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Abstract
In this paper, we study a non-local coupled system that arises in the theory of dislocations densities
dynamics. Within the framework of viscosity solutions, we prove a long time existence and uniqueness
result for the solution of this model. We also propose a convergent numerical scheme and we prove a
Crandall-Lions error estimate between the continuous solution and the numerical one. As far as we know,
this is the first error estimate of Crandall-Lions type for Hamilton-Jacobi systems. We also provide some
numerical simulations.

AMS Classification : 35Q72, 49125, 35F25, 35140, 65M06, 65M12, 65M15, 74H20, 74H25.
Keywords : Hamilton Jacobi equations, viscosity solutions, dislocations densities dynamics, numerical
scheme, error estimate, system.

1 Introduction

1.1 Presentation and physical motivations

A dislocation is a crystal defect which corresponds to a discontinuity in the crystalline structure
organisation. This concept has been introduced by Polanyi, Taylor and Orowan in 1934 as the main
explanation at the microscopic scale of plastic deformation. A dislocation creates around it a perturba-
tion that can be seen as an elastic field. Under an exterior strain, a dislocation moves according to its
Burgers vector which caracterize the intensity and the direction of the defect displacement (see Hirth
and Lothe [17] for an introduction to dislocations).

Here, we are interested by dislocations densities dynamics. More precisely, we consider edge dislo-
cations, i.e the Burgers vectors and dislocations are in the same plane. These dislocations are moving
with the Burgers vectors +b (see figure 1). This model has been introduced by Groma, Balogh as a
coupled system, namely a transport problem where the velocity is given by the elasticity equations in
the 2-D case (see [16]).
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F1G. 1 — The cross-section of the dislocations lines.

If the 2-D domain is 1-periodic in z; and 2, and if the dislocations densities depends only on the
variable * = 1 + 72 (where (z1,72) are the coordinates of a point in R?), when b = (1,0) the 2-D



model of [16] reduces to the 1-D non local Hamilton-Jacobi system (see Section 3)

0= (o =p-+ [ palent) = po(o) do + L)) IDps] o0 Rx (0.T)

(1.1)
1
(p-)e = <p+ —p- +/ (p4+(z,t) — p—(x,1)) dx + L(ﬂ) [Dp-|  on Rx(0,T)
0
where pi,p_ are the unknown scalars such that (p; — p_) represents the plastic deformation, there
space derivatives Dp := aé'% are the dislocations densities and L(¢) represents the exterior shear stress

field. From a physical viewpoint, Dp+ > 0, however, here we don’t make this assumption to remain on
a more general case. The initial conditions for the system (1.1) are defined as follows :

p+(x,0) = pY(x) = PY(x) + Loz on R (1.2)

where P9 are periodic of period 1 and Lipschitz. In particular, p% — p° is a 1-periodic function. Lo is
a given constant which is the total densities of type =+, i.e. we suppose that initially, we have the same
total density of type + and -.

1.2 Main Results

The first goal of our paper is to prove the existence and uniqueness for the solution of the non-local
system (1.1)-(1.2). A natural framework for our study is viscosity solutions. We refer to Barles [7],
Bardi, Capuzzo-dolcetta [6] and Crandall, Ishii, Lions [10] for a good introduction to this theory in the
scalar case. We also refer to Ishii, Koike [18], [19] for the vectorial case and to Engler, Lenhart [12],
Lenhart [22], Lenhart, Belbas [23], Lenhart, Yamada [24] and Yamada [27] for some applications.

We have the following existence and uniqueness result for the non local system

Theorem 1.1 (Existence and uniqueness for the non-local problem) For all T > 0, for all
Lo € R, suppose that p%. € Lip(R) satisfy (1.2) and L € W1°° (RT). Then, the system (1.1)-(1.2) admits
a unique viscosity solution, p = (py, p—). Moreover, this solution is uniformly Lipschitz continuous in
space and time.

Remark 1.2 If at initial time, we have Dp%. > 0, then this remains true for t > 0, i.e., Dpy(z,t) >0
for all (z,t) € R x [0,T]. This allows to treat the physical case where Dpy > 0.

The main difficulty comes from the fact that the comparison principle does not hold because of the
non-local term. In order to overcome this problem, we introduce a fixed point method by freezing the
non-local term. In a first time, we give an existence and uniqueness result for the local problem (this is
a simple adaptation of [18]). Then, we use Lipschitz estimates on the solution to prove the short time
existence and uniqueness for the non-local system. In the third step, we obtained the result for all time
by iterating the process.

Here, we are interested by the dislocations densities dynamics. Some others models have studied the
dynamics of dislocations lines. We recall some recent results. A non-local Hamilton-Jacobi equation have
been proposed by Alvarez, Hoch, Le Bouar and Monneau [5] [4] for modelling dislocation dynamics.
They also proved a short time existence and uniqueness result for this model. We also refer to Alvarez,
Cardaliaguet, Monneau [1] and Barles, Ley [8] for a long time result under certain monotony assumptions
and to Forcadel [13] for a short time result for dislocations dynamics with a mean curvature term.

The second result is a numerical analysis of the non-local system (1.1). We propose a numerical
scheme for our non-local system. Then, we give an error estimate between the continuous solution and
the numerical one.



We want to approximate the solution of (1.1)-(1.2). Given a mesh size Az, At we define
== {iAz, i € Z} Zr=Ex/{0,...,(At)Ny}

where N7 is the integer part of T'/At. We refer generically to the lattice by A in the sequel. The discrete
running point is (z;, t,,) with z; = i(Az), t, = n(At). We assume that Ax+ At < 1. The approximation
of the solution py at the node (z;,t,) is written indifferently as vy (zi,t,) or v}, according to whether
we view it as a function defined on the lattice or as a sequence.

Now, we will introduce the numerical scheme. The main difficulty is due to the non-local term, which
requires the availability of the solution we are intending to approximate. To solves this problem, we
fix the solution vj* = (v ;,v" ;) at each time step on the interval [t,,,%,+1] and we apply the following
monotone scheme,

o) = (0] 502 ) = 7 (a) = (55, 5L), (1.3)

where p9 (z;) is an approximation of pY (z;)

ET (DYop,, Dop;) if CRo)(zi,tn) >0

VP = ot AtCE ] (24, ) N
i " T E- Dt ., Do) else

Vk e {+,-} (1.4)

where
CR )i tn) = =k (v ; = 0™ ; + a®[0] (tn))

and the non-local term a®[v](t,) is given by

Ny—1

a®[](t,) = Z Az (vg (24, tn) — v_ (T4, tn)) + L(tn) (1.5)

i=0

where N, is the integer part of 1/Axz. E* are the approximation of the Euclidean norm proposed by
Osher and Sethian [25] :

1
2

ET(P,Q) = (max(P,0)* + min(Q,0)%)?, (1.6)

1
2

E~(P,Q) = (min(P,0)* + max(Q, 0)?)
and D*op,, D™op; are the discrete gradient for all n € {0,..., N7}, i € Z and k € {+,~} :
”Z,iﬂ — U,

Dfup; = —=—, (1.7)

no_ ,n
Vki = Vki-1
Az '

Finally, we assume the following uniform CFL condition (see the beginning of Section 5.2 for more
details)

- n
D'Ukﬂ:f

1
< — .
At_2L2A:c (1.8)

where
Ly = (2BoT + 1) (2Bo(2Bo + || L|| L= (0,7))T + M + || L|| =(0,7)) + M +2

with By = max || Dp?| e and M = |[|P? — PO|| ;oo (m.
07 heiis,y 1Dpkll Lo (m) Py [0 ()

We then have the following error estimate



Theorem 1.3 (Discrete-continuous error estimate) Let T > 0. Assume that Ax + At <1, L €
W (R x [0,T)) and that the CFL condition (1.8) holds.

Then there ezists a constant K > 0 depending only on ||P) — P9||Loo(R), maxXpe(4,—} HDp%HLoo(R)
and || L||y1.0 0,7y such that the error estimate between the solution p of the continuous system (1.1)-
(1.2) and the discrete solution v of the finite difference scheme (1.3)-(1.4) is given by

max su — | < K ((T+VT Am+At1/2+ max su O—’UO)
x sup o = o] < K (74 V) (At A0+ max suplgf -~ of

provided K ((T +VT)(Az + At)z + jJhax  su (ph — vg)) <1.
e{+—} =

Remark 1.4 In the condition K ((T +VT)(Az + At)z + . r?ax }sup(pg - U,S)) <1, we can replace
e{+-1 =
the 1 by any positive constant.

In fact in the proof of this theorem, we mimic the continuous problem by considering the approximate
solution of (1.1) as a fixed point of a local system. We are inspired by [3] to prove a Crandall-Lions
[11] rate of convergence between the continuous solution of (1.1) and the numerical one. As far as we
know, this is the first error estimate of Crandall-Lions type for Hamilton-Jacobi systems. We also refer
to Jakobsen, Karlsen [20] and Jakobsen, Karlsen, Risebro [21] where they proved an error estimate for
a weakly coupled system of the form

(ui)t + Hi(t, z,u;, Du;) = Gi(t, z,u) in RY x (0,7) (1.9)

fori =1,..., M. Their error estimate is in O(At) for a semi-discrete splitting algorithm that they propose
to approach the solution of (1.9). However, we obtain an error estimate in O(v/At + Az) because we
also discretize in space.

In the dynamics of dislocations lines case, the model have also been numerically studied by Alvarez,

Carlini, Monneau and Rouy [2] [3]. In their paper, they proposed a numerical scheme for the non-local
Hamilton-Jacobi equation and they proved a Crandall-Lions rate of convergence.
Let us now explain how the paper is organised. In Section 2, we fix some notations. We present the
formal derivation of the model in Section 3. Then, in Section 4, we study the continuous problem. First
in Subsection 4.1, we give an existence and uniqueness result for a local system. Then, in Subsection
4.2, we prove Theorem 1.1 using a fixed point method. In Section 5, we prove a Crandall-Lions error
estimate for the local problem and then we prove Theorem 1.3 on the non-local problem. Some numerical
examples are displayed in Section 6 where we show some tests illustrating our error estimate and then
an evolution approximation of dislocation densities.

2 Notation

For simplicity of presentation, we fix some notations :

1. Order relation : for r = (r1, 1), s = (s1, s2) € R?, we say that r < s if ry < s, for k € {1,2}.

2. Addition wvector-scalar : for r = (r1, r3) € R?, A € R, we denote by r + X\ the vector
(ri+ A, ra+A).

3. P-periodic plus Lo-linear function : we say that p is P—periodic plus Ly—linear if there exists
a vectorial periodic in space function P* = (Pf;, P?) of period P and a constant Lo such that
p(z,t) = PP(z,t) + Lox = (P{(x,t) + Loz, P?(x,t) + Loz).



3 Modelling

We denote by X the vector X = (z1, 22). We consider a crystal with periodic deformation, namely
the case where the total displacement of the crystal U = (U, Us) : RXx RT — R? can be decomposed in
a 1-periodic displacement u = (u1, u2) and a linear displacement A(¢)'X with A(t) a given 2 x 2 matrix
which represents the shear stress

_( An(t) Awn(t)
Alt) = < Asi(t)  As(t) >

The displacement U is then given by
UX,t) =u(X,t) + A(t)'X

and we define the total strain by

e(U) = %(VU +'VU) = % (Vu+"Vu+ A(t) + A(t)) .

ou; . .
where the coefficients of VU are (VU);; = 9z, bJ € {1,2}.
J

This total strain is decomposed in the form
e(U)=e*(U) +¢e?,

where €¢(U) is the elastic deformation and e? the plastic deformation which is connected to the densities
of dislocations by

e =% (py — p_), (3.10)
where p1 represent the edge dislocation of type +, such that E.Vpi > 0 is the density of dislocation of
type £, b = (b1, b2) is the Burgers vector and

0

0 = (5@ ELH?L@E) (3.11)

N | =

where b is the orthogonal vector to b and

/~/

b l_)l) = bibjl.

ij

o=A:e(U), (3.12)

The stress is then given by

i.e the coefficients of the matrix o are :

oij =y NyueiU) ije{1,2}
k,lc{1,2}

with A = (Aijkl)ijkl, 1,5, k, 1 =1,2, Aj i are the elastic constant coefficients of the material, satisfying
for m >0 :
Z Nijrigijer > m Z E?j (3.13)
ijkl=1,2 ij=1,2

for all symmetric matrix € = (g;5),; i-e. such that ;; = ¢j;

j

The functions py and u are then solutions of the coupled system (see Groma, Balogh [16], [15] and
Groma [14]) :



dive =0 in R? x (0 T),
o =A:(e(U)—eP) in R x (0 T),
e(U) =3(Vu+tVu+ A(t) +'At)) inR?x (0 7T), -
eb =e(py —p-) in R* x (0 T), (3:14)
(pr)e = %(0:%)b.Vpy inR? x (0 T),
i.e in the coordinates
(?;” =0 in R2 x (0 T),
j=12 9
Oij = Z Aijii (en(U) —€¥)) in R? x (0 T),
kole{1,2}
ei(U) =5 ((Va)y + (Va)y, + Ay (1) + A43(t)) R x (0 T), (3.15)
£ =& (p4 —p-) in R2 x (0 7),
(p+ )t == Z Uz‘jE?j E-Vpi in R? x (0 T),
i,j€{1,2}

where the unknowns of the system are pi and the displacement u = (u1,u2) and with £° defined by
(3.11). The sign + comes from =+ in +b.
To simplify, we consider the homogeneous case. The coefficients A;jx; are such that

o =2pef(U) + Xr(e®(U))1a, (3.16)
where 1 > 0 and A+ p > 0 (consequence of (3.13)) are the Lamé coefficients and I, the identity matrix.
Then, the following lemma holds

Lemma 3.1 (Equivalence between 2-D and 1-D models) If we assume that the Burger vector is

b= (1,0), and that the densities of dislocations only depends on one variable © = x1 + x2 (as shown in
Figure 2), the 2-D problem (3.14), with A defined by (3.16), becomes equivalent to the 1-D problem

(p+): =-C1 ((p+ —p-)+ Cz/o (p+ —p-)+ L(t)) Dp,  inRx(0T)
(3.17)

1
0 = (o =p+Ca [ =p )+ 10) Dy RO T)

0
where L(t) = — (()‘;;25) (A12(t) + A (t)), C1 = (’/\\ig;)f‘, and Cy

Proof of lemma 3.1
We can rewrite the first equation of (3.14) and (3.16) as

_ _pu
A +p)”

div (2ue(U) + Mr(e(U)) 1) = div (2ue? + Mr(e?)1y).

This implies by (3.10)
Op+ = p-)
81‘2
pAu+ (A + p)V(div u) = p
Ops —p-)
61‘1



T1

F1G. 2 — 1D sub-model for invariance by translation in the direction(-1,1)

Using the fact that x = x1 + x4, yields

9*uy 0% (u1 + u2) A(p+ — p-)
02 0r? or

2p + A+ p) =u
%uy 9%(uy + us) Ap+ —p-)
0x? 0r? or

Now, by adding the two above equations, we obtain

Pl +uz)  p (ps —p-)
Ox? A+ 2u ox '

Integrating the above equation yields since u is 1-periodic

8(u184; ug) )\f2u ((p+ ) - /Ol(p+ _ p_)) _ (3.18)

Using the fact that

(0: %) = 013 = (e (U))ra = (w T Aus(®) + Asi(t) — (ps — p_>)

and (3.18) yields

0 A+ pp < u / ! )
oc:e)=— —p-)t s —p-)+ Lt
( ) N2 (p+ —p-) 2()\+H)o(p+ p-) + L(t)
(A +2p)

(A+p)
rewritten as (3.17). As the constant Cy, C are positive, to simplify the notations, we can put them to
1 in the following without lost of generality on the system (1.1).

where L(t) = (A2(t) + Az (t)). We then deduce, if b = (1,0), that the system (3.14) can be

4 The continuous problem

To prove the existence and uniqueness result for the non-local problem, we use a fixed point method.
In order to do that we freeze the non-local term and we study the following local problem

(p+)e = = (p+ —p—+a(t)) [Dpy| on Rx(0,T)

p—(+,0) = p% on R.



The assumptions are the following :

(H1) a € WhHe(R1),

(H2) p° = (p%,p") is 1—periodic plus Lo—linear, é.e., p% (z) = P{(z) + Loz where P{ are periodic of
period 1 and Lg is a constant.

(H3) PY € Lip(R).

4.1 The local problem

We denote by USC (resp. LSC) the set of locally bounded upper (resp. lower) semi-continuous
functions. The key point is that our system is quasi monotone in the sense of Ishii, Koike [18] (A.1) (see
Lemma 4.1) and so we can extend their results to our system in unbounded domain and with unbounded
initial condition using the well-known arguments of the scalar case.

Lemma 4.1 (Quasi-monotony of the Hamiltonian) The Hamiltonian Hy(t,p,p) = k(p+ — p— +
a(t))|p| is quasi-monotone, i.e., for all vectors r and s such that

T —8; = ker?f)i}(rk —s5) >0
then
H;(t,r,p) — Hj(t, s,p) = 0. (4.20)

We then have the following theorem

Theorem 4.2 (The local problem) Let T > 0. Assume (H1)-(H2)-(H3). We set M = ||P{ —
P?| poo(r) and By = i H{laX }HngHLoc(R). Then, the following holds
e{+.—

(i) Comparison principle. Let p € USC(Q2x]0,T]) and v € LSC(Qx]0,T]) be respectively sub and
super-solution of (1.1)-(1.2). We assume that there exists a constant C > 0 such that

p°(x) — Ct < p,v < pP(z) + Ct. (4.21)
Then if p(-,0) < v(-,0) in R then p < v in R x [0,T].
(i) Existence. There exists a unique viscosity solution p of problem (4.19) satisfying
() — (M + ||a]| L (o,r)) Bot < pla,t) < p"(x) + (M + |lal| =(0,)) Bot- (4.22)
Moreover, the solution is 1—periodic plus Lyo—linear.
(i) Regularity. The solution p of (4.19) is Lipschitz continuous in space and time and satisfies

max ||D oo < B
relhoy Dl (Rx(0,T)) = Do

Rl [(or)ell Lo @ (0.1)) < Bo(2Bo(M + [|al| L(0,1))T + M + [lal| L (0,1))-

(iv) Estimate on the solution. The solution p satisfies
10+ = p—llLoe@x(0.1) < 2BollallLoeo.0)T + 1103 = p2 [l e )-

Proof of Theorem 4.2

The comparison principle is just an extension of the one of Ishii, Koike [18] Theorem 4.7 for quasi-
monotone Hamiltonian. For the existence, it suffices to use Perron’s method by remarking that p +
(M + ||a|| Lo (0,1))Bot are resp. super and sub-solution of (4.19). The fact that p is 1—periodic plus
Lo—linear comes from the fact that p(x + 1,t) + L is also solution of (4.19).



The Lipschitz estimate in space comes from the fact that Problem (4.19) is invariant by space
translation. To obtain the Lipschitz estimate in time, it is sufficient to bound the velocity using (4.22).
We now prove (iv). We set w = p1 — p—. We then have

wy = —(w+a(t))(IDps | + [ Dp_|).

We set m(t) = supw(x,t) (this sup is reached thanks to (iz)) and we get for m > 0
zeR

me = — (m+ a(t))(|Dpy| + [Dp-|)
— —m(|Dps | + [Dp-) = a()(|Dps] + |Dp_|)
<2By|lal|z=(0,T)
which implies the upper bound of (iv). The lower bound is proved similarly. This ends the proof of the

theorem.

4.2 The non-local problem

Before to prove Theorem 1.1, we need the following lemma

Lemma 4.3 (Stability of the solution with respect to the velocity) Let T > 0. We consider
for i =1,2 two different equations

(p)e = —k (p — p- +a;(t)) |Dpi| for ke {+,—}
{ sz(-,())ng(er ’ )1De for ke {+, -} (4.23)

where the coefficients a; satisfy (H1) and the initial conditions p° = (p%., p2) satisfies (H2)-(H3). Then,
we have

2 1
max — o < BoT'|lag — ai||pee ,
w52 ok = prllxomy < BoTllaz — arll=o)

where p' for i = 1,2 are the solutions of (4.23) given by Theorem 4.2.

Proof of Lemma 4.3
We set K = |lag — a1|=(0,r)- We remark that p? is a sub-solution of

(pr)t + K (p4 — p— + ax(t)) [Dpr| — KBy = 0.
Moreover p' + K Byt is solution of the same problem. By comparison principle, we then deduce

2 1
max — oo < KBgT.
k€{+77}|\0k PrllLo®x(0,1)) < 0

This is the estimate we want.
We have the following lemma which proof is trivial
Lemma 4.4 (Stability of the velocity a) Let p', p? be 1—periodic plus Lo—linear. We set

1
a[p’](t) = / p'(x,t) — p_(2,t)dz + L(t). Then the following holds
0

2 _ 1 - <2 2_ 1 - .
lalp] = alpllL>=0,1) < ker?gfg}llpk Prll Lo ®x (0,1Y)



We now prove Theorem 1.1

Proof of Theorem 1.1
We define the set :

lp+ = p—llz < 2M +[|L|| L= (0,m)
p is 1—periodic plus Ly—linear
Ur = p= ( P+ ) S (LEOO(JQ,S.t. max ||Dpk||Loo < By R

ke{+,—}
max ||(pr)tll L < Bo(4M + 3||L||L<(0,7))

ke{+,f}”

where Ly is defined in (H2), By =  Jhax }HngHLm(R) and M = ||PY — P°|| .« ). For p € Ur, we set
e{+.—

alflt) = | poet) = - )da + L1, (4.24)

We see that a[p] satisfies (H1) with |[a[p]| Le0,7) < 2(M + || L o (0,7))-
For p € Ur, we then define v = G(p) = (G+(p), G—(p)) as the unique viscosity solution for k = 1,2
(see Theorem 4.2) of

(g Ty T g =

We will show that G : Ur — Ur is a strict contraction for 7" small enough. First, we will prove that G
is well defined. By Theorem 4.2, we know that v is 1— periodic plus Lo—linear. Moreover, we have

max ||Duvgl||r < B
k€{+,f}H kllLoe®x(0,7)) < Bo

and
plpax [[(v)ell oo @ (0,1)) <Bo(2Bo(M + [|al| Lo (0,1))T + llall 0,1y + M)
<Bo(2Bo(3M + 2[|L| e (0,7))T + 3M + 2||L|| L= (0,1))
<Bo(4M + 3| Ll z=(0,1))

1
for T < T* = B It thus remains to be shown that [|[vy — v_||Le®x(0,7)) < 2M + ||L||L~(0,7)- By
0
Theorem 4.2, we have
v+ — v-[lL@x(0,1)) <2Bo(M + |lal|zo(0,m))T + M
<2Bo(3M + 2||L||p~(0,7))T + M < 2M + ||L| L~ (0,1)

1
forTﬁT*:G— and sov € Ur for T < T*.
0 _ ,

It thus remains to show that G is a contraction. For v* = G(p*), according to Lemma 4.3 and Lemma

4.4, we have

[v* =v'llpe = sup o = villze < BoTla[p’] — alp']|| L
{ke{+.-1}

1
<2BT|p" = p?ll1 < 3l = Pl

1
for T <T* = 6B And so G is a contraction on U7y which is a closed set. So, there exists a unique
0

1
viscosity solution of (1.1)-(1.2) in Ur on (0,7*) where T* = 6B By iterating this process, one can
0
construct a solution for all 7" > 0. Indeed, T depends only on By which do not change during time.

10



Proposition 4.5 (Estimate for the non-local solution) Let T' > 0. The solution p of (1.1)-(1.2)
satisfies
4+ — p-IlLo®x(0,7)) < 2Bo(2Bo + || Ll L (0,1))T + M

where By = max || Dp|| 1wy and M = ||P% — P°|| 1 (w).
0 kel?+§}|\ Pill o= (w) [1P{ = P2 (w)
Proof of Proposition 4.5

The proof is very similar to the one of the local case Theorem 4.2 (iv). We denote by w = p; — p—. We
have

wi== G+ [ w+ LO)(Dps | +1Dp-)
=~ 20(|Dp. |+ Dp-1)+ (w = [ w=L@)(IDps] + 1D,

Using the Poincaré-Wirtingerle inequality, we deduce that the second term is bounded by 2By(2By +
|L|| o< (0,1))- Using the same argument of the one of Theorem 4.2, we deduce the result.

5 Numerical scheme

5.1 Approximation of the local system

In this subsection, we propose a finite difference scheme for the local system (4.19). Given a discrete
velocity a®, we consider the discrete solution v that approximates the solution of (4.19), given by the

following explicit scheme

v = (@), (5.26)

E* (Drop,, Drop ) if OO o) (wi,t0) > 0

Pt =t 4 At (C’A’LOC[U](z-,t )) N
w ! g ")) E- (Drr,, DFr,) else

Vk e {+, -}

(5.27)
where §°(x;) are defined in (1.3), E* are the approximation of the Euclidean norm proposed by Osher
and Sethian [25] defined in (1.6) (we also can use the one proposed by Rouy, Tourin [26]), Dt v}}, D~ v}
are the discrete gradient defined in (1.7) and

CNw] (21, ) = —k(wy (23, ) — w_ (24, 1) + a® () (5.28)

A is an approximation of a satisfying

where a
a®(tn) = alty,). (5.29)
In particular, the functions E* are Lipschitz continuous with respect to the discrete gradients, i.e.
|[E*(P,Q) = EX*(P, Q)| < (P - P'[+]|Q - Q) (5.30)
are consistent with the Euclidean norm
E*(P,P) = |P| (5.31)
and enjoy suitable monotonicity with respect to each variable

OET OE~T OE~ 15)
9z S = < > —_<0. .
oPt — 0, oP— — 0, oPt — 0, oP— — 0 (5.32)

11



Denoting by S* the operator on the right-hand side of (5.27), we can rewrite the scheme more compactly
as
v = Ah(e), upth =Sk,

Finally, we also assume that the mesh satisfies the following CFL condition (cf Remark 5.2)
1
At < —A .
t < oL x (5.33)

where
Ly = (2BoT + 1)||al| oo 0,7y + M + 2.

Theorem 5.1 (Crandall-Lions rate of convergence) Let T < 1. Assume that Ax+At < 1. Assume
that a € WH°°(R x [0,T)) and that the CFL condition (5.33) holds.

Then there ezists a constant K > 0 depending only on ||P) — P9||Loo(R), maxXpe(4,—} HngHLoo(R)
and [|a|lw1.~ 0,1y such that the error estimate between the solution p of the continuous system (4.19)
and the discrete solution v of the finite difference scheme (5.26)-(5.27) is given by

max su iy tn) — vp;| < KVT (Az+ ADY? + max  sup |pf(z:) — v)
R0 S [P t) — vl < ( )T dnax sup [pp(wi) — vl

provided K(Ax + At)? + i I?ax }sup(pg(xi) —) ) < 1.
e{+-1 = ’

Remark 5.2 (Monotony of the scheme) Under the assumptions of Theorem 5.1, we have

n

Wi = o2l S = py (@i )| 4 o4 (26, tn) — p— (@i tn)| + [p— (26, tn) — 02 4]
SQ + QBOHG/HL“(O,T)T + M
where we have used Theorem 4.2 (iv) for the second term. We then deduce that the discrete velocity
C%W] < (2BoT + 1)l pe(o.r) + M +2 = L.

Then, one can show that the scheme is monotone in the following sense : Let v and w be two discrete
functions such that v < w] then

SF (™) () < SF(w™)(x;), for k€ {+,—}.

For the proof of Theorem 5.1, we need the following lemma

Lemma 5.3 If vl is the numerical solution of (5.26)-(5.27), then
—Kt, —p® < p%(x;) — vz, tn) < Kty + 1. (5.34)
where K = 2(|| P — P%||Loo(r) + [|a]l L 0,7)) maxpe 4y | Dppll Lo (r) and

p’ = max sup|pp(zi) — vy, > 0. (5.35)
ke{+,—-} = ’

Proof of Lemma 5.3

To prove this, we set w (z;,t,) = p%(z;) — Kt, — p° and we show that for K large enough w is a

discrete sub-solution. Indeed, we have
wltl — (§%uw™);
= — KAL— ACE 0] (w1, BSICE 1 @t0) (D0 (a), D™ p (1))

A,Loc

07/ _
— _ At (K$ (Pi(ﬂﬁz) o PO_(-rz) + aA(tn))ESgn(Ci [p ](I“t"))(D—i_p?t(l‘i),D pi(iﬂz)))

<At (K2<||P£P9|LM(R>+||a||Lm<0,T>> max ||D02||L°°(R))-

ke{+,—}

12



where C2 "% [w](2;, t,) is defined in (5.28) and sgn(f) is the sign of f.
So, for every K > 2(||PY — P°||p®) + llal oo (0,7)) maxpe 4 —y || Dp)l| Lo (r), w is a discrete sub-
solution. Moreover
wh ;(xi) = ph (i) — p° < vl (27).
w

Using the monotony of the scheme, we deduce

The lower bound is proved similarly.

We now give the proof of Theorem 5.1
Proof of Theorem 5.1
The proof is an adaptation for systems of the one of Crandall Lions [11], revisited by Alvarez et al.
[2]. The proof splits into three steps. We denote throughout by K various constant depending only on
1P = P2|poor), maxpe s,y [Dp}]lLo(r) and [Jaflyr.ecc.m .

We first assume that

Plas) > 0! (5.36)
and we set
p’ = max sup|pp(zi) — vy, > 0. (5.37)
ke{+,-} = ’
We set a few notations. We put
p= max sup(pp(zitn) = vg;).
ke{+,-} Er ’

Forevery 0 <a <1, 0<e<1ando >0, we set

Mg’g B sup \I]gja(‘rvtamiat"’k)’
Rx[0,T|xErx{+,—}

with

|z — |2 |t —tal?
2e 2e

Wg76($atvxiatn;k) :Pk(%t) _’Uk(xi;tn) |2.

ot — alz|* — alz;

We shall drop the super and subscripts on ¥ when no ambiguity arises as concern the value of the
parameter.

Since p is Lipschitz, we have by (4.22)
Ipa (2. 8)] < K (1+ |a]). (5.38)
Moreover by Lemma 5.3 we have

g (@4, tn)| <|va (@i, tn) — P2 (20)| + |p% ()]
<Kt + K1+ |z;])
<K(1+ |zi]).

We then deduce that ¥ achieves its maximum at some point that we denote by (a*, t*, x¥,¢%, k*).

19 n
Step 1 : Estimates for the maximum point of ¥
The maximum point of ¥ enjoys the following estimates

alz™| +alzi| < K, (5.39)

13



Step 2 :

Step 3 :

and

| —xf| < Ke, [t"—t;| < (K +20)e. (5.40)
Indeed, by inequality W(a*,¢*, ¥, ¢, k*) > ¥(0,0,0,0,k*) > 0, we obtain
* (2 * (2 EE Y k gk * * K2 a * (2 a * (2
ol 4 afaf P < pe (0, 17) = v (a £5) SK(L+ Jo| +af]) < K+ o Qa2 4 Qa2

This implies (5.39), since o < 1.

The first bound of (5.40) follows from the Lipschitz in space regularity of p (see Theorem 4.2
(i47)), from the inequality W(z*,t*, o7, ¢t5, k*) > U(af, t*, 2}, t5, k*) and from (5.39). Indeed, this
implies

|SC*7.T;<|2 * gk * gk *12 *12
B0 <@ 1°) — pie 1) — e P+ ol
<Kla® —zi| + afz” — af|(|z7] + |27]) < Ko™ — 27].

The second bound of (5.40) is obtained in the same way, using the inequality W (x*, t*, z}, t*, k*) >
U(z*, tr, xr,tk, k*) and Theorem 4.2 (i3i).

A better estimate for the maximum point of ¥
Inequality (5.39) can be strengthened to

alz*? +alzi P < K. (5.41)

Indeed, using the Lipschitz regularity of p, the inequality ¥ (z*,t*, =}, ¢}, k*) > ¥(0,0,0,0, k*)
and equations (4.22), (5.34) and (5.40), yields

alz* [ + alzf? <pp- (a7, 1) — v (27, 17,) + p(27,0) — p(a7, 0)
<K(jz* —af| +t") + Kt + 1° < K.

Upper bound of u

We have the bound ;1 < Kv/T (Ax + At)? + 0 if Az + At < 7.

First, we claim that for o large enough, we have either t* = 0 or ¢} = 0. Suppose the contrary.
Then the function (z,t) — U(x,t,x}, 15, k*) achieves its maximum at a point of R x (0, 7. Using

the fact that p is a sub-solution of the continuous problem, we obtain the inequality

o+ 1 < —K*(py — p -+ a(t*))Ip; + 2007 (5.42)
with pj = £5%, pr = T4
Since t¥ > 0, we also have U(x*, t*, z},t5 k*) > U(z*, t*, ;, t7 — At, k*). This implies

o (1, = AL) = (- 1, — At) + vge (27, 87) — (a7, 17,

17'n

* 2 * 2 i .
for o(zi,t,) = — L2 ;f‘ b 2?" — alx;|?. Using the fact that the scheme is monotone and

commutes with the addition of constants, yields

o= (@7, 1)
=S¥ (o= (-, 15, — A1) (7)
(@7, t, — At) + v (27, 17,) — (7, 13,)
+ AL (ckA;LOC[U] (z, t;;)) BU(DFp(al, £ — At), D~ p(al, t5 — At))

14



where [* = Sgn (c@;LOC[v] (x} t*)) We set

10'n

A * gk * * gk * gk *
clo] = = Wl(af, 1), elpl = K (py (@™, %) = p— (2", t) + a(t?)).
We then obtain the super-solution inequality :

) — Lt —A *
Pl th) ‘watn Do B (D (it 6, — At), D™ p(af, 1 — AD).

1%

Straightforward computations of the discrete derivative of ¢ yield

At - A A
it ez —lalB” (v - 5 (el + Ad)pt + 57— af2af - Aa)).

Subtracting the above inequality to (5.42), we deduce

o <88~ cpllpt + 200"+ ol (v~ 5F —a(2si + Aa)pi + 2F — a2t — A0))
<25~ (clp] ~ cfe]) Ipk] + @Kl
+llall |8 (52— 32 - a(2si + Aa)pl + 5F (2l - A0)) — B (2.p0)
gﬁ—; — (clp] — clu]) [p| + Kalz*| + K% + 2aK|zt| + 20K Az

where we have used, for the second line, the fact that

clp] < M +2Bo(M + |lal| o= (0,r))T < K

with M = ||P} — P%||p~®) and By = kI?aX}HDP%HLw(R) (see Theorem 4.2). Now, since
e{+—
pr (5, 6) — vp= (xF,83) = . H{lax }(pk(ac*,t*) — v (2, ) > 0, by Lemma 4.1, we obtain
e{+.—
—(clp] = cloDlpi| = =k (p4 (2", %) = p— (27, £%) + al(t?)) [p3]

R (v (2], 1) — o= (@, 1) + a(t) i) + K (a®(t) — a(t)) p3]
<|a®(ty) — a(t")] p3] < Klt;, — t*|Ip3]

where we have used (5.29). This implies

At A
o <5+ Kt — 3 pi] + Kala™| + K== + 20K]a}| + 20K Az
19 S
<KAx+At

+ Kao'? + Ke.

Putting

o (Az + At,e,0) =

Az + At
K% + K(a'? +¢),

we therefore conclude that we must have ¢* = 0 or ¢, = 0 provided ¢ > ¢*. Whenever ¢t* = 0, we
deduce from Lemma 5.3 and from (5.40) that

Mg76 :\II(.’L‘*’ 0; CB:, t;kw k*) < pg* (l‘*) — Uk (‘r;ka t;kz)

<pp (2) = phe () + Kty + p°
<K (Jo* —aj[+1,) + 1’ < K(1+o0)e + p°.

15



Similarly, whenever ¢ = 0, we deduce from the Lipschitz regularity of p and from (5.40) that

Mg =W (™, t%, 27,0, k") < ppe (27, 17) — v (27, 0)

3 1

<K (2% — |+ ) + p° < K(1+0)e + p’.
To sum up, we have shown that
M < K(1+0)e+p’ < Ke+ p°

provided KA2z+At L K(q1/2 4 ¢) < ¢ < 1.We then deduce that, for every (z;,t,) and for every k,
h €
we have

A At
KLjLK
5

k(i tn) — vp(i, tn) — < (a1/2 + 5)) T — 2az;|* < M3 < Ke+ 0.

Sending @ — 0, taking the supremum over (z;,t,), the maximum over k and choosing ¢ =
T2 (Az + At)"/?, we conclude that

max sup(pi (e tn) — vf,) = p < K (Av+ ADYVAVT + max sup(pd(e,) —of,),  (5.43)
ke{+,—} =r ’ ke{+.—} = )
provided that Az, At are small enough 7' < 1, pp < 1 and (5.36) is assumed.

In the general case, we consider p = p + u' with u' = i r?ax }sup(v,g s — ph(z;)). We remark that 5
e{+-} = ’

is solution of (4.19) and satisfies 7°(z;) > v{. Then (5.43) is true with 5 in place of p, i.e.

mas sup(pu(e tn) + 11— 0f,) < K (Az+ A)Y2 VT + max sup(pl(zi) + ' —of,),
ke{+,—} Er ’ ke{+,-} = 5

which still implies (5.43) with i I?&X }sup P (i) — vl |-
e{+-} = '

The lower bound for the error estimate is obtained by exchanging p and v. As the proof is similar
to the above, we omit it.

5.2 Approximation of the non-local system

To solve numerically the non-local system (1.1)-(1.2), we use the finite difference scheme (1.3)-(1.4)-
(1.5). We also assume the CFL condition (1.8). In particular, using Proposition 4.5, we deduce that the
CFL condition (5.33) is satisfied uniformly for all a defined by (1.5) because

lalplll L=, 1) < 2B0o(2Bo + || Ll Loo(o,7))T + M + || L|| Lo (0,1

and so L1 < Ls.

Let 7' > 0 which will be precised later. To prove our convergence result, we mimic the continuous
case. Before to prove Theorem 1.3 we need to introduce some notations and lemmata. Defining X%’A =
R0 N1} and X22 = (R2)Z%10--N7} | the set of discrete functions defined on {0, ..., Ny} and on the

mesh Zr respectively, we denote by G* : X%’A — X%’A

of the local Problem (5.27) for a given velocity a® € X%’A, i.e.

the operator that gives the discrete solution v

(GR(a%),G2(a%)) = G2(a®) = v.
In particular, the scheme can be rewritten

v=G>(a®[v])
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with a®[-] defined in (1.5). We set, for all T < T :
sup | D w4 | < Bo,
Er
UR =we X24 . sup | D w| < 2Bo(4M + 3|\ L[ < (0,1) + 6),

T

sup [wy —w—| < 2M + || L|[ oo o,7) + 3
=r

and

sup [a®] < 2(M + |[Ll|z=) +3,

VA aA c XLA . {0 ..... NTAt} A
r r sup  |Dfa®| <4Bo(4M + 3||L| 0,1y + 6) + [ Lllw.o<(0,1)
{0 ..... NTAt}

where M = ||PY — P?|| o (r)- One can easily check that

{(p)*\p e Ur} CcUF

and
f(p | e~ <200 ¢ o) bevp
llacll Lo 0,7y < 4Bo(4M + 3|[L| L (0,1)) + I Lllw1.o(0,1) T

where (f)2 is the restriction to Z7 of the continuous function f. We have the following Lemma :

Lemma 5.4 Assume that (1.8) holds, then for all T < T, the following inclusion hold
(i) a®[UR] C Vi,
(i) GA(VE) C UA.
Proof of Lemma 5.4
The proof of (¢) is just a simple computation. We prove (i7).
Let a® € VA and v = G?(a®). We set w(w;,t,) = v(xiq1,tn) — AxBg. Then w is still solution of
the discrete scheme (5.27) and satisfies w’ < v°. Using the monotony of the scheme, yields

V4 (Tit1, tn) — v4 (i, tn)
Az

< By.

Using Lemma 5.3, we have (since pp < 1)

lvp —v_| <M +4Bo(M +  sup  |a®))T +2 < M +12Bo(M + ||L|| o,y + 1)T + 2
{0 ..... NTAt}

<2M + ||L|| g0,y + 3

for T<T=—.
12By
For the estimate in time, we have using Lemma 5.3

n+1 n
Vi T

<92B A,Loc .
Al > 0|Ck (V] (w4, tn)]

<2By(4Bo(M + sup |a®*N)T+M+2+ sup |a?])
{0,...,Np At} {0,...,Np At}

<2Bo(12Bo(M + [| L[ Lo,y + DT + 3M + 2||L|| = (0,7) + 5)
<2By(4M + 3||L| Lo<(0,1) + 6)

for T<T= . So GA(V,2) C UA. This ends the proof of the lemma.

128,

We now have to prove some consistency and stability results for the velocity a® and for the operator
GA.
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Lemma 5.5 (Consistency for the discrete velocity a®) There is a constant K = 2By+2M +||L|
such that, for every mesh A, for every 0 < T < T and for p € Ur, we have

sup | (alp))® — a®[(p)?]] < KA
{0,...,NT At}

where (p)> is the restriction to Zr of the continuous function p and a[-] is defined in (4.24).

Proof of Lemma 5.5
We set p(xz,t) = py(x,t) — p—(z,t). The following holds :

1 N,—1
lalp](t) — a®[()2](tn)] = / P t)de — 3 A, tn)
1=0
Ny—1 (i+1)Az 1
<Y | Aetde - gt + [ et
i=0 iAx N.Azx
N,—1

<Az > sup A ta) = i te)| + (2M + || L]l o) Az
i—o liAz,(i+1)Az]

<Az(2By + 2M + ||L||c0)-

We have the following lemma which proof is just a simple computation

Lemma 5.6 (Stability property of the velocity a®) For every mesh A, for every 0 <T < T and
every vy, vy € UL, the following holds

sup  Ja®fva] —a®[vi]] €2 max suplvs —val.
ke{+,—} =1

Lemma 5.7 (Stability property of the operator G*) There is a constant K = 2By so that, for
every mesh A satisfying the uniform CFL condition (1.8), for all0 < T < T and all a, a8 € V&

max sup|GR(af) — GRaP)| < KT sup  |ad —afl.
ke{+,-} =¢ {0,...,Nr At}

Proof of Lemma 5.7
We set v; = G* (af). Using the fact that

ey BS9n(er) _ o, pSan(e2) < le1 — co| max(E1,E7)

yields
,U;zjgl . U;k + kAt (v37+ . U;i + a/lA(tn)) Esgn(vgﬁr_”gﬁ"'“f(t"))(D"'U;‘, D‘u;)
<Atl|a5 (t,) — a2 (t,)| max(ET (DT o}, D=ol), E~ (D o, D™oul))
<2ByAt  sup  |af — a5
{0 ..... NTAt}
Moreover 1 (i, t,) = v1(zi,t,) + 2By sup  |a2 — a5 |t, is solution of the same discrete equation.
{0,...,Nr At}
Since the scheme is monotone, one deduces that
max sup |G2(ag) — GL(a2)| < 2BeT  sup a5 —a?].
ke{+,—} ¢ {0,...,Np At}

This achieves the proof.
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We now prove Theorem 1.3.

Proof of Theorem 1.3
We use the main idea of Alvarez et al. [2].
We first assume that 7' > T and we set, for every [ > 1

QP = AxZ x {AtNy,...,AtNy 1}

T _ _
where N; is the integer part of AL As in the continuous case, on each interval (IT, (I + 1)T'), we can

iterate the process (since 7' depends only on By which does not change during time) and construct,
using a fix point method (denoting by G and G*), p and v respectively solution of (1.1)-(1.2) and
(1.3)-(1.4)-(1.5). We then have the inequality

max su — k| < max sup|Gri(a — G2, (a®v
3 suplp. =l <, max suplGaalp) ~ GRi(a®le)

< g o |Gralalp]) = G2y ((alo)™)))]
* ke?fi}sc:f ’GkA,l ((alp))®) — GkA,z (a®[v])

)

where the function G2 ((a[p])2) = (Gil ((alo])?), G2, ((a[p])A)) (resp. Gy(alp])) is simply the dis-
crete solution of (5.26) (resp. the continuous solution of (1.1)) with the velocity a[p] and initial condition
vt (resp. p(-, NyDt)). From Theorem 5.1, we then deduce

maxye 1,y sup |Gr(alp]) — GkAJ ((a[p])A))| < KVTAz+ max sup  |pr — vl
QA ke{+,—} AzZx N, At

(5.44)
< IKVTAz + maxye 4,y supz |p} — vh.
For the second term, we use Lemma 5.5, Lemmma 5.6 and Lemma 5.7 to obtain

max sup ’GkA,l ((a[p])A) - GkA,l (GA[U])’

ke{+,-} QA
<KT  sup (alp))® — a®[u]
{N}At,..., N1 At}
<KT  sup [(alp)® = a® [()2] ] +]a® [(p)*] = a*[v]])

{NlAt ..... Nl+1At}

<KT |Ax+ max sup|pr — vkl | .
ke{+,—} QLA

This implies, for TAz < 1 and KT < 1

o — ol < —5—VTAz + = o] ) —
max su - —_— T max su - =,
ke{+,~} QlAp Pr M=1"KT ke{+,—} Ep Pr MI1—KT
We now take [ > 1 such that o - ~
IT<T<(I+1T
Then the following holds
IK = 1
— < _VTA O 9 ) ———
R 22X sup o — o] ST VAT + Qgﬂ?‘ﬁ?’ P ”k|) 1_KT

SKT\/A:E+K< n{lax}sup|p2 v2|) LfT > T.
ke{+,—} =
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where we have used the fact that T depends only on By.
Notice that, in the case where T' < T, from Theorem 5.1, (5.44) is replaced by

max _sup ’Gk(a[p]) -G ((a[p])A))‘ < KVTAz+ max suplp) — v}
ke{+-} 2r ke{+-} =

and so we obtain

max sup|px — vk| < KVTAz+ K ( max sup|p} — vg|> Lif T <T.
ke{+—} =¢ ke{+-} =

This ends the proof of the theorem.

6 Numerical results

In this Section, we present some numerical simulations of the 1-D Groma-Balogh problem (1.1)-(1.2)
discretized by the numerical scheme (1.3)-(1.4)-(1.5).

6.1 Numerical error estimate

Here, we show a numerical test in order to confirm our error estimate for local system. Let us fix
L(t) = 0 even if we become quite from the physical case, let us choose the following initial conditions :
P (z) = —|x —1/2|+1/2, and p% (z) = —[22 — 1| + 1 on [0, 1] (and extend it by periodicity on R).

log(L"~error)

14 15 16 18 19 2

Ioéillx)
Fia. 3 — log(L> — error) of |un, — un,—1| versus log(N,) at T = %

Figure (3) show the behaviour of the L>°-error versus the discretization parameter Azx. The regression
slope is close to 0.7 and the ideal regression is =. Hence, the behaviour of this errors confirms that our

2
error seems optimal.

6.2 dislocations density dynamics

In this paragraph, we are interested by the evolution of dislocations densities for the 1-D Groma-
Balogh model (1.1)-(1.2) under the uniformly applied shear stress L(t) = 3t.

In this simulations, we choose an example of concentrated dislocations densities, i.e where disloca-
tions densities are initially periodic, and equal to zero on some sub-intervals of [0, 1] (see figure 4).

This initial condition means that there exists some regions without dislocations , and some regions
where the dislocations are concentrated.
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Intuitively, dislocations are intend to be distributed uniformly in the whole crystal as shown in
Figure 6 where finally a uniform distribution in all the crystal is observed, i.e the density of dislocation
becomes a constant. We can remark that when L(¢) involves such as a diffusion equation (see [9] for
more precision) but evidently when L(¢) = 0 with the same initial condition, the system doesn’t involve.

0 10 20 3 40 S0 60 70 8 9 100

0 10 20 30 40 50 60 70 80 90 100 h o 10 20 30 40 50 60 70 80 90 100

FIG. 5 — On the left : density (Dp(.,3)); on the right : dislocations density (Dp_(.,1))

0 10 20 3 40 50 60 70 8 9 100

F1a. 6 — dislocations density (Dp4(.,3) = Dp_(.,3))
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