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Abstract We give sufficient conditions for the Mosco convergence of

Fn(u)
def

= E [j(ξn,u)] + δ
{Bn-measurable}(u)

for u ∈ Lp(Rm) (1 ≤ p < ∞) when Bn Kudo converges and ξn converges to
ξ in L1(Rl) or in probability.

1 Introduction

In stochastic programming, the programmer takes its decisions subject to
partial observations. A typical example is in multistage decision problems
where the programmer is constrained to use non-anticipative strategies i.e
admissible strategies are constrained to be adapted to the filtration gen-
erated by observations. Thus, just a partial knowledge of the probability
space is available and this leads to constraints on admissible controls which
are named measurability constraints. Investigating the dependence of op-
timal strategies and optimal values towards measurability constraints is of
deep importance for both theory and applications. Moreover, if we are con-
cerned with numerical solution of stochastic problems, approximation of
random variables involved in the problem are also to be considered. We are
thus led to examine optimal strategies and optimal values when both ran-
dom variable approximation and measurability constraints approximation
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are considered. More precisely, let
(

T,F , µ) be a probability space, we want
to approximate an optimization problem

min
u∈Lp(T,B,µ;U)

E [j(ξ,u)] (1)

with measurability constraints (B is a sub field of F). Using approximations
of both the random variable ξ and the σ-field B we are lead to solve a
sequence of approximated problems :

min
u∈Lp(T,Bn,µ;U)

E [j(ξn,u)] .

Using the sequence of functions Fn(u)
def

= E [j(ξn,u)]+δ
{Bn-measurable}(u)

(defined more precisely latter on by (5)) we can rewrite the sequence as :

min
u∈Lp(U)

Fn(u)

We give, in this paper, sufficient conditions under which the sequence
Fn Mosco converges to F∞ on Lp(U). Mosco convergence will give us epi-
convergence of the sequence of optimization problems in both the strong
and weak topologies. As it is well known [2], epi-convergence of a sequence
of functions fn mixed with compactness assumptions will permit to ap-
proximate the infimal value and the set of minimizers of the epi-limit of
the sequence fn [2, Theorem 1.10, Theorem 2.11]. Related results can be
found in [1] and [25] where the dependence of the optimal strategies and
optimal values according to σ-field variation are examined. An added con-
straint on the control u given by E [u] ∈ C, where C is a convex set, is also
considered in both papers. In the context of stochastic optimization where
the measurability constraint is not present, approximation of optimization
problem through random variables approximation have been widely studied
[7,3,19,14,24]. Note also that mixed random variable approximations and
measurability constraint approximations are considered in [12] and [16] with
specific assumptions which link the random variable approximations to the
measurability constraint approximations.

The paper is organized as follows, In section 2 and 3 we give the nota-
tions and preliminaries on epi and Mosco convergence. In section 4 we give
a set of propositions and theorems on normal integrands, conditional expec-
tations, integral functionals and convergence of σ-fields. Section 4 ends with
Proposition 8 which relates the Mosco convergences of Fn to respectively the
strong epigraphical upper limit of the integral function of the sequence of
conditional expectation of j(ξn, u) with respect to Bn and to the weak epi-
graphical lower limit of the integral function of the sequence j(ξn, u). Sub-
section 4.1 is devoted to Proposition 9 linking an epi-convergence inequality
for the strong epigraphical upper limit to the same inequality for the con-
ditional expectation of integrands. This inequality is derived from [6] where
slice-convergence of integral functional are related to slice-convergence of in-
tegrands. Subsection 4.2 is devoted to inequality for the weak epigraphical
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lower limit. Two results are given, in the first one (Theorem 3), more strin-
gent condition on the ξn convergence are required but the convergence can
be extended to more general functional spaces. The second result (Propo-
sition 10) is based on a theorem of Ioffe [10]. Previous propositions are
gathered in the last subsection to obtain a Mosco convergence theorem.

2 Definitions and notations

In the sequel, except explicitely stated, U
def

= R
m and we will follow the

notations of [6]. We denote by P(U) the space of all subsets of U and note
B(U) for the Borel σ-field of U .

Let T be an abstract space. A multifunction or set-valued mapping F
denoted by F : T ⇒ U is a map from T to P(U). The domain of F is the

subset of T defined by dom(F )
def

= {t ∈ T/F (t) 6= ∅}.
A selection of a multifunction F is a function s : T → U such that for all

t ∈ dom(F ), s(t) ∈ F (t) and we denote by Sel(F ) the set of all the selections
of F .

Suppose now that (T,F) is a measurable space. A multifunction is said
to be measurable if for every open set O in U we have F−O ∈ F , where

F−O
def

= {t ∈ T/F (t)∩O 6= ∅}. A measurable selection of F is a selection of
F that is (F , B(U))-measurable

Every map f : T × U 7→ R such that f(t, u) is measurable with respect
to t for every u ∈ U is called an integrand [21, p. 661].

The epigraphical multifunction associated to an integrand f is

Sf : t 7→ epif(t, .) = {(u, α) ∈ U × R | f(t, u) ≤ α}

and its domain mapping Df is

Df : t 7→ domf(t, .) = {u ∈ U | f(t, u) < +∞} .

If the epigraphical multifunction Sf is measurable and closed-valued
then f is said to be a normal integrand (we will also use F-normal integrand
when the σ-field used for measurability is to be specified) [21, Definition
14.27, p. 661]. Moreover if for almost every t ∈ T the function f(t, .) satisfies
a property P , then the integrand f is said to satisfy P . For example, f is a
convex integrand if it is an integrand and f(t, .) is convex for every t ∈ T .

Let (T,F , µ) be a complete probability space, that is F is a complete
σ-field. We write L0(U) for the space of (F , B(U))-measurable functions
on T with values in U . We write Lp(U) ( 1 ≤ p ≤ +∞) for the space of
functions f such that t 7→ ‖f(t)‖U belongs to Lp(T,F , µ; R). The selections

of F which are in Lp(U) are denoted by Sp(F )
def

= Lp(U) ∩ Sel(F ). We will
use bold faced fonts for elements of Lp spaces (i.e u ∈ Lp(U)) and standard
fonts for their values or for elements of U (i.e u(t) ∈ U , u ∈ U).
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The integral function associated to a normal integrand is the functional
defined on L0(U) by:

I(f)(u)
def

=

∫

f(t, u(t))µ(dt) (2)

With the following traditional convention [21, Proposition 14.56] : if
max(f(t, u(t)), 0) ∈ L1(R) then I(f)(u) is defined by (2) else I(f)(u) =
+∞.

3 Epiconvergence

Let (Y, ρ) be an abstract topological space and fn : Y → R a sequence
of functions. We denote by V (u) the family of neighborhoods of u ∈ Y
relatively to topology ρ. The following functions are said to be, respectively,
the ρ-epigraphical (or ρ-epi) lower limit and the ρ-epigraphical (or ρ-epi)
upper limit of the sequence (fn):

(ρ-liefn)(u)
def

= sup
V∈V (u)

lim inf
n

inf
u∈V

fn(u)

(ρ-lsefn)(u)
def

= sup
V∈V (u)

lim sup
n

inf
u∈V

fn(u)

When these two functions are equal, the common value is called the
ρ-epigraphical (or ρ-epi) limit of (fn), it is denoted by ρ-limefn, and the
sequence (fn) is said to be epi-convergent. Moreover, let us notice [2, The-
orem 1.13] that if Y is a metric space for a topology denoted here by ρ, we
have

(ρ-liefn)(u) = min
{

lim inf
n

fn(un) |un such that u = ρ-lim un

}

. (3)

(ρ-lsefn)(u) = min

{

lim sup
n

fn(un) |un such that u = ρ-lim un

}

. (4)

Let σ be another topology on Y . The sequence (fn) is said to be Mosco
convergent to f with respect to ρ and σ, and we write f = M(ρ, σ)-lim fn

if f = ρ-lim fn = σ-lim fn.
If Y is a metric space with two topologies ρ ≤ σ, using (3) and (4) we

have [2, Proposition 1.14] that f = M(ρ, σ)-lim fn (with ρ ≤ σ) if and only
if conditions below are satisfied:

(i) for every u ∈ Y , there exists a sequence (un) in Y with u = σ-lim un

such that lim sup fn(un) ≤ f(u)
(ii) for every u ∈ Y , for any sequence (un) such that u = ρ-lim un, then

lim inf fn(un) ≥ f(u).

(i) is equivalent to σ-lsefn(u) ≤ f(u) and (ii) is equivalent to f(u) ≤
ρ-lsefn(u). We will use this criteria when σ and ρ are respectively the strong
(s-) and weak (w-) topologies on Lp spaces.
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4 Propositions

Let (fn) : T × U 7→ R a sequence of integrands and (Bn) a sequence of
sub σ-fields of F defined for n ∈ N, we define a sequence of functionals
(Fn(u)) : L0(U) 7→ R for n ∈ N as follows :

Fn(u)
def

=

{

∫

fn(t, u(t))µ(dt) if u is Bn-measurable

+∞ otherwise
(5)

For a sequence (Bn) of sub σ-fields of F , when the fn are normal inte-
grands, we consider the sequence of integrands gn : T × U 7→ R for n ∈ N

defined as follows :
gn(t, u)

def

= E [fn(t, u) | Bn] . (6)

The next theorem shows that the (gn) sequence is well defined when the
fn are F-quasi integrable and that gn is a Bn-normal integrand.

Definition 1 An integrand f is said to be F-quasi integrable if there exists
a sequence αm ∈ L1(T ; R) such that

∀m ∈ N,∀t ∈ T, inf
u∈mB

f(t, u) ≥ αm(t)

where B is the unit ball of U .

Theorem 1 (L. Thibault). Let B be a sub σ-field of F and f : T × U → R

be a F-normal integrand which is F-quasi integrable Then, there exists a
B × B(U)-measurable mapping gB : T × U → R such that

(i) for all B ∈ B and all u ∈ L0(U) and B-measurable
∫

B

f(t, u(t))µ(dt) =

∫

B

gB(t, u(t))µ(dt).

(ii) gB is unique up to indistinguishability and is a B-normal integrand. For
all (t, u) ∈ T × mB, gB(t, u) ≥ E [αm | B].

(iii) Moreover, if f(t, .) is convex for almost all t then g(t, .) is also convex
convex for almost all t.

Proof: The proof of (i) and (ii) can be found in [23, Proposition 12] and the
proof of (iii) in [23, Proposition 15]. For (i) and (ii), a weaker assumption
is given in [5] and a survey can be found in [22]. �

Definition 2 Denote by U? the dual topological space of U , and by 〈·, ·〉 the
pairing product. Let f : T ×U 7→ R be a F-normal integrand. The conjugate
of f , is the mapping f? : T × U? 7→ R defined by

∀(t, u?) ∈ T × U?, f?(t, u?) = sup
u∈U

(〈u, u?〉 − f(t, u)). (7)
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Proposition 1 Let f : T × U 7→ R be a F-normal integrand. Then, its
conjugate f? : T × U? 7→ R is a F-normal integrand.

Proof: Proposition 1 can be found in [21, Theorem 14.50] when U
def

= R
m

and when U is a separable Banach space [20,4] or [8,9] (whithout complete-
ness hypothesis on µ). �

Proposition 2 (L. Thibault) Suppose that there exists u? ∈ L0(U?) such
that ‖u‖ and f(t,u(t)) are F-integrable then f is F-quasi integrable

Proof:[23, Proposition 4] �

Proposition 3 Let B a sub σ-field of F and g(t, u) a convex normal inte-
grand which is B measurable. For u ∈ Lp(U) (p ≥ 1) we have

I(g)(u) ≥ I(g)(E [u | B])

Proof: we have u ∈ L1(U) and the result follows from [1, Proposition 3.2]
�

Proposition 4 Let fn a F-normal integrand fulfilling conditions of Theo-
rem 1. We consider the integral function sequence (I(fn)). For u ∈ L0(U)
if u is Bn-measurable then I(fn)(u) = I(gn)(u) = Fn(u), where gn and Fn

are defined by (6) and (5).

Proof: If u is Bn-measurable then I(fn)(u) = Fn(u) by definition of Fn

and using Theorem 1 we obtain I(fn)(u) = I(gn)(u). �

Let (Bn)n be a sequence of sub-σ-fields. H. Kudo introduced in [13] the
notions of upper and lower limits of the sequence (Bn) that we recall here :

Definition 3 A σ-field is called the upper limit (resp. lower limit) of (Bn)n,
and denoted by B] (resp. B[) if it is the minimal (resp. maximal) sub-σ-field
among sub-σ-fields B of F such that for every f ∈ L∞

R
(F)

lim sup ‖E [f | Bn] ‖1 ≤ ‖E [f | B] ‖1

(resp. lim inf ‖E [f | Bn] ‖1 ≥ ‖E [f | B] ‖1)

When B] is equal to B[, their common value is denoted by B∞ and the
sequence is said to Kudo converge (Bn → B∞). When 1 ≤ p < ∞, Bn → B∞

if and only if E [f | Bn] converges to E [f | B∞] for every f ∈ Lp
R
(F), where

Lp is endowed with the strong or weak topology [18, Theorem 2.2] (Note
that the case p = ∞ cannot be treated with strong topology [17])
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Proposition 5 Let (fn)n∈N
a sequence of convex normal integrands and

suppose that the (Bk)k∈N sequence converges in the Kudo sense to B∞.
For u ∈ Lp(U) we consider the sequence of integral functions (I(fn)). If
I(f∞)(u) ≤ τ -lieI(fn)(u) then F∞(u) ≤ τ -lieFn(u) where τ can be the
strong or weak topology in Lp(U) with 1 ≤ p < +∞.

Proof: Let un τ -converging to u and ν(n) a sub-sequence such that
limn7→∞ Fν(n)(uν(n)) ≤ τ -lieFn(u)+ε. If there is a subsequence β(n) of ν(n)
for which uβ(n) is not Bβ(n)-measurable the result is obvious. Thus we may
assume that un is Bn-measurable and consequently Fn(un) = I(fn)(un) and
I(f∞)(u) ≤ τ -lieFn(u) + ε. Using [18, theorem 2.3] E [un | Bn] τ -converges
to E [u | B∞] the result being true for the strong or weak topology of Lp

when 1 ≤ p < +∞. Since un is Bn-measurable we have un = E [un | Bn]
and we obtain that u is B∞-measurable and thus I(f∞)(u) = F∞(u). �

Proposition 6 Let (fn)n∈N
a sequence of convex normal integrands and

suppose that the (Bk)k∈N sequence converges in the Kudo sense to B∞. For
u ∈ Lp(U) If F∞(u) ≤ τ -lieFn(u) and u is B∞-measurable then I(g∞)(u) ≤
τ -lieI(gn)(u) where τ can be the strong or weak topology in Lp(U) with
1 ≤ p < +∞.

Proof: Let un τ -converging to u and wn
def

= E [un | Bn]. wn converges to
E [u | B∞] [18, theorem 2.3] and we thus have :

F∞(u) ≤ lim inf
n7→∞

Fn(wn)

Moreover, wn is Bn-measurable and by Proposition 4 Fn(wn) = I(gn)(wn).
Since u is assumed to be B∞-measurable we also have F∞(u)) = I(g∞)(u).
Thus I(g∞)(u) ≤ lim infn7→∞ I(gn)(wn). Using Proposition 3 we have

I(gn)(wn) ≤ I(gn)(un)

which combined with the previous inequality end the proof. �

Proposition 7 Let (fn)n∈N
a sequence of convex normal integrands and

suppose that the (Bn)n∈N sequence converges in the Kudo sense to B∞. If
τ -lseI(gn)(u) ≤ I(g∞)(u) then τ -lseFn(u) ≤ F∞(u)

Proof: The only case to consider is when u is B∞-measurable. Let un a
Lp(U) sequence such that lim supn7→∞ I(gn)(u) ≤ I(g∞)(u). Since u is B∞-
measurable we have by Proposition 4 I(g∞)(u) = I(f∞)(u) = F∞(u). Let

wn
def

= E [un | Bn], the sequence wn converges to E [u | B∞] = u in Lp(U).
using again Proposition 4 and Proposition 3 we have Fn(wn) = I(gn)(wn) ≤
I(gn)(un) and thus :

lim sup
n7→∞

Fn(wn) ≤ lim sup
n7→∞

I(gn)(un) ≤ I(g∞)(u) = F∞(u) (8)

�
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Proposition 8 Let fn a sequence of of convex normal integrands and as-
sume the same hypothesis as in Propositions 5 and 7. If :

s-lseI(gn)(u) ≤ I(g)(u) and I(f)(u) ≤ w-lieI(fn)(u) (9)

then the sequence Fn Mosco converges to F in Lp(U).

Proof: The proof easily follows from Proposition 5 and 7. �

4.1 Inequality for the s-epigraphical upper limit

We give results here to obtain s-lseI(gn)(u) ≤ I(g)(u) where (gn) is given
by (6). The proof is based on [6, theorem 4.1] in which U can be supposed
to be a separable Banach case, in the special case where U = R

m similar
results were proved in [11].

Theorem 2 (Couvreux [6, theorem 4.1]). Let U be a separable Banach
space, γn : T × U → (−∞,+∞] (n ≥ 1) a sequence of normal proper inte-
grands, γ : T × U → (−∞,+∞] a proper integrand, p, q with 1 ≤ p < +∞,
and p−1 + q−1 = 1, satisfying the following assumptions:

(a) for almost every t ∈ T and each u ∈ dom γ(t, .), γ(t, u) ≥ s-lseγn(t, u);
(b) there exists a sequence (un) in Lp(U) and functions k and k0 in Lp(R),

such that for each n, ‖un(t)‖ ≤ k(t) and γn(t, un(t)) ≤ k0(t) a.s.;
(c) for almost every t ∈ T , each u ∈ U and each n ≥ 1, γn(t, u) ≥

−h(t)‖u‖ − h0(t), where h and h0 belong to Lq(R) with h(t) > 0 a.s.

Then for every function u in Lp(U), I(γ)(u) ≥ s-lseI(γn)(u).

Proposition 9 For a sequence ξn of random variable we define a sequence

(fn) by fn(t, u)
def

= j(ξn(t), u) and then the associated sequences gn by (6).
Suppose that

(i) For almost every t ∈ T and each u ∈ domg(t, .), g(t, u) ≥ s-lsegn(t, u);
(ii) j : R

l × U → R is lsc as a function of (ξ, u) and proper.
(iii) There exists a measurable function h(ξ) such that j(ξ, u) ≥ h(ξ) and

such that h(ξn) ∈ Lq(R) and E [h(ξn) | Bn] ≥ h̃ with h̃ ∈ Lq(R).
(iv) for n ∈ N there exists un ∈ Lp(U) and functions k and k0 in Lp(R)

such that ‖un‖U ≤ k and j(ξn,un) ≤ k0.
(v) k0 given by (iv) is such that E [k0 | Bn] ≤ k1 with k1 in Lp(R)

Then for every function u in Lp(U), I(g)(u) ≥ s-lseI(gn)(u).

Proof: The aim of the proof is simply to apply the previous theorem to
gn. The first step is to check that gn gives a sequence of normal proper
integrands. Using [21, Proposition 14.45] fn is a sequence of normal inte-
grand if j is a normal integrand and the ξn are measurable functions. j is
a normal integrand since it is an autonomous integrand which is lsc as a
function of (ξ, u) [21, Example 14.31]. The sequence fn is also proper using
(ii) . Consequently, the sequence gn is well defined, using (iii) and Theorem
1 each gn is a normal integrand, which is also proper using again (ii) . Now :
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(a) : is just given by (i)
(b) : is we easily deduced from (iv) and (v) with k0 replaced k1 of (v) .

(c) : We have using (iii) , fn(t, u) ≥ −‖u‖U + h(ξn) and with h1
def

= 1 and

h2,n
def

= E [h(ξn) | Bn] we obtain

gn(t, u) ≥ −h1(t)‖u‖ + h2(t) ≥ −h1(t)‖u‖ + h̃(t)

where h1 and h2 belong to Lq with h1(t) > 0 a.s.. This gives (c) for the
gn sequence.

�

Remark 1 Under the added following assumption

(ii) j(ξ, .) is a convex function for all ξ ∈ R
l,

we obtain that the fn is a sequence of convex normal integrands and using
(iii) and [23, Proposition 15] gn is also convex.

Remark 2 The key condition to verify is (i) and we list here some conditions
on the sequences (ξn) and on the sub σ-fields Bn in order to fulfill it.

– If Bn ↑ B∞ (i.e increasing sequence Kudo converging to B∞), ξn
def

= ξ

for all n ∈ N and for each fixed u ∈ domg(t, .) we have j(ξn, u) ∈ L1(R)
then gn(t, u) is a Martingale for each fixed value of u which converges
a.s (supn E [|gn(t, u)|] = E [|f(t, u)|] < ∞) to g(t, u). Then we trivially

get using un
def

= u that g(t, u) ≥ s-lsegn(t, u).
– If Bn ↑ B∞, fn(t, u) ≤ f(t, u) and for each fixed u ∈ domg(t, .) we have

j(ξ, u) ∈ L1(R) then E [fn(t, u) | Bn] ≤ E [f(t, u) | Bn]. The right hand
side of previous equation converges a.s to E [f(t, u) | B∞] = g(t, u), thus
we have again lim supn7→∞ gn(t, u) ≤ g(t, u) a.s. .

– If Bn ↑ B∞ and for each fixed u j(ξn, u) 7→ j(ξ, u) ∈ L1(R) then gn is
a Bn adapted sequence which converges in L1 as we have already seen.
It is thus uniformly integrable. Suppose now that gn is a Martingale in
the limit, namely

lim
n≥m7→∞

E [gn | Bm] − gm = 0 a.e

then [15, Theorem 2] gn converges almost everywhere to g and we obtain
(i) g(t, u) ≥ s-lsegn(t, u);.

4.2 Inequality for the w-epigraphical lower limit

We give results here to obtain I(f)(u) ≤ w-lieI(fn)(u). This proof is based
on the previous theorem but applied to the sequence (f ?

n). Following [2,
p271], a sequence (fn) is said to be uniformly proper if there exists a bounded
sequence xn ∈ U such that supn∈N fn(xn) < +∞.
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Theorem 3 Let U be a separable reflexive Banach space with a separable
dual U?, fn : T × U → (−∞,+∞] (n ≥ 1) a sequence of normal proper
integrands uniformly proper, γ : T×U → (−∞,+∞] a proper integrand, p, q
with 1 ≤ p < +∞, and p−1 + q−1 = 1, satisfying the following assumptions:

(a’) for almost every t ∈ T and each u ∈ dom f ?(t, .), fn(t, u) ≤ w-liefn(t, u);
(b’) there exists a sequence (un) in Lp(U) and functions k ∈ Lp and k0 in

Lp(R), such that for each n, ‖un(t)‖ ≤ k(t) and fn(t,un(t)) ≤ k0(t)
a.s.;

(c’) there exists a sequence (u?
n) in Lq(U?) and functions h and h0 in Lq(R),

such that for each n, ‖u?
n(t)‖ ≤ h(t) and f?

n(t, u?
n(t)) ≤ h0(t) a.s.;

Then for every function u in Lp(U), I(f)(u) ≤ w-lieI(fn)(u).

Proof: we first prove that we can apply Theorem 2 to the sequence f?
n.

First note the the sequence f?
n is a well defined sequence of proper normal

convex integrands [20, Proposition 2]. If U is a reflexive Banach space, (fn) a
sequence of normal proper convex integrands which is also uniformly proper
then we have [2, theorem 3.7, p 271]

(seqw-liefn)? = s-lsef
?
n (10)

Thus we obtain condition (a) of Theorem 2 form (a′). It is then easy to see
that condition (b) (resp. (c)) of Theorem 2 is implied by condition (c′) (resp.
(b′)). We then apply Theorem 2 on the conjugate sequence f?

n. to obtain
s-lseI(f?

n) ≤ I(f?) which combined with properties of conjugacy for integral

functionals I(f?
n) = I(fn)? (This is true on L

def

= Lp(U) for 1 ≤ p ≤ ∞ if
L is decomposable and I(f)(u) < +∞ for at least one u ∈ L [20, Theorem
2]) gives s-lseI(fn)? ≤ I(f)?. In order to conclude we have to use again [2,
theorem 3.7,p 271] but on the I(fn) sequence which is uniformly proper by
(b′) (k ∈ L1) and on the reflexive Banach space Lp(U). �

Remark 3 Note that assumption (a′) is obtained if we suppose that ξn con-
verges a.s to ξ and that f(ξ, u) is jointly l.s.c.

4.3 Inequality for the w-epigraphical lower limit

We give here an other result to obtain I(f)(u) ≤ w-lieI(fn)(u). In the pre-
vious sub-section, almost sure convergence of ξn was proved to be sufficient
to obtain the Inequality for the w-epigraphical lower limit, we will here show
that convergence in probability is sufficient to obtain the same inequality.
Note however that the previous applies when U is a separable reflexive Ba-
nach space with a separable dual U ? and here X = R

l. The proof is based
on [10, Theorem 1]. We assume here that µ is a finite positive nonatomic
complete measure. The Ioffe theorem [10, Theorem 1] applies to extended-
real-valued functions γ(t, ξ, u) on Ω × R

l × U such that γ(t, ξ(t), u(t)) is
measurable for any measurable ξ ∈ L0(Rl) and u ∈ L0(U).
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Theorem 4 (Ioffe). Here µ is assumed to be also nonatomic. Let L and M
satisfy (H1) and (H2). Assume that f(t, ξ, u) is F ×B(Rl ×U)-measurable,
lsc in (ξ, u) and convex in u. In order that I(f) be lower semicontinuous on
L × M and everywhere on L × M more than −∞, it is necessary and (if
I(f) is finite for at least one point in L × M) sufficient that f satisfy the
lower compactness property.

We do not here recall the technical hypotheses (H1) and (H2) but citing
[10] we recall that Lp spaces (1 ≤ p ≤ ∞) with norm or weak topologies
satisfy these hypotheses. It is also important to note that (H2) states that
the topology in L is not weaker than the topology of convergence in measure.

γ is assumed to satisfy the lower compactness property on L×M if any
sequence γ−(t, ξk(t), uk(t)) is weakly precompact in L1 whenever the ξk

converges in L, the uk converges in M and I(γ)(ξk,uk) ≤ a < ∞ for all k
(here f− = min(f, 0)).

A first result is that the function f satisfy the lower compactness property
if it is a positive function [10, Theorem 3]

Proposition 10 For a sequence ξn of random variables, we define define

a sequence (fn) by fn(t, u)
def

= j(ξn(t), u). Suppose that Suppose that for
1 ≤ p < ∞

(i) j : R
l × U → R is lsc as a function of (ξ, u) and proper.

(ii) j(ξ, .) is a convex function for all ξ ∈ R
l.

(iii) j(ξ, u) is positive.
(iv) There exists u ∈ Lp(U) such that I(f)(u) is finite.
(vi) the sequence ξn of measurable functions converges to ξ in measure.

Then for every function u in Lp(U), I(f)(u) ≤ w-lieI(fn)(u)

Proof: As in the proof of previous Proposition the sequence (fn) defined
by fn(t, u) = j(ξn(t), u) is a sequence of normal integrand and thus has
the requested measurability assumption. We are using [10, Theorem 1] in a
context of an homogeneous integrand and the result is then just a rephrase
of [10, Theorem 1]. �

Remark 4 It is possible to lower assumption (iii) but it will restrict the
values of p for which the conclusion of the Proposition is valid. For example
using in the homogeneous case [10, Theorem 5 (Olech)]

(iii′) j(ξ, u) ≥ −c(‖ξ‖ + ‖u‖) + b with (c, b) ∈ R
2

and assuming that ξn converges in L1(Rl), we obtain

I(f)(u) ≤ w-lieI(fn)(u)

for u in L1(U) only.
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Remark 5 Note that we want to use Proposition 10 in conjunction with
Proposition 9 and we can notice that conditions which are requested for the
existence of conditional expectations also gives lower compactness property.
For example, from the condition (c′) of Theorem 3, we easily obtain from
the inequality

fn(t, u) ≥ 〈u?
n, u〉 − f?(t, u?

n(t)) (11)

that each fn is F-quasi integrable (This is exactly [23, Proposition 4]). And
as we have seen in Theorem 1 the existence of conditional expectation can be
proved assuming quasi integrability. But equation 11 is also used to obtain
(s, q)-lsc properties (lsc properties in (ξ, u)) for all s (lsc properties in (ξ, u))
of I(f) [10, Berkovitz theorem, p 524].

4.4 Mosco convergence

Gathering Propositions 8, 9 and 10 we can conclude by the following main
theorem :

Theorem 5 Under the hypotheses of Propositions 8 and 9 (or Propositions
8 and 9) the Fn sequence given by (5) Mosco converges to F in Lp(U).

We illustrate the previous theorems on a small example [12, Example
IV.4]. Our aim here is to illustrate the fact that σ-fields discretisation and

random variable discretisation can be done independently. Here T
def

= (−1, 1)
with its Borel σ-field and µ is the uniform law on T . We consider b : T 7→ T

defined by b(t)
def

= |t| and the measurability constraint is B
def

= σ(b). Thus B
functions are even functions. It is easy to verify [12, Lemme IV.32] that for
a given H random variable :

E [H | B] =
H + H̄

2
with H̄(t)

def

= H(−t) (12)

We now consider a sequence of piece-wize constant functions (Qn) :

Qn : [0, 1] 7→ [0, 1] such that Qn(t)
def

=

n
∑

k=1

k

n
IIn,k

(t) and In,k
def

= (
k − 1

n
,
k

n
]

(13)

and then bn(t)
def

= Qn(|t|) and the associated sequence of σ-fields Bn
def

=
σ(bn). It is easy to check that bn converges almost surely to b. Moreover
a Bn-measurable function is even and thus we have σ(Bn) ⊂ σ(B). Using
[12, theorem III.30] we conclude that Bn Kudo-converges to B. Now given
a sequence of bounded equi-continuous random variables (ξn) converging
almost surely to ξ a uniformy distributed random variable, we consider the

convex normal integrand j(ξ, u)
def

= (u− ξ)2 and problem (1). In order to get
Mosco-convergence of the associated sequence Fn(u), we have to check a
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suficient condition to insure condition (i) of Proposition 9, i.e for any fixed
u ∈ R we have amost surely

lim
n7→∞

E
[

(u − ξn)2 | Bn

]

= E
[

(u − ξ)2 | B
]

.

We have :

E
[

(u − ξn)2 | Bn

]

=

n
∑

k=1

IIn,k
(t)

∫

In,k

(u − ξn(x))2 + (u − ξn(−x))2

2n
dx.

And almost sure convergence to (u−ξn(t))2+(u−ξn(−t))2

2 which is E
[

(u − ξ)2 | B
]

easily follows from equi-continuity and almost sure convergence of the se-
quence (ξn).
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