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CERMICS — ENPC
6 et 8 avenue Blaise Pascal
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Abstract. In this paper, we present a result of homogenization of first order Hamilton-Jacobi equations with
(u/ε)-periodic Hamiltonians. On the one hand, under a coercivity assumption on the Hamiltonian (and some
natural regularity assumptions), we prove an ergodicity property of this equation and the existence of non
periodic approximate correctors. On the other hand, the proof of the convergence of the solution, usually based
on the introduction of a perturbed test function in the spirit of Evans’ work, uses here a twisted perturbed
test function for a higher dimensional problem.
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1 Introduction

Setting of the problem. In this paper, we study the limit as ε → 0 of the viscosity solution of the
following first order Hamilton-Jacobi equation with N ∈ N:

{

uε
t = H

(

uε

ε ,
x
ε ,∇uε

)

for (t, x) ∈ (0,+∞) × RN ,
uε(0, x) = u0(x) for x ∈ RN (1)

with u0(·) ∈ W 1,∞(RN ) (bounded and Lipschitz continuous functions on RN), and where uε
t stands for

∂uε

∂t and ∇uε or ∇xu
ε for the gradient vector

(

∂uε

∂x1
, ..., ∂uε

∂xN

)

. Our motivation comes from a problem of

periodic homogenization for a model of dislocations dynamics [23], where the level sets of the solution
describe dislocations. We consider the following asumptions on the Hamiltonian H :

• (A1). Regularity: the function H : R × RN × RN → R is Lipschitz continuous and satisfies for
a constant γ ≥ 0 and for almost every (v, y, p) ∈ R × RN × RN :

|∇yH(v, y, p)| ≤ γ(1 + |p|), |∂vH(v, y, p)| ≤ γ, |∇pH(v, y, p)| ≤ γ;

• (A2). Periodicity: for any (v, y, p) ∈ R × RN × RN :

H(v + l, y + k, p) = H(v, y, p) for any l ∈ Z, k ∈ ZN ;

• (A3). Coercivity:

H(v, y, p) −→ +∞ as |p| −→ +∞ uniformly for (v, y) ∈ R × RN .

Under Assumptions (A1)-(A2), there exists a unique bounded continuous viscosity solution uε of (1)
— see Section 3 for references on viscosity solutions and below for a discussion about the Regularity
Assumption (A1).

The aim of this paper is to prove a homogenisation result, i.e. we want to prove that the limit u0 of
uε as ε→ 0 exists and is the solution of a homogenized equation of the form:

{

u0
t = H

0 (∇u0
)

for (t, x) ∈ (0,+∞) × RN ,
u0(0, x) = u0(x) for x ∈ RN (2)

where H
0

is a continuous function to be determined. There exists a unique bounded continuous viscosity
solution for such an equation (see [6] for instance). To get such a result, the coercivity assumption (A3)
is natural, see for instance the seminal work of Lions, Papanicolaou and Varadhan [30], and Subsection
2.2. Typically, our model Hamiltonian is

H(v, y, p) = c(y)|p| + g(v) with c ≥ 1 and c, g Lipschitz continuous and periodic functions
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The literature about homogenization of Hamilton-Jacobi equations developed a lot since [30] and it
is difficult to give an exhaustive list of references. See [30, 19, 20, 21, 33, 34, 24, 5, 8, 4, 1, 2, 15, 27]
and references therein. However, to our best knowledge, there are very few papers concerning periodic
homogenization with equations depending (periodicly) on u/ε. Let us cite [31, 32] where Piccinini studied
the homogenization of ordinary differential equations of the type uε

t = f
(

uε

ε

)

and also more general
ODEs. In [13, 12], Boccardo and Murat studied the homogenization of second order equations which
inlude div

(

A
(

uε

ε

)

· ∇uε
)

= f .

Main results. Let us now describe the main results of this paper. They concern the ergodicity of the
Hamiltonian and the convergence of the oscillating solution towards the homogenized one. We next give
more details. In order to determine the limit of the solution uε of (1), the first task is to determine the

limit equation (2). The so-called effective Hamiltonian H
0

is uniquely defined by the long time behaviour
of an evolution equation in (0,+∞) × RN . Let us be more specific. For any p ∈ RN , consider the
continuous viscosity solution w = w(t, y) of

{

wτ = H(p · y + w, y, p+ ∇w) for (τ, y) ∈ (0,+∞) × RN ,
w(0, y) = 0 for y ∈ RN .

(3)

Then we have the following ergodicity of the Hamiltonian.

Theorem 1. (Ergodicity) Under Assumptions (A1)-(A2)-(A3), for any p ∈ Rn, there exists a unique

λ ∈ R such that the continuous viscosity solution w of (3) satisfies: w(τ,y)
τ converges towards λ as

τ → +∞, locally uniformly in y. The real number λ is denoted by H
0
(p) and this defines a continuous

function on Rn. Moreover we have the following coercivity of H
0
:

H
0
(p) −→ +∞ as |p| −→ +∞.

We can now state the main result of this article.

Theorem 2. (Convergence result) Under Assumptions (A1)-(A2)-(A3), the solution uε of (1) con-

verges towards the solution u0 of (2) locally uniformly in (t, x), where H
0

is defined in Theorem 1.

In order to prove the convergence of uε towards u0, we try to construct a so-called corrector, that is
a solution of the cell problem which, in our case, has the following form:

λ+ vτ = H(λτ + p · y + v, y, p+ ∇yv) for (τ, y) ∈ R × RN . (4)

It turns out that we are only able to construct sub and supercorrectors, i.e. sub and supersolution of
the cell problem — see Theorem 3 in Appendix. However, it is enough to prove our convergence result
and Theorem 1 appears as a corollary of this result. Let us also point out that, at the contrary of the
classical case, i.e. Hamiltonians of the form H(y, p), the (sub and super) correctors here are not periodic
w.r.t. y in general and may be discontinuous. Moreover true correctors are necessarily time-dependent
in general.

A specific technical difficulty of our problem is to deal with the case λ = p = 0. For this reason, the
“discontinuous” sub and super-correctors of Theorem 3 are not directly used in our proof of convergence.
On the contrary, the proof of Theorem 2 is based on the existence of smoother correctors which are exact
correctors for approximate Hamiltonians in higher dimension.

Our approach to construct these non-periodic correctors in a periodic framework is somehow related
to several different works. Let us cite the work of Müller [28] where the periodic homogenization of
non-convex functionals involves some non-periodic correctors. See Caffarelli [14] for the construction
of planar-like non-periodic minimal surfaces in periodic media. See also Berestycki, Hamel [11], where
pulsating fronts are studied in periodic media, these pulsating fronts being very similar to our corrector
solutions. Finally, let us mention that the construction of correctors is related to the long time behaviour
of solutions to Hamilton-Jacobi equations; such a problem has been studied by many authors, with
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seminal works of Fathi [21] and Roquejoffre [33] — see also Barles and Roquejoffre [7] and Barles and
Souganidis [5] and references therein.

For general references on homogenization, see the book of Bensoussan, Lions and Papanicolaou [9],
and the pionneering work of Murat and Tartar [29].

Extensions. Let us first mention that we chose to present our results by assuming that the initial
condition and the Hamiltonian are Lipschitz continuous. However, it is well-known that the “uniformly
continuous” framework is a natural extension of the “Lipschitz” one and, on one hand, we could handle
uniformly continuous initial condition and, on the other hand, (A1) can be adapted to deal with more
general Hamiltonians. Let us make a further comment on assumption (A1). Usually, one only needs to
bound from above ∂vH ; but in order to ensure a strong maximum principle when perturbing the equation
by a nonlocal operator, we strength the usual assumption.

The reader can also think about more general Hamiltonians, depending for instance on slow variables.
Let us consider two integers 0 ≤ m ≤ N and denote x′ = (x1, ..., xm), x = (x1, ..., xN ). Let us consider a
viscosity solution of

{

uε
t = H

(

uε

ε ,
x′

ε , u
ε, t, x,∇uε

)

for (t, x) ∈ (0,+∞) × RN ,

uε(0, x) = u0(x) for x ∈ RN
(5)

where the Hamiltonian H = H(v, y, x, t, u, p) satisfies classical assumptions ensuring comparison princi-
ples. Assuming moreover some Coercive Condition analogous to (A3), namely,

• (A3’). Coercivity: For p′ = (p1, ..., pm), p′′ = (pm+1, ..., pN ) and p = (p′, p′′) we have

H(v, y′, u, t, x, p′, p′′) −→ +∞ as |p′| −→ +∞

uniformly for (v, y′, u, t, x, p′′) ∈ R × Rm × R × R × RN × RN−m

and that (v, y) 7→ H(v, y, u, t, x, p) is periodic, we consider the limit problem:
{

u0
t = H

0 (
u0, t, x,∇u0

)

for (t, x) ∈ (0,+∞) × RN ,
u0(0, x) = u0(x) for x ∈ RN (6)

where H
0
(v, t, x, p) is a continuous function which is defined as the limit of w(τ,y)

τ as τ −→ +∞ for the
solution of

{

wτ = H(p · y + w, y′, v, t, x, p+ ∇yw) for (τ, y) ∈ (0,+∞) × RN ,
w(0, y) = 0 for y ∈ RN .

The homogenized Hamiltonian H
0

satisfies the following coercivity condition

H
0
(v, t, x, p′, p′′) −→ +∞ as |p′| −→ +∞ uniformly for (v, t, x, p′′) ∈ R × R × RN × RN−m.

Then a straightforward adaptation of our proofs permits to prove that for an initial condition u0 ∈
W 1,∞(RN ), the solution uε of (5) converges towards the solution u0 of (6) locally uniformly in (t, x). In
a forthcoming work, we will study extensions of these results to some general ODE or non-local PDE
problems.
Organisation of the paper. The paper is organised as follows. In Section 2, we present the main
difficulties encountered on the present problem of homogenization and the main new ideas we introduced
to solve it. In Section 3, we state various comparison principles and gradient estimates for first order
Hamilton-Jacobi equations perturbed by a nonlocal operator. In Section 4, we prove the convergence
result (Theorem 2) by using the existence of approximate sub and supercorrectors (Proposition 7). In
Section 5, we state a result on correctors for approximate Hamiltonians (Proposition 8) that encompasses
Proposition 7 and the ergodicity theorem (Theorem 1). In Section 6, we prove the corner stone of our
contruction, namely Proposition 8. Finally in Appendix, we state an independent result, Theorem 3,
about the existence of bounded sub and supercorrectors; we also give a second proof of Theorem 1.
Notations. Br(x) is the open ball of radius r centered at the point x. dxe is the integer such that
dxe − x ∈ [0, 1) for any real x.
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2 Strategies of proofs

The proofs of the main results are quite technical. To keep an easy understanding without technicalities,
we propose in this section to indicate to the reader the main arguments used in the proofs, as simply as
possible, but with formal arguments.

2.1 Main ideas for the Ansatz used in the proof of convergence

The goal of this subsection is to give some heuristic explanations of the difficulties arising in the homog-
enization of (1), and the main arguments that we have introduced in our proof of convergence.

First try: the usual Ansatz. Let us first start with a naive approach to the problem. The fisrt Ansatz
that we can try is the following one (for (t, x) close to (0, 0)):

uε(t, x) ' u0(t, x) + ε v

(

t

ε
,
x

ε

)

(7)

where v is a corrector to determine. If we plug this expression of uε into (1), we find formally with
(τ, y) =

(

t
ε ,

x
ε

)

:

u0
t (t, x) + vτ (τ, y) ' H

(

u0(t, x)

ε
+ v(τ, y), y,∇xu

0(t, x) + ∇yv(τ, y)

)

.

Using the Taylor expansion u0(t,x)
ε ' u0(0,0)

ε + u0
t (0, 0)τ + ∇xu

0(0, 0) · y, the notation λ = u0
t (0, 0), p =

∇xu
0(0, 0), and decoupling the slow variables (t, x) from the fast variables (τ, y), we get:

λ+ vτ ' H

(

u0(0, 0)

ε
+ λτ + p · y + v, y, p+ ∇yv

)

.

From this easy computation, we can learn two things. The first one is that a good candidate for the

corrector v seems to be a solution of the equation where we put the term u0(0,0)
ε to zero, i.e. Equation

(4). The second thing, is that Ansatz (7) is not the right Ansatz, because the final result depends on the

term u0(0,0)
ε which is not acceptable. This is why, we will have to consider a twisted corrector.

Second try: the twisted corrector. We use the previous notations, and let p denote (p′, pN) with
p′ = (p1, ..., pN−1). We also denote x = (x′, xN ). In the case where pN 6= 0, we introduce a new Ansatz
with an xN -twisted corrector which takes into account the distorsion created by the term uε

ε in the
Hamiltonian:

uε(t, x′, xN ) ' Aε(t, x′, xN ) := u0(t, x′, xN ) + ε v

(

t

ε
,
x′

ε
,
u0(t, x′, xN ) − λt− p′ · x′

εpN

)

(8)

where a Taylor expansion immediately shows that yN = u0(t,x′,xN )−λt−p′·x′

εpN
is a good approximation of

xN

ε . If we denote y′ =
(

x1

ε , ...,
xN−1

ε

)

and y = (y′, yN ), we get:

Aε(t, x′, xN )

ε
= λτ + p′ · y′ + pN · yN + v.

Plugging the Ansatz in Equation (1), we get with vN = ∂v
∂yN

and uN = ∂u
∂xN

:

λ+ vτ (τ, y) + vN (τ, y) ·
(

u0
t (t,x)−λ

pN

)

' H
(

λτ + p · y + v, y, p′ + ∇y′v + vN (τ, y) ·
(

∇x′u0(t,x)−p′

pN

)

, pN + vN (τ, y) ·
(

u0
N (t,x)
pN

))

.

From this computation, we now learn two more things. First, for (t, x) close enough to (0, 0) and a smooth

function u0, we see that we can replace
u0

t (t,x)−λ
pN

and ∇x′u0(t,x)−p′

pN
by 0, and

u0
N (t,x)
pN

by 1, creating
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an error term which is bounded by ||vN ||∞. But the difficulty is that the corrector is only bounded,

and may be even not continuous which makes things difficult to control the term ||vN ||∞ =
∣

∣

∣

∣

∣

∣

∂v
∂yN

∣

∣

∣

∣

∣

∣

∞
.

This difficulty will be overcomed using a truncated Hamiltonian HK whose corresponding correctors are
Lipschitz continuous in all variables. Secondly, the previous computation only works for pN 6= 0. In the
case pN = 0, we could still consider a xi-twisted corrector if pi 6= 0, or even a t-twisted corrector if λ 6= 0.
But in the case where λ = p = 0, we still have a difficulty. This case, and by the way the general case, will
be solved by imbbedding the problem in a higher dimensional problem where by construction pN+1 6= 0.

Third try: our definitive choice of the Ansatz: a twisted corrector in higher dimension.
We first consider a modification HK of the Hamiltonian H such that HK is bounded and converges
locally uniformly on compact sets to H as K → +∞. Let us fix pN+1 ∈ R\ {0}, and consider correctors
VK(τ, y, yN+1) of:

λK +
∂VK

∂τ
= HK

(

λKτ + p · y + pN+1 · yN+1 + VK , y, p+ ∇yVK , pN+1 +
∂VK

∂yN+1

)

in R × RN × R.

(9)
From the boundedness of HK , we can find a corrector VK which is Lipschitz continuous in all variables.
We now consider the solution U ε(t, x, xN+1) to the following equation:

{

Uε
t = H

(

Uε

ε ,
x
ε ,∇Uε

)

for (t, x, xN+1) ∈ (0,+∞) × RN × R,
Uε(0, x, xN+1) = U0(x, xN+1) := u0(x) + pN+1 · xN+1 for (x, xN+1) ∈ RN × R.

(10)
In particular, we have uε(t, x) = Uε(t, x, 0). We now consider the following Ansatz:

Uε(t, x, xN+1) ' U0(t, x, xN+1) + ε VK

(

t

ε
,
x

ε
,
U0(t, x, xN+1) − λK t− p · x

ε pN+1

)

(11)

where U0(t, x, xN+1) = u0(t, x) + pN+1 · xN+1. We can then easily check that the Ansatz (11) is a good
Ansatz for which we can control the error terms in the equation, using in particular the fact that λK is
close enough to λ for K large enough, and VK is Lipschitz continuous with respect to yN+1. Finally this
construction works for any pN+1 6= 0 and to simplify the presentation we take pN+1 = 1.

2.2 Main ideas for the construction of correctors

Boundedness of the corrector and the Coercivity Condition (A3). In the very first result of
homogenization for Hamilton-Jacobi equations, namely in [30], a coercivity condition is used to ensure the
existence of correctors. Let us comment this assumption. An example of a simple Hamiltonian without
coercivity condition is H(v, y, p) = sin (2πy) in dimension N = 1. For this Hamiltonian, the solution of
(1) with zero initial condition is

uε(t, x) = t sin

(

2πx

ε

)

.

Because the limit as t → +∞ of uε(t,x)
t = sin

(

2πx
ε

)

depends on x, this shows that this Hamiltonian is
not ergodic in the sense of Theorem 1. There is no homogenization (with strong convergence) for this
example, or more generally for some hyperbolic equations (see Tassa [37], Tartar [35, 36]). We also remark
a fundamental property of this solution: the space oscillation of the solution uε is proportional to the
time t, and then is unbounded in time.

On the contrary, let us now consider a Hamiltonian H(v, y, p) for which we can bound the space
oscillation of the solution by a constant C > 0 for all time. In the very particular case where the solution
is constant in space, the ergodicity of the equation is reduced to the study of the long-time behaviour
of the solution to an ODE. In the general case, the bound on the space oscillation of the solution allows
us to compare easily the solution at two different times, which is enough to prove the ergodicity of the
Hamiltonian.
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We now explain how the Coercivity Condition (A3) can be used here to bound the corrector on the
whole space for all time. Even if, as a matter of fact, we are not able to prove the existence of such a
corrector, let us assume that we have a bounded corrector v which is a solution of (4) i.e.

λ+ vτ = H(λτ + p · y + v, y, p+ ∇v) for (τ, y) ∈ R × RN

which is T -periodic in time where T = 1/|λ| with λ = H
0
(p) 6= 0. Considering the maximum of v, we

first remark that:
λ ≤ sup

(v,y)∈R×RN

H(v, y, p). (12)

Let us now define
v(y) = inf

τ∈R

v(τ, y) = v(τ (y), y) for some τ(y) ∈ [0, T ).

Then v satisfies
λ ≥ H(λτ (y) + p · y + v, y, p+ ∇v).

Using (A3), this gives (at least formally) a bound on p+ ∇v, i.e.

|∇v| ≤ C1(|p|).

This implies that the space oscillation of v is bounded at short distance. The space oscillation of v at
large distance is also bounded if we choose a corrector v satisfying moreover:

|v(τ, y + k) − v(τ, y)| ≤ 1 ∀k ∈ ZN , ∀(τ, y) ∈ R × RN

which follows from the periodicity of the Hamiltonian (see Assumption (A2)).
Under certain conditions, we can formally show that the corrector v can be chosen such that w(τ, y) :=

λτ + v(τ, y) satisfies λwτ ≥ 0. Together with the time periodicity of v, we deduce that 0 ≤ w(τ + s, y)−
w(τ, y) ≤ 1 for 0 ≤ s ≤ T , in the case λ > 0. In general, we get that

|v(τ + s, y) − v(τ, y)| ≤ 1.

Up to substract an integer to v, this is enough to derive the following L∞ bound on the corrector:

|v(τ, y)| ≤ C2(|p|).

Construction of the correctors. The basic idea to build correctors is to consider solutions w to (3),
i.e.

{

wτ = H(p · y + w, y, p+ ∇yw) for (τ, y) ∈ (0,+∞) × RN ,
w(0, y) = 0 for y ∈ RN .

If we are able to bound first the space oscillation of w uniformly in time, we can show that w(τ,y)
τ → λ as

τ → +∞, uniformly in y ∈ RN , and then consider a limit w∞(τ, y) of w(τ + k, y) as k → +∞. Roughlty
speaking, we then show that v(τ, y) = w∞(τ, y)−λτ (or at least a limit of w∞(τ, y)−λτ) is 1/|λ|-periodic
in time. This last property can be proven using a strong maximum principle on a perturbed problem.

The perturbed problem consists first in considering a truncated Hamiltonian HK in place of H and
to adding a non-local term ε I(w) on the right hand side of the equation to ensure the strong maximum
principle for ε > 0. At the end, we take the limit as ε −→ 0 and, if necessary, as K −→ +∞.

3 Comparison principles and gradient estimates for non-local

equations

In this section, we state various comparison principles and obtain gradient estimates for viscosity solutions
of Hamilton-Jacobi equations perturbed by a 0-order nonlocal operator, under appropriate assumptions
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on the Hamiltonian. For a definition of viscosity solutions and their properties, see in particular the
User’s Guide [16] for viscosity solutions, the book of Barles [6], the book of Bardi and Capuzzo-Dolcetta
[3] or the book of Lions [26].

We first introduce the 0-order non local operator:

I(v)(x) =

∫

RN

dz J(z) (v(x − z) − v(x))

where the function J satisfies






J is continuous,
J(−z) = J(z) > 0 for every z ∈ RN ,
∫

RN dz J(z) = 1 and Ii :=
∫

RN dz |z|i J(z) < +∞, i = 1, 2.
(13)

These conditions are for instance satisfied for the choice of the following function: J(z) = c e−|z| with

c =
(∫

RN dz e−|z|
)−1

.
Let F : R × RN × RN −→ R and w0 : RN −→ R be continuous functions, the second one satisfying

for some constant C > 0:
|w0(x)| ≤ C(1 + |x|) for every x ∈ RN .

For T > 0, we consider the equation for ε ≥ 0:

wt = ε I(w(t, ·)) + F (w, x,∇w) (14)

for (t, x) ∈ (0, T ) × RN , with the following initial condition:

w(0, x) = w0(x) for x ∈ RN . (15)

We say that a function w : [0, T )× RN → R has at most a linear growth if there exists a constant C > 0
such that:

|w(t, x)| ≤ C(1 + |x|) for every (t, x) ∈ [0, T )× RN .

Given such a function w, the function w∗ designates its upper-semicontinuous envelope (i.e. the smallest
u.s.c. function above w) and the function w∗ its lower-semicontinuous envelope.

Throughout the paper, we use the following convention (from the theory of discontinuous solutions
developed by Ishii): we say that a locally bounded function w is a subsolution (resp. supersolution) of
an equation if its usc envelope (resp. lsc envelope) is a subsolution (resp. supersolution).

Next, we successively give a comparison principle for unbounded viscosity solutions of (14), a com-
parison principle on bounded domains and a strong maximum principle. The first result is adapted from
[17]. Let us mention that the nonlocal term can be easily handled because Ii < +∞ for i = 1, 2. See the
appendix for details.

Proposition 1. (Comparison principle, ε ≥ 0) Under Assumption (A1) and assuming that u0 is
Lipschitz continuous, if u and v are respectively sub and supersolutions of (14)-(15) on (0, T ) × RN ,
which have at most a linear growth, then u ≤ v on [0, T ) × RN .

The following result is easier than the previous one since we assume boundedness of the domain; it
can be easily derived from classical results — see [6] for instance and [22] for integro-PDE’s. This is the
reason why we skip the proof.

Proposition 2. (Comparison principle on bounded open sets, ε = 0) Under Assumption (A1),
let Q ⊂ (0, T )×RN a bounded open set and the two functions u : Q −→ R and v : Q −→ R be respectively
sub- and supersolutions of (14) on Q. If u∗ ≤ v∗ on ∂Q, then u∗ ≥ v∗ on Q.

We next state a strong maximum principle for (14) when ε > 0. The techniques used in the following
proof are classical but not really the result. This is the reason why we provide details.
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Proposition 3. (Strong maximum principle for ε > 0) Under Assumption (A1) and assuming that
u0 is Lipschitz continuous, let us consider functions w and w which are respectively super and subsolution
of (14)-(15) on (0, T ) × RN , are at most of linear growth, and satisfy w∗ ≤ w∗ on (0, T ) × RN . If
w∗(t, x) = w∗(t, x) for some point (t, x) ∈ (0, T )×RN and if ε > 0, then we have w∗ = w∗ on (0, t]×RN .

Proof. Let us first notice that we can assume that ε = 1. Let us next define, for any α ≥ 0:

wα(t, x) = w∗(t, x) − w∗(t, x) + α |x− x|2 and mα(t) := inf
x∈RN

wα(t, x).

Note that mα(t) ≥ 0 and mα(t) = 0. We claim that this function satisfies, in the viscosity sense,

m′
α(t) + γmα(t) ≥ −C1α (16)

for some constant C1 to be determined.
In order to justify such a result, we first prove that the supremum is realised. Because w and w

are at most of linear growth, we know that for every α ∈ (0, 1), there exists xα(t) ∈ RN such that

mα(t) = wα(t, xα(t)) and |xα(t)| ≤ C′

α for some constant C ′ > 0. In order to prove that (16) is satisfied,
we need to consider the lsc envelope of mα. In view of the bound on xα(t), it is clear that mα is lsc and
therefore coincides with its lsc envelope. Next, we assert that mα is the relaxed upper limit of the family
of functions {mα,ε}ε>0:

mα = lim inf ∗(mα,ε) with

mα,ε(t) = inf
s≥0,x,y∈RN

{

w∗(t, x) − w∗(s, y) +
(t− s)2

2ε
+

|y − x|2
2ε

+ α|x− x|2
}

.

Using once again the fact that w∗ and w∗ have linear growth, we can assert that the supremum defining
mα,ε is attained.

Let us next consider a test function φ(t) such that mα − φ attains a strict local minimum at time
t0 > 0. This implies that there exists εn → 0 and tn → t0 such that mα,εn

− φ attains a local minimum
at time tn and mα,εn

(tn) → mα(t0) as n → +∞. As explained above, the supremum defining mα,εn
(tn)

is attained and

mα,εn
(tn) = w∗(tn, xn) − w∗(sn, yn) +

(tn − sn)2

2εn
+

|yn − xn|2
2εn

+ α|xn − x|2.

Classical results of penalization assert that the following properties hold true:


















(tn−sn)2

2εn
→ 0 and in particular sn > 0 for n large enough,

|yn−xn|2

2εn
→ 0,

xn → x0 such that mα(t0) = w∗(t0, x0) − w∗(t0, x0) + α|x0 − x|2,
w∗(tn, xn) − w∗(sn, yn) → w∗(t0, x0) − w∗(t0, x0).

(17)

In the following, x0 = xα(t0) in accordance with the notations introduced previously. Consequently,

w∗(t, x) − w∗(s, y) +
(t− s)2

2ε
+

|y − x|2
2ε

+ α|x − x|2 − φ(t)

≥ w∗(tn, xn) − w∗(sn, yn) +
(tn − sn)2

2ε
+

|yn − xn|2
2ε

+ α|xn − x|2 − φ(tn)

for any (s, x, y) ∈ (0; +∞) × R2N and t close to tn. Using the fact that w (resp. w) is a supersolution
(resp. subsolution) of (14)-(15), we conclude that:

sn − tn
εn

+ φ′(tn) ≥ I(w∗(tn, ·))(xn) + F (w∗(tn, xn), xn, pn + 2α(xn − x))

sn − tn
εn

≤ I(w∗(sn, ·))(yn) + F (w∗(sn, yn), yn, pn)
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with pn = (yn − xn)/εn. Substracting both inequalities yields:

φ′(tn) ≥ I(w∗(tn, ·))(xn) − I(w∗(sn, ·))(yn) − 2γα|xn − x|

−γ
∣

∣

∣

∣

mα,εn
(tn) +

(tn − sn)2

2εn
+

|xn − yn|2
2εn

+ α|xn − x|2
∣

∣

∣

∣

− γ

(

|xn − yn| +
|xn − yn|2

εn

)

≥
∫

dzJ(z)(w∗(tn, xn − z) − w∗(sn, yn − z)) − (w∗(tn, xn) − w∗(sn, yn))

−γ
∣

∣

∣

∣

mα,εn
(tn) +

(tn − sn)2

2εn
+

|xn − yn|2
2εn

+ α|xn − x|2
∣

∣

∣

∣

− γ

(

|xn − yn| +
|xn − yn|2

εn

)

where we used (A1). Using Fatou’s lemma and (17) yields as n→ +∞:

φ′(t0) ≥ I(w∗(t0, ·))(xα(t0)) − I(w∗(t0, ·))(xα(t0)) − 2γα|xα(t0) − x| − γ
(

mα(t0) − α|xα(t0) − x|2
)

≥ I(wα(t0, ·))(xα(t0)) − αI(| · −x|2)(xα(t0)) − γmα(t0) + α inf
r≥0

(γr2 − 2γr).

Using the fact that J(−z) = J(z), we get

I(| · −x|2)(x) = constant = I2 :=

∫

RN

dz J(z)|z|2

and setting C1 = − infr≥0(γr
2 − 2γr) + I2, we deduce that mα satisfies, in the viscosity sense,

m′
α(t) + γmα(t) ≥ −αC1 + I(wα(t, ·))(xα(t)) with I(wα(t, ·))(xα(t)) ≥ 0.

In particular, we have:
m′

α(t) + γmα(t) ≥ −αC1.

By integration (using mα(t) = 0), we get:

mα(t) ≤ α
C1

γ

(

eγ(t−t) − 1
)

for t ∈ (0, t]. (18)

Using the fact that:

mα(t) = w∗(t, xα(t)) − w∗(t, xα(t)) + α |xα(t) − x|2 and w∗ − w∗ ≥ 0,

we deduce that:

|xα(t) − x|2 ≤ C1

γ

(

eγ(t−t) − 1
)

for t ∈ (0, t]. (19)

First, we remark that mα(t) −→ m0(t) as α −→ 0, and then there exists x0(t) satisfying (19), such that

m0(t) = w0(t, x0(t)) = w∗(t, x0(t)) − w∗(t, x0(t)) for t ∈ (0, t]

We also have m0 = lim sup ∗mα and arguing as previously implies that m0 satisfies:

m′
0(t) + γm0(t) ≥ I(w0(t, ·))(x0(t)) for t ∈ (0, t).

From (18), we also deduce that m0(t) = 0 for every t ∈ (0, t). Therefore for any t0 ∈ (0, t), we can take
a test function tangent from below to m0 at t0, and deduce that:

0 ≥ I(w0(t0, ·))(x0(t0)) =

∫

RN

dz J(z) w0(t0, x0(t0) − z) with w0(t0, x0(t0)) = 0 and w0(t0, ·) ≥ 0.

Because J is continuous and satisfies J > 0, we deduce that w0(t0, x) = 0 for almost every x ∈ RN .
Because w0 is lower semi-continuous, we deduce that w0(t0, x) = 0 for every x ∈ RN . Now this result
is true for every t0 ∈ (0, t), and then still by lower semi-continuity (and using w0 ≥ 0) w0(t, x) =
0 for every (t, x) ∈ (0, t] × RN i.e. w∗(t, x) = w∗(t, x) for every (t, x) ∈ (0, t] × RN . This ends the
proof of Proposition 3.
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We next state and prove existence of a solution of (14)-(15).

Proposition 4. (Existence and uniqueness of a solution, ε ≥ 0) If u0 ∈ W 1,∞ and F satisfies (A1),
there exists a unique viscosity solution w of (14)-(15) on (0, T ) × RN satisfying |w(t, x) − u0(x)| ≤ Ct
for some C > 0. Moreover this solution w is continuous.

Proof. The existence is classical via Perron’s method if one constructs barriers. Let us consider

w±(t, x) = ±Ct+ u0(x)

with C = sup(v,y,p)∈R2N+1,|p|≤‖u0‖1,∞ F (v, y, p)± ε‖u0‖1,∞I1. We consider E the set of all subsolutions u

of (14) such that u ≤ w+ on [0, T ))× RN . This set is nonempty since it contains w−. Define

w(t, x) = sup{u(t, x) : u ∈ E}

It is a subsolution. It is also classical to check that w is a supersolution — it relies on a “bump con-
struction”, described for instance in [17]. The uniqueness and the continuity follow from the comparison
principle (Proposition 1).

When constructing the correctors, we will need some gradient estimates, but in an integral form. Let
us give a precise definition.

Definition 1. (Gradient estimate) For a function w0 : RN −→ R, we say that

ξ · ∇w0 ≤M on RN

if and only if
w0(x+ hξ) − w0(x) ≤ hM for all h ≥ 0, x ∈ RN .

We next state and prove two results concerning gradient estimates satisfied by the viscosity solution
of (14)-(15) under certain conditions on the Hamiltonian F .

Proposition 5. (A priori bound on the gradient, ε ≥ 0) Under assumptions of Proposition 4, let
us assume moreover that there exists ξ ∈ RN with |ξ| = 1, M ≥ 0 and a function F0 such that

F (u, x, p) = F0(x − (ξ · x) ξ, p) for all (u, x, p) ∈ R × RN × RN if ξ · p ≥M.

If ξ · ∇w0 ≤ M on RN in the sense of Definition 1, then the solution w of (14)-(15) on (0, T ) × RN

satisfies ξ · ∇w ≤M on [0, T )× RN .

Before proving this proposition, let us derive a straightforward corollary.

Corollary 1. Under the assumptions of Proposition 4, let us assume moreover that there exists a closed
set Ω that is starshaped w.r.t. the origin and a function F0 such that

F (u, x, p) = F0(p) for all (u, x, p) ∈ R × RN × RN if p /∈ Ω.

If ∇w0 ∈ Ω on RN then the solution w of (14)-(15) on (0, T )× RN satisfies ∇w ∈ Ω on [0, T )× RN .

Let us now turn to the proof of the proposition.

Proof of Proposition 5. The proof proceeds by reduction to a simpler case and by approximation. First,
there is no restriction in assuming that ε = 1 and ξ = (1, 0, . . . , 0). Hence, if x = (x1, x

′) and p = (p1, p
′)

with x′, p′ ∈ RN−1:

∂1w
0 ≤M,

F (u, x, p) = F0(x
′, p) for all (u, x, p) ∈ R × RN × RN if p1 ≥M (20)
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and we want to estimate from above ∂1w. Next, we consider wδ
0 ∈ C∞(RN ), F δ ∈ C∞(R × RN × RN )

and such that:

wδ
0 → w0 and F δ → F locally uniformly as δ → 0,

F δ satisfies (20) and (A1) with M + δ and γ + δ respectively,

∂1w0 ≤M + δ on RN .

Then if wδ is the viscosity solution of:

wδ
t = I(wδ(t, ·)) + F δ(wδ , x,∇wδ) + δ∆wδ

for (t, x) ∈ (0, T ) × RN , with the following initial condition:

wδ(0, x) = wδ
0(x) for x ∈ RN ,

we can prove that wδ ∈ C∞([0, T ) × RN ) by adapting the classical theory of parabolic equations [25]
— see [22, 18] for such an adaptation but with a different integral term. Let us next write down the
equation satisfied by v(t, x) = ∂1w

δ(t, x):

∂tv = I(v(t, ·)) + ∂wF
δ(wδ , x, v,∇′wδ)v + ∂x1

F δ(wδ , x, v,∇′wδ) +
∑

i

∂pi
F δ(wδ , x, v,∇′wδ)∂iv + δ∆v

where ∇′w = (∂2w, . . . , ∂Nw) ∈ RN−1. Now remark that M + δ is a supersolution of such an equation
and the comparison principle yields v ≤M + δ which implies that:

wδ(x1 + h, x′) ≤ wδ(x1, x
′) + h(M + δ).

Passing to the limit as δ → 0 permits to achieve the proof.

Proposition 6. (Monotonicity of the solution, ε ≥ 0) Under assumptions of Proposition 4, let us
assume moreover that there exists ξ ∈ RN with |ξ| = 1, and a function F1 such that:

F (u, x, p) = F1(u, x− (ξ · x) ξ, p) for all (u, x, p) ∈ R × RN × RN .

If ξ ·∇w0 ≤ 0 on RN in the sense of Definition 1, then the solution w of (14)-(15) on (0, T )×RN satisfies
ξ · ∇w ≤ 0 on [0, T )× RN .

Proof. The proof is very similar to the proof of Proposition 5. We do the same reduction and the same
approximation and v satisfies the same equation but with ∂x1

F ≡ 0. It is therefore clear that v = 0 is a
supersolution and we conclude the same way.

4 The proof of the convergence

This section is dedicated to the proof of Theorem 2. Before presenting it, we first imbed the problem in
a higher dimensional one. Precisely, we consider the solution U ε of

{

Uε
t = H

(

Uε

ε ,
x
ε ,∇xU

ε
)

for (t, x, xN+1) ∈ (0,+∞) × RN × R,
Uε(0, x, xN+1) = u0(x) + xN+1 for (x, xN+1) ∈ RN × R.

(21)

There exists a unique viscosity solution of such an equation under assumptions (A1)-(A3). Then we have
the following lemma.

Lemma 1. (Link between problems on RN and on RN+1) We have uε(t, x) = Uε(t, x, 0).
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Proof. uε[xN+1] the solution of (1) on RN with initial condition

uε[xN+1](0, x) = u0(x) + xN+1.

We now build the function: V (t, x, xN+1) = uε[xN+1](t, x). Let us first justify that V is a continuous
function with respect to xN+1. To see this, consider the function uε[xN+1](t, x) + eγt/εδ where γ is given
by (A1), and prove that it is above uε[xN+1 + δ](t, x). It suffices to remark that it is a supersolution
of (1) (by using Assumption (A1)) and to use the comparison principle (Proposition 1). Hence, V is
upper semicontinuous. We prove analogously that V is lower semicontinuous and we conclude that V is
continuous. We now check easily (using test functions) that V is a solution of (21). By the comparison
principle applied to (21), we deduce that V = U ε and then uε(t, x) = Uε(t, x, 0). This ends the proof of
the Lemma.

As underlined in the third try of Subsection 2.1, the proof of convergence will use Lipschitz continuous
approximate sub and super-correctors on R×RN+1. More precisely, we will use the following proposition.

Proposition 7. (Lipschitz continuous in yN+1 approximate sub and super-correctors in di-
mension N + 1) Let p ∈ RN . For any β ∈ R, let λ(β) be the constant defined by Theorem 1 for the
Hamiltonian β +H. Then

λ(β) is nondecreasing in β, and ∀λ0 ∈ R, ∃β0 ∈ R, such that λ(β0) = λ0 (22)

For any fixed β ∈ R, there exist real numbers λ+
K(β), λ−K(β), a constant C = C(p) > 0 (independent on

K and β) and bounded super and sub-correctors V +
K , V −

K depending on β, such that

λ(β) = lim
K→+∞

λ+
K(β) = lim

K→+∞
λ−K(β)

with λ+
K(β) and λ−K(β) satisfying (22) and, for τ ∈ R, Y = (y, yN+1) ∈ RN ×R and P = (p, 1) ∈ RN ×R:

|V +
K (τ, Y )| ≤ C, |V −

K (τ, Y )| ≤ C

λ+
K +

∂V +
K

∂τ
≥ β +H

(

λ+
Kτ + P · Y + V +

K , y, p+ ∇yV
+
K

)

for (τ, Y ) ∈ R × RN+1, (23)

λ−K +
∂V −

K

∂τ
≤ β +H

(

λ−Kτ + P · Y + V −
K , y, p+ ∇yV

−
K

)

for (τ, Y ) ∈ R × RN+1. (24)

For any λ0 ∈ R, there exist reals β±
0 and β±

K such that











λ±K(β±
K) = λ(β±

0 ) = λ0

β±
K −→ β±

0 as K → +∞
∣

∣

∣

∂V ±
K

∂yN+1

∣

∣

∣
≤ CK

(25)

for the correctors V +
K and V −

K respectively associated to β+
K and β−

K , and for some constant CK =
C(K, p) > 0.

Proof of Theorem 2. Classically, we prove that U+ = lim sup∗Uε is a subsolution of

{

Wt = H
0
(∇xW ) for (t, x, xN+1) ∈ (0,+∞) × RN × R,

W (0, x, xN+1) = u0(x) + xN+1 for (x, xN+1) ∈ RN × R.
(26)

Analogously, we can prove that U− = lim inf∗U
ε is a supersolution of (26). By the barriers (uniform in

ε) given in Proposition 4, we deduce that U+(0, x) = U−(0, x). The comparison principle for (2) (see
Proposition 1) thus implies that U+ ≤ U−. Since U− ≤ U+ always holds true, we conclude that the two
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functions coincide with U0, the unique continuous viscosity solution of (26). This last fact is equivalent
to the local convergence of U ε towards U0.

From the invariance by translations we also deduce that U 0(t, x, xN+1 + a) − a is also a solution for
any a ∈ R. This proves that U 0(t, x, xN+1) = U0(t, x, 0) + xN+1. Therefore U0(t, x, 0) is the solution u0

of (2). By Lemma 1, this proves in particular the local convergence of uε to u0.

Step 1: U+ is a subsolution. Let us thus prove that U+ is a subsolution of (26). First, by the
comparison principle, we easily check that for any sequence kε ∈ Z, we have

Uε(t, x, xN+1 + εkε) = εkε + Uε(t, x, xN+1)

For any a ∈ R, we then choose the sequence such that εkε → a. Passing to the limit as ε→ 0, we deduce
by definition of U+ that U+(t, x, xN+1 + a) = a+ U+(t, x, xN+1) and then

U+(t, x, xN+1) = U+(t, x, 0) + xN+1. (27)

Applying Evans’ technique of the perturbed test function [19, 20], we argue by contradiction: we consider
a test function φ ∈ C2((0; +∞)×RN+1) such that U+−φ attains a strict zero local maximum at (t0, X0)
with t0 > 0, X0 ∈ RN+1, and we suppose that there exists θ > 0 such that:

φt(t0, X0) = H(∇xφ(t0, X0)) + θ.

In the following, we set p = ∇xφ(t0, X0) and λ0 = φt(t0, X0). With the notations of Propositon 7, we
see that we have

λ0 = λ(0) + θ = λ(β0) for β0 > 0.

We deduce from Proposition 7 that there exists β+
K ∈ R such that

λ0 = λ+
K(β+

K) and β+
K ≥ β0/2

for K large enough.
We next construct a perturbed test function in the spirit of Evans’ seminal work. Here, this is a

xN+1-twisted perturbed test function:

φε(t, x, xN+1) = φ(t, x, xN+1) + εV +
K

(

t

ε
,
x

ε
,
φ(t, x, xN+1) − λ0t− p · x

ε

)

where V +
K is a super-corrector given by Proposition 7 for β = β+

K . From (27), we also know that

∂φ

∂xN+1
(t0, X0) = 1.

Let us define, for r small enough: Vr := (t0 − r, t0 + r) × Br(X0) ⊂ (0,+∞) × RN+1. We claim that the
following lemma (whose proof is postponed) holds true.

Lemma 2. (φε is a supersolution on VrK
) There exist rK > 0 and ε0 > 0 such that for all 0 < ε < ε0,

the function φε is a supersolution of

φε
t = H

(

φε

ε
,
x

ε
,∇xφ

ε

)

with (t, x, xN+1) ∈ (0; +∞) × RN+1 (28)

on VrK
.

Now, since (t0, X0) is a strict local zero maximum of U+ − φ, for 0 < r ≤ rK small enough, we
have: U+ − φ ≤ −2η on ∂Vr for some η > 0. Then U ε − φ ≤ −η on ∂Vr for ε small enough. From
the bound on the corrector given in Proposition 7, we deduce that U ε ≤ φε − η + Cε on ∂Vr. By
definition, Uε is a solution of (21) and by Lemma 2, φε is a supersolution. Remark that the function
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φε + ε
⌈

−η+Cε
ε

⌉

is still a supersolution. By the comparison principle (Proposition 2), we conclude that

Uε ≤ φε+ε
⌈

−η+Cε
ε

⌉

on Vr. Letting ε→ 0, we get in particular at (t0, X0): U
+(t0, X0) ≤ φ(t0, X0)−η

which is a contradiction.

Step 2: U− is a supersolution. Let us thus prove that U− is a supersolution of (26). We proceed as
in Step 1 with U+ − φ attains a strict local zero minimum at (t0, X0) with θ < 0 such that:

φt(t0, X0) = H(∇xφ(t0, X0)) + θ

and find β−
K ∈ R such that λ0 = λ−K(β−

K) = λ(β0), which satisfies β−
K ≤ β0/2 < 0 for K large enough.

We define

φε(t, x, xN+1) = φ(t, x, xN+1) + εV −
K

(

t

ε
,
x

ε
,
φ(t, x, xN+1) − λ0t− p · x

ε

)

where V −
K is a corrector given by Proposition 7 for β = β−

K . We claim that the following lemma holds
true (its proof is similar to the proof of Lemma 2):

Lemma 3. (φε is a subsolution on VrK
) There exist rK > 0 and ε0 > 0 such that for all 0 < ε < ε0,

the function φε is a subsolution on VrK
, i.e. satisfies

φε
t ≤ H

(

φε

ε
,
x

ε
,∇xφ

ε

)

on VrK
.

By using such a lemma, we can get a contradiction as in Step 1. The proof of Theorem 2 is now
complete.

Proof of Lemma 2. We want to prove that φε is a supersolution of (28). Consider a test function ψ and
a point (t,X) ∈ Vr such that φε − ψ attains a local minimum at (t,X) with X = (x, xN+1):

φε(t,X) − ψ(t,X) ≤ φε(t,X) − ψ(t,X)

i.e.

V +
K

(

t

ε
,
x

ε
,
φ(t,X) − λ0t− p · x

ε

)

− 1

ε
(ψ(t,X) − φ(t,X))

≤ V +
K

(

t

ε
,
x

ε
,
φ(t,X) − λ0t− p · x

ε

)

− 1

ε
(ψ(t,X) − φ(t,X)) (29)

Let us define F (t,X) = φ(t,X)−λ0t−p·x.We have ∂F
∂xN+1

(t0, X0) = ∂φ
∂xN+1

(t0, X0) = 1. Consequently,

there exists r0 > 0 such that the map

Id× F : Vr0
−→ U ⊂ R × RN × R

(t, x, xN+1) 7−→ (t, x, F (t, x, xN+1))

is a C1-diffeomorphism from Vr0
onto its range U , and let us call G : U −→ R the map such that

Id×G : U −→ Vr0

(t, x, ξN+1) 7−→ (t, x,G(t, x, ξN+1))

is the inverse of Id× F .
Let us consider the variables τ = t/ε, Y = (y, yN+1) with y = x/ε and yN+1 = F (t,X)/ε and define

Γε(τ, Y ) =
1

ε
(ψ (ετ, εy,G(ετ, εy, εyN+1)) − φ (ετ, εy,G(ετ, εy, εyN+1))) .
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Let τ = t
ε , y = x

ε , yN+1 = F (t,X)
ε , Y = (y, yN+1). Then (29) implies

V +
K (τ , Y ) − Γε(τ , Y ) ≤ V +

K (τ, Y ) − Γε(τ, Y ) for all (τ, Y ) in a neighborhood of (τ , Y )

i.e. V +
K − Γε reaches a local minimum at (τ , Y ). Estimate (25) implies in particular that

∣

∣

∣

∣

∂Γε

∂yN+1
(τ , Y )

∣

∣

∣

∣

≤ CK . (30)

Since V +
K is a viscosity solution of (24), we conclude that (with P = (p, 1) ∈ RN+1, λ0 = λ+

K(β+
K) and

β+
K ≥ β0/2 > 0):

λ0 + Γε
τ (τ , Y ) ≥ β0

2
+H(λ0τ + P · Y + V +

K (τ , Y ), y, p+ ∇yΓε(τ , Y )). (31)

Using the fact that G(t, x, F (t, x, xN+1)) = xN+1, simple computations yield:















λ0τ + P · Y + V +
K (τ , Y ) = φε(t,X)

ε

λ0 + Γε
τ (τ , Y ) = ψt(t,X) +

(

λ0 − φt(t,X)
)

(

1 + ∂Γε

∂yN+1
(τ , Y )

)

p+ ∇yΓε(τ , Y ) = ∇xψ(t,X) +
(

p−∇xφ(t,X)
)

(

1 + ∂Γε

∂yN+1
(τ , Y )

)

.

(32)

Therefore we get

ψt(t,X) +
(

λ0 − φt(t,X)
)

(

1 + ∂Γε

∂yN+1
(τ , Y )

)

≥ β0

2 +H
(

φε(t,X)
ε , x

ε ,∇xψ(t,X) +
(

p−∇xφ(t,X)
)

(

1 + ∂Γε

∂yN+1
(τ , Y )

))

Using the uniform continuity of H on R × RN × B2CK
(0), bounds (30), the C1 regularity of φ and the

fact that λ0 = φt(t0, X0), p = ∇xφ(t0, X0), we deduce that there exists 0 < rK ≤ r0, such that (with
β0 > 0):

ψt(t,X) ≥ β0

4
+H

(

φε(t,X)

ε
,
x

ε
,∇xψ(t,X)

)

for (t,X) ∈ VrK
.

This proves that φε is a supersolution on VrK
and ends the proof of the Lemma 2.

The proof of Lemma 3 is similar and we skip it.

5 Approximate cell problems

In this section, we explain that approximate correctors of Proposition 7 (used in the proof of convergence)
are in fact exact correctors for approximate and bounded Hamiltonians. The construction of these
approximate correctors also permits to prove ergodicity (Theorem 1).

First, we define two nondecreasing functions by using (A3):

{

h(r) = sup
{

H(v, y, p), (v, y) ∈ R × RN , p ∈ Br(0)
}

,
r(h) = inf {r ≥ 0, (|p| ≥ r) =⇒ H(·, ·, p) > h} . (33)

Because the Hamiltonian H is continuous, we deduce that the function h is continuous and the function
r is nondecreasing, upper semi-continuous and (therefore) continuous from the right. Moreover these
functions satisfy in particular h(r(h)) ≥ h and r(h(r)) ≥ r.

Definition of Hδ,+
K .

For every δ ∈ R and P = (p, pN+1), we define:

Hδ(v, y, P ) = H(v, y, p) + δ |pN+1| (34)
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For δ > 0 fixed for the sequel, we set hδ(K) = h(K) + δK. Using (A3), for every K > 0 large enough we
have hδ(K) ≥ h(K) > 0 and we define for some µ+ ≥ 1 to be chosen later:

Hδ,+
K (v, y, P ) :=







Hδ(v, y, P ) if Hδ(v, y, P ) ≤ hδ(K),
hδ(K) + µ+

(

Hδ(v, y, P ) − hδ(K)
)

if hδ(K) ≤ Hδ(v, y, P ) ≤ 2hδ(K),
(1 + µ+) hδ(K) if 2hδ(K) ≤ Hδ(v, y, P ).

(35)

Let us define

rδ
K(pN+1) := r

(

2hδ(K) − δ |pN+1|
)

(36)

Ωδ,+
K =

{

P = (p, pN+1) ∈ RN × R, |p| ≤ rδ
K(pN+1), |pN+1| ≤

2hδ(K) − inf H

δ

}

(37)

with inf H := inf(v,y,q)∈R×RN×RN H(v, y, q).
We can easily check that

Ωδ,+
K ⊃

{

P ∈ RN+1, ∃(v, y) ∈ R × RN , Hδ(v, y, P ) ≤ 2hδ(K)
}

⊃ BK(0).

Then the bounded and uniformly continuous Hamiltonian Hδ,+
K satisfies in particular

Hδ,+
K (·, ·, P )



















= Hδ(·, ·, P ) for |P | ≤ K

≥ Hδ(·, ·, P ) for P ∈ Ωδ,+
K

= M δ,+
K for P ∈ RN+1\Ωδ,+

K

∈
[

infH, M δ,+
K

]

for every P ∈ RN+1

(38)

if we choose µ+ ≥ 1 such that µ+ = µδ,+
K with

(1 + µδ,+
K ) hδ(K) = M δ,+

K := sup
P ∈ Ωδ,+

K

(h(|p|) + δ|pN+1|) ≥ 2hδ(K) (39)

Definition of Hδ,−
K .

We first define
Ȟ(v, y, p) := −min (2h(K), H(v, y, p)) .

Then we proceed similarly as in the definition of Hδ,−
K , with H replaced by Ȟ . We define for δ > 0

{

Ȟδ(v, y, P ) = δ |pN+1| + Ȟ(v, y, p)

ȟδ(K) = − infH + δK

which satisfies ȟδ(K) > 0 for δK > 0 large enough. We then define for µ− ≥ 1

Ȟδ
K(v, y, P ) :=







Ȟδ(v, y, P ) if Ȟδ(v, y, P ) ≤ ȟδ(K)

ȟδ(K) + µ−
(

Ȟδ(v, y, P ) − ȟδ(K)
)

if ȟδ(K) ≤ Ȟδ(v, y, P ) ≤ 2ȟδ(K)

(1 + µ−) ȟδ(K) if 2ȟδ(K) ≤ Ȟδ(v, y, P )

(40)

and the compact set

Ω̌δ
K =

{

pN+1 ∈ R, |pN+1| ≤
2ȟδ(K) − inf Ȟ

δ

}

with inf Ȟ = −2h(K). (41)

We can easily check that

Ω̌δ
K ⊃

{

pN+1 ∈ R, ∃(v, y, p) ∈ R × RN × RN , Hδ(v, y, p, pN+1) ≤ 2hδ(K)
}

⊃ BK(0).
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Then we have in particular

Ȟδ
K(·, ·, P )







= Ȟδ(·, ·, P ) for |pN+1| ≤ K
≥ Ȟδ(·, ·, P ) for pN+1 ∈ Ω̌δ

K

= −mδ,−
K for pN+1 ∈ R\Ω̌δ

K

(42)

if we choose µ− ≥ 1 such that µ− = µδ,−
K with

(1 + µδ,−
K ) ȟδ(K) = −mδ,−

K := 2ȟδ(K) + 2h(K) − inf H ≥ 2ȟδ(K). (43)

Let us define the compact set

Ωδ,−
K =

{

P = (p, pN+1) ∈ RN × R, |p| ≤ rK , |pN+1| ≤
2ȟδ(K) + 2h(K)

δ

}

. (44)

We can easily check that Ωδ,−
K ⊃ BK(0). Let us finally define the bounded and uniformly continuous

Hamiltonian
Hδ,−

K (v, y, P ) = −Ȟδ
K(v, y, P ) (45)

which satisfies (using the definition (34) of H−δ)

Hδ,−
K (·, ·, P )































= H−δ(·, ·, P ) for |P | ≤ K

≤ H−δ(·, ·, P ) for P ∈ Ωδ,−
K

= f δ
K(pN+1) for P ∈ RN+1\Ωδ,−

K

= mδ,−
K for |pN+1| ≥ 2ȟδ(K)+2h(K)

δ

∈
[

mδ,−
K , 2h(K)

]

for every P ∈ RN+1

(46)

where f δ
K is a Lipschitz continuous function defined by

f δ
K(pN+1)











= −δ|pN+1| + 2h(K) if |pN+1| ≤ ȟδ(K)+2h(K)
δ

= −
{

ȟδ(K) + µ−
(

δ|pN+1| − 2h(K) − ȟδ(K)
)}

if ȟδ(K)+2h(K)
δ ≤ |pN+1| ≤ 2ȟδ(K)+2h(K)

δ

= −(1 + µ−) ȟδ(K) if |pN+1| ≥ 2ȟδ(K)+2h(K)
δ

Finally, we can easily check for later use that for K >
√

1 + |p|2 large enough and for δK > 0 large
enough, we have for every (v, y, q) ∈ R × RN × RN :

(

h(|p|) ± δ ≥ Hδ,±
K (v, y, q, 1)

)

=⇒
(

Hδ,±
K (v, y, q, 1) = ±δ +H(v, y, q)

)

, (47)

Hδ,+
K (·, ·, Q) ≥ H(·, ·, q) for all Q = (q, qN+1) ∈ Ωδ,+

K , (48)

Hδ,−
K (·, ·, Q) ≤ H(·, ·, q) for all Q = (q, qN+1) ∈ Ωδ,−

K . (49)

We now state the following fundamental result which will be used as the corner stone of our construc-
tion and will be proved in Section 6.

Proposition 8. (Lipschitz continuous correctors for an approximate Hamiltonian in higher

dimension) Let p ∈ RN and P = (p, 1) ∈ RN × R. Let us consider the troncated Hamiltonians Hδ,+
K

and Hδ,−
K defined by (35) and (45) for K >

√

1 + |p|2 large enough and for δK > 0 large enough, and

H satisfying (A1)-(A2)-(A3). For any β ∈ R, there exist real numbers λδ,+
K (β), λδ,−

K (β) and bounded

approximate sub and supercorrectors V δ,+
K , V δ,−

K depending on β, satisfying

λδ,±
K (β) is nondecreasing in β, and ∀λ0 ∈ R, ∃βδ,±

K,0 ∈ R, such that λδ,±
K (βδ,±

K,0) = λ0 (50)
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and
inf

(v,y)∈R×RN
H(v, y, p) ≤ λδ,±

K (β) − β ∓ δ ≤ h(|p|) (51)

(where the function h is defined by (33)) and

λδ,±
K +

∂V δ,±
K

∂τ
= β +Hδ,±

K

(

λδ,±
K τ + P · Y + V δ,±

K , y, P + ∇V δ,±
K

)

for (τ, Y ) ∈ R × RN+1. (52)

W1,∞ a priori bounds on the correctors. We can construct bounded Lipschitz continuous correctors
with:

|V δ,±
K (τ, Y )| ≤ 4 +

√
N (|p| + r(h(|p|))) (53)

(

P + ∇V δ,±
K (τ, Y )

)

∈ Ωδ,±
K

where r and h are defined by (33) and

0 ≤ 1 +
∂V δ,+

K

∂yN+1
(τ, Y ) ≤ 2hδ(K) − inf H

δ
and 0 ≤ 1 +

∂V δ,−
K

∂yN+1
(τ, Y ) ≤ 2ȟδ(K) + 2h(K)

δ

inf H − h(|p|) ≤ δ +
∂V δ,+

K

∂τ
(τ, Y ) ≤ M δ,+

K − infH (54)

mδ,−
K − h(|p|) ≤ −δ +

∂V δ,−
K

∂τ
(τ, Y ) ≤ 2h(K) − infH (55)

where mδ,−
K and M δ,+

K are defined respectively by (43) and by (39).

Further properties of the correctors. The correctors satisfy

V δ,±
K (τ, y, yN+1) = V δ,±

K

(

0, y, λδ,+
K τ + yN+1

)

, (56)

{

V δ,±
K (τ, y, yN+1 + 1) = V δ,±

K (τ, y, yN+1),

|V δ,±
K (τ, y + k, yN+1) − V δ,±

K (τ, y, yN+1)| ≤ 1, for every k ∈ ZN .
(57)

If p = P/Q with P ∈ ZN and Q ∈ N\ {0}, then

V δ,±
K (τ, y +Qk, yN+1) = V δ,±

K (τ, y, yN+1) for every k ∈ ZN .

We next deduce from this proposition Theorem 1 about the ergodicity of the problem and Proposition 7
about the existence of approximate correctors (the proposition we used in the proof of convergence).

Proof of Theorem 1. Let us apply Proposition 8 with β = 0. We have

|λδ,±
K | ≤ C, |V δ,±

K | ≤ C

for some constant C independent of δ small enough and K large enough. Moreover V δ,±
K is 1/|λδ,±

K |-
periodic in τ if λδ,±

K 6= 0 and is independent on τ if λδ,±
K = 0 (by (56)) and satisfies (52). Let us call λ±

any limit of λδ,±
K for a subsequence of (δ,K) −→ (0,+∞) and

V +
+ = lim sup ∗ V δ,+

K , V +
− = lim inf ∗ V

δ,+
K , V −

+ = lim sup ∗ V δ,−
K , V −

− = lim inf ∗ V
δ,−
K

which still satisfy |λ±| ≤ C, |V +
± | ≤ C, |V −

± | ≤ C and passing to the limit in (52) we get, in the
viscosity sense,

λ± +
∂V ±

+

∂τ
≤ H

(

λ±τ + P · Y + V ±
+ , y, p+ ∇yV

±
+

)

for (τ, Y ) ∈ R × RN+1,

λ± +
∂V ±

−

∂τ
≥ H

(

λ±τ + P · Y + V ±
− , y, p+ ∇yV

±
−

)

for (τ, Y ) ∈ R × RN+1.
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Let us define W±
α (τ, y) = λ±τ + p · y + V ±

α for α = ±. Let us choose k ∈ N such that k ≥ 2C. Then
the comparison principle (Proposition 1) applied to the supersolution W+

− + k and the subsolution W−
+

implies that W+
− + k ≥W−

+ and then λ+ ≥ λ−. Similarly, comparing W−
− + k with W+

+ we get λ− ≥ λ+

which proves that λ+ = λ− =: λ. Let us consider the solution w of

{

wτ = H(p · y + w, y, p+ ∇w) for (τ, y) ∈ (0,+∞) × RN ,
w(0, y) = 0 for y ∈ RN (58)

and W solution of
{

Wτ = H(P · Y +W, y, p+ ∇yW ) for (τ, Y ) ∈ (0,+∞) × RN+1,
W (0, Y ) = 0 for Y ∈ RN+1.

By Lemma 1, we have w(τ, y) = W (τ, y, 0). The comparison principle implies W+
+ − k ≤ W ≤ W+

− + k

which proves that W (τ,y)
τ −→ λ as τ −→ +∞ uniformly for Y ∈ RN+1, and then w(τ,y)

τ −→ λ as τ −→ +∞
uniformly for y ∈ RN . This ends the proof of Theorem 1.

Proof of Proposition 7. Simply apply Proposition 8 for K large enough, with δ = 1/
√
K, and set

V ±
K = V

1√
K

,±

K . Checking that β±
K −→ β±

0 is very similar to the proof of Theorem 1.

6 Proof of ergodicity and construction of approximate correc-
tors

In this section, we prove the existence of exact correctors for approximate Hamiltonians, namely Propo-
sition 8.

We first introduce the 0-order non local operator:

I(v)(Y ) =

∫

RN+1

dZ J(Z) (v(Y − Z) − v(Y ))

where the function J satisfies (13).
Next, we consider the solution of the following equation

{

∂W δ,±
K

∂τ = ε I
(

W δ,±
K (τ, ·)

)

+ β +Hδ,±
K

(

P · Y +W δ,±
K , y, P + ∇W δ,±

K

)

on (0,+∞) × RN+1

W δ,±
K (0, Y ) = 0 for Y ∈ RN+1

(59)
and prove the following result:

Proposition 9. (A priori estimate for the problem with initial conditions and ε ≥ 0) Let

p ∈ RN , P = (p, 1) ∈ RN ×R. Let us consider the troncated Hamiltonians Hδ,+
K and Hδ,−

K defined by (35)

and (45) for K >
√

1 + |p|2 large enough and for δK > 0 large enough, and H satisfying (A1)-(A2)-(A3).

For any given β ∈ R, let us consider the solution W δ,±
K to (59).

L∞ a priori bounds on the solution. Let us define Rδ,±
K = inf

{

R ≥ 0, Ωδ,±
K ⊂ BR(0)

}

and Cδ,±
K :=

d1 +
√
N + 1 ·

(

|P | +Rδ,±
K

)

e. Then we have for all (τ, Y, Y ′) ∈ R × RN+1 × RN+1:

|W δ,±
K (τ, Y ′) −W δ,±

K (τ, Y )| ≤ Cδ,±
K . (60)

Moreover there exist real numbers λδ,±
K (β, ε) such that the maps β 7−→ λδ,±

K (β, ε) are continuous, nonde-

creasing and with λδ,±
K = λδ,±

K (β, ε) and for any τ ′, τ ≥ 0, Y ′, Y ∈ RN+1 :

|W δ,±
K (τ ′, Y ′) −W δ,±

K (τ, Y ) − λδ,±
K · (τ ′ − τ) | ≤ 7Cδ,±

K . (61)
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A priori bounds on the derivatives of the solution. Moreover, W δ,+
K is Lipschitz continuous w.r.t.

(τ, Y ) and we have the following a priori bounds:

(

P + ∇W δ,+
K (τ, Y )

)

∈ Ωδ,+
K , and 0 ≤ 1 +

∂W δ,+
K

∂yN+1
(τ, Y ) ≤ 2hδ(K) − infH

δ
, (62)

−ε Cδ,+
K + β + inf H ≤ ∂W δ,+

K

∂τ
(τ, Y ) ≤ ε Cδ,+

K + β +M δ,+
K , (63)

−ε Cδ,+
K + β + inf H ≤ λδ,+

K (β, ε) ≤ ε Cδ,+
K + β +M δ,+

K (64)

and

(

P + ∇W δ,−
K (τ, Y )

)

∈ Ωδ,−
K , and 0 ≤ 1 +

∂W δ,−
K

∂yN+1
(τ, Y ) ≤ 2ȟδ(K) + 2h(K)

δ
, (65)

−ε Cδ,−
K + β +mδ,−

K ≤ ∂W δ,−
K

∂τ
(τ, Y ) ≤ ε Cδ,−

K + β + 2h(K), (66)

−ε Cδ,−
K + β +mδ,−

K ≤ λδ,−
K (β, ε) ≤ ε Cδ,−

K + β + 2h(K) (67)

where mδ,−
K and M δ,+

K are respectively defined by (43) and (39).

Further properties of the solution. The correctors satisfy

{

W δ,±
K (τ, y, yN+1 + 1) = W δ,±

K (τ, y, yN+1),

|W δ,±
K (τ, y + k, yN+1) −W δ,±

K (τ, y, yN+1)| ≤ 1, for every k ∈ ZN .
(68)

If p = P/Q with P ∈ ZN and Q ∈ N\ {0}, then

W δ,±
K (τ, y +Qk, yN+1) = W δ,±

K (τ, y, yN+1) for every k ∈ ZN . (69)

Proof of Proposition 9. We perform the proof in several steps.
Step 1: Existence, uniqueness and a priori bounds on the gradient. By Proposition 4, we know
that there exists a unique and continuous solution W δ,±

K to (59).

We now remark that U δ,±
K = P · Y +W δ,±

K satisfies

∂U δ,±
K

∂τ
= ε I

(

U δ,±
K (τ, ·)

)

+ β +Hδ,±
K (U, y, ∇U) for (τ, Y ) ∈ (0,+∞) × RN+1 (70)

We know that
∇U δ,±

K (0, Y ) = P ∈ Ωδ,±
K for every Y ∈ RN+1

with Ωδ,±
K starshaped with respect to the origin, and

Hδ,+
K (·, ·, Q) = constant if Q ∈ RN+1\Ωδ,+

K . (71)

By Corollary 1 and the fact that the function r is nondecreasing, we deduce that

∇U δ,+
K (τ, Y ) ∈ Ωδ,+

K for every (τ, Y ) ∈ [0,+∞) × RN+1

Similarly we conclude that

∇U δ,−
K (τ, Y ) ∈ Ωδ,−

K for every (τ, Y ) ∈ [0,+∞) × RN+1

where (71) is replaced by

Hδ,−
K (·, ·, Q) =

{

f δ
K(qN+1) if Q = (q, qN+1) ∈ RN+1\Ωδ,−

K

constant if |qN+1| ≥ 2ȟδ(K)+2h(K)
δ
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and we use the fact that

Ωδ,−
K = BrK

(0) ×
{

qN+1 ∈ R, |qN+1| ≤
2ȟδ(K) + 2h(K)

δ

}

Finally, we remark that

0 ≤ ∂U δ,±
K

∂yN+1
(0, Y ) = 1 for every Y ∈ RN+1

and then by Proposition 6, we deduce that

0 ≤ ∂U δ,±
K

∂yN+1
(τ, Y ) for every (τ, Y ) ∈ [0,+∞) × RN+1

All these results on U δ,±
K prove (62) and (65) for W δ,±

K . It is now easy to get (63) and (66).
Step 2: Properties of the solution by integer translations. We first remark that

U δ,±
K (0, y, yN+1 + 1) − 1 = U δ,±

K (0, y, yN+1).

From the invariance of (70) by translation in yN+1, and by integer addition to the solution, we deduce
that for all τ ≥ 0 :

U δ,±
K (τ, y, yN+1 + 1) − 1 = U δ,±

K (τ, y, yN+1).

This proves the first line of (68).
Moreover, for a given k ∈ ZN , we set p · k = l + α, with l ∈ Z and α ∈ [0, 1). Then we have

l ≤ U δ,±
K (0, y + k, yN+1) − U δ,±

K (0, y, yN+1) ≤ l + 1

From the comparison principle, and the various invariances by integer translations of the equation, we
deduce that for all τ ≥ 0 :

l ≤ U δ,±
K (τ, y + k, yN+1) − U δ,±

K (τ, y, yN+1) ≤ l + 1.

This proves the second line of (68).
Finally if p = P/Q with P ∈ ZN and Q ∈ N\ {0}, then

U δ,±
K (0, y +Qk, yN+1) − P · k = U δ,±

K (0, y, yN+1)

and then
U δ,±

K (τ, y +Qk, yN+1) − P · k = U δ,±
K (ψ, y, yN+1)

This proves (69).
Step 3: Control of the oscillations in space and consequences. Let us consider Y, Y ′ ∈ RN+1,
and let us write Y ′ − Y = L+ γ with L ∈ ZN+1, γ ∈ [0, 1)N+1. Then

|W δ,±
K (τ, Y ′) −W δ,±

K (τ, Y )|
≤ |W δ,±

K (τ, Y + L+ γ) −W δ,±
K (τ, Y + γ)| + |W δ,±

K (τ, Y + γ) −W δ,±
K (τ, Y )|

≤ 1 +
√
N + 1 ·

(

|P | +Rδ,±
K

)

≤ d1 +
√
N + 1 ·

(

|P | +Rδ,±
K

)

e =: Cδ,±
K

where in the last line, we used (68) for estimate by integer translations, and the estimates on the gradient

(62)-(65) to bound the variation of W δ,±
K on the cube [0, 1)N+1. As a consequence of estimates (60),

estimate (63)-(66) are true in the viscosity sense (and then in the sense of Definition 1).

21



Step 4: Control of the oscillations in time. We first set w = W δ,±
K to simplify the notation. In

order to control the oscillations in time of w, we define two continuous functions by:

λ+(T ) = sup
τ≥T

w(τ + T, 0)− w(τ − T, 0)

2T
and λ−(T ) = inf

τ≥T

w(τ + T, 0) − w(τ − T, 0)

2T

which satisfy λ−(T ) ≤ λ+(T ). From (63),(66), we deduce that

−ε Cδ,+
K + β + inf H ≤ λ−(T ) ≤ λ+(T ) ≤ ε Cδ,+

K + β +M δ,+
K (72)

if w = W δ,+
K , and

−ε Cδ,−
K + β +mδ,−

K ≤ λ−(T ) ≤ λ+(T ) ≤ ε Cδ,−
K + β + 2h(K) (73)

if w = W δ,−
K . By definition of λ±(T ), for any δ > 0, there exists τ± ≥ T such that:

∣

∣

∣

∣

λ±(T ) − w(τ± + T, 0)− w(τ± − T, 0)

2T

∣

∣

∣

∣

≤ δ.

From (60), we see that w satisfies for τ ≥ T :

|w(τ − T, Y ) − w(τ − T, 0)| ≤ C0 := Cδ,±
K ≥ 1. (74)

Let us define k ∈ Z such that 2C0 < w(τ− − T, 0) + k −w(τ+ − T, 0) ≤ 3C0. Then from (74), we deduce
that for every Y ∈ RN

0 < w(τ− − T, Y ) + k − w(τ+ − T, Y ) ≤ 5C0

From the comparison principle, we deduce that for every Y ∈ RN

0 ≤ w(τ− + T, Y ) + k − w(τ+ + T, Y ) ≤ 5C0.

Therefore we deduce

−5C0 ≤ (w(τ− + T, Y ) − w(τ− − T, Y )) − (w(τ+ + T, Y ) − w(τ+ − T, Y )) ≤ 5C0

and then

|λ+(T ) − λ−(T )| ≤ 2δ +
5C0

2T

and because δ > 0 is arbitrarily small we deduce that

|λ+(T ) − λ−(T )| ≤ 5C0

2T
. (75)

Now let us consider T1 > 0 and T2 > 0 such that T2/T1 = P/Q with P,Q ∈ N\ {0}. Remark that the
following inequality holds true:

λ+(PT1) = sup
τ≥PT1

P
∑

i=1

g(τ + 2iT1 − PT1, 0) − g(τ + 2(i− 1)T1 − PT1, 0)

2PT1

≤
P
∑

i=1

λ+(T1)

P
= λ+(T1).

Similarly, we get λ−(QT2) ≥ λ−(T2). Then we have

λ+(T1) ≥ λ+(PT1) = λ+(QT2) ≥ λ−(QT2) ≥ λ−(T2) ≥ λ+(T2) −
5C0

2T2
.
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By symmetry we deduce that

|λ+(T2) − λ+(T1)| ≤ max

(

5C0

2T2
,
5C0

2T1

)

(76)

and similarly

|λ−(T2) − λ−(T1)| ≤ max

(

5C0

2T2
,
5C0

2T1

)

. (77)

Since λ± are continuous, we can extend inequalities (76)-(77) to the case T2/T1 /∈ Q. Eventually, inequal-
ities (76),(77) and (75) imply the existence of the following limits

lim
T→+∞

λ+(T ) = lim
T→+∞

λ−(T ) = λ

and we deduce that

|λ±(T ) − λ| ≤ 5C0

2T
. (78)

Combining (78) and (74), we conclude that for any τ, σ ≥ 0 and Y, Z ∈ RN+1,

|w(τ, Y ) − w(σ, Z) − λ(τ − σ)| ≤ 7C0.

This proves (60) with w = W δ,±
K , C0 = Cδ,±

K , and λ := λδ,±
K . Moreover, by (72)-(73), we deduce (64)-(67).

This ends the proof of Proposition 9.

Proof of Proposition 8. We perform the proof in several steps.
Step 1: Construction of a global solution. We first consider the sequence of functions for n ∈ N

wn(τ, Y ) = W δ,±
K (τ + n, Y ) − kn with kn ∈ Z such that W δ,±

K (n, 0) − kn ∈ [0, 1)

where W δ,±
K is given by Proposition 9 for ε > 0. The first derivatives of wn with respect to space and time

are then bounded independently on n, and we can extract a subsequence which converges to a function
w∞ which is defined on the whole space and for all time, and satifies

∂w∞

∂τ
= ε I (w∞(τ, ·)) + β +Hδ,±

K (P · Y + w∞, y, P + ∇w∞) for (τ, Y ) ∈ R × RN+1.

Moreover w∞ is globally Lipschitz continuous in space and time, with a priori estimates given in Propo-
sition 9.
Step 2: Construction of a “periodic in time” solution. We consider the vector e0 = (λ, 0, ..., 0, 1) ∈
R×RN×R and an arbitrary vector ν0 = (ν0

τ , 0, ..., 0, ν
0
N+1) ∈ R×RN×R such that e0·ν0 = λν0

τ +ν0
N+1 > 0,

and define
u∞(τ, Y ) = w∞(τ, Y ) + P · Y

which satisfies

∂u∞

∂τ
= ε I (u∞(τ, ·)) + β +Hδ,±

K (u∞, y, ∇u∞) for (τ, Y ) ∈ R × RN+1 (79)

and for σ ∈ R

uσ(τ, Y ) = u∞
(

(τ, Y ) − σν0
)

+ 1.

By construction we have u0 = u∞ + 1. We define

σ0 = sup
{

σ ≥ 0, uσ′ ≥ u∞ for 0 ≤ σ′ ≤ σ
}

.

By the uniform Lipschitz continuity of u∞ in space and time, we deduce that σ0 > 0. Moreover, w∞

satisfies (61), i.e.

|w∞(τ ′, Y ′) − w∞(τ, Y ) − λ · (τ ′ − τ) | ≤ 7Cδ,±
K for every τ ′, τ ∈ R, Y ′, Y ∈ RN+1
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and then

|u∞(τ ′, Y ′)− u∞(τ, Y )− λ · (τ ′ − τ) − P · (Y ′ − Y )| ≤ 7Cδ,±
K for every τ ′, τ ∈ R, Y ′, Y ∈ RN+1

Then using the fact that P = (p, 1) ∈ RN × R, we get:

|u∞((τ, Y ) − σν0) − u∞(τ, Y ) + e0 · σν0| ≤ 7Cδ,±
K for every τ ∈ R, Y ∈ RN+1 (80)

and
u∞(· − σν0) ≤ u∞ − σ (e0 · ν0) + 7Cδ,±

K . (81)

Therefore, for σ large enough, we deduce that uσ < u∞. We conclude that σ0 < +∞.
From the definition of σ0, we deduce that there exists a sequence P n = (τn, Y n) ∈ R × RN+1 such

that






u∞(Pn) − uσ0

(Pn) → 0,

u∞ ≤ uσ0

,
u∞ satisfies (79).

We set Y n = Ln + Zn with Ln ∈ ZN+1 and Zn ∈ [0, 1)N+1, and define

u∞,n(τ, Y ) = u∞(τ + τn, Y + Ln) − kn with kn ∈ Z such that u∞(τn, Ln) − kn ∈ [0, 1).

Up to extraction of a subsequence, we can assume that u∞,n converges to a function u∞,∞ and Zn

converges to Z∞ ∈ [0, 1]N+1 such that:







u∞,∞(0, Z∞) = u∞,∞
(

(0, Z∞) − σ0ν0
)

+ 1,
u∞,∞ ≤ u∞,∞

(

· − σ0ν0
)

+ 1,
the functions u∞,∞ and u∞,∞

(

· − σ0ν0
)

+ 1 are solutions of (79).

where we used at the last line the invariance of (79) by translations in τ and yN+1, and its invariance
by addition of integers to the solution. From the strong maximum principle (only applied for ε > 0), we
deduce that

u∞,∞ = u∞,∞
(

· − σ0ν0
)

+ 1

From (80), we deduce that for k ∈ Z

|u∞,∞((τ, Y )−k σ0ν0)−u∞,∞(τ, Y )+k σ0(e0 ·ν0)| ≤ 7Cδ,±
K for every τ ∈ R, Y ∈ RN+1 (82)

and then we deduce (taking k −→ +∞) that σ0 (e0 · ν0) = 1. As a consequence of our proof, we get that

v∞,∞(τ, Y ) = u∞,∞(τ, Y ) − λτ − P · Y

is (σ0e0)-periodic.
In particular, when λ 6= 0, we can choose ν0 = (sign(λ), 0, ..., 0, 0) ∈ R × RN+1. This shows that

v∞,∞(τ, Y ) is 1
|λ| -periodic in τ and 1-periodic in yN+1 (which was already known for W δ,±

K in Proposition

9).
In the general case, we simply consider ν0 = (ν0

τ , 0, ..., 0, ν
0
N+1) ∈ R×RN ×R with ν0

τ 6= 0 and e0 · ν0 > 0
which implies that v∞,∞(τ, Y ) is (σ0ν0)-periodic and 1-periodic in yN+1.

Step 3: Improving the periodicity by the sliding method. First, for a reference on the sliding
method, see in particular Berestycki, Nirenberg [10]. For any vector ν = (ντ , 0, ..., 0, νN+1) ∈ R×RN ×R

such that e0 · ν > 0, we define
ũσ(τ, Y ) = u∞,∞((τ, Y ) − σν).

We set
σ∗ = inf

{

σ ≥ 0, ũσ′ ≤ ũ for σ′ ≥ σ
}

.
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The estimate (81) is still true for u∞,∞ with ν0 replaced by ν, and then we deduce that σ∗ < +∞.
As in step 2, we get the existence of a sequence P n such that ũσ∗(Pn)−u∞,∞(Pn) −→ 0, and can define
a new sequence of functions (which are translations of u∞,∞) such that the limit u∞,∞,∞ has the same
properties as u∞,∞ and satisfies moreover

u∞,∞,∞(· − σ∗ν) = u∞,∞,∞ and u∞,∞,∞(· − σν) ≤ u∞,∞,∞ for every σ ≥ σ∗.

From estimate (82) applied to u∞,∞,∞, ν0 replaced by ν, and σ0 replaced by σ∗, for integers k −→ +∞,
we deduce that σ∗ = 0, and then u∞,∞,∞ is nondecreasing in the direction ν.
We can now do this construction for a sequence of vectors νn = (νn

τ , 0, ..., 0, ν
n
N+1) ∈ R × RN × R, with

e0 · νn > 0 and νn −→ ±(e0)⊥ with (e0)⊥ = (−1, 0, ..., 0, λ) ∈ R × RN × R. Up to extract at each step
a subsequence of the translated functions, we get at the limit of this process, a function that we simply
denote by u, such that u is nondecreasing in each direction ±(e0)⊥. This means that u is independent

on the direction (e0)⊥, i.e. only depends on the coordinates (τ, Y ) − ((τ,Y )·(e0)⊥) (e0)⊥

|(e0)⊥|2 , i.e.

u(τ, y, yN+1) = u(0, y, yN+1 + λτ). (83)

In particular the function u(τ, Y )−P · Y satisfies on R×RN+1 all the properties given in Proposition 9.
Finally we define the corrector as

V δ,±
K (τ, Y ) := u(τ, Y ) − λτ − P · Y.

Step 4: The limit ε −→ 0. We now take the limit ε −→ 0 and up to extraction of a subseqquence,
we get a limit corrector still denoted by V δ,±

K (τ, Y ) and a limit λδ,±
K =: λδ,±

K (β), such that w±(τ, Y ) =

V δ,±
K (τ, Y ) + λδ,±

K τ satisfies on R × RN+1 all the properties given in Proposition 9 for ε = 0. Moreover,
from (83), we deduce the following invariance of the corrector

V δ,±
K (τ, y, yN+1) = V δ,±

K (0, y, yN+1 + λδ,±
K τ) (84)

and we have

λδ,±
K +

∂V δ,±
K

∂τ
= β +Hδ,±

K

(

λδ,±
K τ + P · Y + V δ,±

K , y, P + ∇V δ,±
K

)

for (τ, Y ) ∈ R × RN+1. (85)

Step 5: New estimates on λδ,±
K and consequences. Let us consider the supremum of V δ,±

K . We
have two cases: either the supremum is reached at a point P 0 or “it is reached at infinity”.
Case 1: sup

R×RN+1 V
δ,±
K = V δ,±

K (P 0). Let us set P 0 = (τ0, Y 0) with Y 0 = (y0, y0
N+1). Looking at this

point, we deduce that

λδ,±
K ≤ β +Hδ,±

K (λδ,±
K τ0 + P · Y 0 + V δ,±

K (P 0), y0, P ).

Using the fact that
Hδ,±

K (·, ·, Q) = H±δ(·, ·, Q) for |Q| ≤ K

and K > |P |, we deduce that

λδ,±
K ≤ β ± δ + h(|p|) (86)

where h is defined by (33).

Case 2: There exists (P n)n such that V δ,±
K (Pn) −→ sup

R×RN+1 V
δ,±
K with |Pn| −→ +∞. In this

case, up to consider the limit of translated functions, we come back to case 1 for this limit function which
is still a solution of the PDE (85). This proves (86) in case 2.

Similarly, looking at the infimum of V δ,±
K , we get:

β ± δ + inf
(v,y)∈R×RN

H(v, y, p) ≤ λδ,±
K . (87)
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Then (86) and (87) implies (51). By substraction of (51) to (63) and (66), we get respectively (54) and
(55).
Step 6: New L∞ bound on the corrector. Let us consider

v(y) = inf
yN+1∈R

V δ,±
K (τ, y, yN+1) = V δ,±

K (0, y, yN+1(y)) for some yN+1(y) ∈ [0, 1)

The function v only depends on y (and not on τ) because of (84). By contruction v is a supersolution of
(85). Therefore we have

λδ,±
K ≥ β +Hδ,±

K

(

P · (y, yN+1(y)) + v(y), y, P + (∇yv, 0)
)

for all y ∈ RN

and then by (86), we get

h(|p|) ± δ ≥ Hδ,±
K

(

P · (y, yN+1(y)) + v(y), y, P + (∇yv, 0)
)

for all y ∈ RN

Estimate (47) implies
h(|p|) ≥ H

(

P · (y, yN+1(y)) + v(y), y, p+ ∇yv
)

and then the subdifferential of p · y + v(y) satisfies

|p+ ∇yv| ≤ r(h(|p|)) (88)

We deduce that (88) is true almost everywhere. From the fact that V δ,±
K is 1-periodic in yN+1 and satisfies

0 ≤ 1 +
∂V δ,±

K

∂yN+1
, we have for every y′N+1, yN+1 ∈ R and every τ ∈ R, y ∈ RN

|V δ,±
K (τ, y, y′N+1) − V δ,±

K (τ, y, yN+1)| ≤ 1 (89)

Now, for τ ′, τ ∈ R and Y ′ = (y′, y′N+1), Y = (y, yN+1) ∈ RN+1, we set k ∈ ZN such that y′ − (y + k) ∈
[0, 1)N , and we get with v = V δ,±

K , λ = λδ,±
K :

|v(τ ′, Y ′) − v(τ, Y )| = |v(0, y′, y′N+1 + λτ ′) − v(0, y, yN+1 + λτ)|
≤ |v(0, y′, y′N+1 + λτ ′) − v(0, y′, yN+1(y

′))| + |v(0, y′, yN+1(y
′)) − v(0, y + k, yN+1(y

′))|
+|v(0, y + k, yN+1(y

′)) − v(0, y, yN+1(y
′))| + |v(0, y, yN+1(y

′)) − v(0, y, yN+1 + λτ)|
≤ 1 + |v(y′) − v(y + k)| + 1 + 1 ≤ 3 +

√
N (|p| + r(h(|p|)))

where we used two times (89), ones (57) and ones (88). Finally, up to substract an integer to v(0, 0), we
can assume that |v(0, 0)| ≤ 1 and then we get with τ ′ = 0, Y ′ = 0

|v(τ, Y )| ≤ 4 +
√
N (|p| + r(h(|p|)))

which proves (53).

Step 7: Monotonicity and continuity of λδ,±
K (β). The proof of the monotonicity and the continuity

of λδ,±
K (β) is similar to the proof of Theorem 1.
This ends the proof of Proposition 8.

A Appendix: ergodicity (again) and construction of super and
subcorrectors for the original Hamiltonian

Theorem 3. (Existence of sub and super-correctors)

Under Assumptions (A1)-(A2)-(A3), consider p ∈ RN and let λ = H
0
(p). Then there exists a bounded

supersolution v+ (resp. subsolution v−) of (4).
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Before to make the proof of Theorem 3, let us show a simple corrollary:

A second proof of Theorem 1. Let us consider the solution w of

{

wτ = H(p · y + w, y, p+ ∇w) for (τ, y) ∈ (0,+∞) × RN ,
w(0, y) = 0 for y ∈ RN .

(90)

With v± given by Theorem 3 and an integer k ≥ C ≥ |v±|, the comparison principle implies

v− + λτ − k ≤ w ≤ v+ + λτ + k

which proves that w(τ,y)
τ −→ λ as τ −→ +∞ uniformly for y ∈ RN . This ends the proof of Theorem

1.

Proof of Theorem 3.
Case 1 : λ 6= 0
Let us apply Proposition 8 with β = 0. We have

|λδ,±
K | ≤ C, |V δ,±

K | ≤ C

for some constant C independent of δ small enough and K large enough. Let us call λ = λ± the
limit of λδ,±

K (see the proof of Theorem 1 to check the equality λ = λ+ = λ−) for a subsequence of

(δ,K) −→ (0,+∞). If λ 6= 0, we know that, in this limit, λδ,±
K 6= 0, and we can define

vδ,+
K,+(τ, y) = inf

(

yN+1∈R, τ=σ+
yN+1

λ
δ,+
K

)

V δ,+
K (σ, y, yN+1), vδ,−

K,−(τ, y) = sup
(

yN+1∈R, τ=σ+
yN+1

λ
δ,−
K

)

V δ,−
K (σ, y, yN+1)

which are respectively super and subsolutions, i.e. satisfy

λδ,+
K +

∂vδ,+
K,+

∂τ
≥ Hδ,+

K

(

λδ,+
K τ + p · y + vδ,+

K,+, y, p+ ∇vδ,+
K,+, 1 + λδ,+

K

∂vδ,+
K,+

∂τ

)

for (τ, y) ∈ R × RN .

λδ,−
K +

∂vδ,−
K,−

∂τ
≤ Hδ,−

K

(

λδ,−
K τ + p · y + vδ,−

K,−, y, p+ ∇vδ,−
K,−, 1 + λδ,−

K

∂vδ,−
K,−

∂τ

)

for (τ, y) ∈ R × RN .

In the limit (δ,K) −→ (0,+∞), we set

v+ = lim inf ∗ v
δ,+
K,+, v− = lim sup ∗ vδ,−

K,−

which still satisfy
|v±| ≤ C

Therefore, we get a bounded supersolution v+ and a bounded subsolution v−.
Case 2 : λ = 0
We proceed as in the second proof of Theorem 1, choosing some β > 0 such that λ(β) = limλδ,±

K (β) > 0.
For λ(β) > 0 arbitrarily small, this shows (by the comparison principle and the limit λ(β) → 0) that the
solution w to the initial value problem is bounded from above. Similarly, for λ(β) < 0 arbitrarily close
to zero, we get that the solution w is bounded from below. Finally w(τ, y) is bounded for all τ > 0 and
y ∈ RN . We then define wn(τ, y) = w(n+ τ, y) and as n→ +∞, we define

v+ = lim inf ∗ w
n, v− = lim sup ∗ wn

which are respectively super and subsolutions on the wole space and time. This ends the proof of Theorem
3.
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B Appendix: proof of Proposition 1

The following proof is classical but we provide it for the reader’s convenience.
When ε = 0, the result is classical and when ε > 0, we do not restrict ourselves by assuming that

ε = 1.
We proceed in two steps. First, we prove that there exists a constant K > 0 such that:

∀t ∈ (0, T ), x, y ∈ RN , u(t, x) − v(t, y) ≤ K(1 + |x− y|). (91)

To obtain such a result, it suffices to obtain the following inequality:

∀t ∈ (0, T ), x, y ∈ RN , u(t, x) − v(t, y) ≤ Kζ(x− y) (92)

where ζ(z) =
√

1 + |z|2. Since u and v are at most of linear growth, there exists L > 0 such that:

∀t, s ∈ (0, T ), x, y ∈ RN , u(t, x) − v(s, y) ≤ L(1 + |x| + |y|).

Let us consider the family of functions βR ∈ C2(RN ) parametrized by R ≥ 1 and introduced in [17]; we
assume that they satisfy for some C > 0, which does not depend on R:















βR ≥ 0,

lim inf |x|→+∞
βR(x)
|x| ≥ 3L,

|∇βR(x)| ≤ C,
limR→+∞ βR(x) = 0.

For any K > 0, consider the following penalized supremum:

MK = sup
t∈(0,T ],x,y∈RN

{u(t, x) − v(t, y) −Keµtζ(x− y) − βR(x)}

with µ > 0 to be chosen later. It suffices to prove that MK ≤ 0 for some K large enough, not depending
on R; indeed, by letting R → +∞ pointwise, we can conclude. In order to prove the existence of such
a K, we argue by contradiction (as usual) and we suppose that MK > 0 for any K > 0. Hence, we
dedouble the time variable: for any ν > 0, consider:

MK,ν = sup
t,s∈(0,T ],x,y∈RN

{u(t, x) − v(s, y) − (s− t)2

2ν
−Keµtζ(x − y) − βR(x)}

and we see that MK,ν ≥MK > 0. This supremum is attained at (t, s, x, y) and (t, s, x, y) → (t̃, t̃, x̃, ỹ) as
ν → 0 with (t̃, x̃, ỹ) that realizes MK and with t̃ > 0 if K large enough (use the fact that u0 is uniformly
continuous). Hence we are sure that t, s > 0. Let us now write the two viscosity inequalities:

µKeµtζ(x − y) +
t− s

ν
≤ F (u(t, x), x, p+ ∇βR(x)) +

∫

dzJ(z)(u(t, x− z) − u(t, x)),

t− s

ν
≥ F (v(s, y), y, p) +

∫

dzJ(z)(v(s, y − z) − v(s, y))

where p = Keµt∇ζ(x − y). Notice that we can still write the viscosity inequalities if t̄ = T or s̄ = T .
Substracting both inequalities yields:

Keµtζ(x− y) ≤ F (u(t, x), x, p+ ∇βR(x)) − F (v(s, y), y, p)

+

∫

dzJ(z)(u(t, x− z) − v(s, y − z) − (u(t, x) − v(s, y))).

We deduce from MK,ν ≥ 0 that u(t, x) ≥ v(s, y) and by construction,

u(t, x− z) − v(s, y − z) − (u(t, x) − v(s, y)) ≤ βR(x− z) − βR(x).
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Using these estimates and (A1) permits to obtain:

K√
2
(1 + |x− y|) ≤ Kζ(x− y) ≤ Keµtζ(x − y) ≤ γ(1 + |p|)|x− y| + γ|∇βR(x)| + I[βR](x)

≤ 2γ|x− y| + Cγ + CI1 ≤ C̃(1 + |x− y|).

Choosing K large enough yields the desired contradiction.
The second step consists in adapting the classical proof of the comparison principle, i.e. by considering

the following penalized supremum:

Mα,ε,ν = sup
t,s∈(0,T ],x,y∈RN

{

u(t, x) − v(s, y) − (t− s)2

2ν
− |x− y|2

2ε
− α

2
|x|2 − ηt

}

.

Let us exhibit a contradiction if 0 < M = sup
RN{u− v} ∈ (−∞; +∞]. In such a case, for α, ε, ν small

enough, we have Mα,ε,ν ≥ M > 0. The supremum is attained at (t, s, x, y) and the initial condition
ensures that t > 0, s > 0. From Mα,ε,ν ≥ 0 and (91), we deduce that:

α

2
|x|2 ≤ K(1 + |x− y|) − |x− y|2

2ε
≤ K + sup

r≥0

{

Kr − 1

2ε
r2
}

= K + Cε.

We conclude that for a fixed ε > 0, αx → 0 as α → 0. From writing both viscosity inequalities and
substracting them, it comes:

η ≤ γ|αx| + γ

(

|x− y| + |x− y|2
ε

)

+
α

2
I2.

Letting successively ν, α and ε go to 0, usual penalization results permit to obtain the contradiction:
η ≤ 0 and we are done.
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Boston, Boston, MA, 1989.

[36] Luc Tartar. Homogenization and hyperbolicity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25(3-4):785–805
(1998), 1997. Dedicated to Ennio De Giorgi.

[37] Tamir Tassa. Homogenization of two-dimensional linear flows with integral invariance. SIAM J. Appl. Math.,
57(5):1390–1405, 1997.

31


