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Abstract

We consider the problem of sampling a Boltzmann-Gibbs probability distribution when
this distribution is restricted (in some suitable sense) on a manifold Σ of R

n implicitly
defined by N constraints q1(x) = · · · = qN (x) = 0. This problem arises for example in
systems subject to hard constraints or in the context of free energy calculations. We
prove that the constrained stochastic differential equations (i.e. diffusions) proposed
in [W. E and E. Vanden-Eijnden, in: Multiscale Modelling and Simulation, eds. S.
Attinger and P. Koumoutsakos (LNCSE 39, Springer, 2004)] and [G. Ciccotti, R.
Kapral, and E. Vanden-Eijnden, ChemPhysChem 6, 1809 (2005)] are ergodic with
respect to this restricted distribution. We also construct numerical schemes for the
integration of the constrained diffusions. Finally, we show how these schemes can be
used to compute the gradient of the free energy associated with the constraints.
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1 Introduction

A standard computational issue in statistical mechanics is the calculation
of the expectation

(1.1) I(φ) =

∫

Rn
φ(x)dµ(x)

of an observable φ : R
n → R with respect to the Boltzmann-Gibbs distri-

bution µ defined as

(1.2) dµ(x) = Z−1 exp(−βV (x)) dx.

Here Z =
∫

Rn exp(−βV (x)) dx is the partition function, β > 0 is the
inverse temperature, and V : R

n → R is the potential. When the dimen-
sionality of space is high, n � 1, standard numerical techniques based
on discretizing the integral in (1.1) become impractical, and various al-
ternative techniques have been developed to evaluate (1.1). By far the
most common techniques are the so-called Monte-Carlo sampling tech-
niques, which amount to devising a stochastic process ergodic with respect
to (1.2), and replace the ensemble average in (1.1) by a time-average over
this process using the ergodic theorem:

(1.3) I(φ) = lim
T→∞

IT (φ) where IT (φ) =
1

T

∫ T

0
φ(X t)dt,

where X t is a generic sample path of the stochastic process. In the case
at hand, one may for instance consider the diffusion:

(1.4) dX t = −∇V (X t) dt +
√

2β−1 dWt,

where Wt is a Brownian motion in R
n. Under mild assumptions on the

potential V (see Section 1.3), the process X t is ergodic with respect to the
measure µ. Standard numerical schemes exist to compute X t and these
can be used to calculate IT (φ) which, for T sufficiently large, provides an
accurate estimate of I(φ).

Many applications require a more general framework, where the Boltzmann-
Gibbs distribution µ is replaced by

(1.5) dµΣ(x) = Z−1
Σ e−βV (x)dσΣ(x)

where

(1.6) ZΣ =

∫

Σ
e−βV (x)dσΣ(x).
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Here Σ is a codimension N submanifold of R
n and the measure σΣ de-

notes the surface element on Σ (i.e. the Lebesgue measure on Σ defined
from the Lebesgue measure in the ambient space R

n ⊃ Σ). In practice,
the submanifold Σ is typically defined as the zero level-set of a smooth
function q with values in R

N .
The distribution µΣ may be thought of as the projection (or restric-

tion) of µ into Σ. This distribution arises in applications where the system
is subject to hard constraints, these being either of physical origin or ar-
tificially imposed for some numerical purposes, or in the context of free
energy calculations. In this context, the expectation in (1.1) is replaced
by

(1.7) IΣ(φ) =

∫

Σ
φ(x)dµΣ(x),

and the questions become how to construct a stochastic process (or, more
specifically, a diffusion) ergodic with respect to µΣ to sample this distri-
bution and how to design numerical algorithms to compute this diffusion
in practice ? In [13], a diffusion ergodic with respect to µΣ was proposed
and in [6] it was shown how to use it in the context of free energy calcu-
lations. In the present paper, we put the results of these two references
on firm mathematical grounds. We also design some specific algorithms
to compute the diffusion ergodic with respect to µΣ and show how to use
these in the context of free energy calculations.

1.1 Summary of the main results

In Section 2, we recall the diffusion constrained on Σ introduced in [13, 6],
and we prove that this constrained diffusion is ergodic with respect to (1.5)
and thereby allows to compute expectations like (1.7). These results
are given in Proposition 2.1 in Section 2.1 (for the simpler case when Σ
has codimension 1) and Proposition 2.2 in Section 2.2 (for the general
case when Σ has codimension N ≥ 1). In Section 2.3, we also discuss
some generalizations when the distribution (1.5) is modified by including
some extra weight factor (which is relevant in the context of free energy
calculations), and we compare the diffusion constrained on Σ with that
arising when (1.4) is constrained to stay close to Σ by means of soft
constraints whose strength is taken to infinity.

In Section 3, we derive some numerical algorithms to integrate the
constrained diffusion proposed in Section 2: these are given in Proposi-
tion 3.1.
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In Section 4, we show how to use these results to compute the mean
force, i.e. the gradient of the free energy associated with the reaction
coordinate q, which defines a foliation of R

n by a family of manifolds Σ.
In Section 4.1, we first recall the definition of the free energy, then in
Section 4.2, we derive several expressions for its gradient, the mean force.
These expressions are given in Lemma 4.1 and Proposition 4.2. Finally,
in Section 4.3, we show how to compute the mean force in practice and in
Section 4.4 we give a variance reduction technique which enhances the ef-
ficiency of these calculations. These results are generalized in Appendix D
for the situations with molecular constraints.

For the reader convenience, several technical results are deferred to
Appendices A, B and C.

1.2 Comparison with other approaches

Traditionally in the molecular dynamics community, the sampling of the
Boltzmann-Gibbs distribution (1.2) has been done using Nosé-Hoover,
hybrid kinetic Monte-Carlo, or (non-zero-mass) Langevin dynamics rather
than the diffusion (1.4). Similarly, the restricted distribution (1.5) is
usually sampled by adding holonomic constraints to the Nosé-Hoover,
hybrid kinetic Monte-Carlo (HKMC), or Langevin equations of motion
(see e.g. [29, 7, 8, 19, 18]). Since these equations of motion involves both
the position x of the system and the momentum p associated with this
position, adding holonomic constraints not only forces the position of the
system to remain on the manifold Σ, but also its momentum to always
be tangent to Σ. In turns, this means that the restricted distribution
sampled by constrained Nosé-Hoover, HKMC, or Langevin dynamics is
a distribution on a submanifold of R

n × R
n whose marginal in position

space is precisely (1.5).

In this paper, we give the counterparts of these results by working in
configuration space alone and using a constrained version of the diffusion
in (1.4). We also give the counterparts of the various results developed
in the context of Nosé-Hoover, HKMC, or Langevin equations (see e.g.
[5, 30, 11, 10, 9, 19, 18]) to compute the gradient of the free energy (the
so-called mean force) as seamlessly as possible.

1.3 Main assumptions and notations

Thorough this paper we assume that the potential V is a C2-function
which grows sufficiently fast at infinity so that the diffusion in (1.4) is
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ergodic with respect to the Boltzmann-Gibbs distribution (1.2). Most of
our results generalize straightforwardly to situations where the distribu-
tion (1.2) is supported on some connected region Ω ⊂ R

n, but we will not
consider these cases for simplicity. We also assume that the manifold Σ
is connected and can be defined as the zero level-set of a smooth vector-
valued function q = (q1, . . . , qN ) where 0 < N < n and qα : R

n → R for
each 1 ≤ α ≤ N and we suppose that

(1.8) rank(∇q1, ...,∇qN ) = N on Σ,

where rank(∇q1, ...,∇qN ) denotes the rank of the matrix

(1.9)

(

∂qα

∂xj

)

1≤α≤N, 1≤j≤n

.

We also suppose that

(1.10) ∞ > M ≥ sup
1≤α≤N

∣

∣

∣

N
∑

ζ=1

G−1
α,ζ(x)∇qζ(x)

∣

∣

∣, ∀x ∈ Σ,

where

(1.11) Gα,ζ(x) = ∇qα(x) · ∇qζ(x), 1 ≤ α, ζ ≤ N,

and G−1
α,ζ(x) denotes the (α, ζ)-entry of the inverse matrix (G(x))−1. For a

scalar constraint (N = 1), this amounts to assuming that |∇q| is uniformly
bounded from below by a positive constant. (1.10) guarantees that the
expectation

∫

Σ

∣

∣

∣

N
∑

ζ=1

G−1
α,ζ(x)∇qζ(x)

∣

∣

∣

2
dµΣ(x)

is finite, a property that we will use below.
We use Greek indices (varying between 1 and N) to denote the com-

ponents of quantities related to constraints. Latin indices vary between 1
and n, n being the dimension of the ambient space. For brevity, we use
the summation convention on repeated indices for some long formulae:
for Greek indices, the sum is over 1 . . . N and for Latin indices, the sum
is over 1 . . . n. We denote by ⊗ the tensor product, and by

(1.12) ∇2u =

(

∂2u

∂xi∂xj

)

1≤i,j≤n

the Hessian matrix of a function u : R
n → R. We also denote by ∇iu

(resp. ∇i∇ju) its partial derivative ∂u/∂xj (resp. ∂2u/∂xi∂xj). Finally,
the superscript T denotes the transposition operator.



SAMPLING ON MANIFOLDS WITH DIFFUSIONS 7

2 A diffusion ergodic with respect to the distribution µΣ

In this section, we give a diffusion that is ergodic with respect to µΣ [13, 6].
For clarity, we first consider in Section 2.1 the case when Σ is a manifold
of codimension 1. Then we generalize our result in Section 2.2 to the
case of a manifold of codimension N ≥ 1. Section 2.3 is then devoted
to some remarks, especially concerning the case when the constraints are
softly imposed by a constraining potential. We suppose in this section
that q(X0) = 0.

2.1 The codimension 1 situation

Let Σ := {x : q(x) = 0} be the zero level-set of the scalar valued C2-
function q : R

n → R.

Let us introduce the normal n̂(x) to Σ at point x

(2.1) n̂(x) =
∇q(x)

|∇q(x)|

and the orthogonal projector P (x) on the tangent space at point x to Σ
defined by:

(2.2) P (x) = Id − n̂(x) ⊗ n̂(x).

Notice that P 2 = P and P = P T , since P is an orthogonal projector. Let

(2.3) κ(x) = div n̂(x).

be the mean curvature of Σ at point x. We have:

Proposition 2.1 The distribution µΣ in (1.5) is the unique equilibrium
distribution of the diffusion (written in Itô form):
(2.4)

dXt = P (X t)

(

−∇V (Xt) dt +
√

2β−1dWt

)

− β−1κ(X t)n̂(X t) dt.

Proposition 2.1 implies that if φ in Lp(µΣ) (with p > 1),

(2.5) IΣ(φ) = lim
T→∞

IΣ,T (φ) where IΣ,T (φ) =
1

T

∫ T

0
φ(X t)dt,

where X t is a solution of (2.4) and the convergence is a.s. and in Lp.
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Proof: First let us note that by assumption on Σ and V , V viewed
as a function from Σ to R

n is C2 and grows sufficiently fast at infinity
so that ZΣ < ∞. Therefore µΣ is well defined. Moreover, the transition
probability function is strictly positive so that any invariant measure is
equivalent to the Lebesgue measure σΣ, which implies the uniqueness of
the invariant measure (see Proposition 6.1.9 p. 188 in [12]).

So it suffices to prove that µΣ is an invariant measure for (2.4). To
this end let u(t,x) = Ex(f(Xt)), where X t satisfies (2.4) and Ex denotes
the expectation over this process conditional on X 0 = x. Then µΣ is an
invariant measure for (2.4) if

(2.6)

∫

Σ
u(t,x)dµΣ(x) =

∫

Σ
u(0,x)dµΣ(x).

To check (2.6), notice that u(t,x) satisfies the backward Kolmogorov
equation

∂u

∂t
= −P (x)∇V (x) · ∇u + β−1H(x) · ∇u + β−1P (x) : ∇2u

where

P (x) : ∇2u =
n
∑

i,j=1

Pi,j(x)
∂2u

∂xi∂xj

and H = −κn̂ denotes the mean curvature vector. It follows that

d

dt

∫

Σ
u(t,x)dµΣ(x)

= Z−1
Σ

∫

Σ

(

−P (x)∇V (x) · ∇u(t,x) + β−1H(x) · ∇u(t,x)

+ β−1P (x) : ∇2u(t,x)
)

exp(−βV (x)) dσΣ(x),

= β−1Z−1
Σ

∫

Σ

(

div Σ
(

∇u(t,x) exp(−βV (x))
)

+ H(x) · ∇u(t,x) exp(−βV (x))
)

dσΣ(x),

= 0.

Here div Σ denotes the surface divergence:

(2.7) div Σ(φ) = tr(P∇φ)

and we used the divergence theorem on manifolds (see [2, 3]):

(2.8) ∀φ ∈ C1
c (Rn, Rn) :

∫

Σ
div Σ(φ) dσΣ = −

∫

Σ
H · φ dσΣ.

This shows that (2.6) holds, which concludes the proof.
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Componentwise, (2.4) can be written as

d(X t)i =

(

P (Xt)

(

−∇V (X t) dt +
√

2β−1dWt

))

i

+ β−1
n
∑

j,k=1

Pj,k∇jPi,k(Xt) dt.(2.9)

where we used the identity
∑n

j,k=1 Pj,k∇jPi,k = −κn̂i (see (A.1)). From (2.9),
we see that (2.4) can also be written in Stratonovich form as

(2.10) dX t = −P (X t)∇V (Xt) dt +
√

2β−1P (X t) ◦ dWt,

which shows that (2.4) essentially amounts to projecting (1.4) onto Σ. In
particular, it implies that

dq(Xt) = ∇q(X t) ·
(

−P (Xt)∇V (Xt) dt +
√

2β−1P (Xt) ◦ dWt

)

= 0,

as necessary since we must have X t ∈ Σ.
With a view to the discretization of (2.4) (see Section 3), it is also

worth mentioning that (2.4) may be obtained by imposing the constraint
that Xt ∈ Σ using Lagrange multipliers. Indeed, let us modify the
stochastic differential equation (1.4) in the following way:

(2.11)

{

dX t = −∇V (X t) dt +
√

2β−1dW t + dY t,

with Y t such that P (X t)dY t = 0 and q(X t) = 0.

Since we suppose that q(X0) = 0, we set Y 0 = 0. We assume moreover
that Y t is adapted with respect to the filtration of the Brownian mo-
tion W t. Computing dq(X t), and decomposing dY t = dA(t)+S(t)dW t,
where A(t) is a process with finite variation, one obtains:

dq(X t) =∇q(X t) · (−∇V (X t) dt + dA(t))

+ 1
2∇

2q(Xt) :

(

√

2β−1Id + S(t)

)(

√

2β−1Id + S(t)

)T

dt

+ ∇q(Xt) ·
(

√

2β−1dW t + S(t)dW t

)

.

Therefore, in order that d(q(X t)) = 0 we must have (using the fact that
dY t, and hence dA(t) and S(t)dW t, are aligned with the normal direc-
tion ∇q(X t))

S(t) = −
√

2β−1
∇q ⊗∇q

|∇q|2 (Xt)
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and thus

dA(t) =
∇q · ∇V

|∇q|2 ∇q(Xt) dt − β−1 ∇q

|∇q|2∇
2q : P (Xt) dt,

=
∇q · ∇V

|∇q|2 ∇q(Xt) dt − β−1κn̂(Xt) dt,

where we used the second equality in (A.1). As a result

(2.12)
dY t = (P (X t) − Id)

(

−∇V (Xt) dt +
√

2β−1dW t

)

+ β−1H(X t) dt.

Thus, we recover (2.4).

2.2 The codimension N situation

The result in Section 2.1 can be generalized to the case of a codimension N
manifold Σ which is the zero level-set of the vector valued function q =
(q1, ..., qN ) with qα : R

n → R (1 ≤ α ≤ N).

One central object we have considered in Section 2.1 is the orthogonal
projector P onto Σ. In the case of N constraints, this projector reads
(compare (2.2)):

(2.13) P (x) = Id −
N
∑

α,ζ=1

G−1
α,ζ(x)∇qα(x) ⊗∇qζ(x),

where we recall the definition in (1.11) for the N × N matrix G:

Gα,ζ(x) = ∇qα(x) · ∇qζ(x), 1 ≤ α, ζ ≤ N,

and G−1
α,ζ denotes the (α, ζ)-entry of the inverse matrix G−1. To check

that P (x) is the orthogonal projector onto Σ at point x, notice that for
any 1 ≤ γ ≤ N ,

P∇qγ = ∇qγ −
N
∑

α,ζ=1

G−1
α,ζ∇qα∇qζ · ∇qγ

= ∇qγ −
N
∑

α,ζ=1

G−1
α,ζGζ,γ∇qα = 0,
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while, for any vector u such that ∀1 ≤ ζ ≤ N , u · ∇qζ = 0, we have

Pu = u −
N
∑

α,ζ=1

G−1
α,ζ∇qα∇qζ · u = u.

Since P (x) is an orthogonal projector, it is a symmetric matrix. Notice
also that in the special case of orthogonal constraints, namely if ∇qα ·
∇qζ = δα,ζ |∇qα|2, (2.13) simplifies into:

(2.14) P (x) = Id −
N
∑

α=1

n̂α(x) ⊗ n̂α(x),

where the normal n̂α is defined by

(2.15) n̂α(x) =
∇qα(x)

|∇qα(x)| , 1 ≤ α ≤ N.

In the case at hand, the equivalent of the curvature κ in (2.3) is

(2.16) κα = |∇qα|
N
∑

γ=1

G−1
γ,α

(

∆qγ −∇2qγ :
(

N
∑

ζ,δ=1

G−1
δ,ζ∇qδ ⊗∇qζ

)

)

,

and Proposition 2.1 generalizes as

Proposition 2.2 The distribution µΣ in (1.5) is the unique equilibrium
distribution of the diffusion:

(2.17)

dXt = P (X t)

(

−∇V (Xt) dt +
√

2β−1 dWt

)

− β−1
N
∑

α=1

κα(X t)n̂α(X t) dt.

Equation (2.17) is the generalization of (2.4), and the equivalent of (2.5)
holds here as well. The proof of Proposition 2.2 is similar to that of Propo-
sition 2.1. It is again based upon the divergence theorem on manifolds,
and the fact that the mean curvature vector is

(2.18) H = −
N
∑

α=1

καn̂α

(see Appendix B below for further details). We skip it for the sake of
brevity.
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As in the case N = 1, (2.17) can be seen as the projection of (1.4) using
the projection operator P defined by (2.13), and a Stratonovich integra-
tion rule. In other words, (2.9) and (2.10) also hold in the codimension
N situation, since

∑n
j,k=1 Pj,k∇jPi,k = −∑N

α=1 κα(n̂α)i (see (A.3)).
Notice that (2.17) can also be obtained by imposing the constraint

through Lagrange multipliers, as in the case N = 1. For N > 1, the
constraining force Y t is also defined by (2.11) and similar computations
as in the case N = 1 yield (2.12) (with H defined by (2.18)).

2.3 Remarks and generalizations

Later on in Section 4, we will see that the free energy calculations involve
the following distribution which generalizes (1.5):

(2.19) dµΣ,f (x) = Z−1
Σ,f e−βV (x)f(x)dσΣ(x),

where

(2.20) ZΣ,f =

∫

Σ
e−βV (x)f(x)dσΣ(x),

and f : R
n → (0,∞) is a C2-function to be defined, with a growth condi-

tion at infinity consistent with ZΣ,f < ∞. Obviously µΣ ≡ µΣ,1 and

IΣ,f (φ) =

∫

Σ
φ(x)dµΣ,f (x) =

IΣ(fφ)

IΣ(f)
.

On the other hand, sampling with respect to (2.19) can also be straight-
forwardly performed upon noting that the measure µΣ,f associated with
the potential V is simply the measure µΣ associated with the potential

(2.21) Vf = V − β−1 ln f.

In other words, a diffusion allowing to sample µΣ,f is provided by (2.17)
in which Vf is substituted for V , that is

(2.22)

dXt = P (X t)
(

−∇(V − β−1 ln f)(X t) dt +
√

2β−1 dWt

)

− β−1
N
∑

α=1

κα(Xt)n̂α(Xt) dt.

In Section 4, we will see that the measure µΣ,|det G|−1/2 (corresponding to

the specific choice f = |detG|−1/2) naturally arises in the context of free
energy calculations.
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Let us describe another instance where the stochastic differential equa-
tion (2.22) with f = |det G|−1/2 also appears. Consider

(2.23) dX
η
t = −∇V (Xη

t ) dt − 1

2η

N
∑

α=1

∇(q2
α)(Xη

t ) dt +
√

2β−1dW t,

where η > 0 is a parameter. The additional term involving ∇(q2
α) in (2.23)

is a penalty term which constraints X t in the vicinity of Σ = {x : q(x) =
0}. Letting η → 0 amounts to imposing the constraint that X t ∈ Σ a.s.
In fact, we prove in Appendix C (in the case N = 1) that the limit process
Xt of X

η
t when η → 0 is solution of the stochastic differential equation:

dXt = P (Xt)
(

−∇
(

V + β−1 ln |detG|1/2
)

(Xt) dt +
√

2β−1 dW t

)

− β−1
N
∑

α=1

κα(X t)n̂α(Xt) dt.(2.24)

This equation is not (2.17). Rather it is a special case of (2.22) for f =
|det G|−1/2, i.e. X t samples the distribution µΣ,|det G|−1/2 .

Notice that the measure µΣ depends on qα only through its zero set
(which defines Σ). The values of qα around Σ are irrelevant. In this
sense, µΣ is an intrinsic quantity. Accordingly the stochastic differential
equation (2.17) (and in particular the mean curvature vector H) can
be defined knowing only Σ. In contrast, the measure µΣ,|det G|−1/2 also
depends on the values of qα around Σ. In this sense, it is a non-intrinsic
quantity. Because the constraints are softly imposed in (2.24) (and not
rigidly as in (2.4)), in the limit as η → 0 the limiting process X t still
“sees” the variation of qα around Σ, through the term ln |detG|−1/2 in
the modified potential V| det G|−1/2 .

Remark 2.3 (Rigidly and softly constrained dynamics) The fact that the
statistics at equilibrium associated with the rigidly constrained dynam-
ics (2.4) and the softly constrained dynamics (2.24) are not identical is
related to an apparent paradox which has been often discussed in the liter-
ature, about the different statistics at equilibrium of rigid and stiff bonds
in bead spring models: see [27] p. 228, Section 4.6 in [28], [20], [15], [31],
or paragraph 3 in [26]. We here exhibit the difference between statistical
properties of rigidly and softly constrained dynamics in the framework of
over-damped Langevin dynamics, but this question has also been discussed
either in the framework of Hamiltonian systems at equilibrium (in the
canonical ensemble) or in the non-zero-mass Langevin dynamics frame-
work (see e.g. [30, 9, 19, 18]).
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3 Numerical schemes

In this section, we construct numerical schemes which satisfy exactly the
constraint q(x) = 0 since we have in mind long-time simulations for
computing IΣ(φ) (defined by (1.7)) by a mean over a sample path. For
more general results on the consistency of these schemes, we refer to [24].
We suppose in this section that q(X0) = 0. We have:

Proposition 3.1 The following two schemes are consistent with (2.17):

(3.1)



























Xn+1 = Xn −∇V (Xn)∆t +
√

2β−1∆W n

+
N
∑

α=1

λα,n∇qα(Xn+1),

where λα,n such that q(Xn+1) = 0,

and

(3.2)



























Xn+1 = Xn −∇V (Xn)∆t +
√

2β−1∆W n

+
N
∑

α=1

λα,n∇qα(Xn),

where λα,n such that q(Xn+1) = 0,

where ∆W n = W tn+1
− W tn denotes the Brownian increment.

The proof of the Proposition is given at the end of this section. The
semi-implicit scheme in (3.1) can in fact be rewritten in a variational
formulation as follows:

(3.3)







X? = Xn −∇V (Xn)∆t +
√

2β−1∆W n,

Xn+1 = arg min
Y ∈Rn

{

|X? − Y |2 : q(Y ) = 0
}

.

In this case, the λα,n can be interpreted as scalar Lagrange multipliers
associated with the constraint q(Xn+1) = 0. We expect the scheme (3.1)
to exhibit better stability properties than the scheme (3.2) since it admits
a variational interpretation.

In practice, in order (3.1), (3.2) and (3.3) to be well-posed, we need ∆t
to be sufficiently small so that X? is not “too far” from the manifold Σ.
To solve Problem (3.1), one can use classical methods for optimization
problems with constraints. We refer to [16] for a presentation of the
classical Uzawa algorithm, and to [4] for more advanced methods. To solve
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Problem (3.2), one can use classical methods to solve nonlinear problems
(like Newton method, see [4]). We also refer to Chapter 7 of [25] where
similar problems are discussed.

In the following, we will admit that the schemes (3.1), (3.2) and (3.3)
are well posed and indeed convergent (in the mean square sense for ex-
ample), namely that the trajectory (X 0, . . . ,XM ) where M = T/∆t con-
verges when ∆t → 0 (for a fixed T ) to (Xs)0≤s≤T which satisfies (2.17).
Since (X t)t≥0 is ergodic with respect to µΣ (see Proposition 2.2), the
schemes (3.1) and (3.2) can be used to sample µΣ and to compute quan-
tities such as (1.7). In Section 4, we more specifically discuss how they
allow the computation of free energy differences and mean forces.

Remark 3.2 (Computation of ∇V|det G|−1/2) As mentioned earlier, in the
context of free energy calculations (see Section 4), the distribution µΣ,|det G|−1/2

(corresponding to the specific choice f = |det G|−1/2 in (2.19)) arises
naturally and this amount to replacing V by V|det G|−1/2 in (3.1) or (3.2).

Since V| det G|−1/2 = V − β−1 ln |det G|−1/2, this requires the computation
of the following term:

(3.4)

β−1∇ ln
(

|det G|−1/2
)

(Xn)∆t

= −1

2
β−1

∑

α,ζ

(

G−1
α,ζ∇Gα,ζ

)

(Xn)∆t,

= −β−1
∑

α,ζ

(

G−1
α,ζ∇2qα∇qζ

)

(Xn)∆t,

where we used Jacobi’s formula: for a given tensor M ,

(3.5) ∇ ln(det M) =
∑

α,ζ

M−1
α,ζ∇Mζ,α.

In order to avoid the computation of ∇2qα(Xn) which is cumbersome,
one can approximate (3.4) by:
(3.6)

− β−1
∑

α,ζ

(

G−1
α,ζ∇2qα∇qζ

)

(Xn)∆t

= −β−1
N
∑

α,ζ=1

G−1
α,ζ(Xn)

(

∇qα (Xn + ∆t∇qζ(Xn)) −∇qα(Xn)
)

+ o(∆t).

The proof of Proposition 3.1 relies on the following Lemma which gives
expansions of the λα,n appearing in (3.1) and (3.2).
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Lemma 3.3 Let Xn be the solution of (3.1) or (3.2). Then λα,n is such
that:

(3.7) λα,n = λ0
α,n

√
∆t + λ1

α,n∆t + o(∆t),

with

(3.8) λ0
α,n = −

√

2β−1
N
∑

ζ=1

G−1
α,ζ∇qζ(Xn) · wn,

where wn = ∆W n/
√

∆t are i.i.d. Gaussian variables in R
n with zero

mean and variance Id, and

(3.9)

λ1
α,n =

N
∑

ζ=1

G−1
α,ζ∇qζ · ∇V (Xn)

+ β−1
N
∑

ζ,δ=1

G−1
α,ζG

−1
γ,δ∇2qζ : ∇qγ ⊗∇qδ(Xn)

− β−1
N
∑

ζ=1

G−1
α,ζ∆qζ(Xn).

Proof of Lemma 3.3: For the sake of brevity we only present the
proof of Lemma 3.3 for the scheme (3.1). The proof for the scheme (3.2)
is similar.

The Lagrange multipliers λα,n are obtained by requiring that q(Xn+1) =
0 if q(Xn) = 0. Using (3.1) as well as the a priori expansion (3.7) of λα,n,
this is equivalent to requiring that: for any 1 ≤ ζ ≤ N ,

(3.10)

0 = qζ(Xn+1),

= ∇qζ(Xn) ·
(

−∇V (Xn)∆t +
√

2β−1∆W n

+ (λ0
α,n

√
∆t + λ1

α,n∆t)∇qα(Xn+1)
)

+
1

2
KT

n∇2qζ(Xn)Kn + o(∆t),

where Kn =
√

2β−1∆W n + λ0
α,n

√
∆t∇qα(Xn+1). Since

∇qα(Xn+1) = ∇qα(Xn) + ∇2qα(Xn)Kn + o(
√

∆t),
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where Kn =
√

2β−1∆W n + λ0
α,n

√
∆t∇qα(Xn), equating terms of equal

order in ∆t in (3.10) gives























0 =
√

2β−1∇qζ(Xn) · ∆W n + λ0
α,n

√
∆tGα,ζ(Xn),

0 = −∇qζ(Xn) · ∇V (Xn)∆t + λ1
α,nGα,ζ(Xn)∆t

+
√

∆tλ0
α,n(∇qζ)

T∇2qα(Xn)Kn +
1

2
K

T
n∇2qζ(Xn)Kn.

From this, we obtain formula (3.8) for λn
0,α and the following expression

for λn
1,α:

λ1
α,n = G−1

α,ζ∇qζ · ∇V (Xn)

− G−1
α,ζλ

0
γ,nλ0

δ,n∇2qγ : ∇qζ ⊗∇qδ(Xn)

− 1
2G−1

α,ζλ
0
γ,nλ0

δ,n∇2qζ : ∇qγ ⊗∇qδ(Xn)

−
√

2β−1 G−1
α,ζ λ0

γ,n ∇2qγ(Xn) : ∇qζ ⊗ wn

−
√

2β−1 G−1
α,ζ λ0

γ,n ∇2qζ(Xn) : ∇qγ ⊗ wn

− β−1 G−1
α,ζ∇2qζ(Xn) : wn ⊗ wn.

We now use (3.8) in this expression together with the fact that in the
limit as ∆t → 0, wn ⊗ wn = Id since wn is always multiplied by Fn∆t

measurable functions. For example, we have in the limit ∆t → 0,

λ0
γ,nλ0

δ,n = 2β−1∆t−1G−1
γ,γ′∇qγ′(Xn) · ∆W nG−1

δ,δ′∇qδ′(Xn) · ∆W n,

= 2β−1 G−1
γ,γ′ G

−1
δ,δ′ Gγ′ ,δ′(Xn) + o(1) = 2β−1 G−1

γ,δ(Xn) + o(1).

We thus obtain the following expression for λn
1,α:

λ1
α,n = G−1

α,ζ∇qζ · ∇V (Xn)

− 2β−1G−1
α,ζG

−1
γ,δ∇2qγ : ∇qζ ⊗∇qδ(Xn)

− β−1G−1
α,ζG

−1
γ,δ∇2qζ : ∇qγ ⊗∇qδ(Xn)

+ 2β−1 G−1
α,ζG

−1
γ,δ ∇2qγ : ∇qδ ⊗∇qζ(Xn)

+ 2β−1 G−1
α,ζ G−1

γ,δ ∇2qζ : ∇qδ ⊗∇qγ(Xn)

− β−1 G−1
α,ζ∆qζ(Xn) + o(1),

from which we deduce (3.9).

We are now in position to prove Proposition 3.1.
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Proof of Proposition 3.1: Let us first consider the scheme (3.1)
(or, equivalently, (3.3)). To check its consistency with (2.17), we compute
the value of the term λα,n∇qα(Xn+1)∆t using the expressions for λ0

α,n and
λ1

α,n given in Lemma 3.3. and the property that ∆W n⊗∆W n = Id∆t in
the limit as ∆t → 0, since ∆W n is always multiplied by Fn∆t measurable
functions. This gives

λα,n∇qα(Xn+1)

=
(

λ0
α,n

√
∆t + λ1

α,n∆t
)

∇qα(Xn)

+ λ0
α,n

√
∆t∇2qα(Xn)

(

√

2β−1∆W n + λ0
γ,n

√
∆t∇qγ(Xn)

)

+ o(∆t),

= −
√

2β−1G−1
α,ζ∇qα∇qζ(Xn) · ∆W n + G−1

α,ζ∇qα∇qζ · ∇V (Xn)∆t

+ β−1G−1
α,ζ∇qαG−1

γ,δ∇2qζ : ∇qγ ⊗∇qδ(Xn)∆t

− β−1 G−1
α,ζ∇qα∆qζ(Xn)∆t − 2β−1G−1

α,ζ∇2qα∇qζ(Xn)∆t

+ 2β−1 G−1
γ,α∇2qα∇qγ(Xn)∆t + o(∆t),

= (P (Xn) − Id)

(

−∇V (Xn)∆t +
√

2β−1∆W n

)

− β−1∇qαG−1
α,ζ

(

−G−1
γ,δ∇2qζ : ∇qγ ⊗∇qδ(Xn) + ∆qζ(Xn)

)

∆t + o(∆t),

= (P (Xn) − Id)

(

−∇V (Xn)∆t +
√

2β−1∆W n

)

− β−1καn̂α(Xn)∆t + o(∆t).

This shows that (3.1) is equivalent to

(3.11)
Xn+1 = Xn + P (Xn)

(

−∇V (Xn)∆t +
√

2β−1∆W n

)

− β−1καn̂α(Xn)∆t + o(∆t),

which is a consistent discretization of (2.17).

We now consider the scheme (3.2). In this case, using the expressions
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for λ0
α,n and λ1

α,n given in Lemma 3.3, we obtain

λα,n∇qα(Xn)

=
(

λ0
α,n

√
∆t + λ1

α,n∆t
)

∇qα(Xn) + o(∆t),

= −
√

2β−1G−1
α,ζ∇qα∇qζ(Xn) · ∆W n + G−1

α,ζ∇qα∇qζ · ∇V (Xn)∆t

+ β−1G−1
α,ζ∇qαG−1

γ,δ∇2qζ : ∇qγ ⊗∇qδ(Xn)∆t

− β−1 G−1
α,ζ∇qα∆qζ(Xn)∆t + o(∆t),

= (P (Xn) − Id)

(

−∇V (Xn)∆t +
√

2β−1∆W n

)

− β−1καn̂α(Xn)∆t + o(∆t),

which shows that (3.2) is also equivalent to (3.11) and proves that this
scheme is consistent with (2.17).

4 Free energy calculations

In this section, we discuss the computation of free energy differences,
defined in Section 4.1, and more precisely of the gradient of the free energy,
the so-called mean force. In Section 4.2, we give an explicit expression
for the mean force and exhibit a link between the mean force and the
constraining force Y t defined by (2.11)–(2.12). We then use this link to
build a numerical scheme to compute the mean force in Section 4.3. A
variance reduction method is proposed in Section 4.4. In this section, we
assume that no molecular constraints are present: for completeness, the
situation with molecular constraints is discussed in Appendix D.

In this paper, we describe the computation of free energy differences
by imposing the reaction coordinate at a fixed value (this is the so-called
Thermodynamic Integration, see [22]). Note that it is also possible to
compute free energy differences by prescribing an evolution of the reaction
coordinate, in the spirit of Jarzinski equality (see [21, 23]).

4.1 Definition

Let X ∈ R
n denote the random variable whose distribution is the Boltzmann-

Gibbs distribution (1.2). Given q = (q1, . . . , qN ) where qα : R
n → R for

each 1 ≤ α ≤ N , the quantity

(4.1) Z = q(X)
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is a random variable in R
N . Let us denote by m(z) the probability density

function (with respect to the Lebesgue measure on R
N ) of Z. Then, by

definition, the quantity

(4.2) F (z) = −β−1 lnm(z)

is called the free energy associated with q, which is called the reaction
coordinate. The free energy is directly relevant to compute expectations
of observables depending on x only implicitly via q, since by construction

(4.3)

∫

Rn
φ(q(x))dµ(x) =

∫

RN
φ(z)e−βF (z)dz.

Let us now introduce the following generalization of Fubini’s theorem,
derived from the co-area formula (see Theorem 2 p. 117 of [14]): if q :
R

n → R
N is Lipschitz and g : R

n → R is a function in L1(Rn), then

(4.4)

∫

Rn
g(x)|det G(x)|1/2 dx =

∫

RN

∫

Σ(z)
g(x)dσΣ(z)(x)dz.

Here Σ(z) = {x : q(x) = z}, σΣ(z) is the (n − N)-dimensional Hausdorff
measure, which reduces in our case to the Lebesgue measure on Σ(z)
since q is regular, and G is the matrix defined in (1.11) which we recall
for convenience

Gα,ζ(x) = ∇qα(x) · ∇qζ(x), 1 ≤ α, ζ ≤ N.

Using (4.4) and the definition (1.2) of µ, we have:

(4.5)

∫

Rn
φ(q(x))dµ(x)

=

∫

RN
φ(z)

(

Z−1
∫

Σ(z)
e−βV (x)|detG(x)|−1/2dσΣ(z)(x)

)

dz.

Therefore, by comparing (4.3) and (4.5) we deduce that F (z) is given by

(4.6) F (z) = −β−1 ln
(

Z−1
∫

Σ(z)
e−βV (x)|det G(x)|−1/2dσΣ(z)(x)

)

.

Equation (4.6) can also be written as

(4.7) F (z) = −β−1 ln
(

Z−1ZΣ(z),|det G|−1/2

)

where ZΣ(z),|det G|−1/2 is the normalization factor associated with the dis-
tribution µΣ(z),|det G|−1/2 (see (2.19)). In other words, computing the
mean force amounts to computing some partition functions.
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4.2 The mean force

In practice, a way to compute the free energy F defined by (4.6) (or (4.7))
is to compute first its gradient, since the latter can be expressed as an
expectation over the distribution µΣ(z),|det G|−1/2 (see Lemma 4.1 below).
The gradient of F is usually referred to as the mean force, and it can be
expressed via the following:

Lemma 4.1 The gradient of F (namely the mean force) can be expressed
as: for any 1 ≤ α ≤ N ,

∇αF (z)

=
N
∑

γ=1

∫

Σ(z)

(

∇V · G−1
α,γ∇qγ − β−1∇ · (G−1

α,γ∇qγ)
)

dµΣ(z),|det G|−1/2 ,

(4.8)

=
N
∑

γ=1

∫

Σ(z)
G−1

α,γ∇qγ ·
(

∇V|det G|−1/2 + β−1H
)

dµΣ(z),| det G|−1/2 .

(4.9)

The proof of this Lemma is given below. From these two expressions
of the mean force, one may use two different methods to compute the
mean force. The expression (4.8) of ∇αF is rather complicated since it
involves the divergence of the inverse of G. However, remarkably enough,
we shall show in Section 4.3 that we do not have to compute explicitly
this divergence to evaluate ∇αF (z). This can be done by suitable nu-
merical approximation of (4.8) (together with the approximation (3.6) of
∇V|det G|−1/2).

On the other hand, the expression (4.9) of ∇αF can be used to derive
an alternative and even simpler procedure. It is based on the following
proposition where ∇αF (z) is expressed as a mean over the component
along ∇qα (taking (∇q1, . . . ,∇qN ) as a basis of the normal space to Σz) of
the constraining force Y t (defined by (2.12)), using the corrected potential
V|det G|−1/2 (defined by (2.21)) instead of V . This has also been observed
in the framework of Hamiltonian dynamics (see [30, 9, 19, 18]).

Proposition 4.2 Consider the processes X t and Y t defined by (2.11)
and (2.12), with V replaced by V| det G|−1/2 . Then for 1 ≤ α ≤ N ,

(4.10) lim
T→∞

1

T

∫ T

0

N
∑

ζ=1

G−1
α,ζ∇qζ(Xt) · dY t = ∇αF (0),
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a.s. and in Lp, p ≥ 1.

Proof of Lemma 4.1: Let Φ by a C∞
c (R) function and φ = Φ′. Let

us consider, for a fixed 1 ≤ α ≤ N ,
∫

RN
φ(zα) exp(−βF (z)) dz = Z−1

∫

Rn
φ(qα(x))e−βV (x)dx,

where we have used (4.3) and (1.2). The left-hand side can be expressed
as follows (using (4.7)):

(4.11)

∫

RN
φ(zα) exp(−βF (z)) dz

=

∫

RN
Φ′(zα) exp(−βF (z)) dz,

= β

∫

RN
Φ(zα)∇αF (z) exp(−βF (z)) dz,

= βZ−1
∫

RN
Φ(zα)ZΣ(z),| det G|−1/2∇αF (z) dz.

The right-hand side can be expressed as follows:
(4.12)

Z−1
∫

Rn
φ(qα(x))e−βV (x)dx

= Z−1
∫

Rn
Φ′(qα(x))e−βV (x)dx,

= Z−1
∫

Rn
G−1

α,γ∇qγ · ∇ (Φ ◦ qα) (x)e−βV (x)dx,

= −Z−1
∫

Rn
∇ ·

(

G−1
α,γ∇qγe

−βV
)

(x)Φ ◦ qα(x)dx,

= Z−1
∫

Rn

(

β∇V · G−1
α,γ∇qγ −∇ ·

(

G−1
α,γ∇qγ

))

(x)e−βV (x)Φ(qα(x))dx,

= Z−1
∫

RN
Φ(zα)ZΣ(z),|det G|−1/2

×
(

∫

Σ(z)

(

β∇V · G−1
α,γ∇qγ −∇ ·

(

G−1
α,γ∇qγ

))

dµΣ(z),| det G|−1/2

)

dz,

where we have used (4.4) and (2.19) for the last equality. The fact
that (4.11) is equal to (4.12) for all functions Φ completes the proof
of (4.8).

To prove (4.9), it remains to show that

∇V · G−1
α,γ∇qγ − β−1∇ · (G−1

α,γ∇qγ)

= ∇V|det G|−1/2 · G−1
α,γ∇qγ + β−1G−1

α,γ∇qγ · H .
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Using (2.18) and V|det G|−1/2 = V + β−1 ln
(

|det G|1/2
)

, this is equivalent

to show that:

− β−1∇ · (G−1
α,γ∇qγ)

= β−1G−1
α,γ∇qγ · ∇ ln |det G|1/2 − β−1|∇qα|−1κα,

which is a direct consequence of the expression (A.5) of κα given in Ap-
pendix A.

We are now in position to prove Proposition 4.2.

Proof of Proposition 4.2: By replacing V by V| det G|−1/2 , the mea-
sure sampled by X t is µΣ,|det G|−1/2 . Moreover, the process Y t is then
defined by

dY t = (P (X t) − Id)
(

−∇V|det G|−1/2(Xt) dt +
√

2β−1dW t

)

+ β−1H(Xt) dt, Y 0 = 0.

Hence, since (P (X) − I) G−1
α,ζ∇qζ(X) = −G−1

α,ζ∇qζ(X), we obtain

G−1
α,ζ∇qζ(Xt) · dY t =

N
∑

γ=1

G−1
α,γ∇qγ ·

(

∇V|det G|−1/2 + β−1H
)

(Xt) dt

−
√

2β−1
N
∑

ζ=1

G−1
α,ζ∇qζ(Xt) · dW t.

In the bounded variation part, we recover the expression (4.9) of the mean
force. Now, (4.10) follows from the ergodicity of X t (see (2.5)) and the
fact that

lim
T→∞

1

T

∫ T

0

N
∑

ζ=1

G−1
α,ζ∇qζ(Xt) · dW t = 0,

by (1.10).

4.3 Computational aspects

We now discuss the computation of the mean force defined by (4.6), using
the expressions (4.8) or (4.9). In the following, we suppose that z = 0,
without loss of generality.
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The first method we propose is based on (4.8). The first term at the
right hand side of (4.8) can be obtained from

(4.13)

lim
T→∞

lim
∆t→0

1

M

M
∑

m=1

N
∑

γ=1

(

∇V · G−1
α,γ∇qγ

)

(Xn)

=
N
∑

γ=1

∫

Σ
∇V · G−1

α,γ∇qγdµΣ,|det G|−1/2 ,

where M = T/∆t and Xn is the solution to (3.1) or to (3.2), with V
replaced by V|det G|−1/2 = V + β−1 ln |det G|1/2. As for the second term,
we have

(4.14)

− β−1 lim
T→∞

lim
∆t→0

1

M∆t

M
∑

m=1

N
∑

γ=1

(

(G−1
α,γ∇qγ)(Xn + ∆W n)

− (G−1
α,γ∇qγ)(Xn)

)

· ∆W n

= −β−1
N
∑

γ=1

∫

Σ
∇ · (G−1

α,γ∇qγ)dµΣ,|det G|−1/2 ,

where we used the fact that ∆W n⊗∆W n = Id∆t in the limit as ∆t → 0.
Equations (4.13) and (4.14) (together with the approximation (3.6)) allow
to estimate ∇αF (0) without having to compute ∇2qα.

The second method is based on (4.9), and more precisely, on Propo-
sition 4.2. As in the continuous in time case (see (4.10)), the mean force
∇αF (0) may be computed by averaging the Lagrange multipliers λα,n

entering the algorithms (3.1) or (3.2).

Proposition 4.3 Let Xn be the solution to (3.1) or to (3.2), with V
replaced by V| det G|−1/2 = V + β−1 ln |det G|1/2. Then,

(4.15) lim
T→∞

lim
∆t→0

1

M∆t

M
∑

m=1

λα,m = ∇αF (0),

where M = T/∆t.

We recall that in practice, in order to compute ∇V| det G|−1/2 , one can resort
to a suitable finite difference scheme (see the approximation (3.6)). This
proposition is a direct consequence of Proposition 4.2 and the following
lemma.
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Lemma 4.4 Let Xn be the solution to (3.1) or to (3.2). Assume more-
over (1.10). Then, for 1 ≤ α ≤ N , λα,n is such that

(4.16) lim
∆t→0

1

M∆t

M
∑

m=1

λα,m =
1

T

∫ T

0

N
∑

ζ=1

G−1
α,ζ∇qζ(X t) · dY t

with Y t defined by (2.12) and where T = M∆t is fixed, and therefore
M → ∞.

Remark 4.5 (Computation of other energies) All the preceding compu-
tations may be generalized to the following energy:

(4.17) Ff (z) = −β−1 ln

∫

exp(−βV (x)) f(x) dσΣ(z)(x),

where f is a given positive function1 such that ZΣ(z),f < ∞. Indeed, in
this case, the expression of the gradient of Ff is given by the following
formula (which is a generalization of (4.9))

∇αFf (z) =

∫

Σ(z)

N
∑

γ=1

G−1
α,γ∇qγ ·

(

∇Vf + β−1H
)

dµΣ(z),f ,(4.18)

where the modified potential Vf is defined by (2.21).
Suppose now that we use in our numerical schemes (3.1) or (3.2) the

potential Vf instead of V . Then, following the arguments of Section 4.3
we obtain that the mean of the Lagrange multipliers converges to the mean
force (written here for z = 0): for 1 ≤ α ≤ N ,

(4.19) lim
T→∞

lim
∆t→0

1

M∆t

M
∑

m=1

λα,m = ∇αFf (0),

where M = T/∆t.

Proof of Lemma 4.4: Using Lemma 3.3, we have

lim
∆t→0

1

M∆t

M
∑

m=1

λα,m

=
1

T

∫ T

0
G−1

α,ζ

(

∇qζ · ∇V + β−1G−1
γ,δ∇2qζ : ∇qγ ⊗∇qδ − β−1∆qζ

)

(Xt) dt

−
√

2β−1
1

T

∫ T

0
G−1

α,ζ∇qζ(X t) · dW t.

1 With this notation, the free energy defined by (4.6) is F| det G|−1/2 , up to an additive
constant. Notice that this constant does not intervene in the mean force.
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Using the fact that (P (X) − I)G−1
α,ζ∇qζ(X) = −G−1

α,ζ∇qζ(X) and

G−1
α,γ∇qγ · H = G−1

α,ζG
−1
γ,δ∇2qζ : ∇qγ ⊗∇qδ − G−1

α,ζ∆qζ = κα

one easily obtains (4.16).

4.4 A variance reduction method

In the numerical scheme we have described to compute the mean force (see
formula (4.15)), there are three sources of errors: the time discretization
error (∆t → 0), the longtime limit error (T → ∞) and the statistical
error due to the fact that we use a stochastic process. In this section, we
focus on the statistical error. It is linked to the the variance of the result.
Let us consider the case N = 1. We have:

1

M∆t

M
∑

m=1

λm = −
√

2β−1
1

T

M
∑

m=1

|∇q|−2∇q(Xn) · ∆W n

+
1

T

M
∑

m=1

λ1
m∆t + o(1).

In the limit ∆t goes to zero, the first term in the right-hand side converges
to the martingale part

−
√

2β−1
1

T

∫ T

0
|∇q|−2∇q(Xs) · dW s

of the constraining force Y t, while the second part converges to the
bounded variation part of Y t (see Equation (2.12)). It is the limit, when
T goes to infinity, of the second term which yields the mean force F ′(0).
The first term goes to 0 in the limit T → ∞ but this term is responsible
for a large variance of the result.

Therefore, a natural idea to reduce the variance is to eliminate the
first term. It is possible to directly compute this term (which is the
projection of the Brownian increment) and to subtract it from the La-
grange multiplier. Alternatively, the following scheme, which is very easy
to implement, may be used. We consider that t = tn and we denote
by λ(∆W n) the Lagrange multiplier obtained from (3.1) or (3.2) with a
Brownian increment ∆W n. The next position Xn+1 is defined by (3.1)
or (3.2), but the Lagrange multiplier used in formula (4.15) is now defined
as:

λn =
1

2
(λ(∆W n) + λ(−∆W n)) .
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One can check that this does not change the value of the bounded varia-
tion part λ1

n of λn, but “eliminates” the martingale part λ0
n. This method

reminds us of the antithetic variables variance reduction method classi-
cally used in Monte Carlo methods. In practice, this method seems to be
very efficient (see [23]). This idea can be straightforwardly generalized to
the case N > 1.
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optimization. Springer, 2002.

[5] Carter, E.; Ciccotti, G.; Hynes, J. T.; Kapral, R. Constrained recation coordinates
dynamics for the simulation of rare events. Chem. Phys. Lett. 156 (1989), 472–477.

[6] Ciccotti, G.; Kapral, R.; Vanden-Eijnden, E. Blue Moon sampling, vectorial reac-
tion coordinates, and unbiased constrained dynamics, ChemPhysChem, 6 (2005),
1809–1814.

[7] Ciccotti G.; Ferrario, M.; Ryckaert, J. P. Molecular dynamics of rigid systems in
Cartesian coordinates. A general formulation. Mol. Phys. 47 (1982), 1253–1264.

[8] Ciccotti, G.; Ryckaert, J. P. Molecular dynamics simulation of rigid molecules.
Comp. Phys. Rep. 4 (1986), 345–392.

[9] Darve, E.; Wilson, M. A.; Pohorille, A. Calculating free energies using a scaled-
force molecular dynamics algorithm. Mol. Sim. 28 (2002), 113–144.



SAMPLING ON MANIFOLDS WITH DIFFUSIONS 28

[10] den Otter, W. K. Thermodynamic integration of the free energy along a reaction
coordinate in Cartesian coordinates. J. Chem. Phys. 112 (2000), 7283–7292.

[11] den Otter, W. K.; Briels, W. J. The calculation of free-energy differences by
constrained molecular-dynamics simulations. J. Chem. Phys. 109 (1998), 4139–
4148.

[12] Duflo, M. Random iterative models. Springer, 1997.

[13] E, W.; Vanden-Eijnden, E. Metastability, conformation dynamics, and transition
pathways in complex systems, in: Multiscale Modelling and Simulation, eds. S.
Attinger and P. Koumoutsakos, LNCSE 39, Springer, 2004

[14] Evans, L. C.; Gariepy, R. F.. Measure theory and fine properties of functions.
Studies in Advanced Mathematics. CRC Press, 1992.

[15] Fixman, M. Classical statistical mechanics of constraints: a theorem and applica-
tion to polymers. Proc. Nat. Acad. Sci. USA 71 (1974), 3050–3053.

[16] Glowinski, R.; Le Tallec, P. Augmented Lagrangian and operator-splitting methods
in nonlinear mechanics. Studies in Applied Mathematics. SIAM, 1989.

[17] Graversen, S. E.; Peskir, G. Maximal inequalities for the Ornstein-Uhlenbeck
process. Proc. Am. Math. Soc. 128 (2000), 3035–3041.
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A Some useful identities

Here we give some useful identities that were used in text.

Lemma A.1 (Scalar constraint case, N = 1) We define by (2.2) the or-
thogonal projection P (x) on the tangent space of Σ = {x, q(x) = 0} at
point x (where q : R

n → R). The normal n̂(x) and the curvature κ(x)
at point x ∈ Σ are defined by formulas (2.1) and (2.3). The mean cur-
vature vector is defined by H = −κn̂. The following equalities hold: for
1 ≤ i ≤ n,

(A.1)

n
∑

j,k=1

Pj,k∇jPi,k = |∇q|−1
n
∑

j=1

∇j(|∇q|Pi,j),

= −|∇q|−2∇iq
n
∑

j,k=1

∇j∇kqPj,k,

= −κn̂i = H i.

Moreover, we have: for 1 ≤ i ≤ n,

(A.2)
n
∑

j=1

∇jPi,j = −
n
∑

j=1

Pi,j∇j ln |∇q| + H i.

Lemma A.2 (Vectorial constraint case, N ≥ 1) We define the orthogonal
projection P (x) on the tangent space of Σ = {x, qα(x) = 0, 1 ≤ α ≤ N}
(where qα : R

n → R) at point x by (2.13). The normal n̂α and the cur-
vature κα are defined by (2.15) and (2.16). The mean curvature vector is
defined by H = −∑N

α=1 καn̂α (see (2.18)). Then, we have: for 1 ≤ i ≤ n,

(A.3)

n
∑

j,k=1

Pj,k∇jPi,k = (detG)−1/2
n
∑

j=1

∇j((det G)1/2Pi,j),

= −
N
∑

α=1

κα(n̂α)i = H i.

Moreover, we have: for 1 ≤ i ≤ n,

(A.4)
n
∑

j=1

∇jPi,j = −
n
∑

j=1

Pi,j∇j ln((det G)1/2) + H i.
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For brevity, we only provide the proof of Lemma A.2 below.

The following lemma giving another expression for the curvature κα

defined in (2.16) is also useful.

Lemma A.3 Let 1 ≤ α ≤ N . The curvature κα defined by (2.16) can be
written in the following form:

(A.5) κα = |∇qα|(det G)−1/2div



(detG)1/2
N
∑

γ=1

G−1
α,γ∇qγ



 .

Proof of Lemma A.2: Let us start with Pj,k∇jPi,k. We have:

(A.6)

Pj,k∇jPi,k = ∇j(Pj,kPi,k) − Pi,k∇j(Pj,k),

= ∇j(Pi,j) − Pi,k∇j(Pj,k),

= (δi,k − Pi,k)∇j(Pj,k),

= −G−1
α,ζ∇iqα∇kqζ∇j(G

−1
γ,δ∇jqγ∇kqδ),

= −G−1
α,ζ∇iqα∇kqζ

(

∇jG
−1
γ,δ∇jqγ∇kqδ + G−1

γ,δ∆qγ∇kqδ

+ G−1
γ,δ∇jqγ∇j∇kqδ

)

,

= −∇iqδ∇jG
−1
γ,δ∇jqγ −∇iqδG

−1
γ,δ∆qγ

− G−1
α,ζ∇iqα∇kqζG

−1
γ,δ∇jqγ∇j∇kqδ,

where the summation convention is from 1 to n for Latin indices and from
1 to N for Greek indices. Let us now compute ∇j(G

−1
γ,δ). We have

0 = ∇j(Gα,ζG
−1
ζ,δ) = ∇j(Gα,ζ)G

−1
ζ,δ + Gα,ζ∇j(G

−1
ζ,δ),

so that

(A.7)
∇j(G

−1
γ,δ) = −G−1

γ,α∇j(Gα,ζ)G
−1
ζ,δ ,

= −G−1
γ,αG−1

ζ,δ (∇j∇kqα∇kqζ + ∇j∇kqζ∇kqα)

Therefore, the first term in (A.6) is

−∇iqδ∇jG
−1
γ,δ∇jqγ

= ∇iqδ∇jqγG−1
γ,αG−1

ζ,δ (∇j∇kqα∇kqζ + ∇j∇kqζ∇kqα) ,

= ∇iqδ∇jqγG−1
γ,αG−1

ζ,δ∇j∇kqα∇kqζ + ∇iqδ∇jqγG−1
γ,αG−1

ζ,δ∇j∇kqζ∇kqα

= ∇iqα∇jqγG−1
γ,δG

−1
ζ,α∇j∇kqδ∇kqζ + ∇iqδ∇jqζG

−1
ζ,αG−1

γ,δ∇j∇kqγ∇kqα,
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where, in the last line, we have swapped α and δ in the first term and we
have swapped ζ and γ in the second term. Notice now that the first term
in the last line and the last term in (A.6) cancel, so that:

Pj,k∇jPi,k = ∇iqδ G−1
γ,δ

(

−∆qγ + G−1
ζ,α∇jqζ∇j∇kqγ∇kqα

)

,

= ∇iqδ G−1
γ,δ

(

−∆qγ + ∇2qγ : (G−1
α,ζ∇qα ⊗∇qζ)

)

,

= −κδ∇iqδ|∇qδ|−1,

which proves one equality in (A.3).
Let us now consider (det G)−1/2∇j((det G)1/2Pi,j). Using (3.5), we

have:

(det G)−1/2∇j((det G)1/2Pi,j)

= (det G)−1/2∇j((det G)1/2)Pi,j + ∇jPi,j ,

=
1

2
∇j ln(det G)Pi,j −∇j(G

−1
γ,δ∇iqγ∇jqδ),

=
1

2
G−1

α,ζ∇jGα,ζPi,j −∇jG
−1
γ,δ∇iqγ∇jqδ

− G−1
γ,δ∇j∇iqγ∇jqδ − G−1

γ,δ∇iqγ∆qδ,

=
1

2
G−1

α,ζ∇iGα,ζ −
1

2
G−1

α,ζ∇jGα,ζG
−1
γ,δ∇iqγ∇jqδ

+ G−1
γ,αG−1

ζ,δ (∇j∇kqα∇kqζ + ∇j∇kqζ∇kqα)∇iqγ∇jqδ

− G−1
γ,δ∇j∇iqγ∇jqδ − G−1

γ,δ∇iqγ∆qδ,

= G−1
α,ζ∇i∇jqα∇jqζ − G−1

α,ζ∇j∇kqα∇kqζG
−1
γ,δ∇iqγ∇jqδ

+ G−1
γ,αG−1

ζ,δ∇j∇kqα∇kqζ∇iqγ∇jqδ + G−1
γ,αG−1

ζ,δ∇j∇kqζ∇kqα∇iqγ∇jqδ

− G−1
γ,δ∇j∇iqγ∇jqδ − G−1

γ,δ∇iqγ∆qδ

= −G−1
ζ,α∇j∇kqζ∇kqαG−1

γ,δ∇iqγ∇jqδ

+ G−1
γ,δG

−1
ζ,α∇j∇kqδ∇kqζ∇iqγ∇jqα + G−1

γ,δG
−1
ζ,α∇j∇kqζ∇kqδ∇iqγ∇jqα

− G−1
γ,δ∇iqγ∆qδ,

where, in the last expression we have swapped α and ζ in the first term
and α and δ in the third term. Now notice that the third term cancels
with the first term so that we obtain:

(det G)−1/2∇j((det G)1/2Pi,j)

= ∇iqγG−1
γ,δ

(

G−1
ζ,α∇j∇kqδ∇kqζ∇jqα − ∆qδ

)

,

= −κγ∇iqγ |∇qγ |−1,
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which completes the proof of (A.3).
Let us finally consider (A.4). We have:

∇jPi,j = (det G)−1/2∇j((det G)1/2Pi,j) − (det G)−1/2Pi,j∇j((det G)1/2)

= −
N
∑

α=1

κα(n̂α)i − Pi,j∇j(ln(det G)1/2),

which is exactly (A.4).

Proof of Lemma A.3: For a fixed 1 ≤ α ≤ N , we have

(A.8)
(det G)−1/2div

(

(det G)1/2G−1
α,γ∇qγ

)

= G−1
α,γ∇qγ · ∇ ln

(

(det G)1/2
)

+ ∇G−1
α,γ · ∇qγ + G−1

α,γ∆qγ .

Using (3.5), the first term in (A.8) is:

G−1
α,γ∇qγ · ∇ ln(det G)1/2 =

1

2
G−1

α,γ∇qγ · G−1
ζ,δ∇Gδ,ζ ,

=
1

2
G−1

α,γ∇qγ · G−1
ζ,δ

(

∇2qδ∇qζ + ∇2qζ∇qδ

)

,

=G−1
α,γG−1

ζ,δ∇2qδ : ∇qζ ⊗∇qγ.

Using (A.7) the second term in (A.8) is

∇G−1
α,γ · ∇qγ = −G−1

γ,δG
−1
ζ,α

(

∇2qδ∇qζ + ∇2qζ∇qδ

)

· ∇qγ ,

= −G−1
γ,δG

−1
ζ,α

(

∇2qδ : ∇qζ ⊗∇qγ + ∇2qζ : ∇qδ ⊗∇qγ

)

.

Therefore, we have:

(det G)−1/2div
(

(det G)1/2G−1
α,γ∇qγ

)

= −G−1
ζ,α∇2qζ :

(

G−1
γ,δ∇qδ ⊗∇qγ

)

+ G−1
α,γ∆qγ,

which yields (A.5), using the definition (2.16) of κα.

B The mean curvature vector H

Here we show that the vector −∑N
α=1 καn̂α is the so-called mean curva-

ture vector H defined as [2]2

(B.1) H = −
N
∑

α=1

div Σ(να)να,

2 Depending on the textbooks, the mean curvature vector is defined as ±
∑N

α=1
καn̂α,

or as N−1
∑N

α=1
καn̂α. The vector H defined by (B.1) is also sometimes called the

additive curvature vector.
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where div Σ is the tangential divergence and (ν1, ...,νN )(x) denotes a
smooth orthonormal vector field generating the space normal to Σ at
point x. Geometrically, H points in the direction where the area of Σ
decreases most, and intervenes in mean curvature flows or in the diver-
gence theorem on manifolds (2.8) (see [2, 3]). This vector only depends
on the geometry of the surface Σ as a submanifold of R

n. In other words,
the dynamics (2.17) is intrinsic, like the measure µΣ it samples.

To derive the expression H = −∑N
α=1 καn̂α from (B.1), notice first

that this definition does not depend on the choice of the vector field
(ν1, ...,νN ). Thus, the mean curvature vector is characterized by the fact
that, for any vector ν in the normal space to Σ at point x, H · ν =
−div Σ(ν). Let us then compute: for 1 ≤ α0 ≤ N ,

−καn̂α · n̂α0

= − |∇qα|G−1
γ,α

(

∆qγ −∇2qγ : (G−1
δ,ζ∇qδ ⊗∇qζ)

)

×∇qα|∇qα|−1 · ∇qα0
|∇qα0

|−1,

= − G−1
γ,α

(

∆qγ −∇2qγ : (G−1
δ,ζ∇qδ ⊗∇qζ)

)

Gα,α0
|∇qα0

|−1,

= −
(

∆qα0
−∇2qα0

: (G−1
δ,ζ∇qδ ⊗∇qζ)

)

|∇qα0
|−1.

But we also have: for 1 ≤ δ ≤ N ,

div Σ(n̂δ) = Id : (P∇(∇qδ/|∇qδ|)) ,

= δi,j

(

δi,k − G−1
α,ζ∇iqα∇kqζ

)

∇k

(

∇jqδ|∇qδ|−1)
)

,

=
(

δi,k − G−1
α,ζ∇iqα∇kqζ

) (

∇k∇iqδ|∇qδ|−1 −∇iqδ∇kqδ|∇qδ|−2
)

,

= ∆qδ|∇qδ|−1 − G−1
α,ζ∇iqα∇kqζ∇k∇iqδ|∇qδ|−1 − 1

+ G−1
α,ζ∇iqα∇kqζ∇iqδ∇kqδ|∇qδ|−2,

= ∆qδ|∇qδ|−1 −∇2qδ : (G−1
α,ζ∇qα ⊗∇qζ)|∇qδ|−1.

Therefore, for any 1 ≤ α0 ≤ N ,

−
N
∑

α=1

καn̂α · n̂α0
= −div Σ(n̂α0

).

Since (n̂1, ..., n̂N )(x) generates the space normal to Σ at point x, this
proves that H = −∑N

α=1 καn̂α.
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C The proof of limη→0 X
η
t = X t

This appendix is devoted to the proof of

lim
η→0

X
η
t = Xt,

where X
η
t and Xt are such that X

η
0 = X0 and respectively satisfy (2.23)

and (2.24). For simplicity, we restrict ourselves to the scalar constraint
case, N = 1. Moreover, we suppose in this section that

(C.1) 0 < m ≤ |∇q| ≤ M and |∆q| ≤ M.

Lemma C.1 Let X
η
t be the solution of the stochastic differential equa-

tion (2.23) with initial condition X
η
0 = X0. Let us suppose (C.1) and

that:

(C.2) q(X0) = 0,

and

(C.3) |∇V | ≤ M.

Then we have:

(C.4) E

(

sup
t≤T

|q(Xη
t )|
)

≤ C2

√

2β−1η ln(1 + M 2T/η) +
β−1M + M2

m2
η,

(C.5) sup
t≥0

E
(

|q(Xη
t )|

2
)

≤ 2β−1η + 2

(

β−1M + M2

m2

)2

η2.

Proof: We have:

q(Xη
t ) = − 1

η

∫ t

0
|∇q|2(Xη

s)q(X
η
s) ds −

∫ t

0
∇q(Xη

s) · ∇V (Xη
s) ds

+
√

2β−1

∫ t

0
∇q(Xη

s) · dW s + β−1
∫ t

0
∆q(Xη

s) ds.

Let us first perform a change of time. The local martingale Mt =
∫ t
0 ∇q(Xη

s)·
dW s is such that 〈M〉t =

∫ t
0 |∇q|2(Xη

s)ds ≥ m2t (by (C.1)). Therefore,
〈M〉∞ = ∞ almost surely and thus, by the Dubins-Schwartz Theorem,
there exists a Brownian motion B such that Mt = B〈M〉t . Let us set
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τ(t) = inf{s, 〈M〉s > t} and Zt = q(Xη
τ(t)). By a change of variable, we

obtain:

Zt = −1

η

∫ t

0
Zs ds +

√

2β−1Bt +

∫ t

0

(β−1∆q −∇V · ∇q)

|∇q|2 (Xη
τ(s)) ds.

Therefore, we have:

Zt =
√

2β−1

∫ t

0
e−(t−s)/ηdBs +

∫ t

0
e−(t−s)/η (β−1∆q −∇V · ∇q)

|∇q|2 (Xη
τ(s)) ds,

≤
√

2β−1

∫ t

0
e−(t−s)/ηdBs +

β−1M + M2

m2
η.

Therefore,

E

(

sup
t≤T

|Zt|
)

≤
√

2β−1E

(

sup
t≤T

∣

∣

∣

∣

∫ t

0
e−(t−s)/ηdBs

∣

∣

∣

∣

)

+
β−1M + M2

m2
η.

The process gt =

∫ t

0
e−(t−s)/ηdBs is an Ornstein-Uhlenbeck process so

that, by [17], there exist C1, C2 > 0 such that

C1
√

η ln(1 + T/η) ≤ E sup
t≤T

|gt| ≤ C2
√

η ln(1 + T/η).

Thus, we have:

E

(

sup
t≤T

|Zt|
)

≤ C2

√

2β−1η ln(1 + T/η) +
β−1M + M2

m2
η.

This means that

E

(

sup
t≤τ(T )

|q(Xη
t )|
)

≤ C2

√

2β−1η ln(1 + T/η) +
β−1M + M2

m2
η.

Using the fact that τ(t) ≥ t
M2 , we then obtain (C.4).

If we consider another norm, we have:

E|Zt|2 ≤ 4β−1E

∣

∣

∣

∣

∫ t

0
e−(t−s)/ηdBs

∣

∣

∣

∣

2

+ 2

(

β−1M + M2

m2

)2

η2.

≤ 2β−1η + 2

(

β−1M + M2

m2

)2

η2.

This yields (C.5).
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We now introduce the following change of coordinates:

(C.6) Φ :











R
n → R

n

x 7→
(

p(x)
q(x)

)

where p = (p1, . . . , pn−1) : R
n → R

n−1 is such that ∇pi · ∇q = 0 for
all 1 ≤ i ≤ n − 1 and for all x ∈ Σ. In other words, Φn = q, while
Φi = pi, for 1 ≤ i ≤ n − 1. We suppose that Φ is invertible, and thus,
Range(∇p1, ...,∇pn−1) = n − 1. It is always possible to build such a
function Φ, at least locally, by considering a parametrization of Σ.

For the statement of the next proposition, we suppose that:

(C.7) 0 < m ≤ |∇Φ| ≤ M , and ∇Φ and ∆Φ are Lipschitz functions.

Notice that the assumptions on Φ are actually some assumptions related
to the regularity of the surface Σ, and therefore, some assumptions related
to the regularity of q. If Σ is sufficiently smooth, it is possible to define the
parametrization Φ at least in a neighborhood of X 0, so that the arguments
given below still hold, by a localization procedure on the processes X t

and X
η
t .

Proposition C.2 Let X
η
t be the solution of the stochastic differential

equation (2.23) with initial condition X
η
0 = X0. Let Xt be the solution

of the following stochastic differential equation:

(C.8)
Xt = X0 −

∫ t

0
P (Xs)∇V (Xs) ds +

√

2β−1

∫ t

0
P (Xs) dW s

+ β−1
∫ t

0
∇ · P (Xs) ds.

We suppose that (C.2), (C.1) , (C.3) and (C.7) hold. In addition, we
suppose that:

(C.9) ∇V is a Lipschitz function.

Then, for small η,

(C.10) sup
t≤T

E |Xη
t − Xt|2 ≤ Cη,

where C is a constant depending on the data, and on T .
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Notice that X t solution to (C.8) satisfies (2.24) since ∇·P = −P∇ ln |∇q|−
κn̂ (see (A.2)). All this can be generalized to the case N > 1.

Proof: By rewriting the stochastic differential equations in the co-
ordinates (p, q), we have, for X

η
t ,



















for all 1 ≤ i ≤ n − 1,

dΦi(X
η
t ) = ∇jΦi(X

η
t )(−∇jV (Xη

t ) dt +
√

2β−1dW j(t)) + β−1∆Φi(X
η
t ) dt,

dq(Xη
t ) = − 1

η |∇q|2(Xη
t )q(X

η
t ) dt + ∇q(Xη

t ) · (−∇V (Xη
t ) dt +

√

2β−1dW t)

+ β−1∆q(Xη
t ) dt,

and for X t,
(C.11)










for all 1 ≤ i ≤ n − 1,

dΦi(X t) = ∇jΦi(X t)(−∇jV (X t) dt +
√

2β−1dW j(t)) + β−1∆Φi(X t) dt,
dq(X t) = 0.

Let us prove (C.11). By Itô Formula, we have,

dΦi(X t) =∇Φi · (P∇V + β−1∇ · P )(X t) dt

+
√

2β−1∇Φi · (P (X t)dW t) + β−1P : ∇2Φi(Xt) dt

Equation (C.11) can be straightforwardly obtained from this equation
using the fact that: on Σ,

P∇Φi =

{

∇Φi if 1 ≤ i ≤ n − 1,

0 if i = n,
and ∇·(P∇Φi) =

{

∆Φi if 1 ≤ i ≤ n − 1,

0 if i = n.

Now, by (C.5), we know that, for small η, supt≥0 E
(

|q(Xη
t ) − q(X t)|2

)

≤
Cη. For the other components of Φ(X t), we have, by using (C.3), (C.9), (C.7):
∀0 ≤ t ≤ T ,

E

(

n−1
∑

i=1

|Φi(X
η
t ) − Φi(Xt)|2

)

≤ C(T )

∫ t

0
E|Xη

s − Xs|2 ds.

Therefore, by using (C.7) and (C.5), we obtain: ∀0 ≤ t ≤ T ,

E |Φ(Xη
t ) − Φ(Xt)|2 ≤ C(T )

∫ t

0
E|Xη

s − Xs|2 ds + Cη,

and thus

E |Xη
t − Xt|2 ≤ C(T )

∫ t

0
E|Xη

s − Xs|2 ds + Cη,

which yields (C.10).
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D The situation with molecular constraints

In many applications, in addition to the constraints associated with the
reaction coordinates q(x) whose free energy is of interest, some molec-
ular constraints c(x) = (c1(x), . . . , cM (x)) = 0 (M < n) are needed.
These correspond to physical constraints on the system, such as fixed
bond lengths for example. For completeness, we discuss this case here.
We suppose in the following that rank(∇c1, ...,∇cM ) = M and

rank(∇q1, ...,∇qN ,∇c1, ...,∇cM ) = N + M.

In this section, Latin indices go from 1 to M or from 1 to N + M .
When molecular constraints are present, the original Boltzmann-Gibbs

distribution (replacing (1.2)) is

(D.1) dµΓ(x) = Z−1
Γ e−βV (x)dσΓ(x)

where Γ = {x : c(x) = 0} is the codimension M manifold on which the
system is constrained due to the presence of the molecular constraints,
σΓ is the Lebesgue measure on this manifold, and

(D.2) ZΓ =

∫

Γ
e−βV (x)dσΓ(x).

D.1 Definition of the free energy

As in in the case without molecular constraints (see Section 4.1), the free
energy FΓ associated with q(x) is such that e−βFΓ(z) is the probability
density function of the variable Z = q(X) when X is distributed ac-
cording to µΓ. Thus, the free energy FΓ is defined by: for all function
φ : R

N → R,

(D.3)

∫

Γ
φ(q(x))Z−1

Γ e−βV (x)dσΓ(x) =

∫

RN
φ(z)e−βFΓ(z) dz.

To obtain an explicit expression of FΓ, we need the following general-
ization of the co-area formula (see Theorem 2.93 p. 101 in [1]): for any
function g : R

n → R (possibly defined only on Γ) and a smooth function
q : R

n → R
N ,

(D.4)

∫

Γ
g(x)|det GΓ(x)|1/2dσΓ(x) =

∫

RN

∫

Γ∩Σ(z)
g(x)dσΓ∩Σ(z)(x)dz,

where the matrix GΓ is defined by: for 1 ≤ α, ζ ≤ N ,

(D.5) (GΓ)α,ζ = ∇Γqα · ∇Γqζ .
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In (D.5), ∇Γ denotes the surface gradient. More explicitly, let us introduce
the orthogonal projector Q(x) on the tangent space to Γ at point x:

(D.6) Q(x) = Id −
M
∑

i,j=1

K−1
i,j (x)∇ci(x) ⊗∇cj(x),

where, ∀1 ≤ i, j ≤ M ,

(D.7) Ki,j = ∇ci · ∇cj.

Since qα is also defined in the vicinity of Γ, we can thus express the surface
gradient of qα as:

(D.8) ∇Γqα(x) = Q(x)∇qα(x).

We also recall that the surface divergence on Γ is the trace of the surface
gradient on Γ (see (2.7) with Σ replaced by Γ and P by Q),

Now, using (D.4), by similar computations as those made in Section 4.1
to obtain (4.6), we have the following expression for the free energy:
(D.9)

FΓ(z) = −β−1 ln
(

Z−1
Γ

∫

Γ∩Σ(z)
e−βV (x)|det GΓ(x)|−1/2dσΓ∩Σ(z)(x)

)

,

or equivalently

(D.10) FΓ(z) = −β−1 ln
(

Z−1
Γ ZΓ∩Σ(z),|det GΓ|−1/2

)

.

This means that, similarly to the case without constraints, we need to re-
place the potential V by V|det GΓ|−1/2 in order to sample the right measure.
Thus, the numerical schemes to consider are (written here for z = 0):

(D.11)















Xn+1 = Xn −∇(V| det GΓ|−1/2)(Xn)∆t +
√

2β−1∆W n

+
∑N

α=1 λα,n∇qα(Xn+1) +
∑M

i=1 µi,n∇ci(Xn+1),

where λα,n and µi,n such that q(Xn+1) = c(Xn+1) = 0,

and

(D.12)















Xn+1 = Xn −∇(V| det GΓ|−1/2)(Xn)∆t +
√

2β−1∆W n

+
∑N

α=1 λα,n∇qα(Xn) +
∑M

i=1 µi,n∇ci(Xn+1),

where λα,n and µi,n such that q(Xn+1) = c(Xn+1) = 0.

Notice that ∇V|det GΓ|−1/2) involves the Hessian ∇2
Γqα, but the computa-

tion of this quantity can be avoided in practice by using an approximation
similar to (3.6).
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D.2 Expression for the mean force

We now turn to the question of the computation of the mean force. As
in the case without molecular constraints, we obtain the following gener-
alization of Lemma 4.1:

Lemma D.1 The gradient of FΓ (namely the mean force) can be ex-
pressed as: for any 1 ≤ α ≤ N ,

(D.13)
∇αFΓ(z) =

N
∑

γ=1

∫

Γ∩Σ(z)

(

∇ΓV · (G−1
Γ )α,γ∇Γqγ

− β−1div Γ((G−1
Γ )α,γ∇Γqγ)

)

dµΓ∩Σ(z),|det GΓ|−1/2 .

As in the case without molecular constraints, this formula can be used
directly to evaluate ∇αFΓ(z). Let Xn be the solution to (D.11) or (D.12).
Then, the first term at the right hand side of (D.13) can be obtained from

(D.14)

lim
T→∞

lim
∆t→0

1

M

M
∑

m=1

N
∑

γ=1

(

∇ΓV · (G−1
Γ )α,γ∇Γqγ

)

(Xn)

=
N
∑

γ=1

∫

Γ∩Σ(z)
∇ΓV · (G−1

Γ )α,γ∇Γqγ dµΓ∩Σ(z),|det GΓ|−1/2 ,

where M = T/∆t. As for the second term, we have
(D.15)

− β−1 lim
T→∞

lim
∆t→0

1

M∆t

M
∑

m=1

N
∑

γ=1

(

((GΓ)−1
α,γ∇Γqγ)(Xn + ∆W n)

− ((GΓ)−1
α,γ∇Γqγ)(Xn)

)

· Q(Xn)∆W n

= −β−1
N
∑

γ=1

∫

Γ∩Σ(z)
div Γ((G−1

Γ )α,γ∇Γqγ)dµΓ∩Σ(z),|det GΓ|−1/2 .

Proof of Lemma D.1: Let Φ by a C∞
c (R) function and φ = Φ′.

Then for a fixed 1 ≤ α ≤ N ,

(D.16)

∫

RN
φ(zα) exp(−βFΓ(z)) dz

=

∫

RN
Φ′(zα) exp(−βFΓ(z)) dz,

= β

∫

RN
Φ(zα)∇αFΓ(z) exp(−βFΓ(z)) dz

= βZ−1
Γ

∫

RN
Φ(zα)ZΓ∩Σ(z),|det GΓ|−1/2∇αFΓ(z) dz.
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On the other hand, using successively (D.4), (2.8), and the fact that the
mean curvature vector of Γ is orthogonal to ∇Γqγ , for any 1 ≤ γ ≤ N we
have
(D.17)
∫

RN
φ(zα) exp(−βFΓ(z)) dz

= Z−1
∫

RN

∫

Γ∩Σ(z)
φ(qα(x))e−βV (x)|det GΓ(x)|−1/2dσΓ∩Σ(z)(x)dz

= Z−1
∫

Γ
Φ′(qα(x))e−βV (x)dσΓ(x),

= Z−1
∫

Γ
(G−1

Γ )α,γ∇Γqγ · ∇Γ (Φ ◦ qα) (x)e−βV (x)dσΓ(x),

= −Z−1
∫

Γ
div Γ

(

(G−1
Γ )α,γ∇Γqγe−βV

)

(x)Φ ◦ qα(x)dσΓ(x),

= Z−1
∫

Γ

(

β∇ΓV · (G−1
Γ )α,γ∇Γqγ − div Γ

(

(G−1
Γ )α,γ∇Γqγ

))

(x)

× e−βV (x)Φ(qα(x))dσΓ(x),

= Z−1
∫

RN
Φ(zα)ZΓ∩Σ(z),| det GΓ|−1/2

×
∫

Γ∩Σ(z)

(

β∇ΓV · (G−1
Γ )α,γ∇Γqγ − div Γ

(

(G−1
Γ )α,γ∇Γqγ

))

× dµΓ∩Σ(z),|det GΓ|−1/2 dz.

The fact that (D.16) is equal to (D.17) for all functions Φ completes the
proof of (D.13).

Notice that, as a generalization of (4.9), ∇αFΓ(z) can also be expressed
as

(D.18)

∇αFΓ(z)

=

∫

Γ∩Σ(z)

N
∑

γ=1

(G−1
Γ )α,γ∇Γqγ ·

(

∇ΓV|det GΓ|−1/2 + β−1HΓ

)

× dµΓ∩Σ(z),|det GΓ|−1/2 ,

where HΓ is defined by:

(D.19) HΓ = −
N
∑

α=1

(κΓ)α(n̂Γ)α,
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with
(D.20)

(κΓ)α = |∇Γqα||det GΓ|−1/2div Γ



|detGΓ|1/2
N
∑

γ=1

(G−1
Γ )α,γ∇Γqγ



 ,

and

(D.21) (n̂Γ)α(x) =
∇Γqα(x)

|∇Γqα(x)| .

D.3 The orthogonal case

By Proposition 4.3, we know that for 1 ≤ α ≤ N ,
(D.22)

lim
T→∞

lim
∆t→0

1

T

T/∆t
∑

m=1

λα,m

=

∫

Γ∩Σ

N+M
∑

i=1

L−1
α,i∇ri ·

(

∇V|det GΓ|−1/2 + β−1H
)

dµΓ∩Σ,|det GΓ|−1/2 ,

where we have used the (N + M) dimensional constraints vector

r = (q1, . . . , qN , c1, . . . , cM )

and the (N + M) × (N + M) matrix L:

(D.23) Li,j(x) = ∇ri(x) · ∇rj(x).

Notice that in (D.22), H is the mean curvature vector of the surface Γ∩Σ:

H = −
N+M
∑

i=1

κin̂i

with n̂i = ∇ri
|∇ri|

and (see (A.5))

κi = |∇ri||det L|−1/2div
(

|det L|1/2
N+M
∑

j=1

L−1
i,j ∇rj

)

.

In the case the molecular constraints and the constraints related to the
reaction coordinates are orthogonal in the sense that: ∀1 ≤ i ≤ M and
∀1 ≤ α ≤ N , ∇ci(x) · ∇qα(x) = 0 for x ∈ Γ ∩ Σ, (D.22) indeed gives the
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correct expression of the mean force ∇FΓ(0). This is because in this case,
∀1 ≤ α ≤ N , ∇Γqα = ∇qα, ∀1 ≤ α, β ≤ N , Lα,β = (GΓ)α,β , ∀1 ≤ α ≤ N
and ∀N + 1 ≤ i ≤ M , Lα,i = 0, so that ∀1 ≤ α, β ≤ N , L−1

α,β = (G−1
Γ )α,β

and ∀1 ≤ α ≤ N and ∀N +1 ≤ i ≤ M , L−1
α,i = 0. Thus, one easily obtains

that:

N+M
∑

i=1

L−1
α,i∇ri ·

(

∇V|det GΓ|−1/2 + β−1H
)

=
N
∑

γ=1

(G−1
Γ )α,γ∇Γqi ·

(

∇V|det GΓ|−1/2 + β−1H
)

,

=
N
∑

γ=1

(G−1
Γ )α,γ∇Γqγ ·

(

∇ΓV| det GΓ|−1/2 − β−1
N
∑

δ=1

κδ(n̂Γ)δ

)

.

Thus, it remains only to check that κα = (κΓ)α, which amounts to prove
that

|det K|−1/2div



|det K|1/2(det GΓ)1/2
N
∑

γ=1

(G−1
Γ )−1

α,γ∇Γqγ





= div Γ



|det GΓ|1/2
N
∑

γ=1

(G−1
Γ )α,γ∇Γqγ



 ,

using the fact that detL = (det K)(detGΓ). This holds since for any
smooth function φ such that, ∀x ∈ Γ, Q(x)φ(x) = 0 , we have:

|detK|−1/2div
(

|det K|1/2φ
)

= |detK|−1/2div
(

|det K|1/2Qφ
)

,

= |detK|−1/2div
(

|det K|1/2Q
)

· φ + div Γ(φ),

= div Γ(φ),

since |det K|−1/2div
(

|det K|1/2Q
)

is the mean curvature vector to Γ

(see (A.3)) and is therefore orthogonal to φ.
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