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1 Introduction

We study risk aversion with a discrete time one-armed bandit problem. The agent selects
between a certain and a random arm, so as to maximize an intertemporal discounted expected
utility. We study how risk aversion modifies individual behaviour, and show that the more
the utility function is convave, the more the agent selects the certain arm. This result is
the consequence of our main result as to how optimal decisions vary when the rewards vary.
This is another point of view than the one in [6], where monotonicity properties of the
optimal decisions with respect to the probability distribution of the state process have been
studied. To the best of our knowledge, there have been no formal analysis of the impact of
risk aversion on optimal decisions in armed bandit problems.

Consider the individual search for the best durable items. Assume that the goods searched
are homogeneous but differ only along one characteristic distributed over items which can
be: the price (search for a durable good), the wage (job search) or the location (search
for residence). Each search involves a fixed cost and the distribution of characteristics is
either known or unknown. In the latter case, after each costly examination of an item, the
individual revise his posterior about the distribution of characteristic and either may decide
to acquire this item (or an item already examined) or may decide to continue the search.
The optimal stopping rule (with or without known distributions) is standard and has been
studied for example by Rothschild [8]. Initially, individual were assumed to be risk neutral.
Later on, several theoretical and empirical articles have considered also risk adverse decision
makers: in this case, the optimal stopping rule depends on the level of risk aversion (see, for
example the survey of Wolpin [10] for the study of the optimal dynamic fertility models).

Alternatively, the individual is searching for a non durable good (newspaper, restaurant
or route from home to work) that he will consume/use repetitively. One characteristics of
this good is stochastic, and can be sampled only when this good is consumed/used: the
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quality of information contained in a newspaper may vary from day to day, the quality
of a chef is typically not constant (at least in good enough restaurant!), and the travel
time on a route may also vary from day to day. Such goods are experience goods since
the information about their unknown characteristic (quality of the news, style of the chef
and the travel time, respectively) can only be updated after consumption. In this case,
an individual who consumes the good acquires two bundled payoffs: the (stochastic) net
surplus from this good and a realization of the unknown characteristic. This durable good
problem differs from the non-durable good problem (discusses previously), since in the former
case information acquisition has a constant cost, while in the latter it has an endogenous
cost given that examination means consumption. The solution of this search model, with
repetitive consumption has been worked out in clinical trials and in economics; it is known
as the armed bandit problem (see [3, 4, 1]).

We concentrate our attention on non-durable good models. The literature assumed that
the consumer are risk neutral, so that their objective is to maximize the expected outcome.
For example, this means that in clinical trials the modeler searches for the drug with the
minimal expected number of adverse effects, while in economics, the individual select a good
which maximizes its average quality. However, uncertainty and risk aversion are inherent
involved in those problems, so that risk neutrality may be restrictive. Strangely enough, to
the best of our knowledge, no literature has been devoted to the consumption of non-durable
leaning goods (repetitive choices) when risk averse individuals face uncertainty. The question
we wish to solve is: what are the consequences of risk aversion in an armed bandit

We consider a simplified situation where the individual faces two choices, a safe choice
with known characteristic and a risky choice, with unknown characteristics (given by some
prior before any consumption has been made). This situation is particular since the individ-
ual learns nothing while acquiring the safe good. As a consequence, once he decides to select
the safe good, he will continue to select it forever. So the individual may always select the
safe good, or always select the risky good. A third solution is that he starts consuming the
risky good and ends up selecting the safe good. Our purpose is to introduce risk aversion in
this one armed bandit problem and to study how risk aversion modifies consumer behavior.

Consider for example an individual after high school who should decide to continue
studying or not. The choice to continue to study or to go to the job market occurs at the
end of each year. The student faces two sources of uncertainty: the probability of success
and the (personal) benefits from studying one more year. Some students may have a high
prior probability to fail, be very risk averse and go directly to the job market after high
school. However, an equally capable student but less risk averse may stay and complete the
program. Finally, another equally capable students, but with an intermediate level of risk
aversion may start the university to see how well he performs and then decide to drop after
a few years, when he finds out that his performance is not that great. The decision to study
or not depends on a) his perceived probability of success (which gets from year to year more
accurate) and on b) his level of risk aversion. When the job market is safe1 (full employment

1If the job market is risky, transitions from the job market to the education system are also rational: this
is a two armed bandit, not considered here.

2



and known wages), this is a one armed bandit problem with risk averse decision makers that
we study here with a parameterized level of risk aversion.

2 Comparison of rewards and strategies in a one-armed

bandit problem

Our presentation of bandit problems is quite sketchy, and we send the reader to specialized
references such as [3, 4, 9, 1].

Consider one decision-maker (M) which faces a one-armed bandit problem. The certain
arm C returns, when selected, a deterministic fixed reward ΨM

C ∈ R. The random arm R
has state space S and reward ΨM

R : S → R. A transition kernel is given on S and, when
the random arm is selected at period t, its state moves from zt towards zt+1 according to

this transition kernel. Defining ΨM : {C, R} × S → R by ΨM(C, z)
def
= ΨM

C and ΨM(R, z)
def
=

ΨM
R (z), the decision-maker (M) has to solve supv(·) E[

∑∞
t=0 ρtΨM(vt, zt)], where ρ ∈]0, 1[ is

the discount rate and the law of z0 is given. Here, the strategy v(·) is such that vt may
depend upon z0,. . . , zt assumed to be observed.

Now, consider another decision-maker (L) which faces the same one-armed bandit, except
for the rewards. With obvious notations, the rewards are ΨL

C ∈ R and ΨL
R : S → R.

We compare the optimal strategies of these two decision-makers (M) and (L) (More and
Less).

Theorem 1 Assume there exists a concave increasing function ϕ : R → R such that

ΨM
C ≥ ϕ(ΨL

C) and ΨM
R (z) ≤ ϕ(ΨL

R(z)) ∀z ∈ S . (1)

Then, each time the agent with rewards (ΨM
R , ΨM

C ) selects the random arm, so does the agent

with rewards (ΨL
R, ΨL

C) when he is in the same state.

As a straightforward corollary, each time the agent with rewards (ΨL
R, ΨL

C) selects the
certain arm, so does the agent with rewards (ΨM

R , ΨM
C ) when he is in the same state. How-

ever, we are unable to identify assumptions ensuring that each time the agent with rewards
(ΨM

R , ΨM
C ) selects the certain arm, so does the agent with rewards (ΨL

R, ΨL
C) when he is in

the same state.

Proof. The Gittins indexes are the following supremum over stopping times τ > 0 (see [3]):





µ
M,L
C (z)

def
= sup

τ>0

E[
∑τ−1

t=0 ρtΨM,L
C | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
= ΨM,L

C

µ
M,L
R (z)

def
= sup

τ>0

E[
∑τ−1

t=0 ρtΨM,L
R (zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
.

(2)
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Let τ > 0 be a fixed stopping time. We introduce the random variable Y =
∑τ−1

t=0 ρt > 0 and a

new probability P̃ such that Ẽ(X) = E(XY |z0=z)
E(Y |z0=z) . We have

E[
∑τ−1

t=0 ρtΨM
R (zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
≤

E[
∑τ−1

t=0 ρtϕ(ΨL
R(zt)) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
since ΨM

R ≤ ϕ ◦ ΨL
R

= Ẽ[

τ−1∑

t=0

ρt ϕ(ΨL
R(zt))∑τ−1

s=0 ρs
] by definition of Ẽ

≤ Ẽ[ϕ(

τ−1∑

t=0

ρt ΨL
R(zt)∑τ−1
s=0 ρs

)] since ϕ is concave

≤ ϕ(Ẽ[

τ−1∑

t=0

ρt ΨL
R(zt)∑τ−1
s=0 ρs

])

by Jensen inequality, since ϕ is concave

= ϕ(
E[

∑τ−1
t=0 ρtΨL

R(zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
) by definition of Ẽ.

Thus, µM
R (z) ≤ ϕ(µL

R(z)) since

µM
R (z) = sup

τ>0

E[
∑τ−1

t=0 ρtΨM
R (zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]

≤ sup
τ>0

ϕ(
E[

∑τ−1
t=0 ρtΨL

R(zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
)

≤ ϕ(sup
τ>0

E[
∑τ−1

t=0 ρtΨL
R(zt) | z0 = z]

E[
∑τ−1

t=0 ρt | z0 = z]
) since ϕ is increasing

= ϕ(µL
R(z)) .

Now, we have by assumption µM
C (z) = ΨM

C ≥ ϕ(ΨL
C) = ϕ(µL

C(z), so that

µM
R (z) ≥ µM

C (z) ⇒ µM
R (z) ≥ ϕ(µL

C(z)) since µM
C (z) ≥ ϕ(µL

C(z))

⇒ ϕ(µL
R(z)) ≥ ϕ(µL

C(z)) since ϕ(µL
R(z)) ≥ µM

R (z)

⇒ µL
R(z) ≥ µL

C(z) since ϕ is increasing.

As a consequence, when the agent with rewards (ΨM
R ,ΨM

C ) selects the random arm, so does the

agent with rewards (ΨL
R,ΨL

C) when he is in the same state. This ends the proof. �

3 Risk aversion and optimal strategies

We wish to examine how individual risk aversion modifies dynamics of optimal decisions.
Following the Arrow-Pratt definition of absolute risk aversion [7, 5, 2], we say that decision-
maker with utility function UM is more risk averse than decision-maker with utility function
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UL if UM is a concave transformation of UL. Notice that the transformation is necessary
increasing because UM and UL are increasing.

Proposition 2 Consider two decision-makers, one more risk averse than the other. Assume

that, at the beginning, the more risk averse decision-maker selects the random arm. Then, so

does the less risk averse decision-maker and, as long as the more risk averse decision-maker

selects the random arm, so does also the less risk averse decision-maker.

Proof. Assume that decision-maker with utility function U M is more risk averse than decision-
maker with utility function UL. There exists a concave increasing function ϕ such that ϕ◦U L = UM .
The state space is here S = P(P(R)), the space of probabilities on the space of probabilities on R,
and the rewards are given by

ΨM,L
C = UM,L(xC) and ΨM,L

R (π) =

∫
π(dν)

∫
ν(dω)UM,L(X(ω)) , ∀π ∈ P(P(R)) .

We have ΨM
C = UM (xC) = ϕ(UL(xC)) = ϕ(ΨL

C). On the other hand, we have:

ΨM
R (π) =

∫
π(dν)

∫
ν(dω)UM (X(ω))

=

∫
π(dν)

∫
ν(dω)ϕ(UL(X(ω))) since UM = ϕ ◦ UL

≤ ϕ(

∫
π(dν)

∫
ν(dω)UL(X(ω))) since ϕ is concave

= ϕ(ΨL
R(π)) .

The end of the proof follows with Theorem 1 above. �

This Proposition implies that the decision-makers can be ranked by their degree of risk
aversion. More risk averse individuals are less likely to select the certain arm in the firts
period (and stick to it). If an invividual is more risk averse than another, he will select for
a smaller period of time the random arm. A direct consequence of the above Proposition is
that the mean time spent selecting the random arm decreases with the degree of absolute
risk aversion.

For risk lovers, concavity is replaced by convexity. Therefore, an invividual more risk
lover than another selects for a longer period of time the random arm.

We illustrate graphically the Proposition 2 by a numerical example where the certain arm
has return w0 = 40/60 and the random arm has two returns: w− = 38/60 and w+ = 50/60
(w− < w0 < w+). We have used ρ = 1/1.08 and the following cara utility function

Vθ(x) = − e−θx

θ
. The parameter θ is the Arrow-Pratt degree of absolute risk aversion. The

horizontal axis corresponds to the number of w− and the vertical axis corresponds to the
number of w+ in Figure 1. It shows that the “certain” region (gray zone) gets larger for
increasing values of risk aversion, θ, highlighting numerically Proposition 2.
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Figure 1: Increasing regions of “certain arm choice” for increasing values of θ (7, 27, 53)
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