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Abstract

The computation of free energy differences through an exponential weighting of out of
equilibrium paths (known as the Jarzynski equality [12, 13]) is often used for transitions
between states described by an external parameter A in the Hamiltonian. We present
here an extension to transitions between states defined by different values of some reac-
tion coordinate, using a projected Brownian dynamics. In contrast with other approaches
([18]), we use a projection rather than a constraining potential to let the constraints asso-
ciated with the reaction coordinate evolve. We show how to use the Lagrange multipliers
associated with these constraints to compute the work associated with a given trajec-
tory. Appropriate discretizations are proposed. Some numerical results demonstrate the
applicability of the method for the computation of free energy difference profiles.

The free energy of a system is a quantity of paramount importance in statistical physics.
It is of the form
F=-3"'mz, (1)

where = 1/kgT (T denotes the temperature and kg the Boltzmann constant) and Z is the
partition function

7= /Z exp(—AV) du )

of the Boltzmann (or Gibbs) measure exp(—(V)du. In this expression, the function V = V(q)
is the potential energy of the system (denoting by ¢ the position vector) and pu is a reference
positive measure with support 3. The space X is the configuration space of the system. We
will consider here that ¥ is a submanifold of R3Y, but all the results extend to the case
when ¥ is a submanifold of T3V (the 3/N-dimensional torus, which arises when using periodic
boundary conditions). The statistics of the system is completely defined by (V, p).

In most cases, (V, u) is indexed using a d-dimensional parameter z which characterizes the
system at some coarser level. The parameter z can be independent of the current configuration
of the system. In this case, only the expression of the potential V' depends on the parameter,
so that the associated switching has sometimes been called ’alchemical transition’. Some
examples of such parameters are the intensity of an external magnetic field for a spin system,
or the temperature for a simulated annealing process. However, it is often the case that
the parameter z indexes submanifolds of the configuration space, through level sets >, =
{&(q) = z} of some function . The function ¢ is called a ‘reaction coordinate’. In this
case, 1 (especially the support of 1) depends on z and is defined using the natural projection
from R3N or T3V to %, (this will be made precise below). Standard examples of reaction
coordinates are bond lengths or dihedral angles in a molecule.

The absolute free energy (1) can be computed only for certain systems, such as ideal
gases, or solids at low temperature (resorting to the phonon spectrum) [19]. However, in
many applications, the quantity of interest is the free energy difference between an initial
and a final state (characterized by two different values of the parameter z). These differences
characterize the relative stabilities of several species, as well as their transition kinetics. The
free energy differences are much more amenable to compute than the absolute free energy.
Classical techniques to this end fall within three main classes. The first one, dating back
to Kirkwood [14], is thermodynamic integration, which mimics the quasi-static evolution of a
system as a succession of equilibrium samplings, which amounts to an infinitely slow switching
between the initial and final states. The second one, the free energy perturbation method, was
introduced by Zwanzig [30]. It recasts free energy differences as a phase-space integral, so that



usual sampling techniques can be employed. Notice also that there exist many refinements for
those methods, such as umbrella sampling [27]. The last and most recent class of methods uses
dynamics arising from a switching at a finite rate. This can be done using nonequilibrium
dynamics (the so-called fast growth methods) with a suitable exponential reweighting, as
introduced by Jarzynski in [12]. Notice that the thermodynamic integration and free energy
perturbation methods can be seen respectively as the limits of infinitely slow and fast switching
of nonequilibrium dynamics. These methods require the sampling of a measure with support
the submanifold ¥, which can be done by using Hamiltonian dynamics (see [2]) or Brownian
dynamics (see [7, 4]). Instead of being imposed a priori, this switching may also arise as the
result of an equilibrium sampling, using the Adaptive Biasing Force technique for example [5,
10]. In this case, the dynamics is progressively forced to leave regions where the sampling of
the reaction coordinate has been completed.

It is still a matter of debate which method is the most efficient. While some results show
that fast growth methods can be competitive in some situations [9], other studies disagree [16].
However, a fair comparison is difficult since the dynamics used may differ (in [16], Hamiltonian
dynamics are used during the switching process), and more efficient fast growth methods
techniques (using e.g. path sampling [25, 26, 29]) are still under investigation.

Most methods to compute free energy differences are well suited to the alchemical transition
setting, but do not straightforwardly extend to the reaction coordinate setting. This latter
case is the focus throughout this article. Some studies have dealt with the Hamiltonian case
(see |20]). In the stochastic case, thermodynamic integration in the reaction coordinate case
using projected stochastic dynamics has recently been put on a firm grounding [4, 7]. On the
other hand, stochastic nonequilibrium dynamics a la Jarzynski in the reaction coordinate case
was, to our knowledge, not studied mathematically. It is the aim of this paper to perform such
a study and to present a methodology to compute free energy differences in this framework.

Indeed, nonequilibrium computations of free energy differences in the reaction coordinate
setting using stochastic dynamics have until now used soft constraints to switch between the
initial state centered on the submanifold {£(q) = 20} and the final state centered on {£(q) =
z1}. Steered molecular dynamics techniques use for example a penalty term K (£(q)—2)? in the
energy of the system [18] (with K large) to ’softly’ constraint the system to remain close from
the submanifold {£(q) — z = 0}, and varying the value z from 0 to 1 in a finite time T. From
a computational viewpoint however, aside from a systematic error vanishing theoretically in
the limit K — +0o0, it is expected that large values of K require small integration time steps.
Moreover, it is observed in practice that the statistical fluctuations increase with larger K
(see [18]). Instead, we propose to replace the stiff constraining potential K (£(q) — 2)? by a
projection onto the submanifold {£(¢) — z = 0}. This situation is reminiscent of the case of
molecular constraints, that can be enforced using a stiff penalty term, or more elegantly and
often more efficiently, using some projection of the dynamics involving Lagrange multipliers.
This is the spirit of the well known SHAKE algorithm [22].

We propose a nonequilibrium stochastic dynamics and an equality that allow to compute
free energy differences between states defined by different values of a reaction coordinate. The
dynamics relies on a projection onto the current submanifold at each time step, and we use
the Lagrange multipliers associated with this projection to estimate the free energy difference.
More precisely, we use the difference between these Lagrange multipliers and the external
forcing term required for the finite time switching (see for example the discretization (31)).
The main results of the paper are the Feynman-Kac equality of Theorem 2.2, as well as the
associated discretizations (33) and (34).



The method we propose forces the system to pass free energy barriers, and thus enables
free energy difference computations for metastable systems. Of course the reliability of the
algorithm crucially depends on the choice of the reaction coordinate, which represents the
essential degrees of freedom. The reaction coordinate should be rich enough in order to
adequately describe the configuration paths of the system from the initial state to the final
state. The determination of the essential degrees of freedom of a system is a very important
problem, which is not the focus of this work. Thus, in the following, we suppose that a “good”
reaction coordinate is given, and we are interested in the computation of free energy differences
associated with this reaction coordinate.

Let us also notice that some recent refinements of nonequilibrium dynamics to compute free
energy differences, especially path sampling techniques [29] and Interacting Particle Systems
approaches [21] (which equilibrate the nonequilibrium dynamics through some birth/death
process based on the current work), can be extended to the reaction coordinate setting using
the techniques we present here. Moreover, we restrict ourselves to the so-called overdamped
Langevin dynamics, but it is possible to extend these results to the usual Langevin dynamics
(this is a work in progress).

The paper is organized as follows. In section 1, the thermodynamic integration setting is
outlined in the reaction coordinate case. Section 2 then extends the method to nonequilibrium
dynamics. Adapted numerical schemes are proposed in section 3, and some numerical results
assessing the correctness of the method are presented in section 4. For the clarity, we present
the method in the case of a one-dimensional reaction coordinate and postpone to Appendix A
the proofs and the expressions for the multi-dimensional case.

1 Equilibrium computation of free energy differences

The aim of this section is to introduce the definitions of the free energy and the mean force,
and to recall how thermodynamic integration is used to compute free energy differences. The
computation of the mean force is based on projected stochastic differential equations (SDE).
These SDEs will also be used for the discretization of Jarzynski equality in Section 2. This
section mainly reviews results of [4].

1.1 Free energy and mean force

In the following, we denote by M C R3V the configuration space of the system when no
parameter z is involved. The state of the system is indexed by a smooth reaction coordinate
& : M —[0,1] such that V&(q) # 0 for all ¢ € M. For a given value z € [0, 1], we denote by
>, the submanifold

So={qeM (@)=~} 3)

and we assume that (J 2€[0,1] >, C M. For each point q € 3., we also introduce the orthogonal
projection operator P(q) onto the tangent space to X, at point g defined by:

_VE®VE

=1d
P(q) =1 Vep

(9), (4)

where ® denotes the tensor product. The orthogonal projection operator on the normal space
to X, at point q is defined by P+ (q) = Id — P(q).



The free energy is then defined as
F(z)=—-B""In(Z.), (5)

with
ZZ:/ exp(—pV)doy,, (6)

where for any submanifold ¥ of R3Y, oy, denotes the Lebesgue measure induced on ¥ as a
submanifold of R3V. The associated Boltzmann probability measure is

dus, = Z L exp(—0V) dos. . (7)

Remark 1.1 (On the definition of the free energy). Two comments are in order about
formula (5). First, this formula is valid up to an additive constant, which is not important
when considering free energy differences. Second, the potential V' in (6) may be a potential
different from the actual potential seen by the particles. More precisely, if the particles evolve
in a potential V, the standard definition of the free energy in the physics and chemistry
literature is (5) with

Z, = /eXp(_ﬂv) 5£(q)fza

where 0¢(4)—. 18 a measure supported by 3, and defined by: for all test functions ¢,

/ 6(0)0eg). = /E 6V do,.

This amounts to considering (5)—(6) with V replaced by an effective potential V + 37! In |[V¢|
(see Remark A.1 for the case of a multi-dimensional constraint). Since the results we present
in this paper hold irrespective of the physical signification of the potential V', we may assume
without loss of mathematical generality that the free energy is indeed given by (5)—(6). Let
us emphasize that, in practice, the cumbersome computation of the gradient of the additional
term B~ !In|V¢| in the modified potential (which intervenes in the projected SDEs we use,
see (27)—(28) or (29)—(30)) can be avoided resorting to some finite difference, as explained
in [4].

Using the co-area formula (see (42) and Proposition A.2 for a proof in the multi-dimensional
case), it is possible to derive the following expression of the derivative of the free energy F
with respect to z (the so-called mean force) (see [17, 23]):

/ _ \Y _
Fl(2) = Z; 1/22 !VEEP (VV + 7 H) exp(—BV)dos,, (8)
where ve ve
=9 (%) me ©

is the mean curvature vector field of the surface >,. The free energy can thus be expressed as
an average with respect to uy_:

F'(z) = . f(@)dps. (q), (10)
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where f is the local mean force defined by:

_ V¢
- [vep

f (VV + B7'H). (11)

In the next section, we will explain how it is possible to compute this average with respect to

uy,, without explicitly computing f, by using projected SDEs. This avoids in particular the

computations of the mean curvature vector H which involves some second derivatives of €.
The principle of thermodynamic integration is to recast the free energy difference

AF(z) = F(z) — F(0) (12)

between two reaction coordinates O and z as an integral over the mean force:

AF(z) = /OZ F'(2) dz. (13)

Therefore, in practice, free-energy differences are computed as follows. First, the free
energy difference AF'(z) is estimated using quadrature formulae for the integral in (13), such
as for example a Gauss-Lobatto scheme:

K
AF(z) = > wiF'(z)
=0

where the points {29, 21, ..., 2k } are in [0, z] and {wg, w1, .. .,wk } are their associated weights.
Then, the derivatives F’(z;) are computed as canonical averages over the submanifolds X,
using projected SDEs (see next section).

To obtain a free-energy profile (and not only a free-energy difference for a fixed final state),
it is possible to approximate the function AF'(z) on the interval [0, 1] by a polynomial. This
can be done for example by interpolating the derivative F’ by splines, and integrating the
resulting function (consistently with the normalization AF(0) = 0).

1.2 Projected stochastic differential equations

In this section, we explain how to compute the mean force F’(z) defined by (8) using projected
SDEs, for a fixed parameter z. We consider the solution @; to the following SDE:

{QO € Em (14)

dQy = —=P(Q)VV(Qr) dt + /2571 P(Q) 0 dB,

where o denotes the Stratonovich product. It is possible (see [4]) to check that uy. is an
invariant probability measure associated with the SDE (14). Under suitable assumptions,
which we assume in the rest of the section, on the potential V' and the surface X,, the process
Q; is ergodic with respect to pyx,. Moreover, the SDE (14) can be rewritten in the following
way:

dQ; = —VV(Qy) dt + /26~ 1dB; + VE(Qy)dA,, (15)

where A; is a real valued process, which can be interpreted as the Lagrange multiplier asso-
ciated with the constraint {(Q;) = z (see the discretization in Section 3.1). This process can
be decomposed into two parts:

dAy = dAP + dAL, (16)



where A" is the martingale part (- implicitly denotes the It6 product)

AP = V2 25 (Qu) - B a7)

and Af is the bounded variation part

dAg = ‘vvég (Qt) : VV(Qt) dt + 6_1

V¢
IV

(Qt) - H(Q¢) dt = f(Qy) dt, (18)

f being the local mean force defined above by (11). Thus, since @ is ergodic with respect to
iy, the mean force can be obtained as a mean over the Lagrange multiplier A;:

Proposition 1.2. The mean force is given by:

F(2) = lim l/TdAt: lim l/TdAf (19)
T—oo T 0 T—oo T 0 t

We refer to [4] for a proof of this assertion, as well as for formulae involving higher di-
mensional reaction coordinates. This idea has been used for a long time in the framework of
Hamiltonian dynamics (see [17, 23]).

The interest of this formula is that the SDE (15) can be very naturally discretized as
explained in Section 3.1 below. Then, the average over a discretized trajectory of the process
A; converges to F'(z). This is particularly convenient for numerical purposes since it does
not ask for explicitly computing the local force f. For further details, we refer to [4] and
to Section 3.1. In next section, we use these ideas for the computation of the free energy
difference given through the Jarzynski equality.

2 Nonequilibrium stochastic methods in the reaction coordi-
nate case

As opposed to quasistatic methods where the free energy difference between an initial state
and a final state is expressed by (13), in nonequilibrium methods, the free energy difference
is expressed using a Feynman-Kac average over nonequilibrium paths [11, 12, 21]

AF(1) = F(1) — F(0) = —~'InE (e—ﬁw(T)) , (20)

where W(T') denotes the total work exerted along a nonequilibrium path (Q, 2(t)).e(0,7], with
2(0) =0 and 2(T) = 1.

We wish here to extend the Feynman-Kac formula derived in [11] for a parameter z which
appears only in the potential V, to the reaction coordinate case, where z indexes submanifolds
Y., (defined by Formula (3)) of the state space. To this end, we need to make precise the
evolution of the constraints.

We consider a C! path z : [0,7] — [0,1] of values of the reaction coordinate &, with
2(0) = 0, and z(T) = 1. Recall that the associated family of submanifolds of admissible
configurations is denoted by

Yo ={eeM, &) =2()},
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and that the associated Boltzmann probability measures are
dl‘EZ(t) = Z;é) exp(—BV)dagz(t).

We construct a diffusion (Q)icjo,r) s0 that Q; € ¥, for all ¢ € [0,7] and satisfying the
following informal properties:

L4 QO ~ ,U'EZ(O)a

e For all t € [0,T], Qsrq is the orthogonal projection on 2. (t+ar) of the position obtained
by the unconstrained displacement: Q; — VV(Qq)dt + /26~ 1dB;.

To each realization of this process, a work W(t) can be associated as

W(t) = /0 £(Qe) (s)ds,

where f is the local mean force defined above by (11). Then, we prove that the Feynman-Kac
formula (20) holds for the free energy F' associated with the reaction coordinate and defined
by (5). Notice that in the limit of an infinitely slow switching from z(0) = 0 to 2(T) =
1, Formula (20) corresponds to the thermodynamic integration formula (13). Formula (20)
enables the computation of free energy difference at arbitrary rates, through a correction
consisting in a reweighting of the nonequilibrium paths.

The rest of this section is organized as follows. In Section 2.1, we make precise the pro-
cess ; we consider. Then, in Section 2.2, we state the Feynman-Kac formula (20) for a
one-dimensional reaction coordinate. We recall that the formulae for the general case in-
volving higher dimensional reaction coordinates, as well as the main proofs, are presented in
Appendix A.

2.1 The nonequilibrium projected stochastic dynamics

The considered diffusion reads, in the Stratonovich setting:

QO ~ sz(o) )

dQ; = —P(%)W(Qt)dH 2671P(Q) 0 dBy + VE(Qr) dA, (21)
ext __ z/it
W= NeoE™

With a view to the discretization of ()¢, let us notice that (); can be characterized by the
following property:

Proposition 2.1. The process Q; solution to (21) is the only Ité process satisfying for some
real-valued adapted Ité process (Ai)iecfo,r):

QO ~ ,Uzz(oy
dQi = —VV(Qu)dt + /267 dB; 4 VE(Qy) dAy,
Q1) = =2(b).

Moreover, the process (At)te[()’T] can be decomposed as

Ay = AP+ AL+ AP (22)



with the martingale part

dA = —/2p71 Ve (Q¢) - dBy,

[VeR
the local force part (see (11) for the definition of f)
dA} = |v§|2(62t) (VV(Qu)dt + B H(Qy)) dt = f(Qq) dt, (23)

and the external forcing (or switching) term

ext __ Zl(t)
W= Seqor

The proof of Proposition 2.1 is easy and consists in computing d¢(Q;) by Ité’s calculus
and identifying the bounded variation and the martingale parts of the stochastic processes.

The difference with the projected stochastic differential equation (14) considered in the
thermodynamic integration setting is that the out of equilibrium evolution of the constraints
2(t) creates a drift VE(Q¢) dAP* along the reaction coordinate. This drift can be interpreted
as an external forcing required for the switching to take place at a finite rate, and must be
subtracted from the Lagrange multiplier A; in order to obtain a correct expression for the
work W(t) involved in the Feynman-Kac fluctuation equality (see Equations (31) and (33)
below). This correction is quantitatively important when the switching is fast.

2.2 The Feynman-Kac fluctuation equality

Let us define the nonequilibrium work exerted on the diffusion (21) by:

:Aﬂ@v@w, (24)

where f is the local mean force defined above by (11). In practice, the nonequilibrium
work W(t) can be computed by using the local force part dA!l (see (23)), as in the ther-
modynamic integration method (see (19)). Thus, the formula we use to compute W(t) is
rather:

W(t) = /0 2(s) dA! (25)

since Af can be obtained by a natural numerical scheme (see Section 3), avoiding the cum-
bersome computations of the mean curvature vector H in the expression of f (as already
explained in section 1.1).

We can now state the generalization of the Jarzynski nonequilibrium equality to the case
when the switching is parameterized by a reaction coordinate.

Theorem 2.2 (Feynman-Kac fluctuation equality). For any test function ¢ and Vt €

[0,T7], it holds
A
z(t) —BW(t)
Z,(0) /z Eiduzz(” < (Q)e )

In particular, we have the work fluctuation identity: Vt € [0,T],

AF(2(t)) = F(2(t)) — F(2(0)) = —f ' In (E (e—ﬁW@))) . (26)



As in the alchemical case [11], the proof follows from a Feynman-Kac formula. The proof
of this theorem is presented in the general multi-dimensional case in Appendix A (see Theo-
rem A.5).

3 Discretization of the dynamics

The main interest of the above formulae (13)-(19) and (25)-(26) is that they admit natural
time discretizations. The principle is to use a predictor-corrector scheme for the associated
dynamics (14) and (21), and to use the Lagrange multiplier A; to compute the local mean
force f.

Section 3.1 is mainly a review of the results of [4] and presents this idea in the context of
thermodynamic integration. Then, we extend the method to the case of evolving constraints
in Section 3.2.

3.1 Discretization of the projected diffusion

For the projected SDE (15) onto a submanifold ¥, = {£(¢) — z = 0}, two discretizations of
the dynamics, extending the usual Euler-Maruyama scheme, are proposed in [4]. The first one
is:
Qn-‘,—l - Qn - vv(Qn) At + V 2At /8_1 Un + AAn—l—l v{(Qn-‘,—l)v (27)
where AA,, ;1 is such that £(Qn41) = 2,

where At is the time step and U™ is a N-dimensional standard Gaussian random vector.

Notice that (27) admits a natural variational interpretation, since @41 can be seen as the

closest point on the submanifold X, to the predicted position Q, —VV(Q,) At++/2At3-1 U,.

The real AA,, 1 is then the Lagrange multiplier associated with the constraint £(Qn+1) = 2.
Another possible discretization of (15) is

{ QnJrl = Qn - VV(Qn) At + V 2At /671 Un + AAnJrl v&(Qn), (28)
where AA, 41 is such that {(Qp+1) = 2.

Although this scheme is not naturally associated with a variational principle, it may be more
practical since its formulation is more explicit. Notice also that we use the same notation
AA,, for the Lagrange multipliers for both (27) and (28) (and later for (29) and (30) ), since
all the formulas we state in terms of AA,, are verified independently of the chosen projection
dynamics.

To solve Equation (27), classical methods for optimization problems with constraints can
be used. We refer to [8] for a presentation of the classical Uzawa algorithm, and to [1] for
more advanced methods. Problem (28) can be solved using classical methods for nonlinear
problems, such as the Newton method (see [1]). We also refer to Chapter 7 of [15] where similar
problems are discussed, for the classical RATTLE and SHAKE schemes used for Hamiltonian
dynamics with constraints.

Both schemes are consistent (the discretization error goes to 0 when the time step At
goes to 0) with the projected diffusion (15) (see [4]). Accordingly, AA, 41 is a consistent
discretization of dAy, ., and therefore, it can be proven [4]:

T/At

1
li lim — AA, = F'
fim, fim, 7 2 A = F'(2)

9



which is the discrete counterpart of the trajectory average (19). In [4], a variance reduction
technique is proposed, which consists in extracting the bounded variation part AAfL of AA,
(resorting locally to reversed Brownian increments). We give some details of an adaptation of
this method for evolving constraints in the next section.

3.2 Discretization with evolving constraints

When nonequilibrium dynamics are considered, the constraint is stated as {(Q;) = z(t). The

reaction coordinate path is first discretized as {z(0),...,2(tn,)} where N is the number of
timesteps. For example, equal time increments can be used, in which case At = NLT and

t, = nAt. The initial conditions )y are sampled according to uy,. A way to do that is to
subsample a long trajectory of the projected SDE on ¥ (using the schemes (27) or (28)).

The projected SDE on evolving constraints (21) is then discretized with the scheme (27)
or (28), taking into account the evolution of the constraint:

{ Qni1 = Qn — VV(Qn) At +/2At 71U, + ANy 1 VE(Qn1), (29)
where AA,, ;1 is such that £(Qni1) = 2(tn+1),

or

where AA, 41 is such that {(Qnt1) = 2(tny1).

It remains to extract the force part AAL_ | of the discretized Lagrange multiplier AA, 4
(consistently with (22)). We propose two methods. First, this can be done by simply sub-
tracting the drift and the martingale part

tnt1) = z(tn)

P z( VE(Qn)
AN, = AN — VeGP

+ V2At671 VEQIE Up. (31)

Another possibility in the spirit of the variance reduction techniques used in [4] can also be
used. Consider the following coupled dynamic with locally time-reversed constraint evolution
(written here for the scheme (27)):

QR =Qn — VV(Qn) At — 2At B71U, + AAR, VEQR, ),
with AAE‘H such that:
S(E@Q) +E@ui) = EQn).

The position Q5+1 is computed as Qn+1 in (27), but with a projection on Yot (Qn)—E(Qns1)
instead of X (;, . ), and using the Brownian increment —V/AtU,, instead of v/AtU,,. Notice that
in case of a constant increment for the constraints (see Remark 3.1 below) and if the constraints
are exactly satisfied at the previous timesteps (see Remark 3.2 below) 2£(Qy) — £(@Qnt1) =
z(tn—1). The force part AAL | is then obtained through

1
Ay = 5 (BAny1+ AN 1) (32)
which can be shown to be a consistent time discretization of dAf

tn+1”

10



3.3 Computation of free energy using a Feynman-Kac equality

The consistent discretization of (); and, more precisely, of dA£ we have obtained in the previous
section can now be used to approximate the work W(t) defined by (25) by

Wo = 0,

tni1) — 2(tn
Wit = W, 4 2tnt1) = 2(tn) AN,
tn+1 —tn

(33)

using either the dynamics (29) or (30), and the local force part of the Lagrange multiplier
computed by (31) or (32). Averaging over M independent realizations (the corresponding
works being labelled by an upper index 1 < m < M), an estimator of the free energy difference
AF(2(T)) is, using Theorem 2.2,

M
AF((T)) = -8 'In (% 3 e—ﬁwf'v”T> . (34)
m=1

The estimator @(Z(T)) converges to AF(z(T')) as At — 0 and M — +o0.

However, for a fixed At, ﬁ(z(T)) is a biased estimator. Indeed, exp(—ﬁﬁ(z(T)))
is an unbiased estimator of exp(—BAF(z(T))), and therefore, using the concavity of In,
E(ﬁ‘ (2(T))) > AF(2(T)). Recent works propose corrections to this systematic bias using
asymptotic expansions in the limit M — +oo (see for instance [31]).

Remark 3.1 (On the choice of the constraint path). In practice, the constraints incre-
ment z(t,+1) — 2(t,) can be chosen adaptively in function of the previous work evolution rate
Wi — Wh—1. Typically, if the former variation of work W,, — W,,_1 is large, a natural strategy
is to reduce the constraints increment z(t,,11) — 2z(t,) for the next timestep.

Remark 3.2 (Removal of the error associated with the constraint {(Q,11) = 2(tn+1)).
In practical situations, it is not necessary to satisfy exactly {(Qn+1) = 2(tn41) in (29) or (30).
Indeed, this inaccuracy can be compensated by using {(Qn+1)—§(Qyr) instead of z(t,41)—2(tn)
in (31) and (33).

4 Numerical results

We present in this section some illustrations of the algorithm we have described above to com-
pute free energy differences through nonequilibrium paths. In Section 4.1, a two-dimensional
toy potential V is used, for which we can compare the results with analytical profiles. A more
realistic test case in Section 4.2 demonstrates the ability of the method to compute free energy
profiles in presence of a free energy barrier.

4.1 A two-dimensional toy problem

We consider the two-dimensional potential introduced in [28§]
V(@,y) = cos(2ma)(1 + diy) + day”, (35)

where d; and dy are two positive constants. Some corresponding Boltzmann-Gibbs probability
densities are depicted in Figure 1.

11



0.005

Figure 1: Plot of some probability densities corresponding to the potential (35) at 3 = 1 and
for dy = 27%. Left: dy = 0. Right: d; = 10.

We want to compute the free energy difference profile between the initial state x = xg =
—0.5 (corresponding to a value of the reaction coordinate z = 0) and the transition state
x = x1 = 0 (corresponding to a value of the reaction coordinate z = 1). Notice that the
transition state is (z1,y1) = (0,0) for d; = 0, but is increasingly shifted toward lower y;
values as d; increases. We parameterize the transition along the x-axis, either with the

reaction coordinate
T — X

= 36
¢(z,y) ra—— (36)
or with the reaction coordinate (n > 1)
() = (14 2720 4 (37)
T,y) = -1].
M(y) = 5 —

The analytical expression of the free energy difference that we consider here is, for a reaction
coordinate v(x,y) (such as £ or n defined above)

[ efﬁv(rvy)(sy(m’y)_z
f e_ﬁv(xvy)éy(x,y)

AF,(z) = —8"'In (

where the distribution J is defined in Remark 1.1 above. Notice that even though the initial
state X9 = {z = —0.5} and the final state ¥; = { = 0} are the same for the two reaction
coordinates £ and 7, the associated free energy differences differ. This is due to the fact that

V¢ # Vi, and therefore d¢(y ). # 0y, (2,y)—-- More precisely,

2
AFe(z) = — Cos(27m0)—|—cos(27ra:(z))+i(0082(2ﬂm0)—0082(2wx(2))) with z(z) = zo+z(z1—x0),

4dy
and
d2 9 9 n—1 x(z) — xo
AF,, (2) = — cos(2mxg)+cos(2ma(2))+-—(cos* (2mxg) —cos” (2mx(2)) )+ In(1+———
4dy 8 xr1 — Xo

12
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Figure 2: Left : Free energy profile using the potential (35) with d; = 30, dy = 272, and
the reaction coordinate (36). Analytical reference profile (dotted lines). Out of equilibrium
process using At = 0.005, T'= NpAt =1, i.e. Ny = 200 (upper and lower bound of the 95 %
confidence interval, averaged over 100 realizations): M = 10 replicas (dashed line), M = 10*
replicas (solid line). Right : reaction coordinate (37) with n = 5, At = 0.0025, T' = NpAt =1
(N7 = 400).

with
2(z) = o+ (2" — Dz + D)V — 1) (21 — ).

Free energy profiles for the two reaction coordinates considered here can then be computed
using the discretization proposed in Section 3.3. Averaging over several realizations, error
estimates can be proposed: in particular, the standard deviation can be computed for all
intermediate points z € [0,1], so that, for all values z, a confidence interval around the
empirical mean can be proposed. We represent on Figure 2 the analytical profiles, and the
lower and upper bounds of the 95% confidence interval for M = 10 and M = 10*. The
initial conditions are created by subsampling every 100 timesteps a trajectory constrained to
remain on the initial submanifold Y. As announced above, the profiles obtained with 7, and
£ are not exactly the same, though the general shape is preserved. These figures also show
that the variance increases with z. Therefore, to further test the convergence of the method,
it is enough here to characterize the convergence of the value for the end point at z = 1.

We study the convergence of the end value AF(1) computed with the out of equilibrium
dynamics with respect to the number of replicas M, the switching time 7" and the time step
At, using the reaction coordinate (36) for example. The results are presented in Table 1. As
expected, the mean value of AF(1) converges to the reference value in the limit M — 400
or T' — 400, the variance getting also smaller and smaller as these parameters are increased.
Notice that the time step At does not seem to have any noticeable influence on the final result,
as long as it remains in a reasonable range.

We finally mention that we are able to exhibit the bias of the Jarzynski estimator (see
Section 3.3 and [31]) in this case. Averaging over 10? realizations, we observe that the esti-
mator AF(z(T)) is generally greater than AF(z(T)). More precisely, the mean value AF);
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At
0.001

M | Direct estimate
10% | 2.056 (0.274)

T
1
0.0025 1 10%| 2.033 (0.259)
0.005 1 10%| 2.076 (0.286)
001 1 10%| 2.073 (0.278)
0.005 1 10%| 2.076 (0.286)
0.005 5 10% | 1.997 (0.045)
0.005 10 10% | 1.999 (0.029)
0.005 20 10% | 2.000 (0.017)
0.005 1 10%| 2.076 (0.286)
0.005 1 10*| 2.014 (0.116)
1 (0.045)

0.005 10° | 2.001

Table 1: Free energy difference AF(1) for the reaction coordinate (36) averaged over 100
nonequilibrium simulations for 3 = 1, d; = 1 and dy = 30. The results are presented as

follows: E (ﬁ’(z(T))) <\/Var <ﬁ(z(T)))> The exact value is AF = 2.

of AF(z(T)) and the bounds of the 95 % confidence interval are: AF); = 2.0576 + 0.0059 for
M =103, AFy = 2.0095 4 0.0026 for M = 10*, and AFy; = 2.00075 4 0.0010 for M = 10°.
As expected, the bias goes to zero when M — oo.

4.2 Model system for conformational changes influenced by solvatation

We consider a system composed of N particles in a periodic box of side length [, interacting
through the purely repulsive WCA pair potential [6, 24]:

e R I R
i r > To,

where r denotes the distance between two particles, € and ¢ are two positive parameters and
ro = 2Y/65. Among these particles, two (numbered 1 and 2 in the following) are designated
to be the solute molecule while the others are solvent particles. Instead of the above WCA
potential, the interaction potential between the solute particles is a double-well potential

(r—ro—w)2 2

Vs(r)=h|1— : (38)

w?
where h and w are two positive parameters, The potential Vg exhibits two energy minima,
one corresponding to the compact state where the distance between the solute molecules is
r = rg, and one corresponding to the stretched state where the distance between the solute
molecules is r = rg 4+ 2w. The energy barrier separating both states is h. Figure 3 presents a
schematic view of the system.

The reaction coordinate used is

£(q)

_ !fh —QQ\ —To

2w ’ (39)
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Figure 3: Schematic views of the system, when the diatomic molecule is in the compact state
(Left), and in the stretched state (Right). The interaction of the atoms forming the molecule
is described by a double well potential, all the other interactions are of WCA form.

where g1 and ¢o are the positions of the solute molecules.

Figures 4 presents some plots of the free energy differences computed using nonequilibrium
dynamics, as well as thermodynamic integration reference profiles. The results show that
nonequilibrium estimates are consistent with thermodynamic integration. Our experience
also shows that it is computationally as efficient to simulate several short nonequilibrium
trajectories (provided the switching time is not too small, say, 7' ~ 1 in reduced units, so that
the diffusion process can take place), or one single long trajectory where the switching is done
slowly (which is a way to do thermodynamic integration).

Besides, the free energy profiles highlight the relative stabilities of the two conformations
of the diatomic molecule: at low densities (Figure 4, Left) the stretched conformation has a
lower free energy and is thus expected to be more stable (this can indeed be verified by running
long molecular dynamics trajectories and monitoring the time spent in each conformation).
When the density increases, the compact conformation becomes more and more likely. At the
density considered in Figure 4 (Right), the compact state already has a free energy slightly
smaller than the stretched state. Notice also that the free energy barrier increases as the
density increases, so that spontaneous transitions are less and less frequent. But since we
know here a reaction coordinate, we can enforce the transition. This prevents us from running
and monitoring long trajectories to get sufficient statistics to compare relative occurrences of
both states.
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Figure 4: Comparison of the energy difference profile (dashed line) for the double well po-
tential, and the free energy difference profiles using the reaction coordinate (39) computed
with thermodynamic integration (dotted line) and nonequilibrium dynamics results averaged
over 50 independent realizations (upper and lower bounds of the 95% confidence interval,
solid line). Left: | = 3 with At = 0.00025, Np; = 101 thermodynamic integration points
(averaging the mean force over M1 = 107 configurations for a fixed value of ), and averaging
over M = 1000 nonequilibrium trajectories for each nonequilibrium estimation with switching
time T' = 1. Right: Same parameters except [ = 1.3 and At = 0.0005.
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A Appendix: The multi-dimensional case

In this appendix, we generalize the previous results for nonequilibrium computation of free
energy differences to the case of multi-dimensional reaction coordinates.

A.1 Geometric setting and basic notations and formulae.

We consider a d-dimensional system of smooth reaction coordinates & = (£1,...,&q) : RN —
R?, non-singular on an open domain M C R3V

Vg e M, range(V&i(q),...,VE&(q)) =d,
and a smooth path of associated coordinates
z=(z1,...,2q) : [0,T] = R%

Accordingly, we define for all ¢ € [0,7] a smooth submanifold of codimension d contained
in M:
Sa = {0 € RN, &(q) = 2(t)} c M.

In the constraints space RY, coordinates are indexed by Greek letters and we use the
summation convention on repeated indices. In the configuration space R3V, coordinates are
indexed by Latin letters and we also use the summation convention on repeated indices. We
denote by X - Y = X;Y; the scalar product of two vector fields of R3Y, by M : N = M; i N;
the contraction of two tensor fields of R3", and by (X ® Y); ; = X;Y; the tensor product of
two vector fields of R3.

The d x d matrix

Ga,’y = Véa - v§’y
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is the Gram matrix of the constraints. It is symmetric and strictly positive on M. We denote
by G;}W the (,y) component of G~!, the inverse matrix of G. At each point ¢ € M, we
define the orthogonal projection operator

Pt = G;}A/Vfa ® V&,
onto the normal space to X¢(,) and the orthogonal projection operator
P=1d - Pt

onto the tangent space to X¢(,). The mean curvature vector field of the submanifold is defined
by:
H=-V. <(detG)1/2G;;YV£V> (detG)~1/2Ve, (40)

and satisfies:
Hi = Pj kNl

We recall the divergence theorem on submanifolds: for any smooth function ¢ : R3Y —
R3Y with compact support,

/ divs(¢)dos, = — | H-ddos, (41)
z 2Z
where divy(¢) = P;;V,;¢; denotes the surface divergence, and oy is the induced Lebesgue
measure on the submanifold ¥, of R3V.

We will also use the co-area formula: for any smooth function ¢ : R3V — R,

R3N

oot Gla) Po = [ [ oy a. (42)
R J¥,
These definitions and formulae are provided with more details in [4].

A.2 Free energy and constrained diffusions for multi-dimensional reaction
coordinates

As in the one-dimensional case, the Boltzmann-Gibbs distributions restricted on the subman-
ifold X2, is defined by:
dus. = Z; exp(—BV)dos.,

with
Zz:/ exp(—pV)dos, .

The associated free energy is:
F(z)=-8"'In(Z.).

Remark A.1 (On the definition of the free energy: the multi-dimensional case). As
in the one-dimensional case (see Remark 1.1), if the particles initially evolve in a potential V',
the classical definition of the free energy is as above, but with V replaced by an effective
potential V 4 37 !1In ((detG)l/ ?). The computation of the gradient of this potential in the
dynamics then involves some second order derivatives of the constraints &, which can be
computed in practice by a finite difference method (see [4]).
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For any 1 < a < d, we now introduce the local mean force along V¢, (which general-
izes (11)):

fo=GoL VE - (VV + 57 H). (43)

As in the one-dimensional case (see Equation (10)), we obtain the derivative of the mean force
by averaging the local mean force:

Proposition A.2. The derivative of the free energy F with respect to z, is given by:

VoF(2) = | fo dus,.
PP

Proposition A.2 is a corollary of the lemma;:

Lemma A.3. For any test function ¢ with compact support in M, we have:

v, < / wexp(—ﬁv)dazz> _ /E (GZLVE, - Vo — Bfag) exp(— BV )dos..

Proof. It is enough to prove the formula in the case V' = 0, up to a modification of the test
function ¢. For any test function g : R — R with compact support, we have (using successively
an integration by parts on R, the co-area formula (42), an integration by parts on R3", and
finally again (42)):

/ 9(za)Va </<pdagz> dz = —/ /g'(za)cpdagzdz,
Rd >, R4 z

= —/ g/ 0&n (detG’)l/2 dq,
R

3N

N _/ GLAVE, - V(go&s) ¢ (detG)'/? dg,
R3N ’
_ / g0V - (G} Ve ¢ (detG)?) dg,
R3N ’
_ /R o(z0) [ V- (G2l Ve, @ (detG)?) (detG) /2 dors, dz,

which gives the result with definition (40). O

We now define the constrained diffusion (which generalizes (21)):

Qo ~ H3.q

dQr = —P(Q)VV(Qu)dt + /287 P(Q1) 0 dB; + V&4 (Qr)dALS, (44)
dASE = G L(Qu)Z (t)dt, Vi<a<d.

The stochastic process (); can be characterized by the following property:

Proposition A.4. The process Q; solution to (44) is the only Ité process satisfying for some
adapted Ito processes (A1, ..., Ngy)iejo,r) with values in R4:

Qo ~ Uz,
th = —VV(Qt)dt =+ \/ 2,6_1dBt + Vfa(Qt)dAmt,
Q) = =(¢).
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Moreover, the process (Aat)icio,r) can be decomposed as

Mgy = ALy + AL, +ASY

a,ty
with the martingale part
AN, = —\/2371G5 Ve, (Q1) - dBy,
the local force part (see (43) for the definition of fa)
MGy = fol(Qr)dt,
and the external forcing (or switching) term
AT = Go 5 (Qu)2, (1)t
The proof consists in computing d¢(Q;) by Itd’s calculus and identifying the bounded
variation and the martingale parts of the stochastic processes.
A.3 The Feynman-Kac fluctuation equality
Theorem 2.2 is generalized as:

Theorem A.5 (Feynman-Kac fluctuation equality). Let us define the nonequilibrium
work exerted on the diffusion Q; solution to (44) by:

/m@ @—K%@M;

Then, we have the following fluctuation equality: for any test function ¢, and vt € [0,T],

Z
2(1) / —AW(®)
pdus, (Qt)e (45)
ZZ(O) 2. ® = ( )

In particular, we have the work fluctuation identity: Vvt € [0,T],
AF(2(t)) = F(2(t)) — F(2(0)) = -4 'In (E (efﬁv"(t))) . (46)

Proof. For any s € [0,7] and x € M, let us introduce (Qf’gﬁ)te[S’T], the stochastic process
satisfying the SDE (44), starting from x at time s:

S, T = z,
dQy" = —P(Q")VV(Q")dt + /287 1P(Qy") o dB; + V& (Q7™)dASY, (47)
dASS = Ga%( T2 (t )dt Vi<a<d.

Notice that for any s € [0,7], there is an open neighborhood (s~,s%) x M, of (s,%,) in
R x M such that the d1ffus1on (Q7 )tels,r) remains 1n M almost surely. This holds since this
process satisfies d€(Q;"") = 2/(t) dt and therefore £(Q}"") = £(x)+ 2(t) — 2(s). This gives usual
regularity assumptions sufficient to get a backward semi—group (t being from now on fixed in
(0,T) and s varying in [0,t]):

ummﬁ%wSHW(ﬁ/mQ” L) )
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satisfying the following partial differential equation (PDE) on (s™,s™) x M:
Osu = —Ls(u(s,.)) + Bz (s) fau,
where L is the generator of the diffusion @); solution to (44):
Ly=B"'P:V>—PVV -V+ B 'H-V+2 ()G, V&V
Now, using Lemma A.3, we have:

d

P u(s,.) exp(—ﬁV)dagz(s)

s

[ (Rl ) + )G TE, - Tuls, ) expl(—5V Yo,

z(s)

= —/ (67'P:V?u(s,.) = PVV - Vu(s,.) + 7 H - Vu(s,.)) exp(—BV)dox_,,
X2

= 7! / (divz (Vu(s,.)exp(—=pV)) + H - Vu(s,.) exp(—ﬁV))dagz(s),

z(s)

by the divergence theorem (41). Therefore
/ u(t,.) exp(—=BV)dos,,, = / u(0,.) exp(—=BV)dos,

E.) 220

which yields
/wmﬁﬂ%m@—do<@ww<@/h% ! () d »,
Xa)

where @ satisfies (47). This proves (45), and (46) is obtained by taking ¢ = 1. O

A.4 The numerical scheme

The adaptation of the algorithm we propose for the one-dimensional case to the multi-
dimensional case is straightforward. Indeed, the generalizations of schemes (29) and (30)
to the multi-dimensional case are, respectively:

Qn+1 = Qn - VV(Qn) At + V 2At 5_1 Un + AAoz,nJrl v&@z(QnJrl),
where (AAq nt1)i1<a<d is such that £(Qni1) = 2(tn+1),

Qni1 = Qn — VV(Qn) At + /2At LU, + TAV| VR VEa(Qn),
where (AAq nt1)1<a<d is such that £(Qni1) = 2(tn11)-

The force part AAgm of AA,, is obtained by similar procedures as those described in Sec-
tion 3.2. For example, the generalization of (31) is:

AA& n+l = AAoz n+l — (Qn)( ( n+1 - Z'y + V 2At/8 G v{'y Qn : n-

The generalization of (32) is also straightforward.
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Now, the estimator AF (2(T)) of the free energy difference AF(z(T)) is given by (34),
with the following approximation of the work W(t):
Wy =0,

Za (T — t
Wii1 = Wi + a(tnr1) = 2a(tn) AA& .
tn-l—l - tn ’

which generalizes (33). Notice that both Remark 3.1 and Remark 3.2 also hold for a multi-
dimensional reaction coordinate.

23



