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Abstract

This article is devoted to the study of the convergence rate of stochastic algorithms
using Chen’s procedure throughout a functional Central Limit Theorem. We establish
the convergence in the Skorokhod space of a well defined interpolation of the renor-
malised iterates to a stationary Ornstein Uhlenbeck process. This new result enables
us to derive a CLT for the moving window averaging version of Chen’s algorithm.
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1 Introduction

In a stochastic context, optimisation problems often become of a great complexity. In that
respect, stochastic algorithms represent an extremely valuable alternative to deterministic
techniques. Nonetheless, the convergence of these algorithms is hung up to assumptions
that are barely satisfied in practise, namely a sub-linear growth is required. There may
also be other reasons why these algorithms cannot be used right-away. The optimisation
problem may be to be solved under some constraints or may have local optima. Because
of these reasons, these algorithms need to be improved for practical usage. Constrained
algorithms are used to ensure that the constrains are satisfied at each step by projecting
the new iterate on the constraint set.

The way to deal with fast growing functions also requires some kind of projections. The
idea is to prevent the algorithm from blowing up during the first steps by forcing the
iterates to remain in an increasing sequence of compact sets. This procedure, known as
Chen’s procedure, was first introduced in [5]. This algorithm is often needed in practise
and applications in finance have recently been given in [1], where the author explains how
to implement an adaptive importance sampling technique using these stochastic proce-
dures. As the payoffs commonly involved are usually completely non-linear, the standard
procedures often fail and Chen’s truncation technique is used instead.

Sometimes, one uses an averaging version of Chen’s procedure to smooth its numerical
behaviour. Averaging algorithms have already been studied in [13], but not in combination
with random truncations. The study the convergence rate of averaging algorithms can
be achieved through the getting of a functional Central Limit Theorem (CLT) for the
corresponding standard algorithm.

∗E-mail: lelong@cermics.enpc.fr
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Numerous results are already known on the convergence rate of unconstrained algorithms,
see [8] or [7]. Duflo points out that the convergence speed of stochastic algorithms depends
on the relative position of the smallest eigenvalue of the Hessian matrix at the optimum
and 1/2. This remark is to be put together with Hypothesis 3. A functional CLT has
also been proved for unconstrained algorithm by Bouton in [4] or Benveniste et al. in [2].
The convergence rate of constrained algorithms has been studied by Kushner et al. in
[11] where he gives a functional CLT. Given that functional result, they derive a CLT for
averaging constrained algorithms. The problem of multiple targets has been tackled by
Pelletier in [12] where she obtained a CLT. As one can see, a lot of work has already been
done around the convergence rate of stochastic algorithm. However, beyond the almost
sure convergence (see [6]) no results are known for Chen’s algorithm. Note that results
on the convergence rate of Chen’s algorithm cannot easily be deduced from the theory of
classical stochastic algorithms
The purpose of this article is to prove a functional CLT for Chen’s algorithm and apply it
to averaging algorithms. In the first part of this work, we present the framework and the
main results: namely two functional CLTs for this algorithm and a CLT for its averaging
version. In the second part, we expose the proof of the functional CLTs throughout a few
lemmas, whose proofs are postponed to the third part. Finally, the last section is devoted
to the proof of the CLT for moving window averaging algorithms.

2 CLT for Chen’s procedure

Let us consider a general problem consisting in finding the root of a continuous function
u : θ ∈ R

d 7−→ u(θ) ∈ R
d, defined as an expectation on a probability space (Ω,A,P).

u(θ) = E(U(θ, Z)), (1)

where Z is a random variable in R
m and U a measurable function defined on R

d × R
m.

To solve this problem, one could use a classical stochastic algorithm. However, these
procedures often show a rough numerical behaviour, especially when E(‖U(·, Z)‖2) grows
too quickly.
One can then use alternative procedures, such as the one proposed by Chen in [5], on which
we have decided to concentrate in this work. We study both the standard and averaging
version of Chen’s algorithm.
This technique consists in forcing the algorithm to remain in an increasing sequence of
compact sets. Somehow, it prevents the algorithm from blowing up during the ”first”
steps.
We consider an increasing sequence of compact sets (Kj)j such that

⋃∞
j=0 Kj = R

d.
We also introduce (Zn)n an independent and identically distributed sequence of random
variables following the law of Z and (γn)n a decreasing sequence of positive real numbers.
For θ0 ∈ K0 and σ0 = 0, we define the sequences of random variables (θn)n and (σn)n.
First of all, we compute the value of a candidate for θn+1 denoted θn+ 1

2
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


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

θn+ 1
2

= θn − γn+1U(θn, Zn+1),

if θn+ 1
2
∈ Kσn θn+1 = θn+ 1

2
and σn+1 = σn,

if θn+ 1
2
/∈ Kσn θn+1 = θ0 and σn+1 = σn + 1.

(2)

Remark 1. When θn+ 1
2
/∈ Kσn , one can set θn+1 to any measurable function of (θ0, . . . , θn)

with values in a given compact set. This existence of such a compact set is definitely
essential to proof the a.s. convergence of (θn)n.
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We introduce Fn = σ(Zk; k ≤ n) the σ-field generated by the random vectors Zk, for
k ≤ n. Note that θn is Fn−measurable since θ0 is deterministic and U measurable. We
can write u(θn) = E[U(θn, Zn+1)|Fn].
It is often more convenient to rewrite (2) as follows

θn+1 = θn − γn+1u(θn) − γn+1δMn+1 + γn+1pn+1 (3)

where

δMn+1 = U(θn, Zn+1) − u(θn), (4)

and pn+1 =

{

u(θn) + δMn+1 + 1
γn+1

(θ0 − θn) if θn+ 1
2
/∈ Kσn ,

0 otherwise.
(5)

In this paper, we only consider γn sequences of the type γn = γ
(n+1)α , with 1/2 < α ≤ 1.

Anyway for values of α outside of this range, there is no chance to establish a convergence
result for the sequence (θn)n. Depending on the value of α, we obtain two slightly different
results.

2.1 Hypotheses

In the following, the prime notation stands for the transpose operator. We need three
different kinds of hypotheses. (·|·) denotes the standard Euclidean scalar product on R

d.
First, we state a few hypotheses dealing with the behaviour of function u.

Hypothesis 1 (global hypothesis) ∃! θ⋆ ∈ R
d, u(θ⋆) = 0 and ∀θ ∈ R

d, θ 6= θ⋆, (θ −
θ⋆|u(θ)) > 0.

Hypothesis 2 (local hypothesis) There exists a function y : R
d → R

d×d satisfying
lim‖x‖→0 ‖y(x)‖ = 0 and a symmetric definite positive matrix A such that

u(θ) = A(θ − θ⋆) + y(θ − θ⋆)(θ − θ⋆).

Hypothesis 3 γA− I
2 is definite positive.

We also need an hypothesis on the growth of the sequence δMn in some L
2+ρ space and a

convergence result on the covariance matrix of δMn.

Hypothesis 4 There exists a real number ρ > 0 such that

κ = sup
n

E

(

‖δMn‖2+ρ
)

<∞.

Hypothesis 5 There exists a symmetric definite positive matrix Σ such that

E
(

δMnδM
′
n|Fn−1

) P−−−→
n→∞

Σ.

Finally, we require an assumption on the geometry of the Kn compact sets.

Hypothesis 6 There exists η > 0 such that ∀n ≥ 0 d(θ⋆, ∂Kn) > η.

Thanks to Hypothesis 4, we can set κ0 = supn E

(

‖δMn‖2
)

<∞.
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We define the sequence of the normalised iterates for all n ≥ 0,

∆n =
θn − θ⋆√

γn
.

We now introduce a sequence of interpolating times {tn(u);u ≥ 0, n ≥ 0}

tn(u) = sup

{

k ≥ 0 ;

n+k
∑

i=n

γi ≤ u

}

. (6)

with the convention sup ∅ = 0.
We define ∆n(·) as the piecewise constant interpolation of (∆n+p)p on intervals of length
(γn+p)p. More precisely,

∆n(0) = ∆n and ∆n(t) = ∆n+tn(t)+1 for t ≥ 0. (7)

This means that for t ∈
[

∑n+p
i=n γi ,

∑n+p+1
i=n γi

[

, tn(t) = p and ∆n(t) = ∆n+p+1. θn(·) is

defined similarly.
We also introduce Wn(.)

Wn(0) = 0 and Wn(t) =

n+tn(t)+1
∑

i=n+1

√
γiδMi for t > 0. (8)

Remark 2. The processes ∆n(·) and Wn(·) are pure jump càdlàg processes.

2.2 Main results

For any arbitrary T > 0, D([0, T ]) stands for the space of processes defined on [0, T ]
with almost sure right-continuous paths, left-hand limits and values in R

d. We say that
a sequence of càdlàg processes Xn converges in law to X or weakly converges in D([0, T ])
(Xn =⇒ X) in D if L(Xn) → L(X) weakly in the set of all probability measures defined
on D([0, T ]). One can refer to [10] or [3] for more details on the weak convergence of càdlàg
processes.
In this section, we present three Theorems. The first two state the weak convergence of
the sequence of processes (∆n(·))n in D([0, T ]) for any T and the third one is a CLT for
an averaging version of Chen’s algorithm. Since the limits will be proved not to depend
on T , the space D([0, T ]) will simply be denoted D.

2.2.1 A CLT for Algorithm (3)

A CLT for 1/2 < α < 1

Theorem 1. If we assume Hypotheses 1-2 and 4-6, the sequence of processes (∆n(·))n
converges in law to a diffusion ∆(·) satisfying

∆(t) = ∆(0)e−At +

∫ t

0
eA(u−t)dW (u),

where ∆(0) is a random normal variable with mean 0 and variance

V =

∫ ∞

0
e−AuΣe−Audu

and W is a Wiener process w.r.t. the smallest σ−algebra that measures (∆(·),W (·)) with
covariance matrix Σ.
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A CLT for α = 1

Theorem 2. If we assume Hypotheses 1-6, the sequence of processes (∆n(·))n weakly
converges in D to a diffusion ∆(·) satisfying

∆(t) = ∆(0)e−(A− I
2γ

)t +

∫ t

0
e(A−

I
2γ

)(u−t)dW (u),

where ∆(0) is a random normal variable with mean 0 and variance

V =

∫ ∞

0
e−(A− I

2γ
)uΣe−(A− I

2γ
)udu

and W is a Wiener process w.r.t. the smallest σ−algebra that measures (∆(·),W (·)) with
covariance matrix Σ.

Remark 3. Hypothesis 3 involves the gradient of function u at the point θ⋆, which is
seldom available from a practical point of view but one can definitely not avoid this hy-
pothesis. Remember that this hypothesis was already appearing in the works related to
CLTs for classical stochastic algorithms as in [9] for instance. Moreover, considering the
expression of V , one immediately understands the importance of this condition. If this
hypothesis were not satisfied, the variance V would be non finite, which would basically
mean that the rate of convergence is slower than

√
n.

2.2.2 A CLT for moving window averaging algorithms

In this part, we restrict ourselves to slow decreasing step sequences, namely γn = γ
nα with

1
2 < α < 1. We assume the Hypotheses of Theorem 2. The sequence (θn)n converges
almost surely to θ⋆ and the associated normalised sequence of processes (∆n(·))n weakly
converges to a stationary Gaussian process in the space of càdlàg processes.
For any t > 0, we introduce a moving window average of the iterates

θ̂n(t) =
1

tn(t)

n+tn(t)−1
∑

i=n

θi. (9)

One can then be tempted to centre this sequence around θ⋆ and normalise it. Naturally,
we define

∆̂n(t) =
θ̂n(t) − θ⋆√

γn
=

1√
γntn(t)

n+tn(t)−1
∑

i=n

(θi − θ⋆). (10)

Theorem 3. Under the Hypotheses of Theorem 2, the sequence ∆̂n(t) converges in dis-
tribution to a normally distributed random variable with mean 0 and variance

V̂ =
1

t
A−1ΣA−1 +

A−2(e−At − I)V + V A−2(e−At − I)

t2
(11)

where V is defined in Theorem 2.

Remark 4. Since tn(t) ∼ t
γn

(see (42)), one can replace tn(t) by its equivalent in the

definitions of (θ̂n(t))n and (∆̂n(t))n in Equations (9) and (10) and Theorem 3 still holds.

3 Proofs of Theorems 1 and 2

The proofs of the Theorems announced in Section 2.2 will be achieved throughout a series
of lemmas whose proofs — mainly based on tightness criteria in Skorokhod’s space — are
postponed to Section 3.2.
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3.1 Technical lemmas

Lemma 1. There exists N0 > 0 such that if we introduce the following sequence of in-
creasing sets

An =

{

sup
n≥m>N0

‖θm − θ⋆‖ < x0

}

, (12)

we have

sup
n≥N0

E

(

‖∆n‖2 1An

)

<∞. (13)

Moreover, the sequence (∆n)n is tight in R
d.

Remark 5. Note that (An)n is a decreasing sequence of measurable sets w.r.t (Fn)n.

Lemma 2. For the value of N0 introduced in Lemma 1, we have for any T > 0

sup
n≥N0

E

(

sup
t≤T

‖∆n(t)‖2 1An+tn(T )

)

<∞.

Moreover, the sequence
(

supt≤T ‖∆n(t)‖2
)

n
is tight in R

+.

Lemma 3. (Wn(t))0≤t≤T converges in law to a process W , which is a Wiener process
w.r.t. the filtration it generates with covariance matrix Σ.

Remark 6. The proof will show that the limit does not depend on the interval [0, T ]. So
the limit can simply be denoted W .

Lemma 4 (Aldous’ criteria). For any positive η and ε, there exists 0 < δ < 1 such that
we have the following inequality

lim sup
n

sup

{

P (‖∆n(τ) − ∆n(S)‖ ≥ η) ;
S and τ stopping times in [0, T ],

S ≤ τ ≤ (S + δ) ∧ T

}

≤ ε. (14)

Lemma 5. (Wn(·),∆n(·))n is tight in D × D and converges in law to (W,∆) where W is
a Wiener process with respect to the smallest σ−algebra that measures (W (·),∆(·)) with
covariance matrix Σ and ∆ is the stationary solution of

d∆(t) = −Q∆(t)dt− dW (t).

3.2 Proofs of the Lemmas

Before proving the different Lemmas, we need a result stating the almost sure convergence
of the sequence (θn)n. A proof of the following Proposition can be found in [5] or [7].

Proposition 1. Under Hypotheses 1 and 4, the sequence (θn)n converges a.s. to θ⋆ and
the sequence (σn)n is a.s. finite (i.e. for n large enough pn = 0 a.s.).

For sake of completeness, a proof of this proposition can be found in Appendix B.
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3.2.1 Proof of Lemma 1

We only do the proof in the case α = 1, as in the other case, it is sufficient to slightly
modify a few Taylor expansions and the same results still hold.
First, we establish a recursive relation

∆n+1 =
θn+1 − θ⋆√

γn+1
,

=
1√
γn+1

(θn − θ⋆ − γn+1u(θn) − γn+1δMn+1 + γn+1pn+1) ,

=

√

γn
γn+1

∆n −
√
γn+1(u(θn) + δMn+1 − pn+1).

Using Hypothesis 2, the previous equation becomes

∆n+1 =

(
√

γn
γn+1

I −√
γn+1γn(A+ y(θn − θ⋆))

)

∆n −
√
γn+1(δMn+1 + pn+1). (15)

The following Taylor expansions hold

√

γn
γn+1

= 1 +
1

2(n+ 1)
+ O

(

1

n2

)

and
√
γnγn+1 = γn + O

(

1

n2

)

. (16)

We define

Q = A− I

2γ
, (17)

which is symmetric definite positive.
This remark enables us to simplify Equation (15) by introducing a new sequence (βn)n
such that for any n larger than some fixed n0, |βn| ≤ C, where C is a positive real constant.
Equation (15) can be rewritten as

∆n+1 = ∆n − γnQ∆n − γny(θn − θ⋆)∆n −
√
γn+1δMn+1

+
√
γn+1pn+1 +

βn
(n+ 1)2

(B + y(θn − θ⋆))∆n, (18)

where B is a deterministic matrix.

Let ∆n+ 1
2

=
θn+ 1

2
− θ⋆

√
γn+1

.

∥

∥

∥
∆n+ 1

2

∥

∥

∥

2
≤
∥

∥

∥

∥

∆n − γn(Q+ y(θn − θ⋆))∆n −
√
γn+1δMn+1 +

βn
(n+ 1)2

(B + y(θn − θ⋆))∆n

∥

∥

∥

∥

2

.

Let us take, in the previous equality, the conditional expectation w.r.t Fn — denoted En.

En

(

∥

∥

∥
∆n+ 1

2

∥

∥

∥

2
)

≤ ‖∆n‖2 −2γn∆n
′(Q+y(θn−θ⋆))∆n+O

(

1

n2

)

‖∆n‖2 +γn+1En(‖δMn+1‖2).

The definition of the An sets needs to be specified a little.
Since θn converges almost surely to θ⋆,

∀ε > 0, ∀η > 0,∃N > 0 such that ∀n ≥ N P

(

sup
m>n

‖θm − θ⋆‖ > η

)

< ε. (19)

Let λ > 0 be the smallest eigenvalue of Q. Since Q is symmetric definite positive, λ > 0.
lim‖x‖→0 y(x) = 0, so for x < x0, ‖y(x)‖ < λ/2. Let ε > 0. Thanks to (19), there exists a
rank N0 — only depending on x0 and ε — such that P(supm>N0

‖θm − θ⋆‖ > x0) < ε.
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In the definition of the An sets (see (12)), we choose N0 as defined above (and greater than
n0). On the set An, Q+ y(θn − θ⋆) is a definite positive matrix with smallest eigenvalue
greater than λ/2. Therefore ∆n

′(Q + y(θn − θ⋆))∆n > λ/2 ‖∆n‖2. We can assume that
for n > N0, O( 1

n2 ) ≤ λ/4γn.

E

(

∥

∥

∥∆n+ 1
2

∥

∥

∥

2
1An

)

− E

(

‖∆n‖2 1An

)

≤ −γn
λ

4
E

(

‖∆n‖2 1An

)

+ cγn,

E

(

∥

∥

∥
∆n+ 1

2

∥

∥

∥

2
1An+1

)

− E

(

‖∆n‖2 1An

)

≤ −γn
λ

4
E

(

‖∆n‖2 1An

)

+ cγn, (20)

where c is a positive constant.
Now we would like to replace ∆n+ 1

2
by ∆n+1.

‖∆n+1‖2 =
‖θ0 − θ⋆‖2

γn+1
1pn+1 6=0 +

∥

∥

∥
∆n+ 1

2

∥

∥

∥

2
1pn+1=0,

‖∆n+1‖2 ≤
∥

∥

∥∆n+ 1
2

∥

∥

∥

2
+
‖θ0 − θ⋆‖2

γn+1
1θn−γn+1U(θn,Zn+1)/∈Kσn

.

Taking the conditional expectation w.r.t. Fn gives

En ‖∆n+1‖2 ≤ En

∥

∥

∥∆n+ 1
2

∥

∥

∥

2
+
‖θ0 − θ⋆‖2

γn+1
En

(

1θn−γn+1U(θn,Zn+1)/∈Kσn

)

,

En ‖∆n+1‖2 1An ≤ En

∥

∥

∥
∆n+ 1

2

∥

∥

∥

2
1An +

‖θ0 − θ⋆‖2

γn+1
1AnEn

(

1θn−γn+1U(θn,Zn+1)/∈Kσn

)

,

E

(

‖∆n+1‖2 1An+1

)

≤ E

(

∥

∥

∥
∆n+ 1

2

∥

∥

∥

2
1An

)

+

‖θ0 − θ⋆‖2

γn+1
E
(

1AnEn

(

1θn−γn+1U(θn,Zn+1)/∈Kσn

))

. (21)

The conditional expectation on the right hand side can be rewritten

En

(

1θn−γn+1U(θn,Zn+1)/∈Kσn
1An

)

≤ Pn (γn+1 ‖U(θn, Zn+1)‖ ≥ (θn, ∂Kσn))1An ,

≤ γ2
n+1

d (θn, ∂Kσn)2
En

(

‖U(θn, Zn+1)‖2
)

1An . (22)

Moreover, using the triangle inequality we have

d (θn, ∂Kσn) ≥ d (θ⋆, ∂Kσn) − ‖θn − θ⋆‖ .

Using Hypothesis 6, d (θ⋆, ∂Kσn) < η and on An, ‖θn − θ⋆‖ ≤ x0. Hence,

d (θn, ∂Kσn) ≥ η − x0.

One can choose x0 smaller than η/2 for instance, so that (η− x0)
2 > η2

4 . Thus, Equations
(22) becomes

E
(

1θn−γn+1U(θn,Zn+1)/∈Kσn
1An

)

≤ 4γ2
n+1

η2
E

(

‖U(θn, Zn+1)‖2 1An

)

.

Thanks to Hypothesis 4 and the continuity of u, we get

E

(

‖U(θn, Zn+1)‖2 1An

)

≤ 2 sup
n

E(‖δMn‖2) + 2 sup
‖θ−θ⋆‖<x0

E(u(θ)2)

8
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So, we get
E
(

1θn−γn+1U(θn,Zn+1)/∈Kσn
1An

)

≤ cγ2
n+1.

Hence, from Equation (21) we can deduce

E

(

‖∆n+1‖2 1An+1

)

≤ E

(

∥

∥

∥∆n+ 1
2

∥

∥

∥

2
1An

)

+ cγn. (23)

By combining Equations (23) and (20), we come up with

E

(

‖∆n+1‖2 1An+1

)

≤
(

1 − γn
λ

4

)

E

(

‖∆n‖2 1An

)

+ cγn.

Let I =
{

i > N0 : −λ
4 E

(

‖∆i‖2 1Ai

)

+ c > 0
}

, then

sup
i∈I

E

(

‖∆i‖2 1Ai

)

<
4c

λ
<∞.

Otherwise for i /∈ I,

E

(

‖∆i+1‖2 1Ai+1

)

− E

(

‖∆i‖2 1Ai

)

≤ 0.

We will prove by recursion that ∀i ≥ N0, E

(

‖∆i‖2 1Ai

)

≤ 4c
λ + E

(

‖∆N0‖2 1AN0

)

. It

is obviously true for i = N0. Let us assume that the recursion assumption holds for

rank i > N0. If i + 1 ∈ I, then E

(

‖∆i+1‖2 1Ai+1

)

≤ 24
λ . Otherwise if i + 1 /∈ I,

E

(

‖∆i+1‖2 1Ai+1

)

≤ E

(

‖∆i‖2 1Ai

)

. So, using the hypothesis of recursion proves the

result announced above. Therefore,

sup
n

E

(

‖∆n‖2 1An

)

<∞.

In the end, this relation combined with (19) leads to the tightness of the sequence (∆n)n.
Let M > 0.

P(‖∆n‖ > M) ≤ P(‖∆n‖(1An + 1Ac
n
) > M),

≤ P(‖∆n‖1An > M/2) + P(‖∆n‖1Ac
n
) > M/2),

≤ 4/M2
E
(

‖∆n‖12
An

)

+ P(Acn). (24)

There exists a value of M depending on ε such that both terms on the right hand-side
of (24) are bounded above by ε. This proves the tightness of (∆n)n and ends to prove
Lemma 1.

Remark 7 (case α < 1). The proof is still valid if α < 1. In this case the Taylor
expansions in Equation (16) become

√

γn
γn+1

= 1 + O
(

1

n

)

and
√
γnγn+1 = γn + O

(

1

n1+α

)

.

and Equation (18) is modified in the following way

∆n+1 = ∆n − γnQ∆n − γny(θn − θ⋆)∆n −
√
γn+1δMn+1

+
√
γn+1pn+1 +

βn
(n+ 1)

(B + y(θn − θ⋆))∆n,

with Q = A this time, which is still definite positive.

9
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3.2.2 Proof of Lemma 2

If we go back to equation (18) and sum up this equality from n — chosen greater than N0

— to n+ p, we obtain

∆n+p = ∆n −
p−1
∑

k=0

γn+k(Q + y(θn+k − θ⋆))∆n+k +
√
γn+k+1δMn+k+1

+

p−1
∑

k=0

√
γn+k+1pn+k+1 +

βn+k

n+ k + 1
γn+k(B + y(θn+k − θ⋆))∆n+k.

We choose u > 0 such that tn(u) = p. Since θn(·) is piecewise constant on the subdivision
defined by sequence (γn+p)p≥0, the discrete sums can be interpreted as integrals.

∆n(u) = ∆n(0) −
∫ u

0
(Q+ y(θn(s) − θ⋆)) ∆n(s)ds−Wn(u) +Rn(u) + Pn(u), (25)

where

Pn(u) =

tn(u)
∑

k=0

√
γn+k+1pn+k+1,

Rn(u) =

tn(u)
∑

k=0

βn+k

n+ k + 1
γn+k (B + y(θn+k − θ⋆))∆n+k.

Note that

‖Rn(u)‖ ≤ C

n

∫ u

0
(1 + ‖y(θn(s) − θ⋆)‖) ‖∆n(s)‖ ds.

Let t > 0 and l = n+ tn(t). Note that on the set Al Pn(u) = 0 a.s. for all u ≤ t and

‖y(θn(s) − θ⋆))∆n(s)‖2 1Al
≤ λ/2 ‖∆n(s)‖2 .

Using equation (25), we will show that

(

sup
0≤t≤T

‖∆n(t)‖2

)

n

is tight in R. Let us take the

square and then the supremum over [0, t] of Equation (25)

sup
u≤t

‖∆n(u)‖2 1Al
≤ C ′ ‖∆n(0)‖2 1Al

+ C ′ t

∫ t

0
sup
s≤u

‖∆n(s)‖2 1Al
du

+C ′ sup
u≤t

‖Wn(u)‖2 +C ′ sup
u≤t

‖Rn(u)‖2 1Al
. (26)

The last term is bounded by Ct
∫ t
0 sups≤u ‖∆n(s)‖2 1Al

du.

We define en(t) = E

(

supu≤t ‖∆n(u)‖2 1Al

)

, then taking expectation in (26) gives

en(t) ≤ Cen(0) + Ct

∫ t

0
en(u)du+ C E sup

u≤t
‖Wn(u)‖2 . (27)

Doob’s inequality applied to (Wn(u))0≤u≤T enables us to rewrite (27)

en(t) ≤ Cen(0) + Ct

∫ t

0
en(u)du+ 4C E ‖Wn(t)‖2 .

10
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Thanks to Lemma 1, supn en(0) <∞. Hence, en(0) can be incorporated into constant C,
which remains independent of n.

E ‖Wn(t)‖2 =
∑n+tn(t)

i=n γiE(‖δMi‖2). So, supn E ‖Wn(t)‖2 is bounded by κ0t. Then, we
come up with the following inequality for any n > N0

en(t) ≤ C(1 + t) + CT

∫ t

0
en(u)du, for all t in [0, T ],

where constant C depends neither on n nor on T .

Using Bellman-Gronwall’s inequality, we obtain a key upper-bound for en(t)

en(t) ≤ C(1 + t)eCT
2
, for all t in [0, T ] and n > N0.

The previous inequality can be summed up as

sup
n

E

(

sup
t≤T

‖∆n(t)‖2 1An+tn(T )

)

<∞ for any T . (28)

Equation (28) implies that
(

supt≤T ‖∆n(t)‖2
)

n
is tight in R.

From now on we define ē = supn E

(

supt≤T ‖∆n(t)‖2 1An+tn(T )

)

.

3.2.3 Proof of Lemma 3

To prove Lemma 3, we first prove that (Wn(·))n is C−tight and that (supt∈[0,T ] ‖Wn(t)‖)n
is tight in R. These two points imply that (Wn(·))n is tight in D[0, T ] and that every
converging subsequence converges in law to a continuous process. Then, we prove that
any such limit is a martingale. Finally, we establish that these limit martingales have
predictable quadratic variation equal to Σt. Thanks to Lévy’s Theorem1, combining these
two points imply that W is a Wiener process with covariance matrix Σ.

Tightness of (Wn(·))n in D[0, T ]. We have already seen that supnE
(

‖Wn(t)‖2
)

≤ κ0t,

so the family {Wn(t);n ≥ 1} is uniformly integrable for each t in [0, T ].

Moreover using Doob’s inequality, it comes that

E

(

sup
t∈[0,T ]

‖Wn(t)‖2

)

≤ 4

n+tn(T )
∑

i=n

γi E

(

‖δMi‖2
)

≤ 4κ0T.

Thus,
(

supt∈[0,T ] ‖Wn(t)‖
)

n
is tight in R.

We want to prove that the sequence of processes (Wn(t))0≤t≤T satisfies a C−tightness
criterion. It suffices to show that there exist two positive real numbers α and β such that
for any (t, s) in [0, T ]2 the following inequality holds

E(‖Wn(t) −Wn(s)‖α) ≤ κ |t− s|1+β .

1see [14, p. 86] for instance.

11
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Let us choose a couple (s, t) in [0, T ]2 such as s < t and an α > 0. Using Burkholder-
Davis-Gundy’s inequality2 we can write

E (‖Wn(t) −Wn(s)‖α) = E
(∥

∥Wn+tn(t) −Wn+tn(s)

∥

∥

α)
,

≤ κ E

∥

∥

∥

[

Wn+tn(.) −Wn+tn(s)

]

t

∥

∥

∥

α/2
,

≤ κ E

∥

∥

∥

∥

∥

∥

n+tn(t)
∑

i=n+tn(s)

γi δMiδM
′
i

∥

∥

∥

∥

∥

∥

α/2

, (29)

Now, we use a well-known inequality for convex functions, assuming that α > 2.

∥

∥

∥

∥

∥

∥

n+tn(t)
∑

i=n+tn(s)

γi δMiδM
′
i

∥

∥

∥

∥

∥

∥

α/2

≤ |t− s|α/2
∥

∥

∥

∥

∥

∥

n+tn(t)
∑

i=n+tn(s)

γi
t− s

‖δMi‖2

∥

∥

∥

∥

∥

∥

α/2

,

≤ |t− s|α/2−1
n+tn(t)
∑

i=n+tn(s)

γi ‖δMi‖α .

Thus, the expectation on the right hand side of (29) is bounded by

|t− s|α/2−1
n+tn(t)
∑

i=n+tn(s)

γi E(‖δMi‖α).

We choose α = 2+ρ — ρ being defined in Hypothesis 4 — to obtain the desired inequality

E (‖Wn(t) −Wn(s)‖α) ≤ κ |t− s|ρ/2+1 .

The tightness of (Wn(0)n is given by its uniform square integrability. Thus, the sequence
of processes (Wn(·))n is C-tight. Moreover, thanks to Lemma 2 (supt∈[0,T ] ‖Wn(t)‖)n is
tight in R. Hence, (Wn(·))n is tight in D.

Any converging subsequence converges in law to a continuous martingale. Let
(Wn(·))n denote a converging subsequence with limit W . We will show that W is a
continuous martingale. Since (Wn(·))n is C−tight, W is a continuous process.
For any A > 0, we define the continuous function fA such that fA(x) = x if 1‖x‖≤A and
fA(x) = 0 if 1‖x‖≥A+1. Therefore, fA is a continuous bounded function. We have for all
n > 0

κ0t ≥ E(‖Wn(t)‖2) ≥ E(fA(‖Wn(t)‖2)).

Thanks to the convergence of (Wn(·))n, we get3

κ0t ≥ E(fA(‖W (t)‖2)).

fA(‖W (t)‖2) is non decreasing w.r.t to A and positive so using the monotone convergence
Theorem, we obtain

κ0t ≥ E(‖W (t)‖2). (30)

2see [14, Theorem 48] for càdlàg martingales.
3 In fact, we also need the continuity of ω ∈ D 7−→ ω(t) on a set of measure 1 for the law W .

ω ∈ D 7−→ ω(t) is continuous for the topology on D at every point α such that α does not jump at time t.
Therefore, the coordinate applications are continuous on the set of continuous paths which is of measure
1 for the law of W because W is a.s. continuous. Hence, ω ∈ D 7−→ fA(‖ω(t)‖) is continuous for the
topology on D on a set of measure 1 for the limit law.

12
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This proves that W is square integrable.

Let h be a continuous bounded function on D. Since Wn(·) converges in law in D to W,
we have for all 0 < s < t ≤ T

E [h(Wn(u);u ≤ s)fA(Wn(t) −Wn(s))] −−−→
n→∞

E [h(W (u);u ≤ s)fA(W (t) −W (s))] . (31)

Since W is a.s. continuous, limA→∞ fA(W (t) −W (s)) = W (t) −W (s). Thanks to (30),
we can use the bounded convergence Theorem to show that the expectation on the right
hand side of (31) tends to E [h(W (u);u ≤ s)(W (t) −W (s))] when A goes to infinity.

Thanks to the uniform integrability of (Wn(t))n for each fixed t,

sup
n

E [h(Wn(u);u ≤ s) {fA(Wn(t) −Wn(s)) − (Wn(t) −Wn(s))}] −−−−→
A→∞

0.

So,

E [h(Wn(u);u ≤ s)(Wn(t) −Wn(s))] −−−→
n→∞

E [h(W (u);u ≤ s)(W (t) −W (s))] . (32)

Since for any fixed n (Wn(t))t is a martingale, E [h(Wn(u);u ≤ s)(Wn(t) −Wn(s))] = 0.
Then, we come up with E (h(W (u);u ≤ s)(W (t) −W (s))) = 0, which proves that W is a
martingale w.r.t. the filtration it generates.

Any limit W has predictable quadratic variation equal to Σt. Since the pre-
dictable quadratic variation process is unique, up to an evanescent set, it is sufficient to
prove that (WtW

′
t − Σt)t is a martingale.

As E ‖Wn(t)‖2+ρ is uniformly bounded in n, (Wn(t)Wn(t)
′)n is uniformly integrable for

each fixed t. So using truncation functions as above, it is straightforward to prove that W
is square integrable. Moreover,

E

(

‖〈Wn,Wn〉t‖1+ρ/2
)

≤ E











n+tn(t)
∑

i=n

γiE(‖δMi+1‖2 |Fi)





1+ρ/2





,

using a convexity inequality, we get

≤ E



tρ/2
n+tn(t)
∑

i=n

γiE(‖δMi+1‖2+ρ)



 ,

≤ t1+ρ/2κ.

So, (〈Wn,Wn〉t)n is uniformly integrable for each t.

Let h be a continuous bounded function on D. Using Hypothesis 5, we can see that
(〈Wn,Wn〉t) tends in probability to Σt and thanks to the uniform integrability, the con-
vergence also occurs in L

1. Hence,

lim
n

E [h(Wn(u);u ≤ s)(〈Wn,Wn〉t − Σt)] = 0. (33)

Since Wn(t) is martingale for any fixed n,

E
[

h(Wn(u);u ≤ s)(Wn(t)Wn(t)
′ − 〈Wn,Wn〉t)

]

=

E
[

h(Wn(u);u ≤ s)(Wn(s)Wn(s)
′ − 〈Wn,Wn〉s)

]

.

13
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Once again, we use truncation functions. Since (Wn(·))n converges in law in D to W and
(Wn(t)Wn(t)

′)n is uniformly integrable for each t, E [h(Wn(u);u ≤ s)(Wn(t)Wn(t)
′ − Σt)]

tends to E [h(W (u);u ≤ s)(W (t)W (t)′ − Σt)].

Consequently using Equation (33), we get

E
[

h(W (u);u ≤ s)(W (t)W (t)′ − Σt)
]

= E
[

h(W (u);u ≤ s)(W (s)W (s)′ − Σs)
]

.

Thus, (W (t)W (t)′ − Σt)t is a martingale. Since the predictable quadratic variation process
is unique, up to an evanescent set, 〈W,W 〉t = Σt a.s.. Moreover W is continuous, so Lévy’s
characterisation of the Wiener process proves that W is a Wiener process with covariance
matrix Σ.

Hence, any converging subsequence of (Wn(·))n converge to a Wiener process with covari-
ance matrix Σ, which implies that the whole converges in law to that process W .

3.2.4 Proof of Lemma 4

Let us choose some fixed positive η, ε and a corresponding δ. S and τ stands for two
stopping times as introduced in Lemma 4. Let l = n+ tn(T ).

P (‖∆n(τ) − ∆n(S)‖ ≥ 2η) ≤ P (‖∆n(τ) − ∆n(S)1Al
‖ ≥ η) + P(Acl ).

Remember that P(Acl ) ≤ ε.

P (‖∆n(τ) − ∆n(S)1Al
‖ ≥ η) ≤ P

(∥

∥

∥

∥

∫ τ

S
(Q− y(θn(u) − θ⋆)) ∆n(u)1Al

du

∥

∥

∥

∥

≥ η

6

)

+ P

(

‖Wn(τ) −Wn(S)‖ ≥ η

6

)

+ P

(

‖Rn(τ) −Rn(S)‖1Al
≥ η

6

)

. (34)

On the set Al, Pn(u) = 0 a.s. for all u ≤ T .

The first term is handled using Markov’s inequality

P

(∥

∥

∥

∥

∫ τ

S
(Q− y(θn(u) − θ⋆)) ∆n(u)du1An

∥

∥

∥

∥

≥ η

6

)

≤ c

η2
E

(

δ

∫ S+δ

S
‖∆n(u)1Al

‖2 du

)

,

≤ c

η2
E

(

δ

∫ T

0
‖∆n(u)1Al

‖2 du

)

,

≤ cδ

η2
ē T,

≤ c

η2
K, where c is a positive constant only depending on T .

The third term can be treated like the first one.

Now, we will apply Burkholder-Davis-Gundy’s inequality to the stopped martingale

14
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(Wn(t) −Wn(t ∧ S))t.

E ‖Wn(τ) −Wn(S)‖2+ρ ≤ E





n+tn(S+δ)
∑

i=n+tn(S)

γi ‖δMi‖2





1+ρ/2

,

using a convexity inequality, we obtain

≤ δ1+ρ/2E





n+tn(S+δ)
∑

i=n+tn(S)

γi
δ

‖δMi‖2+ρ



 ,

≤ δρ/2





n+tn(T )
∑

i=n

γi E(‖δMi‖2+ρ)



 .

Using hypothesis 4, we come up with the following upper-bound

E ‖Wn(τ) −Wn(S)‖2+ρ ≤ δρ/2T sup
i

E(‖δMi‖2+ρ).

Finally, we obtain a new upper bound in (34)

P (‖∆n(τ) − ∆n(S)‖ ≥ η) ≤ δρ/2
(

C1

η2
+

C2

η2+ρ

)

+ ε, (35)

where C1 and C2 are two positive constants independent of S, τ , n and η. Assuming that
η < 1, Equation (35) becomes

P (‖∆n(τ) − ∆n(S)‖ ≥ η) ≤ δρ/2
C

η2+ρ
+ ε, (36)

where C is a positive constant.
Choosing δ = (εη2+ρ)1/ρ shows that property (14) holds true. Since (supt∈[0,T ] ‖∆n(t)‖)n
is tight, Equation (36) ends to prove that (∆n(·))n is tight in D.

3.2.5 Proof of Lemma 5

(Wn(·))n is C−tight and (∆n(·))n is tight, so it is quite straightforward4 that the couple
(Wn(·),∆n(·))n is tight in D×D. For a proof of the result, one can see [10, Corollary 3.33,
page 317].

Thus, we can extract a converging subsequence (Wφ(n)(·),∆φ(n)(·)) with limit (W φ(·),∆φ(·)).
We will prove that in Equation (25),

(

sup0≤u≤T

∥

∥Rφ(n)(u)
∥

∥

)

n
and

(

sup0≤u≤T

∥

∥Pφ(n)(u)
∥

∥

)

n
tend to zero in probability.
Let η > 0 and l = φ(n) + tφ(n)(T ).

P

(

sup
0≤u≤T

∥

∥Rφ(n)(u)
∥

∥ > η

)

≤ P

(

C

φ(n)

∫ T

0
(1 +

∥

∥y(θφ(n)(u) − θ⋆)
∥

∥)
∥

∥∆φ(n)(u)
∥

∥ du > η

)

.

We split the probability on the right hand side on the sets Al and Acl .

P

(

C

φ(n)

∫ T

0
(1 +

∥

∥y(θφ(n)(u) − θ⋆)
∥

∥)
∥

∥∆φ(n)(u)
∥

∥1Ac
l
du >

η

2

)

≤ P(1Ac
l
).

4The pseudo continuity modulus, w′, on D has no linearity property, but for any α, β ∈ D, any δ > 0
we have w′(α + β, δ) ≤ w′(α, δ) + w(β, 2δ), where w is the continuity modulus.
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Now, we tackle the probability on Al.

P

(

C

φ(n)

∫ T

0
(1 +

∥

∥y(θφ(n)(u) − θ⋆)
∥

∥)
∥

∥∆φ(n)(u)
∥

∥1Al
du >

η

2

)

≤ c

η2φ(n)2
E

(∫ T

0
(1 +

∥

∥y(θφ(n)(u) − θ⋆)
∥

∥)
∥

∥∆φ(n)(u)
∥

∥ 1Al
du

)

,

≤ c

η2φ(n)2
E

(∫ T

0

∥

∥∆φ(n)(u)
∥

∥1Al
du

)

,

≤ c

η2φ(n)2
T ē. (37)

For n large enough, the term on the right hand side of (37) can be made smaller than ε.
Then, it is then clear that for n large enough

P

(

sup
0≤u≤T

∥

∥Rφ(n)(u)
∥

∥ > η

)

≤ 2ε.

The term P
(

sup0≤u≤T

∥

∥Pφ(n)(u)
∥

∥ > η
)

can also be treated by splitting the probability on
Al and its complementary set. Recall that on the set Al, Pn(u) = 0 a.s. for all u ≤ T .
Hence Pn and Rn both converge to the zero process in D.
Remember that the integral is a continuous application from D into R. More precisely for
any real numbers a and b in [0, T ], the application ω ∈ D 7−→

∫ b
a ω(t)dt is continuous.

Thanks to Lemma 3, W φ(·) is a Wiener process with covariance matrix Σ. Hence, the
limit of Wφ(n)(·) is independent of φ. So, letting n go to infinity in (25) enables to show

that the limit ∆φ(·) satisfies the following equation

∆φ(t) = ∆φ(0) −
∫ t

0
Q∆φ(u)du −W (t), (38)

which is equivalent to
d∆φ(t) = −Q∆φ(t)dt − dW (t).

Equation (38) shows that the set of all possible limits of any converging subsequence of
(∆n(·))n is a family of Ornstein Uhlenbeck processes indexed by their initial conditions.
So, if we manage to prove that the set {∆φ(0);φ such that ∆φ(n)(·) converges} is reduced
to a single point, we will have stated the convergence of the whole sequence (∆n(·))n and
not only of a subsequence. Any limit ∆(·) satisfies

∆(t) = e−Qt∆(0) −
∫ t

0
eQ(u−t)dW (u).

The stochastic integral converges in distribution to a random normal variable with mean
0 and covariance matrix

∫∞
0 e−QuΣe−Qudu as t goes to infinity. So does the process ∆

since the set of all possible laws for ∆(0) is tight and e−Qt tends to zero when t goes to
infinity. This limit happens to be the unique stationary law for the ∆ process.
Now we want to prove that the set of all possible laws for ∆(0) is reduced to the stationary
law described above. The way we prove it is widely inspired from [2] and [4].

Stationarity of any limit. Let ν = {possible laws for ∆(0)}. ν is a weakly compact
set. For any ν ∈ ν, let Pν(t) denotes the law at time t of the process ∆(·) of initial law
ν. Let f be a continuous bounded function on R

d and νg be the stationary law described
above.
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Let us choose an ε > 0. Since ν is weakly compact, there exists a T > 0 such that

|〈f, Pν(t)〉 − 〈f, νg〉| ≤ ε (39)

for any t > T and ν ∈ ν.

We fix such a T > 0 and choose ν ∈ ν. We can extract a converging subsequence
(∆φ(n)(·))n such that ν is the initial laws of the limit.

We define

ψ(n) = inf







k ≥ 0;

φ(n)
∑

i=k

γi ≤ T







. (40)

For n large enough, ψ(n) > 0 which means that ψ(n) + tψ(n)(T ) = φ(n) and ψ is an
increasing function. Hence we have the equality ∆φ(n)(0) = ∆ψ(n)(T ). We can extract
one more subsequence such that ∆ψ(ψ′(n))(·) converges. If ν ′ denotes the initial law of the
limit, we have

|〈f, ν〉 − 〈f, νg〉| = |〈f, Pν′(T )〉 − 〈f, νg〉| ≤ ε.

The last part of the inequality comes from (39). This proves that ν = νg. Henceforth, any
converging subsequence of ∆n(·) converges to a stationary Ornstein Uhlenbeck process.

W is a F∆,W−martingale. The only remaining point to prove is that ∆(0) is indepen-
dent of σ(W (t); t > 0). This is the same as proving that W is a F∆,W−Wiener process,
where F∆,W

t is the smallest σ−algebra that measures {∆(s),W (s); s ≤ t}.
Since we already know that W is continuous and that 〈W,W 〉t = t a.s., it is sufficient to
prove that W is a F∆,W−martingale.

Let h be a continuous bounded function on D. Since (Wn,∆n) =⇒ (W,∆) and (Wn(t))n
is uniformly integrable for each t, it is quite obvious that

E (h((∆n(s),Wn(s); s ≤ t)(Wn(t+ τ) −Wn(t))) −−−→
n→∞

E (h((∆(s),W (s); s ≤ t))(W (t+ τ) −W (t))) .

Wn(·) is a Fn+tn(·) martingale and ∆n(·) is measurable with respect to the shifted filtration.
Hence,

E (h((∆n(s),Wn(s); s ≤ t)(Wn(t+ τ) −Wn(t))) = 0.

Consequently,

E (h((∆(s),W (s); s ≤ t))(W (t+ τ) −W (t))) = 0.

This last equality implies that W is a F∆,W−Wiener process.

4 Proof of Theorem 3

One can rewrite ∆̂n(t)

∆̂n(t) =
1

tn(t)

n+tn(t)−1
∑

i=n

∆iγi
1√
γiγn

Using equation (6), it is clear that t ∼
n
γ
∫ n+tn(t)
n x−αdx, since γn = γ

nα with 1
2 < α < 1.

Hence,

t ∼
n

γ

1 − α
n1−α

(

(

1 +
tn(t)

n

)1−α

− 1

)

. (41)
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Thanks to Equation (6), it is quite easy to see that tn(t)
(n+tn(t))α < t. So, tn(t)

n −→ 0.

Henceforth using Taylor expansions, Equation (41) can be rewritten

t ∼
n

γ

1 − α
n1−α(1 − α)

tn(t)

n
∼
n
γntn(t). (42)

Moreover, for i ∈ {n, . . . , n+ tn(t)} if we write i = n+ p, we can use the following Taylor
expansions

1√
γiγn

=
1

γ

√

nα (n+ p)α =
1

γ
nα
(

1 +
p

n

)α/2
∼
n

1

γn

Finally, we obtain an equivalent for ∆̂n(t)

∆̂n(t) ∼
1

tn(t)γn

n+tn(t)−1
∑

i=n

∆iγi.

Thanks to (42), we get

∆̂n(t) ∼
1

t

n+tn(t)−1
∑

i=n

∆iγi =
1

t

∫ t

0
∆n(u)du. (43)

Using Theorem 2, we know that ∆n(·) converges to ∆(·) in the space of càdlàg processes.
Since the integral over a finite time interval is a continuous function on this space, the
integral in (43) converges to 1

t

∫ t
0 ∆(u)du.

Since ∆(·) is a Gaussian process, the integral is a normally distributed random variable
with mean 0 and variance V̂ .

V̂ =
1

t2
Cov

(∫ t

0
∆(u)du,

∫ t

0
∆(s)ds

)

,

=
1

t2

∫ t

0

∫ t

0
Cov(∆(u),∆(s))du ds,

Let us define Γs(τ) = Cov(∆(s + τ),∆(s)). Thanks to the definition of the process ∆(·),
it is easy to show that

Cov(∆(s+ τ),∆(s)) = e−Aτ Cov(∆(s),∆(s)) (44a)

Cov(∆(s),∆(s + τ)) = Cov(∆(s),∆(s)) e−Aτ . (44b)

Since ∆(·) is a stationary process, Cov(∆(s),∆(s)) = Cov(∆(0),∆(0)) for any s ≥ 0.
Henceforth, Equations (44a) and (44b) can be rewritten

Cov(∆(s + τ),∆(s)) = e−AτV

Cov(∆(s),∆(s + τ)) = V e−Aτ .

Let us go back to the computation of V̂ . Since Cov is a bilinear operator,

V̂ =
1

t2

(∫ t

0

∫ t

0
Cov(∆(u),∆(s))1u≤vdu dv +

∫ t

0

∫ t

0
Cov(∆(u),∆(s))1v≤udu dv

)

,

=
1

t2

(∫ t

0

∫ v

0
V e−A(v−u) du dv +

∫ t

0

∫ u

0
e−A(u−v) V dv du

)

,

=
1

t2
{

V
(

A−1t+A−2[e−At−I]
)

+
(

A−1t+A−2[e−At−I]
)

V
}

,

=
1

t

(

V A−1 +A−1V
)

+
1

t2
{

V
(

A−2[e−At−I]
)

+
(

A−2[e−At−I]
)

V
}

. (46)
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Moreover considering the definition of V =
∫∞
0 e−Au Σ e−Au du, it is quite easy to show

that V solves the following Ricatti equation

AV + V A = Σ. (47)

One can even prove that V is the unique solution of (47). From (47), one can deduce
that A−1V + V A−1 = A−1ΣA−1. Plugging this last result back into (46) gives the result
announced in Theorem 3.

5 Conclusion

Acknowledgements. I wish to address my deepest gratitude to A. Alfonsi and B. Lapeyre
for the fruitful discussions we had on càdlàg processes and the comments he made on a
previous version of this work.

A A criterion for Sequence (3) to be a.s. compact

The following lemma gives a sufficient condition for the sequence defined by (3) to remain
in a given compact set.

Lemma 6. Let us consider the sequence (θn)n defined by (3). If we assume that the series
∑

n>0 γnδMn1‖θn−1−θ⋆‖<M converges and pn1‖θn−1−θ⋆‖<M −→ 0 for any M > 0, then the
sequence (θn)n remains in a given compact set.

Proof. If σn < ∞ a.s., then the conclusion of the Lemma is obvious. Let us suppose that
σn −→ ∞. Since each time σn increases, the sequence θn is reinitialised to some fixed
point in K0, the existence of a compact set C in which the sequence (θn)n lies infinitely
often is straightforward.
Let M be such that C ⊂ {θ ; ‖θ − θ⋆‖2 ≤M}.
We can rewrite the hypotheses of the Lemma as

∀ε > 0, ∃N > 0 such as ∀ n, p ≥ N we have



















∥

∥

∥

∥

∥

p
∑

k=n

γkδMk1‖θk−1−θ⋆‖2≤M+2

∥

∥

∥

∥

∥

< ε,

γn < ε,
1‖θn−1−θ⋆‖2<M+2 ‖pn‖ < ε.

Let be ε > 0 and a N satisfying the relation above and also θN ∈ C. We define

θ′n = θn −
∞
∑

i=n+1

γiδMi1‖θi−1−θ⋆‖2≤M+2.

Using Equation (3), one cans show that θ′n satisfies the following recursive relation

θ′n+1 = θ′n − γn+1δMn+11‖θn−θ⋆‖2>M+2 − γn+1(u(θn) − pn+1). (48)

We will prove by recursion that the sequence (θ′n)n remains in {θ; ‖θ − θ⋆‖2 ≤M+1} = C′.
The hypothesis of recursion is obviously satisfied for n = N (it is sufficient to choose ε < 1).
Assume that the hypothesis of recursion is satisfied for N, . . . , n. Then, ‖θn − θ⋆‖2 ≤
M + 2. From (48), one can deduce

θ′n+1 = θ′n − γn+1(u(θn) − pn+1),
∥

∥θ′n+1 − θ⋆
∥

∥

2 ≤
∥

∥θ′n − θ⋆
∥

∥

2 −2γn+1(θ
′
n − θ⋆ , u(θn)) + γn+1c ε
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where c is a positive real constant only depending on M .
If ‖θ′n − θ⋆‖2 ≤ M , thanks to the continuity of u, a proper choice of ε assures that

γn+1 |(θ′n − θ⋆ , u(θn))| < 1. Hence,
∥

∥θ′n+1 − θ⋆
∥

∥

2 ≤M + 1.

Now, let us consider M ≤ ‖θ′n − θ⋆‖2 ≤ M + 1. Thanks to the continuity of u and
Hypothesis 1, (θ′n−θ⋆ , u(θn)) > δ > 0. An appropriate choice of ε guarantees that cε < δ.

Thus,
∥

∥θ′n+1 − θ⋆
∥

∥

2 ≤M + 1.

We have proved that for n > N , ‖θ′n − θ⋆‖2 ≤ M + 1. Since ε can be chosen smaller that
1, we also have ‖θn − θ⋆‖2 ≤M + 2, for all n > N .
This ends to prove that the sequence (θn)n remains in a compact set and consequently σn
is a.s. finite.

B Proof of Proposition 1

Let q > 0. We define M̄n =
∑n

i=1 γiδMi1‖θi−1−θ⋆‖2≤q. M̄n is a martingale and E(M2
n) ≤

∑n
i=1 γ

2
i E(‖δMi‖2). Thanks to Hypothesis 4, supn E(M2

n) <∞. Hence, the series
∑

i>0 γiδMi1‖θi−1−θ⋆‖2≤q converges a.s. for any q > 0. In fact, the convergence still occurs
if q = ∞.
Let us assume that σn −→ ∞. This is in contradiction with the conclusion of Lemma 6,
so it implies that

∃ η > 0, q > 0, ∀N > 0, ∃n > N 1θn∈Kq ‖pn+1‖ > η.

Let ε > 0. There exists n such that 1θn∈Kq ‖pn+1‖ 6= 0 and ‖γn+1δMn+1‖ ≤ ε.
Hence θn ∈ Kq and θn − γn+1(u(θn) + δMn+1) /∈ Kσn . ‖γn+1δMn+1‖ ≤ ε and since u
is continuous ‖γn+1u(θn)‖ can also be made smaller than ε. Hence a proper choice of ε
assures that θn − γn+1(u(θn) + δMn+1) /∈ Kq+1. Thus, σn < q + 1. So, σ is finite a.s..
Let us consider

θ′n = θn −
∞
∑

i=n+1

γiδMi.

Since the series
∑

i>0 γiδMi converges a.s. and θn remains in a compact set, θ′n also remains
in a compact set C. We set ū = supθ∈C ‖u(θ)‖.

θ′n+1 = θ′n − γn+1u(θ
′
n) + γn+1εn,

where εn = u(θ′n) − u(θn). Thanks to the continuity of u, ‖εn‖ −→ 0.

∥

∥θ′n+1 − θ⋆
∥

∥

2 ≤
∥

∥θ′n − θ⋆
∥

∥

2 −2γn+1(θ
′
n − θ⋆ , u(θ′n)) + γ2

n+1(ε
2
n + ū2) − 2γn+1(θ

′
n − θ⋆ , εn)

One can rewrite this inequality introducing a sequence ε′n −→ 0.

∥

∥θ′n+1 − θ⋆
∥

∥

2 ≤
∥

∥θ′n − θ⋆
∥

∥

2 −2γn+1(θ
′
n − θ⋆ , u(θ′n)) + γn+1ε

′
n. (49)

Let δ > 0. We set Vδ = {θ; ‖θ − θ⋆‖2 ≤ δ}. if ‖θ′n − θ⋆‖2 ≤ δ, (θ′n − θ⋆ , u(θ′n)) > c > 0.
Hence for n large enough, Equation (49) becomes

∥

∥θ′n+1 − θ⋆
∥

∥

2 ≤
∥

∥θ′n − θ⋆
∥

∥

2 −γn+1c+ γn+1(c+ ε′n)1‖θ′n−θ
⋆‖2≤δ.

Since
∑

n γn = ∞, each time ‖θ′n − θ⋆‖2 > δ it is taken back to B̄(θ⋆,
√
δ) a few iterates

later. Hence, ‖θ′n − θ⋆‖2 < δ + γn+1(c + ε′n). Thus, lim supn ‖θ′n − θ⋆‖ ≤ δ for all δ > 0.
This proves that θ′n −→ θ⋆. Since the series

∑

n γn+1δMn+1 converges, we also have
θ′n −→ θ⋆.
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