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Cité Descartes - Champs sur Marne
77455 Marne la Vallée Cedex 2

http://cermics.enpc.fr





INTERCHANGE OF MINIMIZATION AND INTEGRATION
WITH MEASURABILITY CONSTRAINTS

CYRILLE STRUGAREK

Abstract. In [9], Theorem 14.60 shows that without measurability constraints,
to minimize an integral functional with respect to all measurable mappings is

equivalent to integrate the minimum over the constant mappings of the under-

lying cost function. We prove here the analogous result under measurability
and almost sure constraints. In our case, the interchange introduces a condi-

tional expectation, and we need another tool on conditional expectations of

integrands to conclude. We propose moreover some other interchange results
on conjugate and on convex normal integrands.

1. Definitions and Propositions

Let T be a polish space, and F its completed σ-algebra of Borel sets. (T,F) is
therefore a measurable space, and we endow it with some probability measure µ.
In the following, A is some complete sub-σ-field of F , i.e. a sub-σ-field of F such
that for all A ∈ A with µ(A) = 0, A contains also all the subsets of A. Let E be a
separable Banach space with norm denoted by ‖ · ‖. We will denote by B the Borel
sigma-field of E, and by B = {x ∈ E : ‖x‖ ≤ 1}. We will denote by X the set of
F-measurable mappings x : T → E.

1.1. Normal integrands and measurable selections. The presentation repro-
duced here comes from [9], Chapter 14.

Definition 1.1 (Normal integrand). The mapping f : T × E → R is said to
be a A-normal integrand if its epigraphical mapping Sf : T ⇒ E × R defined by
Sf (t) = {(x, y) ∈ E × R : f(t, x) ≥ y } is closed-valued and A-measurable, i.e. if
for every open O ⊂ E×R, S−1

f (O) ∈ A. We will denote by If : X → R the integral
mapping If (x) =

∫
T

f(t, x(t))µ(dt).

Definition 1.2. Denote by E′ the dual topological space of E, and by 〈·, ·〉 the
pairing product. Let f : T × E → R be a A-normal integrand. The conjugate of f ,
denoted by f∗, is the mapping f∗ : T × E′ → R defined by

∀(t, x′) ∈ T × E′, f∗(t, x′) = sup
x∈E

(〈x, x′〉 − f(t, x)) .

Proposition 1.3. Let f : T×E → R be a A-normal integrand. Then, its conjugate
f∗ : T × E′ → R is a A-normal integrand.

Proof. This result can be found in [9, Theorem 14.50] when E is finite dimensional,
and in [7, 2] or [5, 6] (whithout completeness hypothesis on A for µ)when E is a
separable Banach space. �
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The following propositions are given with E = Rn, and ‖ · ‖ the euclidean norm.

Proposition 1.4. The mapping f : T × E → R is a A-normal integrand if and
only if f is A ⊗ B-measurable and f(t, ·) is lower semicontinuous for µ-almost all
t ∈ T .

Proof. cf. [9], Corollary 14.34. �

Proposition 1.5 (Level-set). For a A-normal integrand f : T × Rn → R and
any A-measurable mapping α : T → R, the mapping t 7→ {x : f(t, x) ≤ α(t) }
is closed-valued and A-measurable. In particular, the level-set mappings of f are
closed-valued and A-measurable.

Proof. cf. [9], Proposition 14.33. �

Proposition 1.6 (Measurable selection). A closed-valued, A-measurable mapping
S : T ⇒ Rp always admits a A-measurable selection: there exists a measurable
function x : domS → Rp such that x(t) ∈ S(t) for all t ∈ T .

Proof. cf. [9], Corollary 14.6. �

Proposition 1.7 (Marginal mapping). For any A-normal integrand f : T ×Rn →
R, the function pA : T → R defined as pA(t) = infx∈Rn f(t, x) is A-measurable.

Proof. cf. [9], Theorem 14.37. �

Remark 1.8. The following remark reproduces the Example 14.32 of [9]. Let X :
T ⇒ E be a closed-valued and A-measurable correspondence. Then, χX : T ×
E → R defined by χX(t, x) = +∞ if x /∈ X(t) and χX(t, x) = 0 else, is a A-
normal integrand. Let f be a A-normal integrand. Hence, the mapping (t, x) 7→
f(t, x) + χX(t, x) is a normal integrand. Hence, the constrained marginal mapping
pA : T → R defined as pA(t) = infx∈X(t) f(t, x) is A-measurable.

1.2. Conditional expectations. For all complete sub-σ-field A of F , and all p ∈
N, we define the set Lp(A) = {x ∈ X :

∫
T
‖x(t)‖pµ(dt) < +∞}. Let us recall the

definition of a conditional expectation:

Definition 1.9. Let x : T → Rn be F-measurable and A a complete sub-σ-field
of F . A conditional expectation of x with respect to A is a A-measurable mapping
z : T → Rn such that for all A ∈ A,

∫
A

x(t)µ(dt) =
∫

A
z(t)µ(dt).

The following result can be found in any probability textbook:

Proposition 1.10. Let x ∈ Lp(F). Then, the conditional expectation of x with
respect to A exists and is unique up to indistinguishability. It is denoted by xA :
T → Rn, and belongs to Lp(A).

The most important tool for our main result is the theorem 1.12, which is a
generalization to integrands of the concept of conditional expectation. A natural
way to generalize the definition of conditional expectations to integrands is the
following.

Definition 1.11. E denotes a Banach space, and X is a subset of E. Let f :
T × E → R be a F-normal integrand. Let A be a complete sub-σ-field of F . A
conditional expectation of f with respect to A is a A-normal integrand g : T×E → R
such that

(1) ∀A ∈ A, ∀x ∈ X ,

∫
A

f(t, x(t))µ(dt) =
∫

A

g(t, x(t))µ(dt),
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The question is now to prove the existence and uniqueness of such conditional
expectations for various classes of integrands. In [3], such a result is given under
the assumption (CHS).

∃ a sequence Bn ∈ B, ∪n∈NBn = E, ∀n ∈ N, ∃mn : T → R,

∀(t, x) ∈ T ×Bn, f(t, x) ≥ mn(t) and
∫

T

|mn(t)|µ(dt) < +∞.(CHS)

In [4], assumption (DE) is introduced to prove the same result:

(DE) ∃h : T → R, ∀(t, x) ∈ T × E, |f(t, x)| ≤ h(t) and
∫

T

h(t)µ(dt) < +∞.

In [10], the assumption (T) appears as a sufficient assumption to prove the existence
and uniqueness result, and is referred to as F-quasi integrability of the integrand.

(T)

∀m ∈ N, ∃αm : T → R, ∀t ∈ T, inf
x∈mB

f(t, x) ≥ αm(t), and
∫

T

|αm(t)|µ(dt) < +∞.

Clearly, (DE) ⇒ (T) ⇒ (CHS). We provide here an existence and uniqueness re-
sult for conditional expectation of normal integrands satisfying assumption (CHS),
since it is the weakest available assumption.

Theorem 1.12. E is here a separable Banach space. Let f : T × E → R be a
F-normal integrand satisfying (CHS). Then, for all complete sub-σ-field A of F ,
there exists a A⊗ B-measurable mapping fA : T × E → R such that

(i) for all A ∈ A, and all A-measurable x : T → E,

(2)
∫

A

f(t, x(t))µ(dt) =
∫

A

fA(t, x(t))µ(dt).

(ii) For all n ∈ N, for all (t, x) ∈ T ×Bn, fA(t, x) ≥ mn(t).
Moreover, fA is unique up to indistinguishability and is a A-normal integrand: it
is the A-conditional expectation of f .

Proof. cf. [3], Theorem 2.1. and Corollary 2.2. �

Remark 1.13 (Conditional probability). If there exists a conditional probability
measure µA : T ×F → [0, 1] associated to the complete sub-σ field A, fA is defined
as:

∀(t, x) ∈ T × E, fA(t, x) =
∫

T

f(t′, x)µA(t, dt′),

and the preceding result is very analogous to the Theorem 1.2 of [4].

2. Interchange results

2.1. Interchange of minimization and integration. We are now able to state
and prove our main result:

Theorem 2.1. Let A be a complete sub-σ-field of F . Let X : T ⇒ Rn be a
correspondence with closed values, which is A-measurable. Let f : T × Rn → R be
a F-normal integrand which satisfies (CHS). Then, it holds that

(3) inf
x ∈ X

x A−measurable
∀t ∈ T, x(t) ∈ X(t)

∫
T

f(t, x(t))µ(dt) =
∫

T

(
inf

x∈X(t)
fA(t, x)

)
µ(dt),

with fA : T × Rn → R defined by Theorem 1.12.
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Proof. We prove the theorem by double inequality.
By Theorem 1.12, there exists a unique (up to indistinguishability) fA : T×Rn → R
which is a A-normal integrand and satisfies (2).

• Let pA : T → R be its marginal mapping, i.e. pA(t) = infx∈X(t) fA(t, x).
By proposition 1.7, pA is hence A-measurable. Hence, for all x : T → Rn

A-measurable, such that x(t) ∈ X(t) for all t ∈ T ,

fA(t, x(t)) ≥ pA(t), therefore, by integration,∫
T

fA(t, x(t))µ(dt) ≥
∫

T

pA(t)µ(dt).

By definition of fA, the last equation reads∫
T

f(t, x(t))µ(dt) ≥
∫

T

pA(t)µ(dt).

Passing to the infimum in feasible x’s yields the first inequality.
• For all k ∈ N∗, define Sk : T ⇒ Rn as Sk(t) = {x ∈ Rn : fA(t, x) ≤

pA(t) + 1
k}. By proposition 1.5, Sk is A-measurable and closed valued for

all k ∈ N∗. Let us now consider Zk : T ⇒ Rn as Zk(t) = Sk(t) ∩X(t). As
an intersection of A-measurable and closed valued mappings, Zk is itself
A-measurable and closed valued (see e.g. [9], Proposition 14.11). Hence,
by proposition 1.6, there are A-measurable mappings xk : T → Rn such
that xk(t) ∈ Zk(t) for all t ∈ T . Thus, for all k ∈ N∗,

pA(t) ≥ fA(t, xk(t))− 1
k

, and by integration,∫
T

pA(t)µ(dt) ≥
∫

T

fA(t, xk(t))µ(dt)− 1
k

=
∫

T

f(t, xk(t))µ(dt)− 1
k

,

using once again Theorem 1.12. By the very definition of the infimum, it
yields∫

T

pA(t)µ(dt) ≥ inf
x ∈ X

x A−measurable
∀t ∈ T, x(t) ∈ X(t)

∫
T

f(t, x(t))µ(dt)− 1
k

.

Making k → +∞ completes the proof.

�

Remark 2.2 (Particular cases). We can distinguish one particular case of measur-
ability constraints: the case where A = F . The equation (3) of theorem 2.1 simply
reads

inf
x ∈ X

∀t ∈ T, x(t) ∈ X(t)

∫
T

f(t, x(t))µ(dt) =
∫

T

(
inf

x∈X(t)
f(t, x)

)
µ(dt),

and is very similar to the result stated in [9], Theorem 14.60, which is available
without assumption (CHS). The main strength of Theorem 14.60 of [9] is that the
space X is not restricted to the space of measurable functions, but may be any so
called decomposable space with respect to µ.
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2.2. Interchange of conjugacy and integration. First of all, we recall an in-
terchange result between conjugacy and integration:

Theorem 2.3. Let f : T × Rn → R be a F-normal integrand. Assume that there
exists u ∈ Lp(F), with 1 < p < ∞, such that t 7→ f(t, u(t)) is summable, and that
there exists u∗ ∈ Lq(F) with 1/p+1/q = 1, such that t 7→ f∗(t, u∗(t)) is summable.
Then, If and If∗ are well defined, and satisfy the conjugacy relation (If )∗ = If∗

on Lq(F).

Proof. As Lp spaces are decomposable in the sense of Rockafellar, the result follows
in the convex case from [8], Theorem 2. In the general case, since

∀u∗ ∈ Lq(F), (If )∗(u∗) = sup
u∈Lp(F)

(∫
T

〈u(t), u∗(t)〉µ(dt)−
∫

T

f(t, u(t))µ(dt)
)

,

= sup
u∈Lp(F)

∫
T

(〈u(t), u∗(t)〉 − f(t, u(t)))µ(dt),

the result is a consequence of the general interchange result of [9], Theorem 14.60.
�

We can also prove a partial interchange result between the conjugacy and the
conditional expectation:

Proposition 2.4. Let A be a complete sub σ field of F . Let f : T × Rn → R be
a F-normal integrand satisfying (T), and such that there exists x0 ∈ Rn such that
t 7→ f(t, x0) is integrable. Then, the conjugate f∗ : T × Rn → R is a F-normal
integrand which admits a unique (up to indistinguishability) conditional expectation.
Moreover, there exists a negligeable set TA ∈ A such that

∀t /∈ TA, ∀x ∈ Rn, (f∗)A(t, x) ≥ (fA)∗(t, x).

Proof. Proposition 1.3 proves that the conjugate of a normal integrand is a normal
integrand. We now prove that f∗ satisfies assumption (T) and thus (CHS). It will
prove that (f∗)A exists and is unique up to indistinguishability.

∀(t, z) ∈ T × Rn, f∗(t, z) ≥ 〈x0, z〉 − f(t, x0), by definition,

∀(t, z) ∈ T ×mB, f∗(t, z) ≥ −m‖x0‖ − f(t, x0)︸ ︷︷ ︸
αm(t)

,

∀t ∈ T, inf
z∈mB

f∗(t, z) ≥ αm(t),

and hence, f∗ satisfies (T) and (CHS): there exists a unique conditional expectation
to f∗ denoted by (f∗)A : T ×Rn → R. We now prove that (f∗)A(t, x) ≥ (fA)∗(t, x)
for all x ∈ Rn and all t /∈ TA, with TA a negligeable subset of T . Using Lemma 6
of [10], it suffices to prove that for all bounded y : T → Rn, for all A ∈ A,∫

A

(f∗)A(t, yA(t))µ(dt) ≥
∫

A

(fA)∗(t, yA(t))µ(dt).

Let y ∈ X and y bounded. For all A ∈ A,∫
A

(fA)∗(t, yA(t))µ(dt) =
∫

A

sup
x∈Rn

(〈x, yA(t)〉 − fA(t, x))µ(dt),

=
∫

T

sup
x∈Rn

(1A(t) (〈x, yA(t)〉 − fA(t, x)))µ(dt),

= −
∫

T

inf
x∈Rn

(hA(t, x))µ(dt),
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with h(t, x) = 1A(t) (f(t, x)− 〈x, yA(t)〉), which is a F-normal integrand satisfying
(T) by boundedness of y. Hence, its conditional expectation hA exists and is well-
defined. Moreover, using Theorem 2.1, we obtain∫

A

(fA)∗(t, yA(t))µ(dt) = − inf
xA−measurable

∫
T

h(t, x(t))µ(dt),

≥ − inf
x∈X

∫
T

h(t, x(t))µ(dt),

= −
∫

T

inf
x∈Rn

h(t, x)µ(dt), again by Theorem 2.1,

=
∫

A

sup
x∈Rn

(〈x, yA(t)〉 − f(t, x))µ(dt), by definition of h,

=
∫

A

f∗(t, yA(t))µ(dt) =
∫

A

(f∗)A(t, yA(t))µ(dt).

Hence, using Lemma 6 of [10], it completes the proof. �

3. Convex case

Following [1] or [4], other interchange results exist in the convex case.

Definition 3.1. A normal integrand f : T ×E → R is called convex if and only if
for µ-almost all t ∈ T , f(t, ·) is convex.

Proposition 3.2. Let f : T × E → R be a convex F-normal integrand satisfying
(T). Then, for any complete sub σ-field A of F , fA : T × E → R defined by (2) is
convex.

Proof. cf. [10] Proposition 15. �

Proposition 3.3 (Artstein). Let A be a complete sub σ-field of F . Let f : T×E →
R be a convex A-normal integrand. It holds that

∀x ∈ Lp(F),
∫

T

f(t, x(t))µ(dt) ≥
∫

T

f(t, xA(t))µ(dt).

Proof. Since the p-integrable mappings for p ≥ 1 are also 1-integrable, the result
follows from [1], Proposition 3.2. �

Theorem 3.4. Let A be a complete sub σ field of F . Let X : T ⇒ Rn be a
correspondence with closed values, which is A-measurable. Let f : T × Rn → R be
a convex F-normal integrand satisfying (T). Then, it holds that
(4)

inf
x ∈ Lp(A),

∀t ∈ T, x(t) ∈ X(t)

∫
T

f(t, x(t))µ(dt) = inf
x ∈ Lp(F),

∀t ∈ T, x(t) ∈ X(t)

∫
T

fA(t, x(t))µ(dt),

with fA : T ×Rn → R defined by Theorem 1.12. Moreover, for all x solution to the
right hand-side problem of (4), xA is a solution to the two problems.

Proof. Without loss of generality, we can omit the constraints x(t) ∈ X(t) by the
Remark 1.8. We use the same notations as in the proof of Theorem 2.1. Again, we
proceed by double inequality.
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• From Theorem 1.12 and Proposition 3.2, fA is a convex A-normal inte-
grand. Hence From Proposition 3.3, we know that

∀x ∈ Lp(F),
∫

T

fA(t, x(t))µ(dt) ≥
∫

T

fA(t, xA(t))µ(dt),

=
∫

T

f(t, xA(t))µ(dt), by (2).

Passing to the infimum over Lp(F) yields the first inequality.
• On the other hand, since A is a sub-σ field of F , it holds that

inf
x∈Lp(F)

∫
T

fA(t, x(t))µ(dt) ≤ inf
x∈Lp(A)

∫
T

fA(t, x(t))µ(dt),

= inf
x∈Lp(A)

∫
T

f(t, x(t))µ(dt), by (2),

which proves (4).
Assume now that x is solution to the right hand-side problem of (4). Since fA

is a convex A-normal integrand, we obtain with Proposition 3.3 that xA is also
solution. �
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