moments of all orders. Let u be the unique stationary distribution of the induced
MC (Y,,r € N). Then |']I‘T|1/2(9T — 0) converges in law to N4(0,%') where

(200 % —02<,,K K ) R O R (O ( “m(0) pa(60,0%) )

Proof. For fi1,..., fa € Cou(R3), we denote f = (f1,. .., fa) and U (f) = |T,.|"/*(Mr, (f)—
Mrt,(Pf)). Let us denote ¢, = |TT|1/2(éT —6). We first observe that ¢, = ¢(U"(f), A, By
With f = (xy’ y’ xz’ Z)’ (p(u7 a’ b) = M(a’ b)’u'7

/b —afb 0 0
—a/b (b+a®)/b 0 0
M{a,b) = 0/ ( 0 / /b —a/b ’
0 0 —a/b (b+a?)/b

A, = Mr,(x) and B, = M, (x?) — M7,(x)%2. From Proposition 27-(iii), U (f) converges
in distribution to G ~ N4(0,X) with

p2(0,0%)  pi(0)  pp2(0,0%)  pui(0)

_ 2 p1(6) 1 pp1(0) P
pr2(0,0%)  pui(0) p2(0,0%)  p(6)

pp1(0) p p1(0) 1
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Besides, Proposition 27-(i) implies that (A, B, ) converges in law to the constant (a,b) =
(p1(0), u2(8,0%) — p1(0)?). Thus Slutsky’s theorem states that (U (f), Ay, Br) converges
in law to (G, a,b). Then, by continuity of ¢ on R x R x RY and recalling from Remark
30 that b > 0, (. = ¢(U"(f), A,, B;) converges in law to ¢(G,a,b) = M(a,b)G, which is
a centered Gaussian vector with covariance matrix ¥/ = M (a,b)X M (a,b)’. Now, we have

5 = g2 ( pli "f ) with I = ( “211(19(’0“)2) “11(9) ) and M (a,b) = (IO{ IO(>

Since LK = I, the 2 x 2 identity matrix, we get

S 2 K 0 L pL K 0 _ 2 K pK
0 K pL L 0 K pK K )’
which completes the proof. O

We also need to estimate the conditional variance, o2, and the conditional sister-sister
correlation, p. Since o2 is the common expectation of the iid. r.v. (e2,i > 2), it is
naturally estimated, given a complete observation (X;,i € T,41), by

Gr 9 |'ﬂ‘ | g-]; 622 + 822-}-1
7

where
{ éQn = X2n - dGXn - /865
é2n—|—1 = X2n+1 - &qXTL - /6{

are the residues. Likewise, since p = Cov (egi, €2i+1)/0?, it is naturally estimated by

pr = 52T Z €2i€2i41-
| Tl €Ty

We have checked that (62, ,) is the maximum likelihood estimator of (o2, p).

Proposition 34. In model (1), assume that the distribution of the ancestor X1, v, has
finite moments of all orders. Then ((62,p,),m € N) is a strongly consistent estimator of

(0%, p)-
Proof. Let us first deal with 62. Observe that

~ ~ ) A 2 1 4]
O'Z = 7 |']T | Z ((XQ, — OzSXZ — ,86)2 + (X2n+1 - Ol?lﬂXn - BI)2> = m Z f(Azaer)
"lier, '

1€T

where f(A,0) = (y—aoz—fo)*+(z—a1z—B1)?, with A = (z,y,2) and 0 = (o, Bo, @1, B1).
Thus we have 62 = Mr,(f(-,6))/2 + D, with

—_— 1 . Ar _ .
D= (£(20,07) = £(80,0)).
Since f(-,0) € Cou(R?), we can apply Proposition 28-(ii): Mr,(f(-,0)) a.s. converges

o (u,P(f(,0))). Now, P(f(-,0))(z) = Es[(X2 — aoX1 — fo)® + (X3 — a1 X1 — f1)°] =
Ele3 + €3] = 202. Hence, M, (f(-,0)) a.s. converges to 202. Thus it is enough to prove
that D, a.s. tends to 0. Let us write 8 = (61,62,03,604) € © = (—1,1) x R x (-1,1) x R.
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From the Taylor-Lagrange formula, for any A € R? and 0,6’ € ©, we can find A € (0,1)

such that
4

F(A,0) = £(8,0) =) (60— 0;)0, (A, 0+ X(' = 0)).
j=1
Now, observing that f is a polynomial of global degree 4 and of degree 2 in each 6;, we
can find g € Cpo(R?) such that for all j € {1,2,3,4}, A € R and 0 € O, |ngf(A,0)‘ <
g(A)(1 + ||6]]). Therefore, for all r € N,

D < oo ”;” S g(ai) (1+ o)+ e - ]|
€Ty
= Sl —e (1 + e+ o o)) 7, (o).

From Proposition 28-(ii), Mr,(g) a.s. converges. Besides, Proposition 31 states that
=

The proof for p is very similar. O

a.s. tends to 0. As a consequence, so does D,. This completes the proof for 2.

3.3. Detection of cellular aging. As explained in [8], detecting cellular aging boils
down, in model (1), to rejecting hypothesis Hy = {(ao,00) = (e1,51)}. Let us now
build a statistical test that allows us to segregate between Hy and its alternative Hy =

A

{(0,B0) # (a1,B1)}. Wald’s test is well adapted to the situation. We write i1, = p1(6,)
and fio, = po(0y,6,) (recall (19)).

Proposition 35. In model (1), assume that the distribution of the ancestor X1, v, has
finite moments of all orders. Then the test statistic

(1):L AT AT\2 [~ a2 (Ar_ArA AT_AT)Z

e = gm0 ) (Ber = i) + (86 — &)+ B — B
converges in distribution to x%(2), the x? distribution with two degrees of freedom, under
Hy, and almost surely diverges to +oo under H;.

Proof. Recall that § = (g, B, 1,81). Let us set g(8) = (ap — a1,B80 — B1)t. Then
Hy = {g(6) = 0}. From Proposition 33, |T,|"/2(§" — 6) converges in law to N4(0,%’) so
that |T,|'/2(g(6") — g(6)) converges in law to N3(0,%") with

¥ =dg(0)x'dg(0)! = o?(I, —I) ( p];‘{ 'OII{{ > ( _IZ ) =20%(1 - p)K.

Under Hy, g(6) = 0 so that |T,|'/2 g(8") converges in law to G ~ N3(0,%"). Now, from
(18), K = K(f,0) is a continuous function of (f,0) € ©® x R so that, letting K, =
K (ér, &r), Propositions 31 and 34 imply that f];’ =262(1— p})R’,ﬂ converges in probability
to $”. By continuity of G s $"~1/2@, Slutsky’s theorem shows that |T,|*/2 5" ~1/2g(4")
converges in law to N3(0, I2). In particular,
2 v _ T
= |T,|g(87)t2" ~1g(07) = ——
converges to the x? distribution with two degrees of freedom.
Under Hy, x,/ |Tr| = g(7)' ~1g(7) a.s. converges to g(9)!S"~1g(0) > 0 so that D
a.s. diverges to +o0. d

i/ 1 =172 67 g(0r) K g(67) = XV
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The same technique may be used to test {ay = a1}:

Proposition 36. In model (1), assume that the distribution of the ancestor X1, v, has
finite moments of all orders. Then the test statistic
2 ﬂ21T - /l%,’f'

2&%(1 - PAr)
converges in distribution to x*(1) under {ag = a1} and a.s. diverges to +oo under {agy #
041}.

x? = |T,| (6} — &F)

The same can be done for testing {8y = f1}. Proposition 31 provides natural statistics
to test {ap = 0}, {1 = 0}, {Bo =0}, {1 =0} and {By = B1}. We do not give details for
the sake of brevity.

We now present a statistical test that allows to segregate between Hy = {8o/(1 —
ag) = f1/(1 — 1)} and its alternative H]. This allows to test if the two fixed points
corresponding to the two affine regressions of model (1) are equal. This may happen even
if (e, o) # (e, P1). Rejecting H{j means accepting that the new pole and the old pole
populations are even distinct in mean. Again we use Wald’s test, since Hj = {g(6) = 0}
with ¢(0) = Bo/(1 — ap) — B1/(1 — a1). The proof is obvious and not detailed here.

Proposition 37. In model (1), assume that the distribution of the ancestor X1, v, has
finite moments of all orders. Let

B Bo 1 —h 1
dg(9)—((1_a0)2, l—ap’ (1—-a)? 1_0‘1>

and 82 = dg(0,)%dg(6,)t, where 3. is ¥ evaluated in (0,6, p,), and X' is defined in
(20). Then the test statistic

~ ~ 2
B = T, | ( B Bl )

&2 _ AT 1 _ AT
s \1—-a 1-4f

converges in distribution to x?(1) under Hj and a.s. diverges to +oco under Hj.
In the case when ap = a1 = 0, testing Hy or H| boils down to testing {8y = f1}:

Proposition 38. In model (1), assume that ay = oy = 0 and that the distribution of the
ancestor X1, v, has finite moments of all orders. Then the test statistic

1
& = - = (Xo2i — Xoiy1)
6rv/2|Tr[(1 = pr) igﬁl‘:r

converges in distribution to N'(0,1) under {8y = 1} and almost surely tends to +oo (resp.

—00) under {fo > 1} (resp. {Bo < B1})-

Proof. Let f(x,y,2) =y — 2. Observe that f € C,o(R®) and that Pf(z) = By — p1, since
oy = Q1 = 0.

Let us assume that 8y = B;. Then Pf = 0 and Proposition 27-(iii) implies that
6r4/2(1 — pp )&, converges in distribution to A(0, s2), where s2 = (u, Pf?) = 20%(1 — p).
Now, (62,p,) a.s. converges to the constant (02, p) so that, with Slutsky’s theorem, &,
converges in distribution to N(0, 1).

Let us now assume that [y # (1. Proposition 28 states that |11‘r|71/2 Gr/2(1 — pr)ér =
T, | ™" Y ier, f(Ai) a.s. converges to (u, Pf) = fo — 1 # 0. Since 6,/2(1 — pr) converges
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FIGURE 5. Histograms of &g (left) and & (right)

FIGURE 6. Histograms of 3y (left) and j3; (right)

in probability to o4/2(1 — p) > 0, we conclude that &, a.s. diverges as \’]I‘,|1/2, to oo if
Bo > B1, and to —oo if By < fF. O

Remark 39. Note that in the model where oy = a1 = 0, X&” would read

(1) _ |TT| ("r _ “7‘)2
Xr’ = 57 — (B0 — B
' 262(1 — py) 0 !

and is thus equal to £2. The latter test looks like the ones E. J. STEWART et al. performed
in [19]: it focuses on the differences Xo; — X9;11 between sisters. But it is relevant only in

the case when the correlation parameters ap and a; are zero, that is in a dynamics with
no memory. Now, the data analysis strongly rejects this assumption, as we shall see.

3.4. Data numerical analysis. We now perform the estimation and test procedures on
E. J. STEWART et al.’s data. It consists of 95 films, and each film should be seen as
an incomplete binary tree of growth rates. How do we compute the estimators and test
statistics? According to the above presentation, we should restrict the observation to the
bigger complete subtree T,;1. We actually take into account all the observations, noting
that
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FIGURE 7. Histograms of 62 (left) and p (right)
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FIGURE 8. Histograms of the residues €5, (new poles, left) and £2,11 (old
poles, right)

e very few cells are observed in a generation, say r, when generation r — 1 is not
completely observed,

e cells observed in the last generation are assumed to be the result of a random
permutation II, independent of X; this should be correct as a first approximation.

Figures 5, 6 and 7 synthetize the 95 estimations. Performing a x?-test, we see that the
Gaussian nature is not perfectly checked, this may be because: (i) the estimators are far
from their Gaussian limit - the number of cells observed per experiment is of the order of
28 = 256, which is quite small, and (ii) the law of the estimators depend on the experiment
- a slight change in the experimental conditions may involve a change in the parameters
6, 0 and p. Nevertheless, the six histograms in these figures are qualitatively not very
far from Gaussian.

Figure 8 gives the global empirical distribution of the residues € over the 95 films. We
have separated new poles’ residues (left) from old poles’ ones (right). Both histograms are
close to Gaussian laws, as shows a x2-test.

Figure 9 shows that Hy can be strongly rejected. This indicates that the dynamics of
the growth rate of the old pole offspring is different from that of the new pole offspring.
The nullity of any parameter (ag, 8o, @1 or 31) can be strongly rejected as well, see Figures
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FIGURE 9. Hy = {(a0,b0) = (ai1,p1)}. Histogram of the p-values

P(x%(2) > x})

FIGURE 10. Left: Hy = {ap = 0}. Histogram of the p-values.
Hy = {a; = 0}. Histogram of the p-values

FIGUuRE 11. Left: Hy = {8y = 0}. Histogram of the p-values.
Hy = {1 = 0}. Histogram of the p-values
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FIGURE 15. Histogram of By/(1 — ao) — f1/(1 — é)

10 and 11. This enlightens the relevance of a Markovian modelisation with memory one:
the mother cell is a significant predictor of offspring growth rate in general.

Besides, from Figures 12 and 13, we cannot reject the hypothesis that both o’s are equal
on the one hand, and that both ’s are equal on the other hand. This is confirmed by
looking at the bivariate scatter plots of ; versus ag and (3 versus fy: they lie on both sides
of the diagonal. But we strongly reject that both fixed points, namely vy = 8y/(1— ) and
v1 = B1/(1—ay), are equal, see Figures 14 and 15. Hence the parametrization («, ), which
makes more physical sense than the parametrization («, ), has the following advantage:
with no assumption on the a’s, we can detect aging by looking only at the 7’s, which we
cannot do with the 8’s. It also means that the new poles and the old poles are not only
different in distribution, but also in mean.

The scatter plot in Figure 14 indicates that vy > 7;. More precisely, the line vg = 1+ 6
fits well the data with § significantly positive. Numerically, § =~ 0.0012 £ 0.0011, or
0.0011 4+ 0.0008 if we delete the two aberrant points in Figure 14 (right). This may be
seen as statistical evidence of aging in E. Coli, since on average old pole cells grow slower
than the new pole cells, which is characteristic of aged individuals. Quantitatively, they
seem to grow 3% slower (we may speak in terms of percentage since the range of values
of v’s is narrow). This result is close to E. J. STEWART et al.’s original calculations, since
in [19] they estimated this ratio to be around 2%.
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